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We explore to what extent the combination of predictive and interpretable modeling can provide new
insights for functional brain imaging. For this, we apply a recently introduced regularized regression
technique, the Elastic Net, to the analysis of the PBAIC 2007 competition data. Elastic Net regression controls
via one parameter the number of voxels in the resulting model, and via another the degree to which
correlated voxels are included. We find that this method produces highly predictive models of fMRI data that
provide evidence for the distributed nature of neural function. We also use the flexibility of Elastic Net to
demonstrate that model robustness can be improved without compromising predictability, in turn revealing
the importance of localized clusters of activity. Our findings highlight the functional significance of patterns
of distributed clusters of localized activity, and underscore the importance of models that are both predictive
and interpretable.

© 2008 Elsevier Inc. All rights reserved.

Introduction

In the absence of formal neuronal theories of global brain function,
the analysis of Functional Magnetic Resonance Imaging (fMRI) has
been frequently reduced to modeling the relationship between
specific image voxels and the associated mental tasks. The highest
priority of early fMRI analysis was the interpretation of analyses to
infer relevant voxels, usually involving testing hypotheses that related
localized Regions of Interests (ROIs) to function. Over time, the
putative regions became more localized and hypothesized functions
more specific, such that, for instance, different brain regions were
associated with viewing a face versus viewing a house. However,
Haxby et al. (2001) published a seminal paper in which models built
solely from sub-maximally responding voxels were able to discrimi-
nate between mental states, underscoring both the extent of
distribution of brain function and the need for models that accurately
predict mental states from fMRI data. Since then, a diverse collection of
sophisticated predictive modeling methods have been introduced to
the fMRI literature (Cox and Savoy, 2003; Norman et al., 2006),
achieving impressive prediction performance that has surprised many
neuroscientists. Interest in predictive modeling has been so strong
that a competition, the PBAIC (Pittsburgh-EBC-Group, 2007), has been
introduced to reward the most accurately predicting models. How-
ever, although predictive accuracy is vital to model assessment, it is
important to keep in mind the ultimate objective of fMRI data analysis
that underscores neuroscientific discovery, and thus include model
interpretability as a necessary evaluation criterion.

It is well known in statistical data analysis that proper variable
selection is as critical for prediction as for interpretation (Tibshirani,
1996); therefore one development that has contributed to strong
predictive performance is sparse modeling, in which resulting models
use information from only a relatively small subset of predictive
variables. Standard predictive models from fMRI data are built using
individual image voxels as predictors and single time point (time-to-
response, or TR) volumes as examples (Mitchell et al., 2004), leading to
datasets typically consisting of a large number (e.g. 104) of predictors
but many fewer examples (e.g. 102 or 103). Learning statistical models
from such data is particularly challenging since it is easy to overfit the
training data and producemodels that generalize poorly. However, the
overfitting problemcanbe tempered by reducing the dimensionality of
the data, and thus prediction performance can be significantly
improved by employing methods that identify the relevant predictive
variables or combinations of them. Many predictor selection techni-
ques (e.g., as in Mitchell et al., 2004) use a straightforward filtering
approach, treating the selection stage as separate from the modeling
stage, but sparse modeling approaches combine the selection and
modeling states into one process, sometimes called embedded
selection. Other methods, such as ICA (Calhoun et al., 2003), use di-
mensionality reduction to extract new predictors by linearly combining
voxels. Sparsemodelingmethods, such as LASSO (Tibshirani,1996) (for
regression) and Sparse PCA (Ulfarsson and Solo, 2007) (for dimension-
ality reduction), compare favorably to non-sparse methods on
prediction performance, since they incorporate multivariate informa-
tion into the selection process and, in some cases, through their
incremental nature facilitate the optimization of predictors.

In principle, a sound fMRI model should exclude all irrelevant
voxels while retaining all relevant ones, and the set of selected voxels
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will be reliable or robust, i.e., consistent across multiple well-designed
experiments exploring a task. Therefore, a voxel selection method
should both facilitate the optimization of the number of included
voxels, and produce robust models. Although the prediction perfor-
mance of a model is a good measure of model validity, Zou and Hastie
(2005) suggest that prediction performance alone does not guarantee
validity. They prove that in datasets inwhichmany relevant predictors
are correlated with each other, such as genetics data, existing sparse
techniques will tend to include only one representative predictor from
each cluster of correlated predictors. The authors introduce a new
algorithm, the Elastic Net, which they demonstrate matches, and in
some cases surpasses, the prediction performance of sparse methods
such as LASSO, yet can achieve the grouping effect of assigning similar
weights to correlated predictors. Elastic Net even offers the imple-
menter the ability to adjust the degree to which the grouping effect is
enforced through one of its input parameters, while the other
parameter controls the model sparseness, i.e. the number of voxels
selected. Since activity levels of individual voxels are known to
correlate highlywith each other, some sparsemodelingmethods, such
as LASSO, might fail to include all of the relevant voxels, but Elastic Net
in such cases appears to fulfill interpretability goals of voxel selection
while still surpassing the prediction performance of traditional non-
sparse methods.

To reconcile traditional fMRI analysis approaches, which were
guided by the intuition that functional units are localized regions
rather than voxels, with the success of models of spatially distributed
activity, we hypothesized that true neural response will be marked by
distributed patterns of localized clusters of activity. The Elastic Net
parameter controlling the “grouping” effect, usually labeled λ2, is a
particularly interesting variable for testing this hypothesis. Since
nearby voxels tend to be highly correlated with each other, we
hypothesized that as this grouping parameter is adjusted to increase
the degree to which groups of correlated voxels are included, the
model would feature more localized clusters, and hence the “scatter-
ing”, or “spatial distribution,” of the model voxels (formally defined
later) would decrease.

In this paper, we describe the Elastic Net method and evaluate its
behavior on an fMRI predictive modeling task, from the PBAIC 2007,
with regard to model prediction performance and robustness, as well
as to a novel spatial distribution metric we introduce herein. Our main
results are the following: (1) optimizing the number of voxels
included in the model via cross-validation on the data instead of
choosing a fixed number of voxels is vital to prediction and, by
facilitating this optimization, Elastic Net outperforms the traditional
regression method of Ordinary Least Squares (OLS) in prediction
performance; (2) for a fixed grouping parameter, better predictive
performance of cross-validated models is positively correlated with
increased spatial distribution; (3) increasing the grouping parameter
tends to increase the robustness of a model; (4) models do become
less spatially distributed as the grouping parameter is increased.

In summary, this paper demonstrates the promise of Elastic Net for
fMRI data analysis, presents experimental results supporting our
hypothesis about distributed patterns of localized clusters of neural
activity, and illustrates the importance of producing models that are
both predictive and interpretable.

Methods

Elastic net

In this section, we provide a formal description of the Elastic Net
method. When both the fMRI data and predicted mental states are
quantified as real-valued time series, as in the PBAIC data, a common
approach is to formulate the prediction task as a regression problem,
in which individual TRs are viewed as independent and identically
distributed (i.i.d.) samples (a simplifying assumption), the voxel

activity levels are the predictive variables (predictors), and the mental
state is the predicted, or response, variable. Formally, let X1,⋯, XN be a
set of N predictors, let Y be the response variable, and let M be the
number of samples; X=(x1|⋯|xN) denotes theM×N data matrix, where
each xi is an M-dimensional vector consisting of the values for
predictor Xi for all M instances, while the M-dimensional vector y
denotes the corresponding values for the response variable Y. Many
existing regression techniques, including Elastic Net, assume a
preprocessing step that performs location and scale transformations,
so that the response variable is centered to have zero mean and all
predictors have been standardized to have zero mean and unit length:

XM
i = 1

yi = 0;
XM
i = 1

xij = 0 and
XM
i = 1

x2ij = 1; 1 V j V N:

Then the linear regression problem is to learn the coefficients βi in
the following model:

ŷ= x1β1 + N xNβN =Xβ ð1Þ

where y is an approximation of y. A standard approach is to use the
Ordinary Least Squares (OLS) regression which finds a set of βi that
minimize the sum-squared approximation error ||y−Xβ||22 of the
above linear model. More advanced techniques include regularized
regression methods that add a regularization constraint of some form
to the basic least-squares minimization problem in order to avoid
overfitting and improve the prediction accuracy. This constraint
usually takes the form of a bound on norms of the coefficients of
the model, i.e., the β values in Eq. (1). The two most common types of
regularization imposed are bounds on the L1- and L2-norms, i.e., the
sum of the absolute values or squares of the coefficients respectively.
Note that from a Bayesian point of view, regularized regression can be
viewed as finding regression coefficients that maximize the model's
posterior probability under an assumption about the prior on the
coefficient values; for example, L2-regularization corresponds to a
Gaussian prior and L1-regularization corresponds to a Laplace prior.
These norms are specific cases of Lq-norm, denoted ||z||q, where q≥1:

‖z‖1 =
XN
i = 1

jzij; ‖z‖22 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i = 1

z2i

vuut ; ‖z‖q =
XN
i = 1

jzijq
 !1=q

ð2Þ

Several state-of-the-art regularized regression methods exist,
differentiated mainly by the type of regularization they employ.
Examples include: Ridge regression (Hoerl and Kennard, 1988), which
uses L2-norm regularization, LASSO (Tibshirani, 1996), which uses L1-
norm regularization, and Bridge regression (Frank and Friedman, 1993;
Fu, 1998), which uses Lq-norm regularization, with Ridge and LASSO
corresponding to q=2 and q=1, respectively. Interestingly, in the Lq-
norm regularization family where q≥1, only the L1-norm regulariza-
tion can produce a sparse model (Fan and Li, 2001), i.e. a model in
which only a small subset of the predictors have nonzero coefficients
(Tibshirani, 1996). Therefore, most of the modern sparse modeling
methods include L1-norm regularization.

The Elastic Net (EN) regression (Zou and Hastie, 2005) was
designed to produce models that achieve both sparsity and the
grouping effect mentioned in the Introduction by using a weighted
combination of L1- and L2-norm penalties on top of the least-squares
problem, and can be written formally as minimizing the following
objective function:

Lλ1 ;λ2 βð Þ = ‖ y−Xβ‖ 2
2 + λ1‖β‖1 + λ2‖β‖22: ð3Þ

It is easy to see from Eq. (3) that Elastic Net becomes equivalent to
LASSO when λ2=0 and λ1N0, while for λ1=0 and λ2N0 it is equivalent
to Ridge regression. When both λ1 and λ2 are zero, the Elastic Net
problem simply reduces to OLS regression. Also, as shown in Zou and
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Hastie (2005, Eq. (16)), when λ2 approaches infinity, the Elastic Net
becomes equivalent to univariate soft thresholding, i.e. to correlation-
based voxel selection with a particular threshold value.

The Elastic Net optimization problem (Eq. (3)) can be solved using
the LARS-EN procedure proposed by Zou and Hastie (2005), which is a
relatively simple modification of the most popular algorithm for
solving LASSO, Least Angle Regression using a Stagewise procedure
(LARS) (Efron et al., 2004). LARS-EN has two input parameters: the
grouping parameter λ2 and the sparsity parameter k that specifies
the maximum number of active predictors, i.e. the predictors having
nonzero coefficients in β (also called the active set). It can be shown
(Efron et al., 2004) that each value of k corresponds to a unique value
of λ1 in Eq. (3), with larger λ1 (i.e., larger weight on L1-norm penalty)
enforcing sparser solutions and thus corresponding to a smaller
number of nonzero coefficients k. Herein, we will slightly abuse the
notation, and denote the sparsity parameter as λ1, while always
interpreting it as the active set size. LARS-EN produces the collection
of solutions, called the regularization path, for all values of λ1 varying
from 1 to its specified maximum value. As such, the sparsity
parameter is also referred to as the early stop parameter since it
serves as a stopping criterion for the LARS-EN incremental procedure,
which adds predictors to the active set at each iteration (though
removal is also possible). Note that LARS-EN, like the original LARS, is
highly efficient, as it finds the entire regularization path at the cost of a
single OLS fit. In addition, knowing the regularization path facilitates
choosing the best solution β and its corresponding parameter λ1

using cross-validation (described in Cross-Validated sparsity para-
meter λ1). Further details about LARS-EN are provided in Appendix A.

Data

The data used in these experiments were supplied by the 2007
Pittsburgh Brain Activity Interpretation Competition (PBAIC) (Pitts-
burgh-EBC-Group, 2007) (see reference for more detail). Subjects
were engaged in a Virtual Reality task, during which they had to
perform a number of tasks, designed around the theme of “anthro-
pology field work” in a hypothetical neighborhood. The field work
included, among others, the acquisition of pictures of neighbors with
particular characteristics (e.g., a piercing), the gathering of specific
objects (e.g., fruits, weapons), and the avoidance of a growling dog.
These tasks were rated as continuous variables over the time course of
the experiment. The PBAIC organizers refer to the rating vectors as
“features,” but to avoid confusion with the statistics and machine
learning literature, in which predictor variables are referred to as
features, we will refer to these vectors as “response variables” or
“response vectors.” Several objective response variables (e.g., picking
up the objects) were measured simultaneously with the functional
data, while a few subjective response variables (e.g., valence) were
estimated off-line. There were three independent runs (i.e., sessions)
for each of 3 subjects; fMRI data for all of the runs are available, but the
response data is available only for the first two runs. Each run includes
fMRI data for the 33,000–35,000 voxels (depending on the subject)
and 24 response vectors over 704 TRs each. All experiments were
performed using fMRI data that had been passed through a high-pass
filter (described in more detail in PBAIC Competition), and response
vectors that had been convolved with a standard hemodynamic
response function (HRF).

Metric definitions

Spatial distribution metric: We hypothesized that models would
be marked by patterns of distributed clusters of localized neural
activity. To evaluate model distribution and clustering, we computed a
spatial distribution metric that estimates the spread of voxels
throughout the brain. This metric is an adapted version of Thiel's
redundancy measure, usually utilized to characterize spatial point

patterns (Okabe et al., 2000). We first translate the β values obtained
by the corresponding regression model back to their original (x, y, z)
coordinates in brain space, i.e., the spatial maps of the models. We
then calculate the degree of spatial distribution as follows: (1) the
maps are binned using a fixed grid of 3×3×3, the minimum bin size
yielding a meaningful number, resulting in B bins (5808 in this case);
(2) a normalized distribution is computed, such that each bin b is
represented by

pb =Q
−1
X
iab

jβij

where Q =∑A
j = 1jβjj and A is the number of nonzero β weights, or

number of active voxels, in the model; (3) the entropy of the
distribution was computed as

H = −
XB
b = 1

pblogpb

(4) the final distribution measure was computed as

d =H=H0

where H0=log A corresponds to the maximum entropy. Thus the
spatial distribution will vary between 0 and 1, tending towards 0 for
maximally clustered models, in which all or a majority of the β
weight mass is located in one 27-voxel bin, and tending toward 1
for maximally distributed models, in which the weight mass is
evenly spread among as many 27-voxel bins as possible. Spatial
distribution was computed using this metric for each Elastic Net run
using the resulting model's β weights. Note, therefore, that the
same voxels trained using Elastic Net with different λ2 values will
result in slightly different spatial distribution scores, as the voxels
will be weighted differently. The performance scores will naturally
differ as well. Further details about the derivation of this algorithm
and empirical tests of its validity are provided in the supplemental
material.

Robustness metric: As mentioned in Introduction, we hypothe-
sized that greater inclusion of voxels from within correlated clusters
would result in greater overlap in included voxels between two
models generated on different datasets. For computing robustness
across experimental runs, we thus counted the total number of unique
voxels selected over both experimental runs, and the number of voxels
co-occurring in the two models. In our results, we discuss robustness
for cases in which λ1 was variable and optimized using cross-
validation; therefore, we report robustness as the percent of the total
number of unique voxels included in either model that appeared in
both models.

Experiments

For each experiment, 144 models were trained: one for each of the
3 subjects, 24 response vectors, and 2 fMRI runs of 704 TRs (for cross-
validation purposes).

Prediction performance metric: To evaluate the prediction
performance of a model, the coefficients β were saved and applied
to the voxel time series of 704 TRs not used for training. A Pearson
correlation coefficient was obtained for the predicted response vector
versus the actual convolved response vector for the 704 test TRs. This
correlation coefficient is reported as the prediction performance.

Voxel selection
Using a filtering approach to selection is similar to setting the λ2

parameter to a value of infinity, as only univariate associationswith the
response vector are considered. Therefore, wemight expect the extent
of inclusion of voxels from these clusters to increase on a continuum
from lowλ2 values throughfiltering selectionmethods. In addition, we
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sought to compare filtered and embedded voxel selection as well as
naive, or random, voxel selection. For all model runs, the following
methods were first used to obtain a ranking of voxels:

1. Correlation-based (filtering): A Pearson correlation coefficient was
obtained for each voxel with the response vector of interest. Voxels
were ranked by the absolute value of this coefficient.

2. Elastic/LASSO-based: Elastic Net was trained on the full dataset of
30,000+ voxels with λ1=1000. The λ2 parameter was selected from
among 0.0, 0.1 and 2.0 as part of the experiments, in which 0.0
corresponds to pure LASSO. The λ2 value is indicated in all results.
Recalling that, on some iterations, LARS-EN removes voxels, the
number of iterations taken to achieve an active set size of 1000
routinely slightly exceeds 1000 iterations. However, for simplicity,
the voxels that were active during the first iteration in which the
active set size was 1000 were selected as the top 1000 voxels and
their rank was approximated as the order in which they were last
added to the active set.

3. Random: For comparison purposes, random rankings were gener-
ated by randomly ordering the voxels. A different (unique) random
ordering was used for each of the 144 models.

The top 1000 voxels from each of these 3 methods for each of the
144 runs were retained. Two sets of experiments were then
performed, for each of the runs, described in the following two
sections.

Fixed sparsity parameter λ1

The top v voxels were selected from this set of 1000, where v was
10, 300, or 1000, approximating the active set if λ1 was set to v. A
regression model was then trained using only these voxels. The
models were trained in two ways:

1. Linear regression (OLS): OLS was performed on the set of v voxels
against the convolved response vector. When 1000 voxels were
used, OLS results should not be considered valid since the data
matrix is not invertible because the number of voxels (1000)
exceeds the number of TRs (704). Therefore, OLS results are only
reported when selecting 10 or 300 voxels.

2. Elastic Net/LASSO/Ridge regression: the subset of v voxels was
used for training in Elastic Net without an early stop, i.e. with λ1

set to its maximum value v, thus leaving only L2 regularization.
The λ2 parameter was, for the Elastic/LASSO-selected voxels, set
to the same value as was used in the selection phase and, for the
other selection methods, varied as part of the experiments and
indicated in the results. Due to regularization, the results of this
method are still valid when the number of voxels exceeds the
number of TRs. Note that this procedure is not equivalent to
running Elastic Net on the full, original set of voxels with λ1=v,
even when Elastic Net was used to generate the rankings, since,
in the selection run, some voxels may have been added before
the active set was size v but dropped before the active set size
was 1000, and thus did not appear in any of the top v sets where
vb1000. Still, these results are likely close approximations of
using the given λ1 values.
Also note that the Elastic Net results for a given λ2 value are
equivalent to applying Ridge regression with the λ2 value to the
pre-selected group of voxels. Since computing the Ridge regression
model for datasets this size is typically infeasible, in practice a small
subset of voxels are pre-selected, typically by examining univariate
correlation (Chigirev et al., 2006), one of the voxel selection
methods explored in these experiments.

Cross-Validated sparsity parameter λ1

Cross-validation refers to the optimization of model-building
parameters based on prediction performance on held-out data, e.g,
data from a separate experimental run, for maximizing generalization

of the selected model to new datasets. Testing on different data than
that used in training is important to ensure that the model is not
overfit to the training data. The PBAIC data was supplied in a form
meant to facilitate cross-validation. In this set of experiments, we
trained models on the data for both runs 1 and 2 for each subject and
tested them on the data fromwhichever of the two runs was not used
for training. The fact that Elastic Net produces the full regularization
path allows us to easily select an optimal λ1 value using cross-
validation. We simply select, for each response variable, the β values
from the iteration producing the model with highest prediction
performance.

As in the fixed λ1 experiments, in the cross-validated λ1

experiments, Elastic Net regression was performed on the full,
original set of voxels with a λ1 of 1000. In this case, however, the β
values were retained for the model generated on each Elastic Net
iteration and were used to compute the prediction performance at
each iteration. The model with the highest prediction performance
was retained and the number of active voxels in the model was
chosen as the final λ1. Thus, λ1 is determined separately for every
final model produced.

Cross-validation of LASSO was similarly tested by running Elastic
Net with a λ2 value of 0.0. LASSO is applicable when NNM, as in
this case; however, in such cases, Efron et al. (2004) states, “a LASSO
fit can have no more than M-1 (mean centered) variables with
nonzero coefficients.”. Due to this limitation and computational
inefficiencies in running LASSO with LARS-EN, these experiments
only considered values of N up to 300, instead of the 1000 for
Elastic Net.

We do not perform experiments in which the number of voxels
used in an OLS model is selected using cross-validation, since the
nature of OLS computation requires performing a separate OLS run for
each value considered. In contrast, LARS-EN computes the entire
regularization path, facilitating cross-validation of the λ1 parameter in
Elastic Net and LASSO, one advantage of these methods over OLS and
Ridge. We feel that 10 and 300 voxels are representative numbers of
voxels that might be tested when applying OLS and Ridge.

Note that the results reported for this second set of experiments
should be taken with a grain of salt, as the λ1 value was chosen by
considering performance on the same dataset for which perfor-
mance was evaluated. Thus, the performance results in particular
will not reflect true generalization error, for which a third dataset
would be needed. The most straightforward way of measuring
generalization error would be to apply the models to data from the
third run of the experiments. However, as of this writing, the third
run response vectors have not yet been made public. As an
approximation, the current test datasets can be randomly sub-
divided into an optimization dataset, used for determining λ1, and a
test dataset, used to evaluate prediction performance. Making such a
division fairly is difficult for data from structured experiments, like
the video game runs, yet we did so and found that prediction
performance on the test datasets was nearly identical to that on the
optimization datasets, even when applying a form of cross-
validation to the OLS models(such that the λ1 chosen resulted in
the best mean optimization performance). These results are
included in supplemental material. In addition, in a similar situation,
Mitchell et al. (2004) found little difference in prediction perfor-
mance estimates or the number of selected voxels whether or not
an optimization dataset was used. The purposes of these experi-
ments, rather than being to precisely compare prediction perfor-
mances, are primarily to illustrate the importance of choosing an
appropriate λ1 value and explore the effects of other model
parameters, neither of which is dependent on generalization
performance.

All experiments were also performed for intermediate values of λ2.
The results were consistent with an interpolation between 0.1 and 2.0,
but were not included for brevity.
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Results

The goal of our study was to exploit the flexibility of Elastic Net to
explore the four axes of prediction, interpretation, distribution and
localization. For this, we experimented with both fixed and cross-
validated λ1 values, as well as two λ2 values, 0.1 and 2.0. Since cross-
validating the λ1 value is most likely to affect prediction performance,
and predictive models are associated with spatially distributed
patterns, it makes sense to consider λ1 along with these properties.
Likewise, since we hypothesized that manipulating λ2 would affect
robustness, which relates to interpretation, and analyses focusedmore
on interpretation tend to consider localized structures, we will
consider λ2 along with interpretation and localization.

Prediction, cross-validation, and spatial distribution

A goal of our prediction experiments was to compare Elastic Net, as
a predictive modeling tool, to the traditional regression method of
Ordinary Least Squares (OLS). In addition, we sought to compare
Elastic Net, run with a nonzero λ2 value, to LASSO, which can be
considered Elastic Net run with a λ2 value of 0.0. Recall that OLS
requires choosing a fixed number of voxels for all models, such as the
values considered in our experiments (10 and 300), while Elastic Net
facilitates the selection of a model-dependent optimal number of
voxels. As shown in Fig. 1, Elastic Net and LASSO perform comparably
to each other, yet the ability to easily optimize the parameter λ1 (i.e.
the number of included voxels) can significantly improve prediction
performance on the test (or optimization) dataset. This improvement,
regardless of any voxel pre-selection method applied, causes both
Elastic Net and LASSO to significantly outperform OLS in prediction.
The prediction improvements for Elastic Net resulting from cross-
validation are shown in Fig. 2 to occur consistently across all response
variables. Also recall that the Elastic Net results in Fig. 1 can be
considered equivalent to running Ridge regression on the same pre-
selected groups of voxels.

Our spatial distribution metric reveals a likely key reason for the
improvement in prediction performance associated with selecting an
optimal number of voxels. As Fig. 3 shows, in most cases, cross-
validating, compared to using a fixed number of voxels, produces
models that are significantly less spatially distributed; this finding
suggests that, in many cases, very poor performance is associated with
models overfit to training data due to the inclusion of many irrelevant
voxels, which are most likely distributed randomly throughout the
brain. However, note that in Fig. 1, random voxel selection, in which
small random subsets of the full set of voxels were selected, resulted in
prediction performance that was comparable to that of the more
principled approaches, especially as a larger, fixed number of voxels
was used. These seemingly disparate results can be reconciled by
examining the effects of cross-validation. After cross-validating to
remove the randomly distributed irrelevant voxels, we observe in Fig.
4 the importance of representations that incorporate information
from distributed yet relevant voxels. When using a fixed number of
voxels (Fig. 4a), greater model spatial distribution is correlated with
poorer prediction performance, but when the number of voxels is
chosen using cross-validation (Fig. 4b), the reverse is true: better
predicted response vectors tend to be those for whose optimal learned
models are more spatially distributed. These results, and the strong
performance of random voxel selection provide strong evidence for
the distributed nature of pattern representation in the brain.

Robustness and grouping

Having examined prediction performance using the standard
criteria, we now consider robustness, our novel metric defined earlier.
Recall that the main effect of increasing λ2 is the inclusion of more
voxels that are correlated with other relevant voxels and hence
omitted by traditional sparse methods that only consider prediction
performance. Indeed, as shown in Fig. 5a, increasing the λ2 value from

Fig. 1. Elastic Net and LASSO, when optimized, produce more predictive models than
OLS with fixed numbers of selected voxels, regardless of the initial voxel selection
approach. Prediction performance across the 3 voxel selection methods is shown for
OLS, using 2 sample values for the number of voxels selected, and Elastic Net and LASSO,
when cross-validation is used to select an optimal number of voxels. Mean correlation
of model predictions with test data are shown, with standard error bars, averaged over
the 24 response vectors, 3 subjects, and 2 cross-validation runs. For the Elastic Net voxel
selection used by OLS and Elastic Net, and for the Elastic Net runs, a λ2 value of 2.0 was
used. The average number of voxels used over all 144 Elastic Net C-Val models was 296.
The average used by each feature is shown in Fig. 5(c).

Fig. 2. Selecting an optimal number of voxels through cross-validation improves
prediction performance compared to using a fixed number of voxels. Mean correlation
of model predictions with test data for each predicted response vector are shown, with
standard error bars, averaged over the 3 subjects and 2 cross-validation runs. An Elastic
Net λ2 value of 2.0 was used. For Fixed, 300 voxels were used. For C-Val, the number of
voxels varied; averages by feature are shown in Fig. 5(c).
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0.1 to 2.0 may slightly improve prediction performance, but ultimately
has little effect on prediction. However, since selection of voxels from
within correlated clusters is likely arbitrary, including more voxels

from such clusters should increase the frequency with which voxels
are selected for separate experimental runs. As is clearly evident in Fig.
5b, increases in λ2 are usually associated with increases in the ro-
bustness (as described in Methods) across the 2 cross-validation runs
for each response vector+subject combination; moreover, as Fig. 5c
shows, this change is frequently associated with the inclusion of a
greater number of voxels; these additional voxels are likely those
relevant voxels highly correlated with other relevant voxels. Hence, by
including more relevant yet correlated voxels, increasing λ2 improves
model robustness without compromising prediction performance. We
also found that model robustness directly correlates with model
prediction performance (r=0.677, pb0.001 when λ2=0.1; significant
also for λ2=2.0), suggesting that these two measures point to certain
response variables as being generally “easier” to model, producing
models that are both more predictive and more robust.

Fig. 4.When selecting a fixed number of voxels (a), higher spatial distribution of learned
models is associated with poorer prediction performance; when the optimal number of
voxels is selected through cross-validation (b), the reverse is true. Mean model spatial
distribution values are shown plotted against their matching mean prediction
performance (correlation with test data). Values are averaged over the 3 subjects and
2 cross-validation runs. A fit linear regression line is overlaid and correlation statistics
are indicated. An Elastic Net λ2 value of 2.0 was used.

Fig. 3. Selecting an optimal number of voxels through cross-validation, rather than
selecting a fixed number of voxels, frequently results inmodels that are significantly less
spatially distributed. Mean spatial distribution values of learned models for each
predicted response vector are shown, with standard error bars, averaged over the 3
subjects and 2 cross-validation runs (C-Val.). An Elastic Net λ2 value of 2.0 was used. For
Fixed, 300 voxels were used. For C-Val, the number of voxels varied; averages by feature
are shown in Fig. 5(c).

Fig. 5. Even among equally predictive, cross-validated, models (a), increasing the λ2

parameter increases model robustness (b) while slightly increasing the number of
included voxels (c). (a) Mean model prediction performance (correlationwith test data)
scores are shown, with scores obtained with a higher λ2 value plotted against their
matching scores, obtained with a lower λ2 value. The unit line indicates no change;
points above and to the left of that line reflect improved performance. (b) The mean
percentage of specific voxels selected in the models associated with both matched
cross-validation runs, out of all specific voxels used in either of the two runs, are shown,
with standard error bars, for each predicted response vector. (c) The mean number of
voxels selected when a lower λ2 value (0.1) is used are plotted against the matching
mean number of voxels selected when a higher λ2 value (2.0) is used. The unit line
indicates no change; points above and to the left of that line reflect a greater number of
voxels. Means in (a) and (c) are over the 3 subjects and 2 cross-validation runs, in (b)
over the 3 subjects.
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Localization

We have shown that controlling the learning algorithm to select an
optimal number of voxels for prediction helps reveal information
about the spatial structure of neural response, namely the relationship
between prediction, robustness, and spatial distribution. As Fig. 5
depicts, the additional control provided by Elastic Net's λ2 parameter
enables adjustment over model properties not directly related to
prediction performance; this control too turns out to facilitate testing
of neuroscientific hypotheses. In particular, recall the hypothesis that
clusters of correlated voxels would exist and would frequently be
localized within the brain. As Fig. 6 demonstrates, increases in λ2,
shown to be associated with greater inclusion from among correlated
clusters of voxels, are also associated with decreases in model spatial
distribution. Since our spatial distribution metric is essentially
independent of the number of voxels included in the model, this
decrease in spatial distribution implies the inclusion of more spatially
proximal groups of voxels; therefore, the correlated clusters from
which more voxels are included are likely to be spatially proximal,
consistent with neuroscientific intuition.

This is further exemplified in Figs. 7 and 8: for the Instruction
feature (auditory playback of instructions to begin a new block), the
figures show the density maps of the absolute value of the regressors,
normalized to the subject's anatomy, for λ2=0.1 and λ2=2.0. The
higher value of the grouping parameter implies a relatively small
number of locally extended clusters, whereas the smaller value
produces a more globally distributed ensemble of locally restricted
clusters. Observe that the maps are not threshold versions of each
other: the λ2=2.0 map tends to overlap with the λ2=0.1 one, but it
takes more contiguous territory; the latter is more spotty and
distributed (note that, due to cross-validation, the maps do not
necessarily have the same number of active voxels).

More specifically, the difference between the two maps has a
functional underpinning. For λ2=2.0, the most prominent clusters
(a total of 25 with more than 50 voxels in the normalized Talairach
space — see supplementary material) correspond, as expected, to
language areas including BA 21, 22, 37, 41, 42, 44 and 46, along with
cerebellar and occipital activations in BA 18 and 19. For λ2=0.1, the top
clusters are shown in Table 1; the first four clusters overlap with
clusters identified by the λ2=2.0 map, but not the last three, which
were not even selected as smaller clusters. In order to understand the
origin of these differences, we approximated the temporal evolution
of each cluster with the first principal component, and compared
them against each other. What emerges from this analysis (see
supplementary material) is that the λ2=2.0 clusters tend to be highly
correlated with each other, presenting a temporal profile that closely
follows the Instructions paradigm. On the other hand, the λ2=0.1
clusters tend to differ more from each other. This is, in particular, the
case for the clusters that do not overlap with λ2=2.0; i.e. they are less
correlated with the top clusters identified by λ2=0.1, and with the
λ2=2.0 clusters, even those with comparable volume. One of these
clusters is highlighted in Fig. 7; it is listed as the last one in Table 1, and
corresponds to Brodmann Area 7 (Precuneus), usually associated with
working memory processes (Callicott et al., 1999; de Fockert et al.,
2001). It is worth noting that the other λ2=0.1 clusters, even those
that do not overlap with any λ2=2.0 cluster, at least seem to span
areas with similar functionality. This highlights the notion that indeed
different values of λ2 reveal functional properties that to some extent
can be considered qualitatively different.

PBAIC competition

Even though the focus of this paper is the interplay between
prediction and interpretation, it is instructive to describe the technical
aspects of our submission to the PBAIC 2007 competition, with the
Elastic Net as the core modeling step. Typical of this competition, the
full model building was an iterative process. Since Run 3 prediction
performance scores were available for each feature, this process
included feedback on generalization performance, which was used to
revise the modeling decisions. We describe below the full model
design used in our final competition submission.

Pre-processing: We observed that both OLS and Elastic Net were
hampered by the presence of very low frequencies, not removed by
simple detrending techniques. After experimentation with cross-
validation, we empirically determined the number of Fourier modes
that needed to be removed from the voxel's time traces in order to
maximize performance. Training: Data from Run 1 was used to train
the model, Run 2 was used for parameter optimization, and Run 3 was
used for model evaluation. The predictors used to train the algorithm
were the vectorized time traces of the voxels, expanded with 4 time-
shifted copies, corresponding to shifts +1,+2,−1,−2, paddedwith zeros.
Voxel pre-selection was based on the correlation between the time
traces (including the shifted ones) and the corresponding convolved
response vector. The pre-selection included all voxels with a
correlation above 0.3 times the maximal correlation, selected
separately for each response vector and time-shift. The selected
predictors (voxels and shifted voxels) were used to train Elastic Net
with parameters described in the next section. Validation: The final λ1

values were chosen based on prediction performance on the Run 2
data, separately for every subject and response variable. Prediction:
The prediction for Run 3 was based on the model selected by the
validation step. Post-processing: Some of the binary features (e.g.
Instructions) were “re-binarized”, i.e. the initial prediction was de-
convolved (with the hemodynamic response function), binarized and
convolved again; this step helped dramatically for the final prediction
score.

Even with a stringent correlation cutoff for pre-selection, 10,000
predictors (voxels and time-shifted voxels) may remain, making

Fig. 6. Increasing the λ2 parameter is associated with less spatially distributed (more
locally clustered) models. Mean spatial distribution of learned models for each
predicted response vector are shown, with standard error bars. Means in both plots
are over the 3 subjects and 2 cross-validation runs.
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training with no early stopping computationally infeasible given
current constraints. Observing that, with the exception of the fixation
response variable, optimal λ1 values tended to be b1000, λ1 was set to
a low value. Through trial-and-error, the optimal trade-off between
computation and prediction was found to be 300; we observed a
marked difference with smaller values, and only marginal improve-
ments for larger ones, up to 500. We also experimented with training
using only non-time-shifted voxels, and were able to train using all
voxels (with no pre-selection applied) when λ1 was set to 300.
However, this change does not seem to add significant improvements
to the predictions, although we expect that once memory manage-
ment issues are resolved, the addition of the entire set of time-shifted
voxels will prove significant. Finally, we explored a range of λ2 values.
Consistent with previous work and theory, we observed that the
presence of a nonzero λ2 term has a positive effect in the prediction,
but the effect saturates very quickly with the parameter value.

The final submission was ranked 12th based on the average score
of the features; a fair comparison with other regression methods
cannot be made, as post-processing had a decisive effect on
performance, and we did not do binarization in all the features
amenable to it (for example, the Instructions feature Pearson
correlation can be improved from 0.7 to 0.99).

Discussion

Indisputably, prediction is an essential component of scientific
modeling, and great effort should be put into maximizing it; however,

as shown in this paper, equally predictive models can still be markedly
different. In fMRI analysis, the core goal underlying predictive
modeling is production of a model that can be interpreted to pinpoint
all relevant voxel activity and exclude all irrelevant activity. Therefore,
it is crucial to not lose sight of the interpretation of the resulting
models in the quest to optimize prediction performance.

Innumerable techniques have been developed for choosing an
appropriate set of voxels from which to build models. Not
surprisingly, these techniques are most often evaluated based on
the prediction performance of the resulting models. As our results
confirm, selecting a set of voxels that optimizes prediction
performance is indeed critical for model interpretation. When
fixed numbers of voxels are chosen, the resulting models are
frequently overfit to training data, and therefore implicate many
voxels that are actually irrelevant. Since these spurious voxels will
tend to be randomly distributed throughout the brain, these models
might misrepresent more general neuroscientific characteristics, for
instance by overestimating the spatial distribution of response.
Elastic Net is able to select an optimal number of voxels by
automatically selecting voxels as part of the modeling process and
computing the full regularization path, which facilitates cross-
validation. The standard error bars for spatial distribution in Fig. 3
indicate considerable variability in spatial distribution even when
cross-validating when λ2=2.0, yet our results indicating increased
model robustness as λ2 is increased suggest that with higher, better
optimized, values of λ2, the spatial distribution of the models for a
given response vector might converge.

Fig. 7. Distribution and clustering of the models. Absolute values of β weights for the Instruction feature, subject 1, for λ2=0.1 (radiological view), with associated colorbar. The
highlighted cluster is identified in this model but not in the λ2=2.0 model.
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When choosing a validated set of voxels, the true importance of
spatial distribution becomes clear; the most predictive models draw
on information from the most distributed regions of the brain.
However, we should be conservativewhen drawing conclusions about
the relationship between spatial distribution and prediction perfor-
mance from these results. We found no significant correlation
between the degree to which a particular response variable's mean
model spatial distribution increased when cross-validation was used,
and the corresponding improvement in prediction of that response
variable. Perhaps these results imply that modeling highly distributed
neural responses is easier than modeling highly localized responses;
such a finding would be consistent with the observed exclusion of

voxels from localized clusters when low λ2 values are used. Therefore
experimenting with even higher λ2 values may address this question.
Still, in conjunction with the inferior yet impressive predictive
performance of random voxels, these findings underscore that the
highly distributed nature of neural response necessitates the use of
multivariate methods, not tied to localized regions, which can be
validated by prediction performance.

We have also shown that being preoccupied with prediction
performance can be equally destructive. Models that function as
highly predictive “black boxes”might be useful for neuro-engineering
“mind reading” efforts, but for informing neuroscience, these models
should also be reliable and valid. At the least, we would expect useful
models of the PBAIC response vectors to incorporate the same, or very
similar, sets of voxels when trained on data from the two experimental
runs. Elastic Net goes beyond other sparse modeling approaches by
facilitating, with only one additional parameter, an increase in model
robustness without compromising prediction performance. Examin-
ing the findings more closely by manipulating the λ2 parameter, we
observe that neural response is marked by clusters of correlated voxel
activity. Existing sparse methods, which effectively use a very low λ2

value, will tend to include only one voxel from each cluster; the voxel
chosen is in effect arbitrary due to minor fluctuations in the dataset.
By selecting more voxels from within these clusters that are
redundant for prediction yet relevant to the task, Elastic Net with a
higher λ2 value achieves more robust, and hence valid, models.

We can be even more emphatic, but speculative, in our
interpretation of the results, by extrapolating the observation that,

Fig. 8. Distribution and clustering of the models. Absolute values of β weights for the Instruction feature, subject 1, for λ2=2.0 (radiological view), with associated colorbar. The
clusters are bigger and include many, but not all of the λ2=0.1 clusters.

Table 1
Principal clusters of activation for λ2=0.1

Voxels xp yp zp ∩ Description

844 62 −24 −1 Y Left BA 21/22
807 −62 −15 −6 Y Right BA 21/22
167 52 −12 −7 Y Left BA 21/22
153 −62 2 −5 Y Right BA 21/22
100 −26 −84 28 N Right BA 18/19
58 −40 −80 −13 N Right BA 18/19
58 20 −66 57 N Left BA 7⁎

The coordinates correspond to the peak activation (i.e. absolute value of the regressor)
within the cluster; the ∩ column indicates whether the cluster overlaps with a cluster
identified by λ2=2.0 (⁎highlighted in Fig. 7).
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at least for a good feature such as Instruction, two alternative models
(as shown in Figs. 7 and 8) can achieve an almost identical prediction
performance: the only possible way to avoid this model degeneracy is
to introduce further functional constraints, including local and global
neural dynamics, and perhaps challenge the idea that brain function
arises from sufficiently repeatable spatio-temporal patterns. By the
same token, the fact that the maps are not thresholded versions of
each other also emphasizes that brain processes occurring at several
temporal and spatial scales can be detected by fMRI. To make progress
along these challenging lines, however, we need stronger and more
encompassing theoretical tools than we have at our disposal.

These results suggest the promise of Elastic Net for fMRI
modeling, although the field is still quite far from producing models
that are as predictive, and certainly as robust, as needed to answer
the pressing modern neuroscientific questions. For instance, regard-
less of λ2 value, the models built on the PBAIC 2007 data all showed
poor robustness, with no response vector averaging better than 17%
overlap. This finding highlights the important point, however, that
models produced are only as good as the data used to train them.
While the PBAIC experiments were run carefully, the experimenters
will agree that the response variables analyzed are highly challen-
ging to model. The response variables are sometimes overly broad
and sometimes overly specific, and little is known about how they
might map to underlying function. Our results reflect this variability
among the response variables, with some responses clearly more
“easily” modeled than others. The diversity and complexity of these
response variables are in fact the very reasons they appear in such a
generalized competition; the experimenters have been highly
impressed by even the prediction capabilities observed using all
methods thus far. We intend to continue exploring the issue of
robustness empirically as well as theoretically on better understood
fMRI datasets.

Still, the effect of λ2 on robustness is clear from these results,
and the control provided by λ2 is shown in this paper to have
value even beyond improving robustness. This parameter has a
well-understood effect on the resulting models; as such, it is an
attractive candidate independent variable for testing neuroscienti-
fic hypotheses. In our experiments, this variable served as a
proxy for the degree to which members of correlated clusters are
included in models. Since greater inclusion is associated with
decreased spatial distribution, we can conclude that these corre-
lated clusters are frequently localized in space. Combined with our
findings about the importance of spatial distribution, a picture
emerges of neural response characterized by patterns of localized
clusters distributed highly throughout the brain. Many existing
techniques exist solely to attempt to extract these localized clusters
directly, for instance by setting thresholds on the extent of cross-
correlation (Forman et al., 1995). Elastic Net, by selecting voxels
automatically during modeling, offers the advantage of automati-
cally selecting these clusters without the need for separate
methods or thresholds, and does so in a multivariate context, on
a per response variable basis, so that all clusters relevant to a task,
but none that are irrelevant, are selected.

As demonstrated preliminarily in this paper, once a model has
proven itself trustworthy, the next step is naturally to extract
information from it. Models exhibiting satisfactory prediction
performance and robustness can be easily explored visually by
plotting the β weights from the models according to corresponding
voxel location. The presence of voxels within specific ROIs can be
determined and techniques can be developed to explicitly “cluster”
the voxel sets so as to visually isolate the localized clusters. It might
also be interesting to compare the “clusters” generated by Elastic
Net with the “dimensions” extracted through dimensionality
reduction techniques such as ICA and Sparse PCA. In addition, we
have shown that the spatial distribution metric introduced in this
paper, while simple, can reveal insights about neural functioning.

Subsequent efforts might use this measure to explore differences in
neural representation across tasks and between subjects. Predictive
modeling techniques clearly offer great promise for knowledge
discovery, but this ultimate goal of their production must be
considered.

Appendix A. LARS-EN Algorithm

The Elastic Net functional in Eq. (3) can be easily transformed into
the LASSO functional (Zou and Hastie, 2005)

L γ;β⁎ð Þ = ‖ y⁎ − X⁎β⁎‖22 + γ‖β⁎‖1 ðA1Þ

where γ = λ1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + λ2ð Þp

, and X⁎, y⁎ are properly “augmented”
versions of X and y of size (n+p)×p and (n+p)×1, respectively.

The LARS algorithm is very similar to Forward Stagewise
regression, which is a “cautious” version of “forward stepwise
regression” (Weisberg, 1980), a simple iterative approach to variable
selection and regression. However, LARS is more efficient than
Forward Stagewise as it makes larger steps, which are still cautious
compared to the straightforward greedy method. LARS starts with an
empty set of predictors and selects the one having the largest
absolute correlation with the response; however, it proceeds along
the selected direction only up to the point that another predictor
becomes equally correlated (in the absolute sense) with the current
residual. Then, LARS chooses a new direction equiangular between
the two predictors and continues moving along this direction until
some third predictor enters the “most correlated” set (also called the
active set). LARS chooses the new direction equiangular between the
three active predictors, and so on, until it includes the desired
number of predictors, specified as an input to the algorithm. It was
shown by Efron et al. (2004) that, under a very minor modification,
LARS finds an optimal solution to the LASSO problem in Eq. (4). This
result and the computational efficiency of LARS made it the
algorithm of choice for solving various sparse regression problems,
including the Elastic Net. The LARS-EN algorithm for solving Elastic
Net (Zou and Hastie, 2005) essentially uses LARS (Efron et al., 2004)
to minimize the above functional, while exploiting the specific
structure of the augmented data matrix to improve the efficiency
of LARS. In our analysis, we used a publicly available package
(Sjöstrand, 2005).

Appendix B. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.neuroimage.2008.08.020.
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