COL 351
TUTORIAL SHEET 1

1. (KT-Chapter 4) Let us consider a long, quiet country road with houses scattered very
sparsely along it. (We can picture the road as a long line segment, with an eastern
endpoint and a western endpoint.) Further, let’s suppose the residents of all these
houses are avid cell phone users. You want to place cell phone base stations at certain
points along the road, so that every house is within 4 kilometers of one of the base
stations. Give an efficient algorithm that achieves this goal, using as few base stations
as possible. Prove the correctness of your algorithm.

Solution: There is a simple greedy algorithm here. Let h denote the left-most house.
Then we place a base station 4km to the right of A. Now remove all houses which are
covered by this base station, and repeat. It is easy to show (by induction) that if the
algorithm locates base stations at by, ..., b, and some other algorithm (which could
be the optimal algorithm) places base stations at b}, ..., b, (from left to right), then
by > 1), by > b, and so on. Therefore k < k.

2. (KT-Chapter 4) Consider the following variation on the Interval Scheduling Problem
from lecture. You have a processor that can operate 24 hours a day, every day. People
submit requests to run daily jobs on the processor. Each such job comes with a start
time and an end time; if the job is accepted to run on the processor, it must run
continuously, every day, for the period between its start and end times. (Note that
certain jobs can begin before midnight and end after midnight; this makes for a type
of situation different from what we saw in the Interval Scheduling Problem.)

Given a list of n such jobs, your goal is to accept as many jobs as possible (regardless
of their length), subject to the constraint that the processor can run at most one job
at any given point in time. Provide an algorithm to do this with a running time that
is polynomial in n, the number of jobs. You may assume for simplicity that no two
jobs have the same start or end times.

Example: Consider the following four jobs, specified by (start-time, end-time) pairs:
(6 pm, 6 am), (9 pm, 4 am), (3 am, 2 pm), (1 pm, 7 pm). The unique solution would be
to pick the two jobs (9 pm, 4 am) and (1 pm, 7 pm), which can be scheduled without
overlapping.

Solution: This is like the interval scheduling problem discussed in class except that
jobs are periodic. One way of thinking about this is that time is not like an interval, but
is a circle (think of it as the circle in a clock). Now, each job corresponds to an interval
in this circle. Now, suppose we knew the job which are being done at midnight — call
this j. Then, we could remove all jobs overlapping with 7, and solve the remaining
problem. The remaining problem looks like the interval scheduling problem done in



class (and so can be solved using a greedy algorithm). However, we do not know the
job j. One way out is to try out all possibilities for such a job: for each job which
contains the mid-night time, we select it and solve the resulting interval scheduling
problem. Finally, we pick the best such solution.

. You are given a line with n points, labeled 1 to n, marked on it. You are also given a
set of intervals I, ..., I, where interval [; is of the form [s;,e;], 1 < 's; < e; < n. Find
a set of points X of smallest cardinality such that each interval contains at least one
point from X.

Solution: Sort the intervals in increasing order of e;. Select the first point as the
right end-point of the first interval in this order. Remove all intervals which intersect
with this point, and repeat. Proof of correctness is similar to the interval scheduling
problem discussed in class. If the algorithm picks points p; < ps < .-+ < pi, and
optimum solution picks points ¢; < ¢ < ---, s, then prove by induction that p; > ¢;,
and so k < s.

. You are given two sets X and Y of n positive integers each. You are asked to arrange
the elements in each of the sets X and Y in some order. Let z; be the i*" element
of X in this order, and define y; similarly. Your goal is to arrange them such that
M7z =o' x x5 x -+ x 2¥% is maximized. Give an efficient algorithm to solve this
problem. Prove correctness of your algorithm.

Solution: Arrange the elements of X in decreasing order of x; values — let this
ordering be 1,2,...,n. Do the same for Y, and let the ordering be 1,2,...,n. These
are the orderings of X and Y produced by the greedy algorithm. You can always
assume that the optimum solution orders X as 1,...,n as well. Now if it does not
order Y as 1,...,n, then there must be two consecutive elements in the ordering of Y,
say 11, i9, such that 7; > 5. Now show that by reversing the ordering, you get a better
solution. And then argue as done in class: we reduce the number of inversions with
respect to our solution.

. Suppose you want to go from city A to city B on a long highway. Once you fill your
car tank to full capacity, it can travel D kilometres. There are several locations on the
highway which have petrol pumps. Assume that there is a petrol pump at the start of
the highway, and every stretch of length D on the highway has at least one location
with a petrol pump. Given the location of these petrol pumps, devise a strategy for
traveling from A to B so that you will have to make as few stops for filling petrol as
possible.

Solution: Solution is again a greedy algorithm. Let p be the last petrol station at
which we filled petrol. Look at the segment of length D with left end-point at p, and
choose the next petrol station as the last one in this segment, and so on. Again, the
proof is like Question 1 above: if the algorithm fills petrol at py, ..., px (from left to
right), and optimum does this at ¢, ..., gs, then p; > g;.

Another way of thinking about this problem is to reduce it to Problem 1 above: for
each petrol station, draw an interval of length D with this petrol station as its right
end-point.



