
1. User Guide . 2
1.1 Architecture . 2

1.1.1 Adaptive Optimization System . 2
1.1.1.1 AOS Controller . 3
1.1.1.2 Cost Benefit Model . 3
1.1.1.3 Jikes RVM's compilers . 4
1.1.1.4 Life Cycle of a Compiled Method . 5
1.1.1.5 Logging and Debugging . 5
1.1.1.6 Threading and Yieldpoints . 6

1.1.2 Compilers . 7
1.1.2.1 Baseline Compiler . 7
1.1.2.2 JNI Compiler . 7
1.1.2.3 Optimizing Compiler . 7

1.1.2.3.1 BURS . 7
1.1.2.3.2 Compiler Optimization Comparison Chart . 9
1.1.2.3.3 IR . 10
1.1.2.3.4 Method Compilation . 12
1.1.2.3.5 OptTestHarness . 13

1.1.3 Core Runtime Services . 14
1.1.3.1 Bootstrap . 14
1.1.3.2 Class and Code Management . 15
1.1.3.3 Exception Management . 17
1.1.3.4 JNI . 17
1.1.3.5 Object Model . 18
1.1.3.6 Thread Management . 19
1.1.3.7 VM Callbacks . 23
1.1.3.8 VM Conventions . 24

1.1.4 Magic . 26
1.1.4.1 Compiler Intrinsics . 26
1.1.4.2 Raw Memory Access . 27
1.1.4.3 Unboxed Types . 27
1.1.4.4 Uninterruptible Code . 27

1.1.5 MMTk . 28
1.1.5.1 Memory Allocation in JikesRVM . 28
1.1.5.2 Scanning Objects in JikesRVM . 30
1.1.5.3 Using GCSpy . 31

1.2 Care and Feeding . 33
1.2.1 Building the RVM . 34

1.2.1.1 Building on Windows . 38
1.2.1.2 Building Patched Versions . 38
1.2.1.3 Cross-Platform Building . 38
1.2.1.4 Primordial Class List . 39
1.2.1.5 Using buildit . 39

1.2.2 Configuring the RVM . 41
1.2.3 Debugging the RVM . 42

1.2.3.1 GDB Stack Walking . 43
1.2.4 Experimental Guidelines . 45
1.2.5 Get The Source . 47
1.2.6 Modifying the RVM . 48

1.2.6.1 Adding a New GC . 48
1.2.6.2 Coding Conventions . 50
1.2.6.3 Coding Style . 50
1.2.6.4 Compiler DNA . 51
1.2.6.5 Editing JikesRVM in an IDE . 51

1.2.7 Profiling Applications with Jikes RVM . 53
1.2.8 Quick Start Guide . 55
1.2.9 Running the RVM . 55
1.2.10 Testing the RVM . 63

1.2.10.1 External Test Resources . 66
1.2.10.2 Test Run Descriptions . 69

1.2.11 The MMTk Test Harness . 69
1.3 MMTk Tutorial . 75

1.3.1 Building a Hybrid Collector . 76
1.3.2 Building a Mark-sweep Collector . 78
1.3.3 MMTk Tutorial Preliminaries . 82

1.3.3.1 MMTk Tutorial Mark-Sweep . 83
1.3.4 Preliminaries . 87

User Guide
The User Guide provides Jikes™ RVM information that is not typically covered in published papers. For high-level overviews, algorithms, and
structures, you will find the to be the best starting place. The User Guide supplements these Jikes RVM papers, focusing onpublished papers
implementation details of how to build, run, and add functionality to the system.

You may find sections of the User Guide missing, incomplete or otherwise confusing. We intend this document to live as a continual
work-in-progress, hopefully growing and maturing as community members edit and add to the guide. Please accept this invitation to contribute.

Please send feedback, bug fixes, and text contributions to the mailing list. Constructive criticism will be cheerfully accepted.

Care and Feeding: The guide to practical aspects of building, testing, debugging and evaluating Jikes RVM.
Architecture: The guide to the major architectural decisions of Jikes RVM.
MMTk Tutorial: A simple tutorial to building a collector with MMTk.

Architecture
This section describes the architecture of Jikes RVM. The RVM can be divided into the following components:

Core Runtime Services: (thread scheduler, class loader, library support, verifier, etc.) This element is responsible for managing all the
underlying data structures required to execute applications and interfacing with libraries.
Magic: The mechanisms used by Jikes RVM to support low-level systems programming in Java.
Compilers: (baseline, optimizing, JNI) This component is responsible for generating executable code from bytecodes.
Memory managers: This component is responsible for the allocation and collection of objects during the execution of an application.
Adaptive Optimization System: This component is responsible for profiling an executing application and judiciously using the optimizing
compiler to improve its performance.

Adaptive Optimization System

A comprehensive discussion of the design and implementation of the original Jikes RVM adaptive optimization system is given in theOOPSLA
 by Arnold, Fink, Grove, Hind and Sweeney. A number of aspects of the system have been changed since 2000, so a better resource2000 paper

is a technical report that describes the architecture and implementation in some detail. This section of the userguide isNov. 2004 technical report
based on section 5 of the 2004 technical report.

The implementation of the Jikes RVM adaptive optimization system uses a number of Java threads: several organizer threads in the runtime
measurements component, the controller thread, and the compilation thread. The various threads are loosely coupled, communicating with each
other through shared queues and/or the other in memory data structures. All queues in the system are blocking priority queues; if a consumer
thread performs a dequeue operation when the queue is empty, it suspends until a producer thread performs an enqueue operation.

The adaptive optimization system performs two primary tasks: selective optimization and profile-directed inlining.

Selective Optimization

The goal of selective optimization is to identify regions of code in which the application spends significant execution time (often called ``hot
spots''), determine if overall application performance is likely to be improved by further optimizing one or more hot spots, and if so to invoke the
optimizing compiler and install the resulting optimized code in the virtual machine.

In Jikes RVM, the unit of optimization is a method. Thus, to perform selective optimization, first the runtime measurements component must
identify candidate methods (``hot methods'') for the controller to consider. To this end, it installs a listener that periodically samples the currently
executing method at every taken yieldpoint. When it is time to take a sample, the listener inspects the thread's call stack and records a single
compiled method id into a buffer. If the yieldpoint occurs in the prologue of a method, then the listener additionally records the compiled method id
of the current activation's caller. If the taken yieldpoint occurs on a loop backedge or method epilogue, then the listener records the compiled
method id of the current method.

When the buffer of samples is full, the sampling window ends. The listener then unregisters itself (stops taking samples) and wakes the sleeping
Hot Method Organizer. The Hot Method Organizer processes the buffer of compiled method ids by updating the Method Sample Data. This data
structure maintains, for every compiled method, the total number of times that it has been sampled. Careful design of this data structure
(MethodCountData.java) was critical to achieving low profiling overhead. In addition to supporting lookups and updates by compiled method id, it
must also efficiently enumerate all methods that have been sampled more times than a (varying) threshold value. After updating the Method
Sample Data, the Hot Method Organizer creates an event for each method that has been sampled in this window and adds it to the controller's
priority queue, using the sample value as its priority. The event contains the compiled method and the number of times it has been sampled total
since the beginning of execution. After enqueuing the last event, the Hot Method Organizer re-registers the method listener and then sleeps until
the next buffer of samples is ready to be processed.

When the priority queue delivers an event to the controller, the controller dequeues the event and applies the model-driven recompilation policy to
determine what action (if any) to take for the indicated method. If the controller decides to recompile the method, it creates a recompilation event
that describes the method to be compiled and the optimization plan to use and places it on the recompilation queue. The recompilation queue
prioritizes events based on the cost-benefit computation.

When an event is available on the recompilation queue, the recompilation thread removes it and performs the compilation activity specified by the
event. It invokes the optimizing compiler at the specified optimization level and installs the resulting compiled method into the VM.

http://docs.codehaus.org/display/RVM/Publications#Publications-aos
http://docs.codehaus.org/display/RVM/Publications#Publications-aos
http://domino.research.ibm.com/comm/research_people.nsf/pages/dgrove.RC23429.html

Although the overall structure of selective optimization in Jikes RVM is similar to that originally described in Arnold et al's OOPSLA 2000 paper,
we have made several changes and improvements based on further experience with the system. The most significant change is that in the
previous system, the method sample organizer attempted to filter the set of methods it presented to the controller. The organizer passed along to
the controller only methods considered "hot". The organizer deemed a method "hot'' if the percentage of samples attributed to the method
exceeded a dynamically adjusted threshold value. Method samples were periodically decayed to give more weight to recent samples. The
controller dynamically adjusted this threshold value and the size of the sampling window in an attempt to reduce the overhead of processing the
samples.

Later, significant algorithmic improvements in key data structures and additional performance tuning of the listeners, organizers, and
controller reduced AOS overhead by two orders of magnitude. These overhead reductions obviate the need to filter events passed
to the controller. This resulted in a more effective system with fewer parameters to tune and a sounder theoretical basis. In general, as we
gained experience with the adaptive system implementation, we strove to reduce the number of tuning parameters. We believe that the closer
the implementation matches the basic theoretical cost-benefit model, the more likely it will perform well and make reasonable and understandable
decisions.

Profile-Directed Inlining

Profile-directed inlining attempts to identify frequently traversed call graph edges, which represent caller-callee relationships, and determine
whether it is beneficial to recompile the caller methods
to allow inlining of the callee methods. In Jikes RVM, profile-directed inlining augments a number of static
inlining heuristics. The role of profile-directed inlining is to identify high cost-high benefit inlining opportunities that evade the static heuristics and
to predict the likely target(s) of invokevirtual and invokeinterface calls that could not be statically bound at compile time.

To accomplish this goal, the system takes a statistical sample of the method calls in the running application and maintains an approximation of the
dynamic call graph based on this data. The system installs a listener that samples call edges whenever a yieldpoint is taken in the prologue or
epilogue of a method. To sample the call edge, it records the compiled method id of the caller and callee methods and the offset of the call
instruction in the caller's machine code into a buffer. When the buffer of samples is full, the sampling window ends.
The listener then unregisters itself (stops taking samples) and wakes an organizer to update the dynamic call graph with the new profile data. The
optimizing compiler's Inline Oracle uses the dynamic call graph to guide it's inline decisions.

The system currently used is based on Arnold & Grove's CGO 2005 paper. More details of the sampling scheme and the inlining oracle can be
found there, or in the source code.

AOS Controller

A primary design goal for the adaptive optimization system is to enable research in online feedback-directed optimization. Therefore, we require
the controller implementation to be flexible and extensible. As we gained experience with the system, the controller component went through
several major redesigns to better support our goals.

The controller is a single Java thread that runs an infinite event loop. After initializing AOS, the controller enters the event loop and attempts to
dequeue an event. If no event is available, the dequeue operation blocks (suspending the controller thread) until an event is available. All
controller events implement an interface with a single method: process. Thus, after successfully dequeuing an event the controller thread simply
invokes its process method and then, the work for that event having been completed, returns to the top of the event loop and attempts to dequeue
another event. This design makes it easy to add new kinds of events to the system (and thus, extend the controller's behavior), as all of the logic
to process an event is defined by the event's process method, not in the code of the controller thread.

A further level of abstraction is accomplished by representing the recompilation strategy as an abstract class with several subclasses. The
process method of a hot method event invokes methods of the recompilation strategy to determine whether or not a method should be
recompiled, and if so at what optimization level. The cost-benefit model itself is also reified in a class hierarchy of models to enable extension and
variation. This set of abstractions enable a single controller implementation to execute a variety of strategies.

Another useful mechanism for experimentation is the ability to easily change the input parameters to AOS that define the expected compilation
rates and execution speed of compiled code for the various compilers. By varying these parameters, one can easily cause the default multi-level
cost-benefit model to simulate a single-level model (by defining all but one optimization level to be unprofitable). One can also explore other
aspects of the system, for example the sensitivity of the model to the accuracy of these parameters. We found this capability to be so useful that
the system supports a command line argument (-X:aos:dna=<filename>) that causes it to optionally read these parameters from a file.

Cost Benefit Model

The Jikes RVM Adaptive Optimization System attempts to evaluate the break-even point for each action using an online competitive algorithm. It
relies on an analytic model to estimate the costs and benefits of each selective recompilation action, and evaluates the best actions according to
the model predictions online.

A key advantage of this approach is that it allows a designer to extend the simple "break-even" cost-benefit model to account for more
sophisticated adaptive policies, such as selective compilation with multiple optimization levels, on-stack-replacement, and long-running analyses.

In general, each potential action will incur some and may confer some _benefit. For example, recompiling a method will certainly consumecost
some CPU cycles, but could speed up the program execution by generating better code. In this discussion we focus on costs and benefits defined
in terms of time (CPU cycles). However, in general, the controller could consider other measures of cost and benefit, such as memory footprint,
garbage allocated, or locality disrupted.

The controller will take some action when it estimates the benefit to exceed the cost. More precisely, when the controller wakes at time t, it

1.

2.

considers a set of n available actions, the set A = {A1, A2, ..., An}. For any subset S in P(A), the controller can estimate the cost C(S) and benefit
B(S) of performing all actions Ai in S. The controller will attempt to choose the subset S that maximizes B(S) - C(S). Obviously S = {} has B(S) =
C(S) = 0; the controller takes no action if it cannot find a profitable course.

In practice, the precise cost and benefit of each action cannot be known; so, the controller must rely on estimates to make decisions.

The basic model the controller uses to decide which method to recompile, at which optimization level, and at what time is as follows.

Suppose that when the controller wakes at time t, and each method m is currently optimized at optimization level mi, 0 <= i <= k. Let M be the set
of loaded methods in the program. Let Ajm be the action "recompile method m at optimization level j, or do nothing if j = i."

The controller must choose an action for each m in M. The set of available actions is Actions = {Ajm | 0 <= j <= k, m in M}.

Each action has an estimated cost and benefit: C(Ajm), the cost of taking action Ajm, for 0 <= j <= k and T(Ajm), the expected time the program
will spend executing method m in the future, if the controller takes action Ajm.

For S in Actions, define C(S) = Sum({s in S}C(s)). Given S, for each m in M, define A_min_m to be the action Ajm in S that minimizes T(Ajm).
Then define T(S) = Sum({m in M}T(A_{min}_m).

Using these estimated values, the controller chooses the set S that minimizes C(S) + T(S). Intuitively, for each method m, the controller chooses
the recompilation level j that minimizes the expected future compilation time and running time of m.

It remains to define the functions C and T for each recompilation action. The basic model models the cost C of compiling a method m at level j as
a linear function of the size of m. The linear function is determined by an offline experiment to fit constants to the model.

The basic model estimates that the speedup for any optimization level j is constant. The implementation determines the constant speedup factor
for each optimization level offline, and uses the speedup to compute T for each method and optimization level.

We assume that if the program has run for time t, then the program will run for another t units, and then terminate. We further assume program
behavior in the future will resemble program behavior in the past. Therefore, for each method we estimate that if no optimization action is
performed T(Ajm) is equal to the time spent executing method m so far.

Let M=(m1, ..., mk) be the k compiled methods. When the controller wakes at time t, each compiled method m has been sampled Sum(m) times.
Let delta be the sampling interval, measured in seconds. The controller estimates that method m has executed delta Sum(m) seconds so far, and
will execute for another delta Sum(m) seconds in the future.

When driving recompilation based on sampling, the controller can limit its attention to the set of methods that were sampled in the previous
sampling interval. This optimization does not lose precision; if the number of samples associated with a method has not changed, then the
controller's estimate of the method's future execution time will not change. This implies that if the controller were to consider a
method that does not appear in the previous sampling interval, the controller would make exactly the same decision it did the last time it
considered the method. This optimization, limiting the number of methods the controller must examine in each sampling interval, greatly reduces
the amount of work performed by the controller.

Suppose the controller recompiles method m from optimization level i to optimization level j after having seen sum(m) samples. Let Si and Sj be
the speedup ratios for optimization levels i and j, respectively. After optimizing at level j, we adjust the sample data to represent the system state
as if it had executed method m at optimization level j since program startup. So, we set the new number of samples for m to be Sum(m) * (Si/Sj).
Thus to compute the time spent in m, we need know only one number, the "effective" number of samples.

Jikes RVM's compilers

Jikes RVM invokes a compiler for one of three reasons. First, when the executing code reaches an unresolved reference, causing a new
class to be loaded, the class loader invokes a compiler to compile the class initializer (if one exists). Second, the system compiles each method
the first time it is invoked. In these first two scenarios, the initiating application thread stalls until compilation completes.

In the third scenario, the adaptive optimization system can invoke a compiler when profiling data suggests that a method withrecompiling
additional optimizations may be beneficial. The system supports both background and foreground recompilation. With background recompilation
(the default), a dedicated thread asynchronously performs all recompilations. With foreground configuration, the system invalidates a compiled
method, thus, forcing recompilation at the desired optimization level at the next invocation (stalling the invoking thread until compilation
completes).

The system includes two compilers with different tradeoffs between compilation overhead and code quality.

The goal of the compiler is to generate code quickly. Thus, it translates bytecodes directly into native code by simulating Java'sbaseline
operand stack. It does not build an intermediate representation nor perform register allocation, resulting in native code that executes only
somewhat faster than bytecode interpretation. However, it does achieve its goal of producing this code quickly, which significantly
reduces the initial overhead associated with dynamic compilation.
The compiler translates bytecodes into an intermediate representation, upon which it performs a variety of optimizations. Alloptimizing
optimization levels include linear scan register allocation and BURS-based instruction selection. The compiler's optimizations are grouped
into several levels:

 consists of a set of flow-sensitive optimizations performed on-the-fly during the translation from bytecodes to theLevel 0
intermediate representation and some additional optimizations that are either highly effective or have negligible compilation
costs. The compiler performs the following optimizations during IR generation: constant, type, non-null, and copy propagation,
constant folding and arithmetic simplification, branch optimizations, field analysis, unreachable code elimination, inlining of trivial
methods (A trivial method is one whose body is estimated to take less code space than 2 times the size of a calling sequence
and that can be inlined without an explicit guard.), elimination of redundant nullchecks, checkcasts, and array store checks. As

2.

these optimizations reduce the size of the generated IR, performing them tends to reduce overall compilation time. Level 0
includes a number of cheap local (The scope of a local optimization is one extended basic block.} optimizations such as local
redundancy elimination (common subexpression elimination, loads, and exception checks), copy propagation, constant
propagation and folding. Level 0 also includes simple control flow optimizations such as static basic block splitting, peephole
branch optimization, and tail recursion elimination. Finally, Level 0 performs simple code reordering, scalar replacement of
aggregates and short arrays, and one pass of intraprocedural flow-in-sens-i-tive copy propagation, constant propagation, and
dead assignment elimination.
Level 1 resembles Level 0, but significantly increases the aggressiveness of inlining heuristics. The compiler performs both
unguarded inlining of final and static methods and (speculative) guarded inlining of non-final virtual and interface methods.
Speculative inlining is driven both by class hierarchy analysis and online profile data gathered by the adaptive system. In
addition, the compiler exploits ``preexistence'' to safely perform unguarded inlining of some invocations of non-final virtual
methods requiring stack frame rewriting on invalidation. It also runs multiple passes of some of the Level 0 optimizationswithout
and uses a more sophisticated code reordering algorithm due to Pettis and Hansen.
Level 2 augments level 1 with loop optimizations such as normalization and unrolling; scalar SSA-based flow-sensitive
optimizations based on dataflow, global value numbering, global common subexpression elimination, redundant and conditional
branch elimination; and heap array SSA-based optimizations, such as load/store elimination, and global code placement. NOTE:
many of the O2 optimizations are disabled by default by defining them as O3 optimizations because they are believed to

 be somewhat buggy.

The adaptive system uses information about average compilation rate and relative speed of compiled code produced by each
compiler/optimization level to make it's decisions. These characteristics of the compilers are the key inputs to enable selective optimization to be
effective. It allows one to employ a quick executing compiler for infrequently executed methods and an optimizing compiler for the most critical
methods. See org.jikesrvm.adaptive.recompilation.CompilerDNA for the current values of these input parameters to the adaptive systems
cost/benefit model.

Life Cycle of a Compiled Method

In early implementations of Jikes RVM's adaptive system, compilation required holding a global lock that serialized compilation and also
prevented classloading from occurring concurrently with compilation. This bottleneck was removed in version 2.1.0 by switching to a finer-grained
locking discipline to coordinate compilation, speculative optimization, and class loading. Since no published description of this locking protocol
exists outside of the source code, we briefly summarize the life cycle of a compiled method here.

When Jikes RVM compiles a method, it creates a compiled method object to represent this particular compilation of the source method. A
compiled method has a unique id, and stores the compiled code and associated compiler meta-data. After a brief initialization phase, the compiled
method transitions from to when compilation begins. During compilation, the optimizing compiler may perform speculativeuncompiled compiling
optimizations that can be invalidated by future class loading. Each time the compiler so speculates, it records a relevant entry in an invalidation
database. Upon finishing compilation, the system checks to ensure that the current compilation has not already been invalidated by concurrent
classloading. If it has not, then the system installs the compiled code, and subsequent invocations will branch to the newly created code.

Each time a class is loaded, the system checks the invalidation database to identify the set of compiled methods to mark as obsolete,
because this classloading action invalidates speculative optimizations previously applied to that method. A method may transition from either

 or to due to a classloading-induced invalidation. A method can also transition from to when thecompiling installed obsolete installed obsolete
adaptive system selects a method for optimizing recompilation and a new compiled method is installed to replace it.

Once a method is marked obsolete, it will never be invoked again. However, before the generated code for the compiled method can be garbage
collected, all existing invocations of the compiled method must be complete. A compiled method transitions from to when noobsolete dead
invocations of it exist on any thread stack. Jikes RVM detects this as part of the stack scanning phase of garbage collection; as stack frames are
scanned, their compiled methods are marked as active. Any method that is not marked as active when stack scanning completes isobsolete
marked as and the reference to it is removed from the compiled method table. It will then be freed during the next garbage collection. dead

Logging and Debugging

Complex non-deterministic systems such as the Jikes RVM adaptive system present challenges for system understanding and debugging.
Virtually all of the profiling data collected by the runtime measurements component results from non-deterministic timer-based sampling at taken
yieldpoints. The exact timing of these interrupts, and thus, the profile data that drives recompilation decisions, differs somewhat each time an
application executes. Furthermore, many of the optimizations in the optimizing compiler rely on online profiles of conditional branch probabilities,
i.e., the probabilities at the point in an execution when the recompilation occurs. Thus, because recompilations can occur at different times during
each execution, a method compiled at the same optimization level could be compiled slightly differently on different runs.

The primary mechanism we use to manage this complexity is a record-replay facility for the adaptive system, where online profile data is gathered
during one run and used in a subsequent run. More specifically, as methods are dynamically compiled, the system can record this information into
a log file. At the end of the run, the system can optionally dump the branch probabilities of all instrumented conditional branches, the
profile-derived call graph, and the profile-directed inlining decisions. This log of methods and the files of profile data can then be provided as
inputs to a driver program (org.jikesrvm.tools.opt.OptTestHarness) that can replay the series of compilation actions, and then optionally execute
the program. Usually a fairly rapid binary search of methods being compiled and/or the supporting profile data suffices to narrow the cause of a
crash to a small set of actions taken by the optimizing compiler. Although this does not enable a perfectly accurate replay of a previous run, in
practice, we have found that it suffices to reproduce almost all crashes caused by bugs in the optimizing compiler.

In addition to this record-replay mechanism, which mainly helps debugging the optimizing compiler, the adaptive system can generate a log file
that contains detailed information about the actions of its organizer and controller threads. A sample is shown below:

30:..7047728888 Compiled read with baseline compiler in 0.20 ms
90:..7136817287 Controller notified that read(14402) has 4.0 samples
92:..7139813016 Doing nothing cost (leaving at baseline) to read is 40.0
92:..7139830219 Compiling read cost at O0=40.42, future time=49.81
92:..7139842466 Compiling read cost at O1=65.99, future time=72.58
92:..7139854029 Compiling read cost at O2=207.44, future time=213.49
110:..7166901172 Controller notified that read(14402) has 9.0 samples
111:..7168378722 Doing nothing cost (leaving at baseline) to read=90.0
111:..7168396493 Compiling read cost at O0=40.42, future time=61.54
111:..7168409562 Compiling read cost at O1=65.99, future time=80.81
111:..7168421097 Compiling read cost at O2=207.44, future time=221.06
111:..7168435937 Scheduling level 0 recompilation of read (priority=28.46)
112:..7169879779 Recompiling (at level 0) read
114:..7173293360 Recompiled (at level 0) read
150:..7227058078 Controller notified that read(14612) has 5.11 samples
151:..7228691160 Doing nothing cost (leaving at O0) to read=51.12
151:..7228705466 Compiling read cost at O1=66.26, future time=102.14
151:..7228717124 Compiling read cost at O2=208.29, future time=241.24

<....many similar entries....>

998:..8599006259 Controller notified that read(14612) has 19.11 samples
999:..8599561634 Doing nothing cost (leaving at O0) to read=191.13
999:..8599576368 Compiling read cost at O1=54.38, future time=188.52
999:..8599587767 Compiling read cost at O2=170.97, future time=294.14
999:..8599603986 Scheduling level 1 recompilation of read (priority=2.61)
1000:..8601308856 Recompiling (at level 1) read
1002:..8604580406 Recompiled (at level 1) read
1018:..8628022176 Controller notified that read(15312) has 18.41 samples
1019:..8629548221 Doing nothing cost (leaving at O1) to read=184.14
1019:..8629563130 Compiling read cost at O2=170.97, future time=340.06

This sample shows an abbreviated subset of the log entries associated with the method read of the class
spec.benchmarks._213_javac.ScannerInputStream, one of the hotter methods of the SPECjvm98 benchmark _213_javac. The first pair of
numbers are the controller clock (number of timer interrupts since execution began) and the value of the hardware cycle counter (Time.cycles())
for the log entry. These log entries show the cost-benefit values computed by the controller for various possible optimization actions and the
progression of the method from baseline compilation through two recompilations (level 0 and then at level 1). For example, at time 92, we see four
entries that give the estimated total future time (the sum of the compilation cost and the total future execution time in a method) for performing no
recompilation and for each optimization level. Because the total future time for not recompiling (40) is less than the other alternatives (49.81,
72.58, and 213.49), the method is not scheduled for recompilation. However, at time 110, the method has been sampled more often. Thus, the
total future time estimate is updated, resulting in two recompilation actions (level 0 and level 1) that are more attractive than taking no
recompilation action. Because level 0 gives the least future time, this decision is chosen by placing a recompilation event in the recompilation
priority queue. The priority for the event is the expected improvement of performing this recompilation, i.e., the difference between the future time
for the new level and the future time for current execution (90 - 61.54 = 28.46).

At clock time 150 a similar pattern occurs when considering whether to recompile this method at level 1 or 2; initially recompiling at higher levels is
not chosen (clock time 151) until sufficient samples of the method have occurred (clock time 999).

The figure also illustrates how samples of a method at lower optimization level are incorporated into the total samples for a method that has been
recompiled. The samples at the lower level are scaled by the relative speed of the two levels as defined by the CompilerDNA, and used as the
initial number of samples for the higher level. For example, at clock time 100, the baseline compiled version of the method has 9 samples. When
the method is recompiled at level 0, these methods are scaled down by 4.26, which is the expected speedup defined by the CompilerDNA for
going from baseline to level 0, resulting in a value of 2.11. At clock time 160, the level 0 version of method has 5.11 samples, i.e, 3 additional
samples of the method have occurred.

Threading and Yieldpoints

For each physical processor on the system, the system creates a pthread. Each pthread is associated with a virtual processor object that
executes one or more Java threads in a manner, as follows. Each compiler generates , which are program pointsquasi-preemptive yield points
where the running thread checks a dedicated bit in the virtual processor object to determine if it should yield to another thread. The compilers
insert yield points in method prologues, method epilogues, and on loop backedges. Currently, the system sets the thread-switch bit approximately
every 10ms.

The adaptive optimization system piggybacks on this yieldpoint mechanism to gather profile data. The thread scheduler provides an
extension point by which the runtime measurments component can install listeners that execute each time a yieldpoint is taken. Such listeners
primarily serve to sample program execution to identify frequently-executed methods and call edges. Because these samples occur at well-known
locations (prologues, epilogues, and loop backedges), the listener can easily attribute each sample to the appropriate
Java source method.

The Jikes RVM implementation introduces a weakness with this mechanism, in that samples can only occur in regions of code that have
yieldpoints. Some low-level Jikes RVM subsystems, such as the thread scheduler and the garbage collector, elide yieldpoints because
those regions of code rely on delicate state invariants that preclude thread switching. These uninterruptible regions can distort sampling accuracy
by artificially inflating the probability of sampling the first yieldpoint executed after the program leaves an uninterruptible region of code.

Compilers

Baseline Compiler
JNI Compiler
Optimizing Compiler

Baseline Compiler

General Architecture

The goal of the baseline compiler is to efficiently generate code that is "obviously correct." It also needs to be easy to port to a new platform and
self contained (the entire baseline compiler must be included in all Jikes RVM boot images to support dynamically loading other compilers).
Roughly two thirds of the baseline compiler is machine-independent. The main file is and its parent BaselineCompiler

. The main platform-dependent file is .TemplateCompilerFramework BaselineCompilerImpl

Baseline compilation consists of two main steps: GC map computation (discussed below) and code generation. Code generation is
straightforward, consisting of a single pass through the bytecodes of the method being compiled. The compiler does not try to optimize register
usage, instead the bytecode operand stack is held in memory. This leads to bytecodes that push a constant onto the stack, creating a memory
write in the generated machine code. The number of memory accesses in the baseline compiler corresponds directly to the number of bytecodes.

 contains the main code generation switch statement that invokes the appropriate methodTemplateCompilerFramework <bytecode>_emit
of .BaselineCompilerImpl

GC Maps

The baseline compiler computes GC maps by abstractly interpreting the bytecodes to determine which expression stack slots and local variables
contain references at the start of each bytecode. There are additional compilations to handle s; see the source code for details. This strategyJSR
of computing a single GC map that applies to all the internal GC points for each bytecode slightly constrains code generation. The code generator
must ensure that the GC map remains valid at all GC points (including implicit GC points introduced by null pointer exceptions). It also forces the
baseline compiler to report reference parameters for the various bytecodes as live in the GC map for the call (because the GC map alsoinvoke
needs to cover the various internal GC points that happen before the call is actually performed). Note that this is not an issue for the optimizing
compiler which computes GC maps for each machine code instruction that is a GC point.

Command-Line Options

The command-line options to the baseline compiler are stored as fields in an object of type ; this file is mechanicallyBaselineOptions
generated by the build process. To add or modify the command-line options in , you must modify either BaselineOptions.java

, or . You should describe your desired command-line option in a format described below in theBooleanOptions.dat ValueOptions.dat
appendix; you will also find the details for the optimizing compiler's command-line options. Some options are common to both the baseline
compiler and optimizing compiler. They are defined by the and files found in the SharedBooleanOptions.dat SharedValueOptions.dat

 directory.rvm/src-generated/options

JNI Compiler

The JNI compiler "compiles" native methods by generating code to transition from Jikes RVM internal calling/register conventions to the native
platforms ABI.

See also THE JNI IMPL DETAILS section.

Optimizing Compiler

The documentation for the optimizing compiler is organized into the following sections.

Method Compilation: The fundamental unit for compilation in the RVM is a single method.
IR: The intermediate representation used by the optimizing compiler.
BURS: The Bottom-Up Rewrite System (BURS) is used by the optimizing compiler for instruction selection.
OptTestHarness: A test harness for compilation parameters for specific classes and methods.
Compiler Optimization Comparison Chart: Chart comparing the Jikes RVM optimizing compiler to compilers in other JVMs.

BURS

The optimizing compiler uses the Bottom-Up Rewrite System (BURS) for instruction selection. BURS is essentially a tree pattern matching system
derived from by David R. Hanson. (See "Engineering a Simple, Efficient Code-Generator Generator" by Fraser, Hanson, and Proebsting,Iburg

http://code.google.com/p/iburg/

LOPLAS 1(3), Sept. 1992.) The instruction selection rules for each architecture are specified in an architecture-specific fileslocated in
}, where ${arch} is the specific instruction architecture of interest. The rules are used in$RVM_ROOT/rvm/src-generated/opt-burs/${arch

generating a parser, which transforms the IR.

Each rule is defined by a four-line record, consisting of:

PRODUCTION: the tree pattern to be matched. The format of each pattern is explained below.
COST: the cost of matching the pattern as opposed to skipping it. It is a Java expression that evaluates to an integer.™
FLAGS: The flags for the operation:

NOFLAGS: this production performs no operation
EMIT_INSTRUCTION: this production will emit instructions
LEFT_CHILD_FIRST: visit child on left-and side of production first
RIGHT_CHILD_FIRST: visit child on right-hand side of production first

TEMPLATE: Java code to emit

Each production has a , which denotes a value, followed by a colon (":"), followed by a dependence tree that produces that value. Fornon-terminal
example, the rule resulting in memory add on the INTEL architecture is expressed in the following way:

stm: INT_STORE(INT_ADD_ACC(INT_LOAD(r,riv),riv),OTHER_OPERAND(r, riv))
ADDRESS_EQUAL(P(p), PLL(p), 17)
EMIT_INSTRUCTION
EMIT(MIR_BinaryAcc.mutate(P(p), IA32_ADD, MO_S(P(p), DW), BinaryAcc.getValue(PL(p))));

The production in this rule represents the following tree:

r riv
 \ /
 INT_LOAD riv
 \ /
 INT_ADD_ACC r riv
 \ | /
 INT_STORE

where is a non-terminal that represents a register or a tree producing a register, is a non-terminal that represents a register (or a treer riv
producing one) or an immediate value, and , and are operators (). is just anINT_LOAD INT_ADD_ACC INT_STORE terminals OTHER_OPERAND
abstraction to make the tree binary.

There are multiple helper functions that can be used in Java code (both cost expressions and generation templates). In all code sequences the
name is reserved for the current tree node. Some of the helper methods are shortcuts for accessing properties of tree nodes:p

P(p) is used to access the instruction associated with the current (root) node,
PL(p) is used to access the instruction associated with the left child of the current (root) node (provided it exists),
PR(p) is used to access the instruction associated with the right child of the current (root) node (provided it exists),
similarly, , , and are used to access the instruction associated with the left child of the left child, rightPLL(p) PLR(p) PRL(p) PRR(p)
child of the left child, left child of the right child and right child of the right child, respectively, of the current (root) node (provided they
exist).

What the above rule basically reads is the following:
If a tree shown above is seen, evaluate the cost expression (which, in this case, calls a helper function to test whether the addresses in the

 () and the () instructions are equal. The function returns 17 if they are, and a special value if not), and if theSTORE P(p) LOAD PLL(p) INFINITE
cost is acceptable, emit the instruction () mutated in place into a machine-dependent add-accumulate instruction () thatSTORE P(p) IA32_ADD
adds a given value to the contents of a given memory location.

The rules file is used to generate a file called , which, in turn, is used to produce a file called .ir.brg BURS_STATE.java

For more information on helper functions look at . For more information on the BURS algorithm see .BURS_Helpers.java BURS.java

Future directions

Whilst jburg allows us to do good instruction selection there are a number of areas where it is lacking:

Vector operations

We can't write productions for vector operations unless we match an entire tree of operations. For example, it would be nice to write a rule of the
form:

(r, r): ADD(r,r), ADD(r,r)

if say the architecture supported a vector add operation (ie SIMD). Unfortunately we can't have tuples on the LHS of expressions and the comma
represents that matching two coverings is necessary. has shown how with a modified BURS system they can achieve this result. TheirLeupers
syntax is:

r: ADD(r,r)
r: ADD(r,r)

Rainer Leupers, Code selection for media processors with SIMD instructions, 2000

Compiler Optimization Comparison Chart

This section presents a comparison chart of the Jikes RVM against the following JVMs.

IBM JDK v6 r0

Inlining

Category Optimization RVM IBM JDK v6 r0

Inlining Trivial Inlining

 Call graph inlining

 Tail recursion elimination

 Virtual call guard optimizations

Local optimizations Local data flow analyses and optimization

 Register usage optimization

 Simplification of Java idioms

Control flow optimizations Code reordering, splitting and removal

 Loop reduction and inversion

 Loop invariant code motion (disabled)

 Loop striding

 Loop unrolling (disabled)

http://doi.acm.org/10.1145/343647.343679
http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/topic/com.ibm.java.doc.diagnostics.60/html/jit_optimize.html

 Loop peeling

 Loop versioning (disabled)

 Loop specialization

 Exception directed optimization

 Switch analysis

Global optimizations Global flow analyses and optimization

 Partial redundancy elimination (disabled)

 Escape analysis

 GC and memory allocation optimizations

 Synchronization optimizations

Native code generation Small optimization based on architecture characteristics

IR

The optimizing compiler intermediate representation (IR) is held in an object of type and includes a list of instructions. Every instruction isIR
classified into one of the pre-defined instruction formats. Each instruction includes an operator and zero or more operands. Instructions are
grouped into basic blocks; basic blocks are constrained to having control-flow instructions at their end. Basic blocks fall-through to other basic
blocks or contain branch instructions that have a destination basic block label. The graph of basic blocks is held in the (control-flow graph)cfg
field of IR.

This section documents basic information about the intermediate instruction. For a tutorial based introduction to the material it is highly
recommended that you read " ".Jikes RVM Optimizing Compiler Intermediate Code Representation

IR Operators

The IR operators are defined by the class , which in turn is automatically generated from a template by a driver. The input to the driverOperators
are two files, both called . One input file resides in and definesOperatorList.dat $RVM_ROOT/rvm/src-generated/opt-ir
machine-independent operators. The other resides in } and defines machine-dependent$RVM_ROOT/rvm/src-generated/opt-ir/${arch
operators, where } is the specific instruction architecture of interest.${arch

Each operator in is defined by a five-line record, consisting of:OperatorList.dat

SYMBOL: a static symbol to identify the operator
INSTRUCTION_FORMAT: the instruction format class that accepts this operator.
TRAITS: a set of characteristics of the operator, composed with a bit-wise or () operator. See for a list of valid traits.| Operator.java
IMPLDEFS: set of registers implicitly defined by this operator; usually applies only to machine-dependent operators
IMPLUSES: set of registers implicitly used by this operator; usually applies only to machine-dependent operators

For example, the entry in that defines the integer addition operator isOperatorList.dat

INT_ADD
Binary
none
<blank line>
<blank line>

The operator for a conditional branch based on values of two references is defined by

REF_IFCOMP
IntIfCmp
branch | conditional
<blank line>
<blank line>

Additionally, the machine-specific file contains another line of information for use by the assembler. See the file for details.OperatorList.dat

Instruction Formats

Every IR instruction fits one of the pre-defined . The Java package defines roughly 75Instruction Formats org.jikesrvm.compilers.opt.ir
architecture-independent instruction formats. For each instruction format, the package includes a class that defines a set of static methods by
which optimizing compiler code can access an instruction of that format.

For example, instructions conform to the instruction format. The following code fragment shows code that uses the INT_MOVE Move Operators
interface and the instruction format:Move

import org.jikesrvm.compilers.opt.ir.*;
class X {
 void foo(Instruction s) {
 if (Move.conforms(s)) { // if this instruction fits the Move format
 RegisterOperand r1 = Move.getResult(s);
 Operand r2 = Move.getVal(s);
 System.out.println("Found a move instruction: " + r1 + " := " + r2);
 } else {
 System.out.println(s + " is not a MOVE");
 }
 }
}

This example shows just a subset of the access functions defined for the Move format. Other static access functions can set each operand (in this
case, and), query each operand for nullness, clear operands, create Move instructions, mutate other instructions into MoveResult Val
instructions, and check the index of a particular operand field in the instruction. See the Javadoc reference for a complete description of the™
API.

Each fixed-length instruction format is defined in the text file .$RVM_ROOT/rvm/src-generated/opt-ir/InstructionFormatList.dat
Each record in this file has four lines:

NAME: the name of the instruction format
SIZES: the number of operands defined, defined and used, and used
SIG: a description of each operand, each description given by

D/DU/U: Is this operand a def, use, or both?
NAME: the unique name to identify the operand
TYPE: the type of the operand (a subclass of Operand)
[opt]: is this operand optional?

VARSIG: a description of repeating operands, used for variable-length instructions.

So for example, the record that defines the instruction format isMove

Move
1 0 1
"D Result RegisterOperand" "U Val Operand"
<blank line>

This specifies that the format has two operands, one def and one use. The def is called and must be of type .Move Result RegisterOperand
The use is called and must be of type .Val Operand

A few instruction formats have variable number of operands. The format for these records is given at the top of .InstructionFormatList.dat
For example, the record for the variable-length instruction format is:Call

Call
1 0 3 1 U 4
"D Result RegisterOperand" \
"U Address Operand" "U Method MethodOperand" "U Guard Operand opt"
"Param Operand"

This record defines the instruction format. The second line indicates that this format always has at least 4 operands (1 def and 3 uses), plusCall
a variable number of uses of one other type. The trailing 4 on line 2 tells the template generator to generate special constructors for cases of
having 1, 2, 3, or 4 of the extra operands. Finally, the record names the instruction operands and constrains the types. The final lineCall
specifies the name and types of the variable-numbered operands. In this case, a instruction has a variable number of (use) operands called Call

. Client code can access the ith parameter operand of a instruction by calling .Param Call s Call.getParam(s,i)

A number of instruction formats share operands of the same semantic meaning and name. For convenience in accessing like instruction formats,
the template generator supports four common operand access types:

ResultCarrier: provides access to an operand of type named .RegisterOperand Result
GuardResultCarrier: provides access to an operand of type named .RegisterOperand GuardResult
LocationCarrier: provides access to an operand of type named .LocationOperand Location
GuardCarrier: provides access to an operand of type named .Operand Guard

For example, for any instruction that carries a operand (eg. , , and formats), client code can call s Result Move Binary Unary
 and to access the operand.ResultCarrier.conforms(s) ResultCarrier.getResult(s) Result

Finally, a note on rationale. Religious object-oriented philosophers will cringe at the InstructionFormats. Instead, all this functionality could be
implemented more cleanly with a hierarchy of instruction types exploiting (multiple) inheritance. We rejected the class hierarchy approach due to
efficiency concerns of frequent virtual/interface method dispatch and type checks. Recent improvements in our interface invocation sequence and
dynamic type checking algorithms may alleviate some of this concern.

Method Compilation

The fundamental unit for optimization in Jikes RVM is a single method. The optimization of a method consists of a series of compiler phases
performed on the method. These phases transform the (intermediate representation) from bytecodes through HIR (high-level intermediateIR
representation), LIR (low-level intermediate representation), and MIR (machine intermediate representation) and finally into machine code.
Various optimizing transformations are performed at each level of IR.

An object of the class contains all the information necessary to generate machine code for a method. An instance of thisCompilationPlan
class includes, among other fields, the to be compiled and the array of which define the compilationRVMMethod OptimizationPlanElements
steps. The method of an invokes the optimizing compiler to generate machine code for the method, executing theexecute CompilationPlan
compiler phases as listed in the plan's .OptimizationPlanElements

The class defines the standard phases used in a compilation. This class contains a static field, called ,OptimizationPlanner masterPlan
which contains all possible . The structure of the master plan is a tree. Any element may either be an atomicOptimizationPlanElements
element (a leaf of the tree), or an aggregate element (an internal node of the tree). The master plan has the following general structure:

elements which convert bytecodes to HIR
elements which perform optimization transformations on the HIR

elements which perform optimization transformations using SSA form
elements which convert HIR to LIR
elements which perform optimization transformations on the LIR

elements which perform optimization transformations using SSA form
elements which convert LIR to MIR
elements which perform optimization transformations on MIR
elements which convert MIR to machine code

A client (compiler driver) constructs a specific optimization plan by including all the contained in the master planOptimizationPlanElements
which are appropriate for this compilation instance. Whether or not an element should be part of a compilation plan is determined by its

 method. For each atomic element, the values in the object are generally used to determine whether the elementshouldPerform OptOptions
should be included in the compilation plan. Each aggregate element must be included when any of its component elements must be included.

Each element must have a method defined which takes the IR as a parameter. It is expected, but not required, that the perform perform
method will modify the IR. The perform method of an aggregate element will invoke the perform methods of its elements.

Each atomic element is an object of the final class . The main work of this class is performed by its ,OptimizationPlanAtomicElement phase
an object of type . The class is not final; each phase overrides this class, in particular it overrides the CompilerPhase CompilerPhase

 method, which is invoked by its enclosing element's method. All the state associated with the element is contained in the perform perform
; no state is in the element.CompilerPhase

Every optimization plan consists of a selection of elements from the master plan; thus two optimization plans associated with different methods
will share the same component element objects. Clearly, it is undesirable to share state associated with a particular compilation phase between
two different method compilations. In order to prevent this, the method of an atomic element creates a new instance of its phaseperform
immediately before calling the phase's method. In the case where the phase contains no state the method of perform newExecution

 can be overridden to return the phase itself rather than a clone of the phaseCompilerPhase

OptTestHarness

For optimizing compiler development, it is sometimes useful to exercise careful control over which classes are compiled, and with which
optimization level. In many cases, a image will suit this process using the command line option prototype-opt

 combined with . This configuration invokes the optimizing-X:aos:initial_compiler=opt -X:aos:enable_recompilation=false
compiler on each method run.The program provides even more control over the optimizingorg.jikesrvm.tools.oth.OptTestHarness
compiler. This driver program allows you to invoke the optimizing compiler as an "application" running on top of the VM.

Command Line Options

-useBootOptions Use the same OptOptions as the bootimage compiler.

-longcommandline <filename> Read commands (one per line) from a file

+baseline Switch default compiler to baseline

-baseline Switch default compiler to optimizing

-load <class> Load a class

-class <class> Load a class and compile all its methods

-method <class> <method> [- or <descrip>] Compile method with default compiler

-methodOpt <class> <method> [- or <descrip>] Compile method with opt compiler

-methodBase <class> <method> [- or <descrip>] Compile method with base compiler

-er <class> <method> [- or <descrip>] {args} Compile with default compiler and execute a method

-performance Show performance results

-oc pass an option to the optimizing compiler

Examples

To use the program:OptTestHarness

% rvm org.jikesrvm.tools.oth.OptTestHarness -class Foo

will invoke the optimizing compiler on all methods of class Foo.

% rvm org.jikesrvm.tools.oth.OptTestHarness -method Foo bar -

will invoke the optimizing compiler on the first method of class it loads.bar Foo

% rvm org.jikesrvm.tools.oth.OptTestHarness -method Foo bar '(I)V;'

will invoke the optimizing compiler on method .Foo.bar(I)V;
You can specify any number of and options on the command line. Any arguments passed to via will be-method -class OptTestHarness -oc
passed on directly to the optimizing compiler. So:

% rvm org.jikesrvm.tools.oth.OptTestHarness -oc:O1 -oc:print_final_hir=true -method Foo bar -

will compile at optimization level and print the final HIR.Foo.bar O1

Core Runtime Services

The Jikes RVM runtime environment implements a variety of services which a Java application relies upon for correct execution. The services
include:

Object Model: The way objects are represented in storage.
Class and Code Management: The mechanism for loading, and representing classes from class files. The mechanism that triggers
compilation and linking of methods and subsequent storage of generated code.
Thread Management: thread creation, scheduling and synchronization/exclusion
JNI: Native interface for writing native methods and invoking the virtual machine from native code.
Exception Management: hardware exception trapping and software exception delivery.
Bootstrap: getting an initial Java application running in a fully functional Java execution environment

The requirement for many of these runtime services is clearly visible in language primitives such as new(), throw() and in java.lang and java.io
APIs such as Thread.run(), System.println(), File.open() etc. Unlike conventional Java APIs which merely modify the state of Java objects created
by the Java application, implementation of these primitives requires interaction with and modification of the platform (hardware and system
software) on which the Java application is being executed.

Bootstrap

The RVM is started up by a boot program written in C. This program is responsible for

registering signal handlers to deal with the hardware errors generated by the RVM
establishing the initial virtual memory map employed by the RVM
mapping the RVM image files
installing the addresses of the C wrapper functions which are invoked by the runtime to interact with the underlying operating system into
the boot record of at the start of the RVM image area
setting up the JTOC and TR registers for its /pthreadRVMThread
switching the pthread into the bootstrap Java stack running the bootstrap Java method in the bootstrap Java thread

At this point all further initialization of the RVM is done either in Java or by employing the wrapper callbacks located in the boot record.

The initial bootstrap routine is . It sets up the initial thread environment so that it looks like any other thread created by a call toVM.boot()
Thread.start() then performs a variety of Java boot operations, including initialising the memory manager subsystem, the runtime compiler, the
system classloader and the time classes.

The bootstrap routine needs to rerun class initializers for a variety of the runtime and Classpath classes which are already loaded and compiled
into the image file. This is necessary because some of the data generated by these initialization routines will not be valid in the RVM runtime. The
data may be invalid as the host environment that generated the boot image may differ from the current environment.

The boot process the enables the Java scheduler and locking system, setting up the data structures necessary to launch additional threads. The
scheduler also starts the .FinalizerThread} and multiple garbage collector threads {{CollectorThread

Next, the boot routine boots the the JNI subsystem which enables calls to native code to be compiled and executed then re-initialises a few more
classes whose init methods require a functional JNI (i.e.).java.io.FileDescriptor

Finally, the boot routine loads the boot application class supplied on the rvm command line, creates and schedules a Java main thread to execute
this class's main method, then exits, switching execution to the main thread. Execution continues until the application thread and all non-daemon
threads have exited. Once there are no runnable threads (other than system threads such as the idle threads, collector threads etc) execution of

the RVM runtime terminates and the rvm process exits.

Memory Map

The RVM divides its available virtual memory space into various segments containing either code, or data or a combination of the two. The basic
map is as follows:

+--> BOOT_IMAGE_START MAX_MAPPABLE_ADDRESS <--+
 |<- SEGMENT_SIZE -> |
+---+
+ Platform specific| RVM Image | RVM Heap | Plat +
+ (booter code/) | (initial code)| (meta data, immortal data)| spec +
+ (data, shlibs) | (& data)| (large & small objects)| +
+---+

Boot Segment

The bottom segment of the address space is left for the underlying platform to locate the boot program (including statically linked library code) and
any dynamically allocated data and library code.

RVM Image Segment

The next area is the one initialized by the boot program to contain the all the initial static data, instance data and compiled method code required
in order for the runtime to be able to function. The required memory data is loaded from an image file created by an off line Java program, the
boot image writer.

This image file is carefully constructed to contain data which, when loaded at the correct address, will populate the runtime data area with a
memory image containing:

a JTOC
all the TIBs, static method code arrays and static field data directly referenced from the JTOC
all the dynamic method code arrays indirectly referenced from the TIBS
all the classloader's internal class and method instances indirectly referenced via the TIBS
ancillary structures attached to these class and method instances such as class bytecode arrays, compilation records, garbage collection
maps etc
a single bootstrap Java thread instance in which Java execution commences
a single bootstrap thread stack used by the bootstrap thread.
a master boot record located at the start of the image load area containing references to all the other key objects in the image (such as
the JTOC, the bootstrap thread etc) plus linkage slots in which the booter writes the addresses of its C callback functions.

RVM Heap Segment

The RVM heap segment is used to provide storage for code and data created during Java execution. The RVM can be configured to employ
various different allocation managers taken from the memory management toolkit.MMTk

Class and Code Management

The runtime maintains a database of Java instances which identifies the currently loaded class and method base. The classloader class base
enables the runtime to identify and dynamically load undefined classes as they required during execution. All the classes, methods and compiled
code arrays required to enable the runtime to operate are pre-installed in the initial boot image. Other runtime classes and application classes are
loaded dynamically as they are needed during execution and have their methods compiled lazily. The runtime can also identify the latest compiled
code array (and, on occasions, previously generated versions of compiled code) of any given method via this classbase and recompile it
dynamically should it wish to do so.

Lazy method compilation postpones compilation of a dynamically loaded class' methods at load-time, enabling partial loading of the class base to
occur. Immediate compilation of all methods would require loading of all classes mentioned in the bytecode in order to verify that they were being
used correctly. Immediate compilation of these class' methods would require yet more loading and so on until the whole classbase was installed.
Lazy compilation delays this recursive class loading process by postponing compilation of a method until it is first called.

Lazy compilation works by generating a stub for each of a class' methods when the class is loaded. If the method is an instance method this stub
is installed in the appropriate TIB slot. If the method is static it is placed in a linker table located in the JTOC (linker table slots are allocated for
each static method when a class is dynamically loaded). When the stub is invoked it calls the compiler to compile the method for real and then
jumps into the relevant code to complete the call. The compiler ensures that the relevant TIB slot/linker table slot is updated with the new
compiled code array. It also handles any race conditions caused by concurrent calls to the dummy method code ensuring that only one caller
proceeds with the compilation and other callers wait for the resulting compiled code.

Class Loading

Jikes RVM implements the Java programming language's dynamic class loading. While a class is being loaded it can be in one of six states.™ ™
These are:

vacant: The RVMClass object for this class has been created and registered and is in the process of being loaded.
loaded: The class's bytecode file has been read and parsed successfully. The modifiers and attributes for the fields have been loaded
and the constant pool has been constructed. The class's superclass (if any) and superinterfaces have been loaded as well.
resolved: The superclass and superinterfaces of this class has been resolved. The offsets (whether in the object itself, the JTOC, or the
class's TIB) of its fields and methods have been calculated.
instantiated: The superclass has been instantiated and pointers to the compiled methods or lazy compilation stubs have been inserted
into the JTOC (for static methods) and the TIB (for virtual methods).
initializing: The superclass has been initialized and the class initializer is being run.
initialized: The superclass has been initialized and the class initializer has been run.

Code Management

A compiled method body is an array of machine instructions (stored as ints on PowerPC and bytes on x86-32). The ™ Jikes RVM Table of
(JTOC), stores pointers to static fields and methods. However, pointers for instance fields and instance methods are stored in theContents

receiver class's . Consequently, the dispatch mechanism differs between static methods and instance methods.TIB

The JTOC

The JTOC holds pointers to each of Jikes RVM's global data structures, as well as literals, numeric constants and references to String™
constants. The JTOC also contains references to the for each class in the system. Since these structures can have many types and the JTOCTIB
is declared to be an array of ints, Jikes RVM uses a descriptor array, co-indexed with the JTOC, to identify the entries containing references. The
JTOC is depicted in the figure below.

Virtual Methods

A contains pointers to the compiled method bodies (executable code) for the virtual methods and other instance methods of its class. Thus,TIB
the serves as Jikes RVM's virtual method table. A virtual method dispatch entails loading the TIB pointer from the object reference, loadingTIB
the address of the method body at a given offset off the TIB pointer, and making an indirect branch and link to it. A virtual method is dispatched to
with the bytecode; other instance methods are invoked by the bytecode.invokevirtual invokespecial

Static Fields and Methods

Static fields and pointers to static method bodies are stored in the JTOC. Static method dispatch is simpler than virtual dispatch, since a
well-known JTOC entry method holds the address of the compiled method body.

Instance Initialization Methods

Pointers to the bodies of instance initialization methods, , are stored in the JTOC. (They are always dispatched to with the <init> invokespecial
bytecode.)

Lazy Method Compilation

Method slots in a TIB or the JTOC may hold either a pointer to the compiled code, or a pointer to the compiled code of the lazy method invocation
. When invoked, the lazy method invocation stub compiles the method, installs a pointer to the compiled code in the appropriate or thestub TIB

JTOC slot, then jumps to the start of the compiled code.

Interface Methods

Regardless of whether or not a virtual method is overridden, virtual method dispatch is still simple since the method will occupy the same TIB
offset its defining class and in every sub-class. However, a method invoked through an call rather than an invokeinterface invokevirtual

, will not occupy the same offset in every class that implements its interface. This complicates dispatch for .call TIB invokeinterface

The simplest, and least efficient way, of locating an interface method is to search all the virtual method entries in the finding a match. Instead,TIB
Jikes RVM uses an (IMT) which resembles a virtual method table for interface methods. Any method that could be anInterface Method Table
interface method has a fixed offset into the IMT just as with the TIB. However, unlike in the TIB, two different methods may share the same offset
into the IMT. In this case, a is inserted in the IMT. Conflict resolution stubs are custom-generated machine codeconflict resolution stub
sequences that test the value of a hidden parameter to dispatch to the desired interface method. For more details, see .InterfaceInvocation

Exception Management

The runtime has to deal with the relatively small number of hardware signals which can be generated during Java execution. On operating
systems other than AIX, an attempt to dereference a null value (an access to a null value manifests as a read to a small negative address outside
the mapped virtual memory address space) will generate a a segmentation fault. This means that the Jikes RVM does not need to generate
explicit tests guarding against dereferencing null values except on AIX and this results in faster code generationg for non-excepting code.

The RVM handles the signal and reenters Java so that a suitable Java exception handler can be identified, the stack can be unwound (if
necessary) and the handler entered in order to deal with the exception. Failing location of a handler, the associated Java thread must be cleanly
terminated.

The RVM actually employs software traps to generate hardware exceptions in a small number of other cases, for example to trap array bounds
exceptions. Once again a software only solution would be feasible. However, since a mechanism is already in place to catch hardware exceptions
and restore control to a suitable Java handler the use of software traps is relatively simple to support.

Use of a hardware handler enables the register state at the point of exception to be saved by the hardware exception catching routine. If a Java
handler is registered in the call frame which generated the exception this register state can be restored before reentry, avoiding the need for the
compiler to save register state around potentially excepting instructions. Register state for handlers in frames below the exception frame is
automatically saved by the compiler before making a call and so can always be restored to the state at the point of call by the exception delivery
code.

The RVM booter program registers signal handlers which catch and signals. These handlers save the current register state on theSEGV TRAP
stack, create a special handler frame above the saved register state and return into this handler frame executing

. This method searches the stack from the excepting frame (or from the last JavaRuntimeEntrypoints.deliverHardwareException()
frame if the exception occurs inside native code) looking for a suitable handler and unwinding frames which do not contain one. At each unwind
the saved register state is reset to the state associated with the next frame. When a handler is found the delivery code installs the saved register
state and returns into the handler frame at the start of the handler block.

The RVM employs some of the same code used by the hardware exception handler to implement the language primitive . This primitivethrow()
requires a handler to be located and the stack to be unwound so that the handler can be entered. A throw operation is always translated into a call
to so the unwind can never happens in the handler frame. Hence the register state at the point of re-entry isRuntimeEntrypoints.athrow()
always saved by the call mechanism and there is no need to generate a hardware exception.

JNI

Overview

This section describes how Jikes RVM interfaces to native code. There are three major aspects of this support:

JNI Functions: This is the mechanism for transitioning from native code into Java code. Jikes RVM implements the 1.1 through 1.4 JNI
specifications.
Native methods: This is the mechanism for transitioning from Java code to native code. In addition to the normal mechanism used to
invoke a native method, Jikes RVM also supports a more restricted syscall mechanism that is used internally by low-level VM code to
invoke native code.
Integration with threading: JNI may be freely used from any Java method. The mechanisms required to make this work are discussed in
great detail in , and to some extent in the sections that follow.Thread Management

JNI Functions

All of the 1.1 through 1.4 interface functions are implemented.JNIEnv

The functions are defined in the class . Methods of this class are compiled with special prologues/epilogues that translate fromJNIFunctions
native calling conventions to Java calling conventions and handle other details of the transition related to threading. Currently the optimizing
compiler does not support these specialized prologue/epilogue sequences so all methods in this class are baseline compiled. The
prologue/epilogue sequences are actually generated by the platform-specific .JNICompiler

Calling a JNI function results in the thread attempting to transition from IN_JNI to IN_JAVA using a compare-and-swap; if this fails, the thread may
block to acknowledge a handshake. See for more details.Thread Management

Invoking Native Methods

There are two mechanisms whereby RVM may transition from Java code to native code.

The first mechanism is when RVM calls a method of the class . The native methods thus invoked are defined in one of the C and C++SysCall
files of the executable. These native methods are non-blocking system calls or C library services. To implement a syscall, the RVMJikesRVM
compilers generate a call sequence consistent with the platform's underlying calling convention. A syscall is not a GC-safe point, so syscalls may
modify the Java heap (eg. memcpy()). For more details on the mechanics of adding a new syscall to the system, see the header comments of
SysCall.java. Note again that the syscall methods are NOT JNI methods, but an independent (more efficient) interface that is specific to Jikes
RVM.

The second mechanism is JNI. Naturally, the user writes JNI code using the JNI interface. RVM implements a call to a native method by using the
platform-specific to generate a stub routine that manages the transition between Java bytecode and native code. A JNI call is aJNICompiler
GC-safe point, since JNI code cannot freely modify the Java heap.

Interactions with Threading

See the subsection for more details on the thread system in Jikes RVM.Thread Management

There are two ways to execute native code: syscalls and JNI. A Java thread that calls native code by either mechanism will never be preempted
by Jikes RVM, but in the case of JNI, all of the VM's services will know that the thread is "effectively safe" and thus may be ignored for most
purposes. Additionally, threads executing JNI code may have handshake actions performed by other threads on their behalf, for example in the
case of GC stack scanning. This is not the case with syscalls. As far as Jikes RVM is concerned, a Java thread that enters syscall native code is
still executing Java code, but will appear to not reach a safe point until after it emerges from the syscall. This issue may be side-stepped by using
the and methods, as shown in .RVMThread enterNative() leaveNative org.jikesrvm.runtime.FileSystem

Missing Features

Native Libraries: JNI 1.2 requires that the VM specially treat native libraries that contain exported functions named JNI_OnLoad and
JNI_OnUnload. Only JNI_OnLoad is currently implemented.
JNICompiler: The only known deficiency in JNICompiler is that the prologue and epilogues only handle passing local references to
functions that expect a jobject; they will not properly handle a jweak or a regular global reference. This would be fairly easy to implement.
JavaVM interface: The JavaVM interface has GetEnv fully implemented and AttachCurrentThread partly implemented, but
DestroyJavaVM, DetachCurrentThread, and AttachCurrentThreadAsDaemon are just stubbed out and return error codes. There is no
good reason why AttachCurrentThread and friends cannot be implemented; it just hasn't been done yet, mostly because there was no
easy way to support them prior to the introduction of native threads.
Directly-Exported Invocation Interface Functions: These functions (GetDefaultJavaVMInitArgs, JNI_CreateJavaVM, and
JNI_GetCreatedJavaVMs) are not implemented. This is because we do not provide a virtual machine library that can be linked against,
nor do we support native applications that launch and use an embedded Java VM. There is no inherent reason why this could not be
done, but we have not done so yet.

Things JNI Can't Handle

atexit routines: Calling JNI code via a routine run at exit time means calling back into a VM that has been shutdown. This will cause the
Jikes RVM to freeze on Intel architectures.

Contributions of any of the missing functionality described here (and associated tests) would be greatly appreciated.

Object Model

Object Model

An dictates how to represent objects in storage; the best object model will maximize efficiency of frequent language operations whileobject model
minimizing storage overhead. Jikes RVM's object model is defined by .ObjectModel

Overview

Values in the Java programming language are either (, , etc.) or they are (that is, pointers) to objects.™ primitive e.g. int double references
Objects are either having elements or having fields. Objects are logically composed of two primary sections: an object headerarrays scalar objects
(described in more detail below) and the object's instance fields (or array elements).

The following non-functional requirements govern the Jikes RVM object model:

instance field and array accesses should be as fast as possible,
null-pointer checks should be performed by the hardware if possible,
method dispatch and other frequent runtime services should be fast,
other (less frequent) Java operations should not be prohibitively slow, and

per-object storage overhead (ie object header size) should be as small as possible.

Assuming the reference to an object resides in a register, compiled code can access the object's fields at a fixed displacement in a single
instruction. To facilitate array access, the reference to an array points to the first (zeroth) element of an array and the remaining elements are laid
out in ascending order. The number of elements in an array, its , resides just before its first element. Thus, compiled code can access arraylength
elements via base + scaled index addressing.

The Java programming language requires that an attempt to access an object through a object reference generates a null
. In Jikes RVM, references are machine addresses, and is represented by address . On Linux, accesses to bothNullPointerException null 0

very low and very high memory can be trapped by the hardware, thus all null checks can be made implicit. However, the AIX operating system™
permits loads from low memory, but accesses to very high memory (at small offsets from a null pointer) normally cause hardwarenegative
interrupts. Therefore on AIX only a subset of pointer dereferences can be protected by an implicit null check.

Object Header

Logically, every object header contains the following components:

TIB Pointer: The TIB (Type Information Block) holds information that applies to all objects of a type. The structure of the TIB is defined
by . A TIB includes the virtual method table, a pointer to an object representing the type, and pointers to a fewTIBLayoutConstants
data structures to facilitate efficient interface invocation and dynamic type checking.
Hash Code: Each Java object has an identity hash code. This can be read by or in the case that this methodObject.hashCode
overridden, by . The default hash code is usually the location in memory of the object, however, with someSystem.identityHashCode
garbage collectors objects can move. So the hash code remains the same, space in the object header may be used to hold the original
hash code value.
Lock: Each Java object has an associated lock state. This could be a pointer to a lock object or a direct representation of the lock.
Array Length: Every array object provides a length field that contains the length (number of elements) of the array.
Garbage Collection Information: Each Java object has associated information used by the memory management system. Usually this
consists of one or two mark bits, but this could also include some combination of a reference count, forwarding pointer, etc.
Misc Fields: In experimental configurations, the object header can be expanded to add additional fields to every object, typically to
support profiling.

An implementation of this abstract header is defined by three files: , which supports TIB access, default hash codes, and locking; JavaHeader
, which supports garbage collection information; and , which supports adding additional fields to all objects.AllocatorHeader MiscHeader

Field Layout

Fields tend to be recorded in the Java class file in the order they are declared in the Java source file. We lay out fields in the order they are
declared with some exceptions to improve alignment and pack the fields in the object.

Double and long fields benefit from being 8 byte aligned. Every RVMClass records the preferred alignment of the object as a whole. We lay out
double and long fields first (and object references if these are 8 bytes long) so that we can avoid making holes in the field layout for alignment. We
don't do this for smaller fields as all objects need to be a multiple of 4bytes in size.

When we lay out fields we may create holes to improve alignment. For example, an int following a byte, we'll create a 3 byte hole following the
byte to keep the int 4 byte aligned. Holes in the field layout can be 1, 2 or 4 bytes in size. As fields are laid out, holes are used to avoid increasing
the size of the object. Sub-classes inherit the hole information of their parent, so holes in the parent object can be reused by their children.

Thread Management

This section provides some explanation of how Java threads are scheduled and synchronized by Jikes RVM.™ ™

All Java threads (application threads, garbage collector threads, etc.) derive from . Each maps directly to one nativeRVMThread RVMThread
thread, which may be implemented using whichever C/C++ threading library is in use (currently either pthreads or Harmony threads). Unless
-X:forceOneCPU is used, native threads are allowed to be arbitrarily scheduled by the OS using whatever processor resources are available;
Jikes RVM does not attempt to control the thread-processor mapping at all.™

Using native threading gives Jikes RVM better compatibility for existing JNI code, as well as improved performance, and greater infrastructure™
simplicity. Scheduling is offloaded entirely to the operating system; this is both what native code would expect and what maximizes the OS
scheduler's ability to optimally schedule Java threads. As well, the resulting VM infrastructure is both simpler and more robust, since instead of™
focusing on scheduling decisions it can take a "hands-off" approach except when Java threads have to be preempted for sampling,
on-stack-replacement, garbage collection, Thread.suspend(), or locking. The main task of and other code in RVMThread

 is thus to override OS scheduling decisions when the VM demands it.org.jikesrvm.scheduler

The remainder of this section is organized as follows. The management of a thread's state is discussed in detail. Mechanisms for blocking and
handshaking threads are described. The VM's internal locking mechanism, the , is described. Finally, the locking implementation isMonitor
discussed.

Tracking the Thread State

The state of a thread is broken down into two elements:

Should the thread yield at a safe point?

Is the thread running Java code right now?

The first mechanism is provided by the field, which is 0 if the thread should not yield, or non-zero if it should yieldRVMThread.takeYieldpoint
at the next safe point. Negative versus positive values indicate the type of safe point to yield at (epilogue/prologue, or any, respectively).

But this alone is insufficient to manage threads, as it relies on all threads being able to reach a safe point in a timely fashion. New Java threads
may be started at any time, including at the exact moment that the garbage collector is starting; a starting-but-not-yet-started thread may not
reach a safe point if the thread that was starting it is already blocked. Java threads may terminate at any time; terminated threads will never again
reach a safe point. Any Java thread may call into arbitrary JNI code, which is outside of the VM's control, and may run for an arbitrary amount of
time without reaching a Java safe point. As well, other mechanisms of may cause a thread to block, thereby making it incapable ofRVMThread
reaching a safe point in a timely fashion. However, in each of these cases, the Java thread is "effectively safe" - it is not running Java code that
would interfere with the garbage collector, on-stack-replacement, locking, or any other Java runtime mechanism. Thus, a state management
system is needed that would notify these runtime services when a thread is "effectively safe" and does not need to be waited on.

RVMThread provides for the following thread states, which describe to other runtime services the state of a Java thread. These states are
designed with extreme care to support the following features:

Allow Java threads to either execute Java code, which periodically reaches safe points, and native code which is "effectively safe" by
virtue of not having access to VM services.
Allow other threads (either Java threads or VM threads) to asynchronously request a Java thread to block. This overlaps with the

 mechanism, but adds the following feature: a thread that is "effectively safe" does not have to block.takeYieldpoint
Prevent race conditions on state changes. In particular, if a thread running native code transitions back to running Java code while some
other thread expects it to be either "effectively safe" or blocked at a safe point, then it should block. As well, if we are waiting on some
Java thread to reach a safe point but it instead escapes into running native code, then we would like to be notified that even though it is
not at a safe point, it is not effectively safe, and thus, we do not have to wait for it anymore.

The states used to put these features into effect are listed below.

NEW. This means that the thread has been created but is not started, and hence is not yet running. NEW threads are always effectively
safe, provided that they do not transition to any of the other states.
IN_JAVA. The thread is running Java code. This almost always corresponds to the OS "runnable" state - i.e. the thread has no reason to
be blocked, is on the runnable queue, and if a processor becomes available it will execute, if it is not already executing. IN_JAVA thread
will periodically reach safe points at which the field will be tested. Hence, setting this field will ensure that the threadtakeYieldpoint
will yield in a timely fashion, unless it transitions into one of the other states in the meantime.
IN_NATIVE. The thread is running either native C code, or internal VM code (which, by virtue of Jikes RVM's metacircularity, may be™
written in Java). IN_NATIVE threads are "effectively safe" in that they will not do anything that interferes with runtime services, at least
until they transition into some other state. The IN_NATIVE state is most often used to denote threads that are blocked, for example on a
lock.
IN_JNI. The thread has called into JNI code. This is identical to the IN_NATIVE state in all ways except one: IN_JNI threads have a

 that stores more information about the thread's execution state (stack information, etc), while IN_NATIVE threadsJNIEnvironment
save only the minimum set of information required for the GC to perform stack scanning.
IN_JAVA_TO_BLOCK. This represents a thread that is running Java code, as in IN_JAVA, but has been requested to yield. In most
cases, when you set to non-zero, you will also change the state of the thread from IN_JAVA totakeYieldpoint
IN_JAVA_TO_BLOCK. If you don't intend on waiting for the thread (for example, in the case of sampling, where you're opportunistically
requesting a yield), then this step may be omitted; but in the cases of locking and garbage collection, when a thread is requested to yield
using , its state will also be changed.takeYieldpoint
BLOCKED_IN_NATIVE. BLOCKED_IN_NATIVE is to IN_NATIVE as IN_JAVA_TO_BLOCK is to IN_JAVA. When requesting a thread to
yield, we check its state; if it's IN_NATIVE, we set it to be BLOCKED_IN_NATIVE.
BLOCKED_IN_JNI. Same as BLOCKED_IN_NATIVE, but for IN_JNI.
TERMINATED. The thread has died. It is "effectively safe", but will never again reach a safe point.

The states are stored in , an integer field that may be rapidly manipulated using compare-and-swap. This field uses aRVMThread.execStatus
hybrid synchronization protocol, which includes both compare-and-swap and conventional locking (using the thread's , accessible via theMonitor

 method). The rules are as follows:RVMThread.monitor()

All state changes except for IN_JAVA to IN_NATIVE or IN_JNI, and IN_NATIVE or IN_JNI back to IN_JAVA, must be done while holding
the lock.
Only the thread itself can change its own state without holding the lock.
The only asynchronous state changes (changes to the state not done by the thread that owns it) that are allowed are IN_JAVA to
IN_JAVA_TO_BLOCK, IN_NATIVE to BLOCKED_IN_NATIVE, and IN_JNI TO BLOCKED_IN_JNI.

The typical algorithm for requesting a thread to block looks as follows:

thread.monitor().lockNoHandshake();
if (thread is running) {
 thread.takeYieldpoint=1;

 // transitions IN_JAVA -> IN_JAVA_TO_BLOCK, IN_NATIVE->BLOCKED_IN_NATIVE, etc.
 thread.setBlockedExecStatus();

 if (thread.isInJava()) {
 // Thread will reach safe point soon, or else notify
 // us that it left to native code.
 // In either case, since we are holding the lock,
 // the thread will effectively block on either the safe point
 // or on the attempt to go to native code, since performing
 // either state transition requires acquiring the lock,
 // which we are now holding.
 } else {
 // Thread is in native code, and thus is "effectively safe",
 // and cannot go back to running Java code so long as we hold
 // the lock, since that state transition requires
 // acquiring the lock.
 }
}
thread.monitor().unlock();

Most of the time, you do not have to write such code, as the cases of blocking threads are already implemented. For examples of how to utilize
these mechanisms, see , , and . A discussionRVMThread.block() RVMThread.hardHandshakeSuspend() RVMThread.softHandshake()
of how to use these methods follows in the section below.

Finally, the valid state transitions are as follows.

NEW to IN_JAVA: occurs when the thread is actually started. At this point it is safe to expect that the thread will reach a safe point in
some bounded amount of time, at which point it will have a complete execution context, and this will be able to have its stack traces by
GC.
IN_JAVA to IN_JAVA_TO_BLOCK: occurs when an asynchronous request is made, for example to stop for GC, do a mutator flush, or do
an isync on PPC.
IN_JAVA to IN_NATIVE: occurs when the code opts to run in privileged mode, without synchronizing with GC. This state transition is only
performed by , in cases where the thread is about to go idle while waiting for notifications (such as in the case of park, wait, orMonitor
sleep), and by , as an optimization to allow I/O operations to be performed without a full JNIorg.jikesrvm.runtime.FileSystem
transition.
IN_JAVA to IN_JNI: occurs in response to a JNI downcall, or return from a JNI upcall.
IN_JAVA_TO_BLOCK to BLOCKED_IN_NATIVE: occurs when a thread that had been asked to perform an async activity decides to go
to privileged mode instead. This state always corresponds to a notification being sent to other threads, letting them know that this thread
is idle. When the thread is idle, any asynchronous requests (such as mutator flushes) can instead be performed on behalf of this thread
by other threads, since this thread is guaranteed not to be running any user Java code, and will not be able to return to running Java
code without first blocking, and waiting to be unblocked (see BLOCKED_IN_NATIVE to IN_JAVA transition.
IN_JAVA_TO_BLOCK to BLOCKED_IN_JNI: occurs when a thread that had been asked to perform an async activity decides to make a
JNI downcall, or return from a JNI upcall, instead. In all other regards, this is identical to the IN_JAVA_TO_BLOCK to
BLOCKED_IN_NATIVE transition.
IN_NATIVE to IN_JAVA: occurs when a thread returns from idling or running privileged code to running Java code.
BLOCKED_IN_NATIVE to IN_JAVA: occurs when a thread that had been asked to perform an async activity while running privileged
code or idling decides to go back to running Java code. The actual transition is preceded by the thread first performing any requested
actions (such as mutator flushes) and waiting for a notification that it is safe to continue running (for example, the thread may wait until
GC is finished).
IN_JNI to IN_JAVA: occurs when a thread returns from a JNI downcall, or makes a JNI upcall.
BLOCKED_IN_JNI to IN_JAVA: same as BLOCKED_IN_NATIVE to IN_JAVA, except that this occurs in response to a return from a JNI
downcall, or as the thread makes a JNI upcall.
IN_JAVA to TERMINATED: the thread has terminated, and will never reach any more safe points, and thus will not be able to respond to
any more requests for async activities.

Blocking and Handshaking

Various VM services, such as the garbage collector and locking, may wish to request a thread to block. In some cases, we want to block all
threads except for the thread that makes the request. As well, some VM services may only wish for a "soft handshake", where we wait for each
thread to perform some action exactly once and then continue (in this case, the only thread that blocks is the thread requesting the soft
handshake, but all other threads must "yield" in order to perform the requested action; in most cases that action is non-blocking). A unified facility
for performing all of these requests is provided by .RVMThread

Four types of thread blocking and handshaking are supported:

RVMThread.block(). This is a low-level facility for requesting that a particular thread blocks. It is inherently unsafe to use this facility
directly - for example, if thread A calls B.block() while thread B calls A.block(), the two threads may mutually deadlock.
RVMThread.beginPairHandshake(). This implements a safe pair-handshaking mechanism, in which two threads become bound to
each other for a short time. The thread requesting the pair handshake waits until the other thread is at a safe point or else is "effectively
safe", and prevents it from going back to executing Java code. Note that at this point, neither thread will respond to any other handshake
requests until is called. This is useful for implementing biased locking, but it has general utilityRVMThread.endPairHandshake()
anytime one thread needs to manipulate something another thread's execution state.
RVMThread.softHandshake(). This implements soft handshakes. In a soft handshake, the requesting thread waits for all threads to
perform some action exactly once, and then returns. If any of those threads are effectively safe, then the requesting thread performs the
action on their behalf. is invoked with a that determines which threads are to be affected,softHandshake() SoftHandshakeVisitor
and what the requested action is. An example of how this is used is found in and org.jikesrvm.mm.mmtk.Collection

.org.jikesrvm.compilers.opt.runtimesupport.OptCompiledMethod
RVMThread.hardHandshakeSuspend(). This stops all threads except for the garbage collector threads and the thread making the
request. It returns once all Java threads are stopped. This is used by the garbage collector itself, but may be of utility elsewhere (for
example, dynamic software updating). To resume all stopped threads, call . Note that thisRVMThread.hardHandshakeResume()
mechanism is carefully designed so that even after the world is stopped, it is safe to request a garbage collection (in that case, the
garbage collector will itself call a variant of , but it will only affect the one remaining running Java thread).hardHandshakeSuspend()

The Monitor API

The VM internally uses an OS-based locking implementation, augmented with support for safe lock recursion and awareness of handshakes. The
 API provides locking and notification, similar to a Java lock, and may be implemented using either a and a Monitor pthread_mutex

, or using Harmony's monitor API.pthread_cond

Acquiring a lock, or awaiting notification, may cause the calling to block. This prevents the calling thread fromMonitor RVMThread
acknowledging handshakes until the blocking call returns. In some cases, this is desirable. For example:

In the implementation of handshakes, the code already takes special care to use the state machine to notify other threadsRVMThread
that the caller may block. As such, acquiring a lock or waiting for a notification is safe.
If acquiring a lock that may only be held for a short, guaranteed-bounded length of time, the fact that the thread will ignore handshake
requests while blocking is safe - the lock acquisition request will return in bounded time, allowing the thread to acknowledge any pending
handshake requests.

But in all other cases, the calling thread must ensure that the handshake mechanism is notified that thread will block. Hence, all blocking
 methods have both a "NoHandshake" and "WithHandshake" version. Consider the following code:Monitor

someMonitor.lockNoHandshake();
// perform fast, bounded-time critical section
someMonitor.unlock(); // non-blocking

In this code, lock acquisition is done without notifying handshakes. This makes the acquisition faster. In this case, it is safe because the critical
section is bounded-time. As well, we require that in this case, any other critical sections protected by are bounded-time as well. If,someMonitor
on the other hand, the critical section was not bounded-time, we would do:

someMonitor.lockWithHandshake();
// perform potentially long critical section
someMonitor.unlock();

In this case, the operation will transition the calling thread to the IN_NATIVE state before acquiring the lock, and thenlockWithHandshake()
transition it back to IN_JAVA once the lock is acquired. This may cause the thread to block, if a handshake is in progress. As an added safety
provision, if the operation blocks due to a handshake, it will ensure that it does so without holding the lockWithHandshake() someMonitor
lock.

A special is provided with each thread. This monitor is of the type and will also ensure that yieldpoints (safeMonitor NoYieldpointsMonitor
points) are disabled while the lock is held. This is necessary because any safe point may release the lock by waiting on it, therebyMonitor
breaking atomicity of the critical section. The for any may be accessed using the NoYieldpointsMonitor RVMThread

 method.RVMThread.monitor()

Additional information about how to use this API is found in the following section, which discusses the implementation of Java locking.

Thin and Biased Locking

Jikes RVM uses a hybrid thin/biased locking implementation that is designed for very high performance under any of the following loads:™

Locks only ever acquired by one thread. In this case, biased locking is used, an no atomic operations (like compare-and-swap) need to
be used to acquire and release locks.
Locks acquired by multiple threads but rarely under contention. In this case, thin locking is used; acquiring and releasing the lock involves

a fast inlined compare-and-swap operation. It is not as fast as biased locking on most architectures.
Contended locks. Under sustained contention, the lock is "inflated" - the lock will now consist of data structures used to implement a fast
barging FIFO mutex. A barging FIFO mutex allows threads to immediately acquire the lock as soon as it is available, or otherwise
enqueue themselves on a FIFO and await its availability.

Thin locking has a relatively simple implementation; roughly 20 bits in the object header are used to represent the current lock state, and
compare-and-swap is used to manipulate it. Biased locking and contended locking are more complicated, and are described below.

Biased locking makes the optimistic assumption that only one thread will ever want to acquire the lock. So long as this assumption holds,
acquisition of the lock is a simple non-atomic increment/decrement. However, if the assumption is violated (a thread other than the one to which
the lock is biased attempts to acquire the lock), a fallback mechanism is used to turn the lock into either a thin or contended lock. This works by
using to bring both the thread that is requesting the lock and the thread to which the lock is biased to aRVMThread.beginPairHandshake()
safe point. No other threads are affected; hence this system is very scalable. Once the pair handshake begins, the thread requesting the lock
changes the lock into either a thin or contended lock, and then ends the pair handshake, allowing the thread to which the lock was biased to
resume execution, while the thread requesting the lock may now contend on it using normal thin/contended mechanisms.

Contended locks, or "fat locks", consist of three mechanisms:

A spin lock to protect the data structures.
A queue of threads blocked on the lock.
A mechanism for blocked threads to go to sleep until awoken by being dequeued.

The spin lock is a . The queue is implemented in . Andorg.jikesrvm.scheduler.SpinLock org.jikesrvm.scheduler.ThreadQueue
the blocking/unblocking mechanism leverages ; in particular, it uses the that is attached toorg.jikesrvm.scheduler.Monitor Monitor
each thread, accessible via . The basic algorithm for lock acquisition is:RVMThread.monitor()

spinLock.lock();
while (true) {
 if (lock available) {
 acquire the lock;
 break;
 } else {
 queue.enqueue(me);
 spinLock.unlock();

 me.monitor().lockNoHandshake();
 while (queue.isQueued(me)) {
 // put this thread to sleep waiting to be dequeued,
 // and do so while the thread is IN_NATIVE to ensure
 // that other threads don't wait on this one for
 // handshakes while we're blocked.
 me.monitor().waitWithHandshake();
 }
 me.monitor().unlock();
 spinLock.lock();
 }
}
spinLock.unlock();

The algorithm for unlocking dequeues the thread at the head of the queue (if there is one) and notifies its using the Monitor
 method. Note that these algorithms span multiple methods in lockedBroadcastNoHandshake() org.jikesrvm.scheduler.ThinLock

and ; in particular, , , , , and .org.jikesrvm.scheduler.Lock lockHeavy() lockHeavyLocked() unlockHeavy() lock() unlock()

VM Callbacks

Jikes RVM provides callbacks for many runtime events of interest to the Jikes RVM programmer, such as classloading, VM boot image™
creation, and VM exit. The callbacks allow arbitrary code to be executed on any of the supported events.

The callbacks are accessed through the nested interfaces defined in the Callbacks class. There is one interface per event type. To be notified of
an event, register an instance of a class that implements the corresponding interface with Callbacks by calling the corresponding add...() method.
For example, to be notified when a class is instantiated, first implement the Callbacks.ClassInstantiatedMonitor interface, and then call
Callbacks.addClassInstantiatedMonitor() with an instance of your class. When any class is instantiated, the notifyClassInstantiated method in your
instance will be invoked.

The appropriate interface names can be obtained by appending "Monitor" to the event names (e.g. the interface to implement for the
MethodOverride event is Callbacks.MethodOverrideMonitor). Likewise, the method to register the callback is "add", followed by the name of the
interface (e.g. the register method for the above interface is Callbacks.addMethodOverrideMonitor()).

Since the events for which callbacks are available are internal to the VM, there are limitations on the behavior of the callback code. For example,
as soon as the exit callback is invoked, all threads are considered daemon threads (i.e. the VM will not wait for any new threads created in the

1.
a.

b.

c.

2.

3.

callbacks to complete before exiting). Thus, if the exit callback creates any threads, it has to join() with them before returning. These limitations
may also produce some unexpected behavior. For example, while there is an elementary safeguard on any classloading callback that prevents
recursive invocation (i.e. if the callback code itself causes classloading), there is no such safeguard across events, so, if there are callbacks
registered for both ClassLoaded and ClassInstantiated events, and the ClassInstantiated callback code causes dynamic class loading, the
ClassLoaded callback will be invoked for the new class, but not the ClassInstantiated callback.

Examples of callback use can be seen in the Controller class in the adaptive system and the GCStatistics class.

An Example: Modifying SPECjvm98 to Report the End of a Run

The SPECjvm 98 benchmark suite is configured to run one or more benchmarks a particular number of times. For example, the following runs®
the compress benchmark for 5 iterations:

rvm SpecApplication -m5 -M5 -s100 -a _201_compress

It is sometimes useful to have the VM notified when the application has completed an iteration of the benchmark. This can be performed by using
the Callbacks interface. The specifics are specified below:

Modify spec/harness/ProgramRunner.java:
add an import statement for the Callbacks class:

import com.ibm.jikesrvm.Callbacks;

before the call to runOnce add the following:
Callbacks.notifyAppRunStart(className, run);

after the call to runOnce add the following:
Callbacks.notifyAppRunComplete(className, run);

Recompile the modified file:
javac -classpath .:$RVM_BUILD/RVM.classes:$RVM_BUILD/RVM.classes/rvmrt.jar spec/harness/ProgramRunner.java

or create a stub version of Callbacks.java and place it the appropriate directory structure with your modified file, i.e.,
com/ibm/jikesrvm/Callbacks.java
Run Jikes RVM as you normally would using the SPECjvm98 benchmarks.

In the current system the Controller class will gain control when these callbacks are made and print a message into the AOS log file (by default,
placed in Jikes RVM's current working directory and called AOSLog.txt).

Another Example: Directing a Recompilation of All Methods During the Application's Execution

Another callback of interest allows an application to direct the VM to recompile all executed methods at a certain point of the application's
execution by calling the recompileAllDynamicallyLoadedMethods method in the Callbacks class. This functionality can be useful to experiment
with the performance effects of when compilation occurs. This VM functionality can be disabled using the
DISABLE_RECOMPILE_ALL_METHODS boolean flag to the adaptive system.

VM Conventions

AIX/PowerPC VM Conventions

This section describes register, stack, and calling conventions that apply to Jikes RVM on AIX/PowerPC .™

Stackframe layout and calling conventions may evolve as our understanding of Jikes RVM's performance improves. Where possible, API's should
be used to protect code against such changes. In particular, we may move to the AIX conventions at a later date. Where code differs from the™
AIX conventions, it should be marked with a comment to that effect containing the string "AIX".
Register conventions

Registers (general purpose, gp, and floating point, fp) can be roughly categorized into four types:

Scratch: Needed for method prologue/epilogue. Can be used by compiler between calls.
Dedicated: Reserved registers with known contents:

JTOC - Jikes RVM Table Of Contents. Globally accessible data: constants, static fields and methods.
FP - Frame Pointer Current stack frame (thread specific).
PR - Processor register. An object representing the current virtual processor (the one executing on the CPU containing these
registers). A field in this object contains a reference to the object representing the RVMThread being executed.

Volatile ("caller save", or "parameter"): Like scratch registers, these can be used by the compiler as temporaries, but they are not
preserved across calls. Volatile registers differ from scratch registers in that volatiles can be used to pass parameters and result(s) to and
from methods.
Nonvolatile ("callee save", or "preserved"): These can be used (and are preserved across calls), but they must be saved on method

1.
2.
3.
4.
5.
6.
7.

1.
2.
3.
4.

entry and restored at method exit. Highest numbered registers are to be used first. (At least initially, nonvolatile registers will not be used
to pass parameters.)
Condition Register's 4-bit fields: We follow the AIX conventions to minimize cost in JNI transitions between C and Java code. The
baseline compiler only uses CR0. The opt compiler allocates CR0, CR1, CR5 and CR6 and reserves CR7 for use in yieldpoints. None of
the compilers use CR2, CR3, or CR4 to avoid saving/restoring condition registers when doing a JNI transition from C to Java code.

CR0, CR1, CR5, CR6, CR7 - volatile
CR2, CR3, CR4 - non-volatile

Stack conventions

Stacks grow from high memory to low memory. The layout of the stackframe appears in a block comment in
.ppc/StackframeLayoutConstants.java

Calling Conventions

Parameters

All parameters (that fit) are passed in VOLATILE registers. Object reference and int parameters (or results) consume one GP register; long
parameters, two gp registers (low-order half in the first); float and double parameters, one fp register. Parameters are assigned to registers
starting with the lowest volatile register through the highest volatile register of the required kind (gp or fp).

Any additional parameters are passed on the stack in a parameter spill area of the caller's stack frame. The first spilled parameter occupies the
lowest memory slot. Slots are filled in the order that parameters are spilled.

An int, or object reference, result is returned in the first volatile gp register; a float or double result is returned in the first volatile fp register; a long
result is returned in the first two volatile gp registers (low-order half in the first);

Method prologue responsibilities

(some of these can be omitted for leaf methods):

Execute a stackoverflow check, and grow the thread stack if necessary.
Save the caller's next instruction pointer (callee's return address, from the Link Register).
Save any nonvolatile floating-point registers used by callee.
Save any nonvolatile general-purpose registers used by callee.
Store and update the frame pointer FP.
Store callee's compiled method ID
Check to see if the Java thread must yield the Processor (and yield if threadswitch was requested).™

Method epilogue responsibilities

(some of these can be ommitted for leaf methods):

Restore FP to point to caller's stack frame.
Restore any nonvolatile general-purpose registers used by callee.
Restore any nonvolatile floating-point registers used by callee.
Branch to the return address in caller.

Linux/x86-32 VM Conventions

This section describes register, stack, and calling conventions that apply to Jikes RVM on Linux /x86-32.®

Register conventions

EAX: First GPR parameter register, first GPR result value (high-order part of a long result), otherwise volatile (caller-save).
ECX: Scratch.
EDX: Second GPR parameter register, second GPR result value (low-order part of a long result), otherwise volatile (caller-save).
EBX: Nonvolatile.
ESP: Stack pointer.
EBP: Nonvolatile.
ESI: Processor register, reference to the Processor object for the current virtual processor.
EDI: Nonvolatile. (used to hold JTOC in baseline compiled code)

Stack conventions

Stacks grow from high memory to low memory. The layout of the stackframe appears in a block comment in
.ia32/StackframeLayoutConstants.java

Calling Conventions

At the beginning of callee's prologue

The first two areas of the callee's stackframe (see above) have been established. ESP points to caller's return address. Parameters from caller to
callee are as mandated by .ia32/RegisterConstants.java

After callee's epilogue

Callee's stackframe has been removed. ESP points to the word above where callee's frame was. The framePointer field of the Processor object
pointed to by ESI points to A's frame. If B returns a floating-point result, this is at the top of the fp register stack. If B returns a long, the low-order
word is in EAX and the high-order word is in EDX. Otherwise, if B has a result, it is in EAX.

OS X VM Conventions

Calling Conventions

The calling conventions we use for OS X are the same as those listed at:

http://developer.apple.com/documentation/DeveloperTools/Conceptual/MachORuntime/MachORuntime.pdf

They're similar to the Linux PowerPC calling conventions. One major difference is how the two operating systems handle the case of a long
parameter when you only have a single parameter register left.

Magic

Most Java runtimes rely upon the foreign language APIs of the underlying platform operating system to implement runtime behaviour which
involves interaction with the underlying platform. Runtimes also occasionally employ small segments of machine code to provide access to
platform hardware state. Note that this is expedient rather than mandatory. With a suitably smart Java bytecode compiler it would be quite
possible to implement a full Java-in-Java runtime i.e. one comprising only compiled Java code (the JNode project is an attempt to implement a
runtime along these lines; the Xerox, MIT, Lambda and TI Explorer Lisp machine implementations and the Xerox Smalltalk implementation were
highly successful attemtps at fully compiled language runtimes).

This section provides information on magic which is an escape hatch that Jikes RVM provides to implement functionality that is not™
possible using the pure Java programming language. For example, the Jikes RVM garbage collectors and runtime system must, on occasion,™
access memory or perform unsafe casts. The compiler will also translate a call to Magic.threadSwitch() into a sequence of machine code that
swaps out old thread registers and swaps in new ones, switching execution to the new thread's stack resumed at its saved PC

There are three mechanisms via which the Jikes RVM magic is implemented:

Compiler Intrinsics: Most methods are within class librarys but some functions are built in (that is, intrinsic) to the compiler. These are
referred to as intrinsic functions or intrinsics.
Compiler Pragmas: Some intrinsics are do not provide any behaviour but instead provide information to the compiler that modifies
optimizations, calling conventions and activation frame layout. We rever to these mechanisms as compiler pragmas.
Unboxed Types: Besides the primitive types, all Java values are boxed types. Conceptually, they are represented by a pointer to a heap
object. However, an unboxed type is represented by the value itself. All methods on an unboxed type must be .Compiler Intrinsics

The mechanisms are used to implement the following functionality;

Raw Memory Access: Unfetted access to memory.
Uninterruptible Code: Declaring code to be uninterruptible.
Alternative Calling Conventions: Declaring different calling conventions and activation frame layout.

Compiler Intrinsics

A compiler intrinsic will usually generate a specific code sequence. The code sequence will usually be inlined and optimized as part of compilation
phase of the optimizing compiler.

Magic

All the methods in are compiler intrinsics. Because these methods access raw memory or other machine state, perform unsafe casts, orMagic
are operating system calls, they cannot be implemented in Java code.

A Jikes™ RVM implementor must be when writing code that uses to circumvent the Java type system. The use of extremely careful Magic
 to perform various forms of pointer arithmetic is especially hazardous, since it can result in pointers being "lost"Magic.objectAsAddress

during garbage collection. All such uses of magic must either occur in uninterruptible methods or be guarded by calls to and VM.disableGC
. The optimizing compiler performs aggressive inlining and code motion, so not explicitly marking such dangerous regions in one ofVM.enableGC

these two manners will lead to disaster.

Since magic is inexpressible in the Java programming language , it is unsurprising that the bodies of methods are undefined. Instead, forMagic
each of these methods, the Java instructions to generate the code is stored in and (toGenerateMagic GenerateMachineSpecificMagic
generate HIR) and (to generate assembly code) (Note: The optimizing compiler always uses the set of instructionsBaselineCompilerImpl

http://developer.apple.com/documentation/DeveloperTools/Conceptual/MachORuntime/MachORuntime.pdf

1.

2.

3.

4.

5.

that generate HIR; the instructions that generate assembly code are only invoked by the baseline compiler.). Whenever the compiler encounters a
call to one of these magic methods, it inlines appropriate code for the magic method into the caller method.

Raw Memory Access

The type is used to represent a machine-dependent address type. is an . In theorg.vmmagic.Address org.vmmagic.Address unboxed type
past, the base type int was used to represent addresses but this approach had several shortcomings. First, the lack of abstraction makes porting
nightmarish. Equally important is that Java type int is signed whereas addresses are more appropriately considered unsigned. The difference is
problematic since an unsigned comparison on int is inexpressible in the Java programming language.

To overcome these problems, instances of are used to represent addresses. The class supports the expectedorg.vmmagic.Address
well-typed methods like adding an integer offset to an address to obtain another address, computing the difference of two addresses, and
comparing addresses. Other operations that make sense on int but not on addresses are excluded like multiplication of addresses. Two methods
deserve special attention: converting an address into an integer and the inverse. These methods should be avoided where possible.

Without special intervention, using a Java object to represent an address would be at best abysmally inefficient. Instead, when the Jikes RVM
compiler encounters creation of an address object, it will return the primitive value that represents an address for that platform. Currently, the
address type maps to either a 32-bit or 64-bit unsigned integer. Since an address is an unboxed type it must obey the rules outlined in Unboxed

.Types

Unboxed Types

If a type is boxed then it means that values of that type are represented by a pointer to a heap object. An unboxed type is represented by the
value itself such as int, double, float, byte etc. Values of unboxed types appear only in the virtual machine's stack, registers, or as fields/elements
of class/array instances.

The Jikes RVM also defines a number of other unboxed types. Due to a limitation of the way the compiler generates code the Jikes RVM must
define an unboxed array type for each unboxed type. The unboxed types are;

org.vmmagic.unboxed.Address
org.vmmagic.unboxed.Extent
org.vmmagic.unboxed.ObjectReference
org.vmmagic.unboxed.Offset
org.vmmagic.unboxed.Word
org.jikesrvm.ArchitectureSpecific.Code

Unboxed types may inherit from Object but they are not objects. As such there are some restrictions on the use of unboxed types:

A unboxed type instance must not be passed where an Object is expected. This will type-check, but it is not what you want. A corollary is
to avoid overloading a method where the two overloaded versions of the method can only be distinguished by operating on an Object
versus an unboxed type.
An unboxed type must not be synchronized on.
They have no virtual methods.
They do not support lock operations, generating hashcodes or any other method inherited from Object.
All methods must be compiler intrinsics.
Avoid making an array of an unboxed type. Instead represent it by the array version of unboxed type. i.e.

 should be replaced with but org.vmmagic.unboxed.Address[] org.vmmagic.unboxed.AddressArray
 is fine.org.vmmagic.unboxed.AddressArray[]

Uninterruptible Code

What are the Semantics of Uninterruptible Code?

Declaring a method uninterruptible enables a Jikes RVM developer to prevent the Jikes RVM compilers from inserting "hidden" thread switch
points in the compiled code for the method. As a result, the code can be written assuming that it cannot involuntarily "lose control" while executing
due to a timer-driven thread switch. In particular, neither yield points nor stack overflow checks will be generated for uninterruptible methods.
When writing uninterruptible code, the programmer is restricted to a subset of the Java language. The following are the restrictions on
uninterruptible code.

Because a stack overflow check represents a potential yield point (if GC is triggered when the stack is grown), stack overflow checks are
omitted from the prologues of uninterruptible code. As a result, all uninterruptible code must be able to execute in the stack space
available to them when the first uninterruptible method on the call stack is invoked. This is typically about 8K for uninterruptible regions
called from mutator code. The collector threads must preallocate enough stack space, since all collector code is uninterruptible. As a
result, using recursive methods in the GC subsystem is a bad idea.
Since no yield points are inserted in uninterruptible code, there will be no timer-driven thread switches while executing it. So, if possible,
one should avoid "long running" uninterruptible methods outside of the GC subsystem.
Certain bytecodes are forbidden in uninterruptible code, because Jikes RVM cannot implement them in a manner that ensures
uninterruptibility. The forbidden bytecodes are: ; ; ; ; ; ; and aastore invokeinterface new newarray anewarray athrow checkcast instanceof
unless the LHS type is a final class ; , , .monitorenter monitorexit multianewarray
Uninterruptible code cannot cause class loading and thus must not contain unresolved , , , , ,getstatic putstatic getfield putfield invokevirtual
or bytecodes.invokestatic
Uninterruptible code cannot contain calls to interruptible code. As a consequence, it is illegal to override an uninterruptible virtual method

5.

6.

1.
2.
3.
4.
5.

with an interruptible method.
Uninterruptible methods cannot be synchronized.

We have augmented the baseline compiler to print a warning message when one of these restrictions is violated. If uninterruptible code were to
raise a runtime exception such as NullPointerException, ArrayIndexOutOfBoundsException, or ClassCastException, then it could be interrupted.
We assume that such conditions are a programming error and do not flag bytecodes that might result in one of these exceptions being raised as a
violation of uninterruptibility. Checking for a particular method can be disabled by annotation the method with

. This should be done with extreme care, but in a few cases is necessary to avoidorg.vmmagic.pragmas.LogicallyUninterruptible
spurious warning messages.

The following rules determine whether or not a method is uninterruptible.

All class initializers are interruptible, since they can only be invoked during class loading.
All object constructors are interruptible, since they an only be invoked as part of the implementation of the new bytecode.
If a method is annotated with then it is interruptible.org.vmmagic.pragmas.Interruptible
If none of the above rules apply and a method is annotated with , then it is uninterruptible.org.vmmagic.pragmas.Uninterruptible
If none of the above rules apply and the declaring class is annotated with then it isorg.vmmagic.pragmas.Uninterruptible
uninterruptible.

Whether to annotate a class or a method with is a matter of taste and mainly depends on the ratioorg.vmmagic.pragmas.Uninterruptible
of interruptible to uninterruptible methods in a class. If most methods of the class should be uninterruptible, then annotated the class is preferred.

MMTk

The garbage collectors for Jikes RVM are provided by MMTk. The describes MMTk and gives a tutorial onMMTk: The Memory Manager Toolkit
how to use and edit it and is the best place to start. A detailed description of the call chain from the compilers through to MMTk is anotherhere
good place to start understanding how MMTk integrates with JikesRVM.

The RVM can be configured to employ various different allocation managers taken from the memory management toolkit. Managers divideMMTk
the available space up as they see fit. However, they normally subdivide the available address range to provide:

a metadata area which enables the manager to track the status of allocated and unallocated storage in the rest of the heap.
an immortal data area used to service allocations of objects which are expected to persist across the whole lifetime of the RVM runtime.
a large object space used to service allocations of objects which are larger than some specified size (e.g. a virtual memory page) - the
large object space may employ a different allocation and reclamation strategy to that used for other objects.
a small object allocation area which may be divided into e.g.two semi spaces, a nursery space and a mature space, a set of generations,
a non-relocatable buddy hierarchy etc depending upon the allocation and reclamation strategy employed by the memory manager.

Virtual memory pages are lazily mapped into the RVM's memory image as they are needed.

The main class which is used to interface to the memory manager is called . Each flavor of the manager is implemented by substituting aPlan
different implementation of this class. Most plans inherit from class which ensures that all active mutator threads (i.e. onesStopTheWorldGC
which do not perform the job of reclaiming storage) are suspended before reclamation is commenced. The argument passed to -X:processors
determines the number of parallel collector threads that will be used for collection.

Generational collectors employ a plan which inherits from class Inter alia, this class ensures that a write barrier is employed soGenerational
that updates from old to new spaces are detected.

The RVM does not currently support concurrent garbage collection.

Jikes RVM may also use the visualization framework. GCSpy allows developers to observe the behavior of the heap and related dataGCSpy
structures.

Memory Allocation in JikesRVM

The way that objects are allocated in JikesRVM can be difficult to grasp for someone new to the code base. This document provides a detailed
look at some of the paths through the JikesRVM - MMTk interface code to help bootstrap understanding of the process. The process and code
illustrated below is current as of March 2011, svn revision 16052 (between JikesRVM 3.1.1 and 3.1.2).

Memory Manager Interface

The best starting place to understand the allocation sequence is in the class org.jikesrvm.mm.mminterface.MemoryManager, which is a facade
class for the MMTk allocators. MMTk provides a variety of memory management plans which are designed to be independent of the actual
language being implemented. The MemoryManager class orchestrates the services of MMTk to allocate memory, and adds the structure
necessary to make the allocated memory into Java objects.

The method is where all scalar (ie non-array) objects are allocated. The parameters of this method specify the object to beallocateScalar
allocated in sufficient detail that when this method is compiled by the opt compiler, all of the parameters are compile-time constants, allowing
maximum optimization. Working through the body of the method,

Selected.Mutator mutator = Selected.Mutator.get();

As mentioned above, MMTk provides many different memory management plans, one of which is selected at build time. This call acquires a

http://cs.anu.edu.au/~Robin.Garner/mmtk-guide.pdf

pointer to the thread-local per-mutator component of MMTk. Much of MMTk's performance comes from providing unsynchronized thread-local
data structures for the frequently used operations, so rather than provide a single interface object, it provides a per-thread interface object for both
mutator and collector threads.

allocator = mutator.checkAllocator(org.jikesrvm.runtime.Memory.alignUp(size, MIN_ALIGNMENT), align,
allocator);

An MMTk plan in general provides several spaces where objects can be allocated, each with their own characteristics. JikesRVM is free to
request allocation in any of these spaces, but sometimes there are constraints only available on a per-allocation basis that might force MMTk to
override JikesRVM's request. For example, JikesRVM may specify that objects allocated by a particular class are allocated in MMTk's
non-moving space. At execution time, one such object may turn out to be too large for allocation in the general non-moving space provided by
that particular plan, and so MMTk needs to promote the object to the Large Object Space (LOS), which is also non-moving, but has high space
overheads. This call will generally compile down to 0 or a small handful of instructions.

Address region = allocateSpace(mutator, size, align, offset, allocator, site);

This calls a method of MemoryManager, common to all allocation methods (for Arrays and other special objects), that calls

Address region = mutator.alloc(bytes, align, offset, allocator, site);

to actually allocate memory from the current MMTk plan.

Object result = ObjectModel.initializeScalar(region, tib, size);

Now we call the JikesRVM object model to initialize the allocated region as a scalar object, and then

mutator.postAlloc(ObjectReference.fromObject(result), ObjectReference.fromObject(tib), size, allocator);

we call MMTk's method to perform initialization that can only be performed after an object has been initialized by the virtual machine.postAlloc

Compiler integration

The method discussed above is only actually called from one place, the method in the classallocateScalar resolvedNewScalar(int ...)
org.jikesrvm.runtime.RuntimeEntrypoints. This class provides methods that are accessed directly by the compilers, via fields in
the org.jikesrvm.runtime.Entrypoints class. The 'resolved' part of the method name indicates that the class of object being allocated is resolved at
compile time (recall that the Java Language Spec requires that classes are only loaded, resolved etc when they are needed - sometimes it's
necessary to compile code that performs classloading and then allocate the object).

RuntimeEntrypoints also contains an overload, , that is used by the reflection API to allocate objects. It'sresolvedNewScalar(RVMClass)
instructive to look at this method, as it performs essentially the same operations as the compiler when compiling the call to

.resolvedNewScalar(int...)

Working backwards from this point requires delving into the individual compilers.

Baseline Compiler

There is a different baseline compiler for each architecture. The relevant code in the baseline compiler for the ia32 architecture is in the class
org.jikesrvm.compilers.baseline.ia32.BaselineCompilerImpl. The method is responsible for generating code toemit_resolved_new(RVMClass)
execute the 'new' bytecode when the target class is already resolved. Looking at this method, you can see it does essentially what the

 method in RuntimeEntrypoints does, then generates Intel machine code to perform the call to theresolvedNewScalar(RVMClass)
resolvedNewScalar entrypoint. Note how the work of calculating the size, alignment etc of the object is performed , by the compiler at compile

.time

Similar code exists in the PPC baseline compiler.

Optimizing Compiler

The optimizing compiler is paradoxically somewhat simpler than the baseline compiler, in that injection of the call to the entrypoint is done in an
architecture independent level of compiler IR. (An overview of the JikesRVM optimizing compiler can be found in [1]).

In HIR (the high-level Intermediate Representation), allocation is expressed as a 'new' opcode. During the translation from HIR to LIR (Low-level
IR), this and other opcodes are translated into instructions by the class org.jikesrvm.compilers.opt.hir2lir.ExpandRuntimeServices. The method

 performs this translation, selecting particular operations via a large switch statement. The NEW_opcode case performs the task we'reperform(IR)
interested in, doing essentially the same job as the baseline compiler, but generating IR rather than machine instructions. The compiler generates
a 'call' operation, and then (if the compilation policy decides it's required) inlines it.

At this point in code generation, all the methods called by RuntimeEntrypoints.resolvedNewScalar(int...) which are annotated @Inline are also
inlined into the current method. This inlining extends through to the MMTk code so that the allocation sequence can be optimized down to a
handful of instructions.

It can be instructive to look at the various levels of IR generated for object allocation using a simple test program and the OptTestHarness utility
described elsewhere in the user guide.

[1] The Jalapeño Dynamic Optimizing Compiler for Java

http://www.stanford.edu/%7Ejwhaley/papers/javagrande99.pdf

Michael Burke, , , , , , Mauricio Serrano, V.C. Sreedhar, and HariniJong-Deok Choi Stephen Fink David Grove Michael Hind Vivek Sarkar
Srinivasan.
''1999 ACM Java Grande Conference'', San Francisco, June 12-14, 1999.
'''(Source code available as of version 2.0.0 of Jikes RVM.)'''

The class

Scanning Objects in JikesRVM

One of the services that MMTk expects a virtual machine to perform on its behalf is the scanning of objects, i.e. identifying and processing the
pointer fields of the live objects it encounters during collection. In principle the implementation of this interface is simple, but there are two
moderately complex optimizations layered on top of this.

From MMTk's point of view, each time an object requires scanning it passes it to the VM, along with a TransitiveClosure object. The VM is
expected to identify the pointers and invoke the processEdge method on each of the pointer fields in the object. The rationale for the current
object scanning scheme is presented .in this paper

JikesRVM to MMTk Interface

MMTk requires its host virtual machine to provide an implementation of the class org.mmtk.vm.Scanning as its interface to scanning objects.
 JikesRVM's implementation of this class is found under the source tree MMTk/ext/vm/jikesrvm, in the class org.jikesrvm.mm.mmtk.Scanning.
 The methods we are interested in are and scanObject(TransitiveClosure, ObjectReference) specializedScanObject(int, TransitiveClosure,
ObjectReference).

In MMTk, each plan defines one or more TransitiveClosure operations. Simple full-heap collectors like MarkSweep only define one
TransitiveClosure, but complex plans like GenImmix or the RefCount plans define several. MMTk allows the plan to request specialized scanning
on a closure-by-closure basis, closures that are specialized call while unspecialized ones call scanObject. SpecializationspecializedScanObject
is covered in more detail below.

In the absence of hand-inlined scanning, or if specialization is globally disabled, scanning reverts to the fallback method in
org.jikesrvm.mm.mminterface.SpecializedScanMethod. This method can be regarded as the basic underlying mechanism, and is worth
understanding in detail.

RVMType type = ObjectModel.getObjectType(objectRef.toObject());
 int[] offsets = type.getReferenceOffsets();

This code fetches the array of offsets that JikesRVM uses to identify the pointer fields in the object. This array is constructed by the classloader
when a class is resolved.

if (offsets != REFARRAY_OFFSET_ARRAY) {
 for(int i=0; i < offsets.length; i++) {
 trace.processEdge(objectRef, objectRef.toAddress().plus(offsets[i]));
 }

One distinguished value (actually null) is used to identify arrays of reference objects, and this block of code scans scalar objects by tracing each
of the fields at the offsets given by the offset array.

 } else {
for(int i=0; i < ObjectModel.getArrayLength(objectRef.toObject()); i++) {
 trace.processEdge(objectRef, objectRef.toAddress().plus(i << LOG_BYTES_IN_ADDRESS));
 }
 }

The other case is reference arrays, for which we fetch the array length and scan each of the elements.

The internals of trace.processEdge vary by collector and by collection type (e.g. nursery/full-heap in a generational collector), and the details need
not concern us here.

Hand Inlining

Hand inlining was introduced in February 2011, and uses a cute technique to encode 3 bits of metadata into the TIB pointer in an object's header.
 The 7 most frequent object patterns are encoded into these bits, and then special-case code is written for each of them.

Hand inlining produces an average-case speedup slightly better than specialization, but performs poorly on some benchmarks. This is why we
use it in combination with specialization.

Specialized Scanning

Specialized Scanning was introduced in September 2007. It speeds up GC by removing the process of fetching and interpreting the offset array
that describes each object, by jumping directly to a hard-coded method for scanning objects with a particular pattern.

The departure point from "standard" java into the specialized scanning method is SpecializedScanMethod.invoke(...), which looks like this

http://www.research.ibm.com/people/j/jdchoi
http://www.research.ibm.com/people/s/sfink
http://www.research.ibm.com/people/d/dgrove
http://www.research.ibm.com/people/h/hind
http://www.research.ibm.com/people/v/vsarkar
http://portal.acm.org/citation.cfm?id=1993484

1.

2.
3.

 @SpecializedMethodInvoke
 @NoInline
 public static void invoke(int id, Object object, TransitiveClosure trace) {
 /* By default we call a non-specialized fallback */
 fallback(object, trace);
 }

The `SpecializedMethodInvoke' annotation signals to the compiler that it should dispatch to one of the specialized method slots in the TIB.

Creation of specialized methods is handled by the class org.jikesrvm.classloader.SpecializedMethodManager.

Using GCSpy

The GCspy Heap Visualisation Framework

GCspy is a visualisation framework that allows developers to observe the behaviour of the heap and related data structures. For details of the
GCspy model, see . The frameworkGCspy: An adaptable heap visualisation frameworkby Tony Printezis and Richard Jones, OOPSLA'02
comprises two components that communicate across a socket: a and a incorporated into the virtual machine of the system beingclient server
visualised. The client is usually a visualiser (written in Java) but the framework also provides other tools (for example, to store traces in a
compressed file). The GCspy server implementation for JikesRVM was contributed by Richard Jones of the University of Kent.

GCspy is designed to be independent of the target system. Instead, it requires the GC developer to describe their system in terms of four GCspy
abstractions, and . This description is transmitted to the visualiser when it connects to the server.spaces, streams, tiles events

A is an abstraction of a component of the system; it may represent a memory region, a free-list, a remembered-set or whatever. Eachspace
space is divided into a number of blocks which are represented by the visualiser as . Each space will have a number of attributes -- --tiles streams
such as the amount of space used, the number of objects it contains, the length of a free-list and so on.

In order to instrument a Jikes RVM collector with GCspy:

Provide a method in that collector's plan. That method initialises the GCspy server with the port on which tostartGCspyServer
communicate and a list of event names, instantiates drivers for each space, and then starts the server.
Gather data from each space for the tiles of each stream (e.g. before, during and after each collection).
Provide a driver for each space.

Space drivers handle communication between collectors and the GCspy infrastructure by mapping information collected by the memory manager
to the space's streams. A typical space driver will:

Create a GCspy .space
Create a for each attribute of the space.stream
Update the tile statistics as the memory manager passes it information.
Send the tile data along with any summary or control information to the visualiser.

The Jikes RVM SSGCspy plan gives an example of how to instrument a collector. It provides GCspy spaces, streams and drivers for the
semi-spaces, the immortal space and the large object space, and also illustrates how performance may be traded for the gathering of more
detailed information.

Installation of GCspy with Jikes RVM

System Requirements

The GCspy C server code needs a pthread (created in in) in order to run. So, GCspy will only work on a systemgcspyStartserver() sys.C
where you've build Jikes RVM with set to . The build process will fail if you try to configure such aconfig.single.virtual.processor 0
build.

Building GCSpy

The GCspy client code makes use of the Java Advanced Imaging (JAI) API. The build system will attempt to download and install the JAI
component when required but this is only supported on the platform. The build system will also attempt to download and install theia32-linux
GCSpy server when required.

Building Jikes RVM to use GCspy

To build the Jikes RVM with GCSpy support the configuration parameter must be set to such as in the config.include.gcspy 1
configuration. You can also have the Jikes RVM build process create a script to start the GCSpy client tool if GCSpyBaseBaseSemiSpaceGCspy

was built with support for client component. To achieve this the configuration parameter must be set to .config.include.gcspy-client 1

The following steps build the Jikes RVM with support for GCSpy on linux-ia32 platform.
$ cd $RVM_ROOT
$ ant -Dhost.name=ia32-linux -Dconfig.name=BaseBaseSemiSpaceGCspy -Dconfig.include.gcspy-client=1

http://www.cs.kent.ac.uk/pubs/2002/1426/

1.
2.
3.
4.

It is also possible to build the Jikes RVM with GCSpy support but link it against a fake stub implementation rather than the real GCSpy
implementation. This is achieved by setting the configuration parameter to . This is used in the nightly testingconfig.include.gcspy-stub 1
process.

Running Jikes RVM with GCspy

To start Jikes RVM with GCSpy enabled you need to specify the port the GCSpy server will listen on.
$ cd $RVM_ROOT/dist/BaseBaseSemiSpaceGCspy_ia32-linux
$./rvm -Xms20m -X:gc:gcspyPort=3000 -X:gc:gcspyWait=true &

Then you need to start the GCspy visualiser client.
$ cd $RVM_ROOT/dist/BaseBaseSemiSpaceGCspy_ia32-linux
$./tools/gcspy/gcspy

After this you can specify the port and host to connect to (i.e. localhost:3000) and click the "Connect" button in the bottom right-hand corner of the
visualiser.

Command line arguments

Additional GCspy-related arguments to the command:rvm

-X:gc:gcspyPort=<port>
The number of the port on which to connect to the visualiser. The default is port , which signifies no connection.0
-X:gc:gcspyWait=<true|false>
Whether Jikes RVM should wait for a visualiser to connect.
-X:gc:gcspyTilesize=<size>
How many KB are represented by one tile. The default value is 128.

Writing GCspy drivers

To instrument a new collector with GCspy, you will probably want to subclass your collector and to write new drivers for it. The following sections
explain the modifications you need to make and how to write a driver. You may use and its drivers as anorg.mmtk.plan.semispace.gcspy
example.

The recommended way to instrument a Jikes RVM collector with GCspy is to create a subdirectory in the directory of the collector beinggcspy
instrumented, e.g. . In that directory, we need 5 classes:MMTk/src/org/mmtk/plan/semispace/gcspy

SSGCspy,
SSGCspyCollector,
SSGCspyConstraints
SSGCspyMutator and
SSGCspyTraceLocal.

SSGCspy is the plan for the instrumented collector. It is a subclass of .SS

SSGCspyConstraints extends to provide methods and , both ofSSConstraints boolean needsLinearScan() boolean withGCspy()
which return true.

SSGCspyTraceLocal extends to override methods and to ensure that tracing deals properly withSSTraceLocal traceObject willNotMove
GCspy objects: the GCspyTraceLocal file will be similar for any instrumented collector.

The instrumented collector, , extends . It needs to override .SSGCspyCollector SSCollector collectionPhase

Similarly, extends and must also override its parent's methods , to allow the allocators toSSGCspyMutator SSMutator collectionPhase
collect data; and its and methods to allocate GCspy objects in GCspy's heap space.alloc postAlloc

The Plan

SSGCspy.startGCspyServer is called immediately before the "main" method is loaded and run. It initialises the GCspy server with the port on
which to communicate, adds event names, instantiates a driver for each space, and then starts the server, forcing the VM to wait for a GCspy to
connect if necessary. This method has the following responsibilities.

Initialise the GCspy server: server.init(name, portNumber, verbose);
Add each event to the (`server' for short) server.addEvent(eventID, eventName);ServerInterpreter
Set some general information about the server (e.g. name of the collector, build, etc) server.setGeneralInfo(info);
Create new drivers for each component to be visualised myDriver = new MyDriver(server, args...);

Drivers extend and register their space with the . In addition to the server, drivers will take asAbstractDriver ServerInterpreter
arguments the name of the space, the MMTk space, the tilesize, and whether this space is to be the main space in the visualiser.

The Collector and Mutator

1.
2.

3.
4.

1.
2.

1.
2.

1.
2.
3.

4.
5.

1.
2.
3.
4.
5.

6.

Instrumenters will typically want to add data collection points before, during and after a collection by overriding in collectionPhase
 and .SSGCspyCollector SSGCspyMutator

SSGCspyCollector deals with the data in the semi-spaces that has been allocated there (copied) by the collector. It only does any real work at
the end of the collector's last tracing phase, .FORWARD_FINALIZABLE

SSGCspyMutator is more complex: as well as gathering data for objects that it allocated in From-space at the start of the PREPARE_MUTATOR
phase, it also deals with the immortal and large object spaces.

At a collection point, the collector or mutator will typically

Return if the GCspy port number is 0 (as no client can be connected).
Check whether the server is connected at this event. If so, the compensation timer (which discounts the time taken by GCspy to ather the
data) should be started before gathering data and stopped after it.
After gathering the data, have each driver call its method.transmit
SSGCspyCollector does call the GCspy server's method, as the collector phase is usually followed by anot serverSafepoint
mutator phase. Instead, can be called by to indicate that this is a point at which the server canserverSafepoint SSGCspyMutator
pause, play one event, etc.

Gathering data will vary from MMTk space to space. It will typically be necessary to resize a space before gathering data. For a space,

We may need to reset the GCspy driver's data depending on the collection phase.
We will pass the driver as a call-back to the allocator. The allocator will typically ask the driver to set the range of addresses from which
we want to gather data, using the driver's method. The driver should then iterate through its MMTk space, passing a referencesetRange
to each object found to the driver's scan method.

The Driver

GCspy space drivers extend . This class creates a new GCspy and initializes the control values for each tile inAbstractDriver ServerSpace
the space. values indicate whether a tile is , , a , a or a . The constructor for a typical space driverControl used unused background separator link
will:

Create a GCspy for each attribute of a space.Stream
Initialise the tile statistics in each stream.

Some drivers may also create a object to handle call-backs from the VM as it sweeps the heap (see above).LinearScan

The chief roles of a driver are to accumulate tile statistics, and to transmit the summary and control data and the data for all of their streams. Their
data gathering interface is the method (to which an object reference or address is passed).scan

When the collector or mutator has finished gathering data, it calls the of the driver for each space that needs to send its data. Streamstransmit
may send values of types byte, short or int, implemented through classes , or . A driver's ByteStream ShortStream IntStream transmit
method will typically:

Determine whether a GCspy client is connected and interested in this event, e.g. server.isConnected(event)
Setup the summaries for each stream, e.g. stream.setSummary(values...);
Setup the control information for each tile. e.g. controlValues(CONTROL_USED, start, numBlocks);
controlValues(CONTROL_UNUSED, end, remainingBlocks);
Set up the space information, e.g. setSpace(info);
Send the data for all streams, e.g. send(event, numTiles);

Note that takes care of sending the information for all streams (including control data).AbstractDriver.send

Subspaces

Subspace provides a useful abstraction of a contiguous region of a heap, recording its start and end address, the index of its first block, the size
of blocks in this space and the number of blocks in the region. In particular, provides methods to:Subspace

Determine whether an address falls within a subspace;
Determine the block index of the address;
Calculate how much space remains in a block after a given address;

Care and Feeding
This section describes the practical aspects of getting started using and modifying Jikes RVM. The gives a 10 second overviewQuick Start Guide
on how to get started while the following sections give more detailed instructions.

Get The Source
Build the RVM
Run the RVM
Configure the RVM
Modify the RVM

6.

7.
8.

Test the RVM
The MMTk Test Harness

Debug the RVM
Evaluate the RVM

Building the RVM

This guide describes how to build Jikes RVM. The first section is an overview of the Jikes RVM build process and this is followed by your system
requirements and a detailed description of the steps required to build Jikes RVM.

Note

Once you have things working, as described below, the script will provide a fast and easy way to build the system. Webuildit
recommend you get things working as described below first, so you can be sure you've met the requisite dependencies etc.

Overview

Compiling the source code

The majority of Jikes RVM is written in Java and will be compiled into class files just as with other Java applications. There is also a small portion
of Jikes RVM that is written in C that must be compiled with a C compiler such as gcc. Jikes RVM uses version 1.7.0 or later as the build toolAnt
that orchestrates the build process and executes the steps required in building Jikes RVM.

Note

Jikes RVM requires a complete install of ant, including the optional tasks. These are present if you download and install ant
manually. Some Linux distributions have decided to break ant into multiple packages. So if you are installing on a platform such
as Debian you may need to install another package such as 'ant-optional'.

Generating source code

The build process also generates Java and C source code based on build time constants such as the selected instruction architecture, garbage
collectors and compilers. The generation of the source code occurs prior to the compilation phase.

Bootstrapping the RVM

Jikes RVM compiles Java class files and produces arrays of code and data. To build itself Jikes RVM will execute on an existing Java Virtual
Machine and compiles a copy of it's own class files into a for the code and data using the tool. The set of filesboot image boot image writer
compiled is called the . The is a small C program that loads the boot image and transfers control flowPrimordial Class List boot image runner
into Jikes RVM.

Class libraries

The Java class library is the mechanism by which Java programs communicate with the outside world. Jikes RVM has configurable class library
support, the most mature of which is the the class library. In the release version of Jikes RVM is support for the GNU Classpath Apache Harmony
class library.

For GNU Classpath, the developer can either specify a particular version of GNU Classpath to use. By default the build process will download and
build GNU Classpath.

Setting the ant property to () will change the build process to download and build theclasslib.provider Harmony see how to define ant properties
Apache Harmony class library.

Target Requirements

Jikes RVM is known to build and work on certain combinations of instruction architectures and operating systems. The following sections detail
the supported architectures and operating systems.

Architectures

The PowerPC (or ppc) and ia32 instruction set architectures are supported by Jikes RVM.

http://ant.apache.org
http://www.gnu.org/software/classpath/
http://harmony.apache.org/

Intel

Intel's Instruction Set Architectures (ISAs) get known by different names:

IA-32 is the name used to describe processors such as 386, 486 and the Pentium processors. It is popularly called or sometimes inx86
our documentation as x86-32.
IA-32e is the name used to describe the extension of the IA-32 architecture to support 8 more registers and a 64-bit address space. It is
popularly called or , as AMD chips were the first to support it. It is found in processors such AMD's Opteron and Athlonx86_64 AMD64
64, as well as in Intel's own Pentium 4 processors that have in their name.EM64T
IA-64 is the name of Intel's Itanium processor ISA.

Jikes RVM currently supports the IA-32 ISA. As IA-32e is backward compatible with IA-32, Jikes RVM can be built and run upon IA-32e
processors. The IA-64 architecture supports IA-32 code through a compatibility mode or through emulation and Jikes RVM should run in this
configuration.

Operating Systems

Jikes RVM is capable of running on any operating system that is supported by the library, low level library support is implementedGNU Classpath
and memory layout is defined. The low level library support includes interaction with the threading and signal libraries, memory management
facilities and dynamic library loading services. The memory layout must also be known, as Jikes RVM will attempt to locate the boot image code
and data at specific memory locations. These memory locations must not conflict with where the native compiler places it's code and data.
Operating systems that are known to work include AIX, Linux and OSX. At one stage a port to win32 was completed but it was never integrated
into the main Jikes RVM codebase.

Note: Current implementation of Jikes RVM implies that system native libraries (like GTK+) have been compiled frame pointers. Most ofwith
Linux distribution have frame pointers enabled in most of the packages, but some explicitly use -fomit-frame-pointer thus producing the library that
can't be used with JikesRVM. See for example.this issue

Support Matrix

The following table details the targets that have historically been supported and the current status of the support. The target.name column is the
identifier that Jikes RVM uses to identify this target.

target.name Operating System Instruction Architecture Address Size Status

ia32-linux Linux ia32 32 bits OK

ia32-osx OSX ia32 32 bits OK

ia32-solaris Solaris ia32 32 bits OK

ia32-cygwin Windows ia32 32 bits WIP

ppc32-aix AIX PowerPC 32 bits OK

ppc32-linux Linux PowerPC 32 bits OK

ppc32-osx OSX PowerPC 32 bits OK

ppc64-aix AIX PowerPC 64 bits OK

ppc64-linux Linux PowerPC 64 bits OK

x86_64-linux Linux ia32 32 bits* OK

x86_64 is currently only supported using the legacy 32bit addressing mode and instructions ()track progress on full 64bit support here

Tool Requirements

Java Virtual Machine

http://www.gnu.org/software/classpath/
http://www.nabble.com/-rvm-research---DaCapo:chart-is-broken--td20438748.html
http://jira.codehaus.org/browse/RVM-630
http://jira.codehaus.org/browse/RVM-169

Jikes RVM requires an existing Java Virtual Machine that conforms to Java 6.0 such as Oracle JDK 1.6 or IBM SDK 6.0. Some Java Virtual
Machines are unable to cope with compiling the Java class library so it is recomended that you install one of the above mentioned JVMs if they
are not already installed on your system. The remaining build instructions assume that this Java Virtual Machine on your path. You can run "java

" to check you are using the correct JVM.-version

Ant

Ant version 1.7.0 or later is the tool required to orchestrate the build process. You can download and install the Ant tool from http://ant.apache.org/
if it is not already installed on your system. The remaining build instructions assume that $ANT_HOME/bin is on your path. You can run "ant

" to check you are running the correct version of ant.-version

C Tool Chain

Jikes RVM assumes that the GNU C Tool Chain is present on the system or a tool chain that is reasonably compatible. Most modern *nix
environments satisfy this requirement.

Bison

As part of the build process, Jikes RVM uses the bison tool which should be present on most modern *nix environments.

Perl

Perl is trivially used as part of the build process but this requirement may be removed in future releases of Jikes RVM. Perl is also used as part of
the regression and performance testing framework.

Awk

GNU Awk is required as part of the regression and performance testing framework but is not required when building Jikes RVM.

Extra tools recommended for Solaris

pkg-get will greatly simplify installing GNU packages on Solaris. Our patches require that GNU patch is picked up in preference to Sun's, to
achieve this, for example, you can create a symbolic link to /usr/bin/gpatch from /opt/csw/bin/patch and make sure /opt/csw/bin is in your path
before /usr/bin.

Instructions

Defining Ant properties

There are a number of ant properties that are used to control the build process of Jikes RVM. These properties may either be specified on the
command line by " " or they may be specified in a file named " " in the base directory of the jikesrvm-Dproperty=variable .ant.properties
source tree. The " " file is a standard Java proeprty file with each line containing a " " and comments.ant.properties property=variable
starting with a and finishing at the end of the line. The following table describes some properties that are commonly specified.#

Property Description Default

host.name The name of the host environment used for building Jikes RVM. The name
should match one of the files located in the directory minusbuild/hosts/
the ' ' extension..properties

None

target.name The name of the target environment for Jikes RVM. The name should match
one of the files located in the directory minus the 'build/targets/

' extension. This should only be specified when cross compiling.properties
the Jikes RVM. See for a detailed description of crossCross-Platform Building
compilation.

${host.name}

config.name The name of the configuration used when building Jikes RVM. The name
should match one of the files located in the directory minusbuild/configs/
the ' ' extension. This setting is further described in the section .properties

.Configuring the RVM

None

patch.name An identifier for the current patch applied to the source tree. See Building
 for a description of how this fits into the standard usagePatched Versions

patterns of Jikes RVM.

""

http://ant.apache.org
http://ant.apache.org/
http://jikesrvm.hg.sourceforge.net/hgweb/jikesrvm/jikesrvm/file/tip/build/hosts
http://jikesrvm.hg.sourceforge.net/hgweb/jikesrvm/jikesrvm/file/tip/build/targets
http://jikesrvm.hg.sourceforge.net/hgweb/jikesrvm/jikesrvm/file/tip/build/configs/

components.dir The directory where Ant looks for external components when building the
RVM.

${jikesrvm.dir}/components

dist.dir The directory where Ant stores the final Jikes RVM runtime. ${jikesrvm.dir}/dist

build.dir The directory where Ant stores the intermediate artifacts generated when
building the Jikes RVM.

${jikesrvm.dir}/target

protect.config-files Define this property if you do not want the build process to update
configuration files when auto downloading components.

(Undefined)

components.cache.dir The directory where Ant caches downloaded components. If you explicitly
download a component, place it in this directory.

(Undefined, forcing download)

At a minimum it is recommended that the user specify the property in the " " file.host.name .ant.properties

The configuration files in " " and " " are designed to work with a typical install but it may be necessary to overidebuild/targets/ build/hosts/
specific properties. The easiest way to achieve this is to specify the properties to override in the " " file..ant.properties

Selecting a Configuration

A "configuration" in terms of Jikes RVM is the combination of build time parameters and component selection used for a particular Jikes RVM
image. The section describes the details of how to define a configuration. Typical configuration names include;Configuring the RVM

production: This configuration defines a fully optimized version of the Jikes RVM.
development: This configuration is the same as production but with debug options enabled. The debug options perform internal
verification of Jikes RVM which means that it builds and executes more slowly.
prototype: This configuration is compiled using an unoptimized compiler and includes minimal components which means it has the
fastest build time.
prototype-opt: This configuration is compiled using an unoptimized compiler but it includes the adaptive system and optimizing compiler.
This configuration has a reasonably fast build time.

If a user is working on a particular configuration most of the time they may specify the config.name ant property in " ".ant.properties
otherwise it should be passed in on the command line " ".-Dconfig.name=...

Fetching Dependencies

The Jikes RVM has a build time dependency on the class library and depending on the configuration may have a dependency on GNU Classpath
. The build system will attempt to download and build these dependencies if they are not present or are the wrong version.GCSpy

To just download and install the class library you can run the command " ". AfterGNU Classpath ant -f build/components/classpath.xml
this command has completed running it should have downloaded and built the class library for the current host. See the GNU Classpath Using

 page for directions on building configurations with GCSpy support.GCSpy

If you wish to manually download components (for example you need to define a proxy, so ant is not correctly downloading), you can do so and
identify the directory containing the downloads using " " when you build with ant.-Dcomponents.cache.dir=<download directory>

Building the RVM

The next step in building Jikes RVM is to run the ant command " " or " ". This should build a complete RVMant ant -Dconfig.name=...
runtime in the directory "${dist.dir}/${config.name}_${target.name}". The following table describes some of the ant targets that can be executed. A
complete list of documented targets can be listed by executing the command " "ant -projecthelp

Target Description

check-properties Check that all the required properties are defined.

compile-mmtk Compile MMTk toolkit.

prepare-source Generate configuration independent source code if required or force.generation property is set.

prepare-config-source Generate source code for the current configuration if required or force.generation property is set.

http://jikesrvm.hg.sourceforge.net/hgweb/jikesrvm/jikesrvm/file/tip/build/targets
http://jikesrvm.hg.sourceforge.net/hgweb/jikesrvm/jikesrvm/file/tip/build/hosts/
http://www.gnu.org/software/classpath/
http://www.cs.kent.ac.uk/projects/gc/gcspy/
http://www.gnu.org/software/classpath/
http://www.gnu.org/software/classpath/

main or runtime Build a runtime image.

clean Remove the build and image directory for the current configuration.

very-clean As with clean but also remove Java files generated by scripts.

real-clean As with very-clean but remove all compiled images.

profiled-image Compile a baseline version of the RVM for profiling then use the profile information to recompile the given
 image.config.name

Running the RVM

Jikes RVM can be executed in a similar way to most Java Virtual Machines. The difference is that the command is " " and resides in thervm
runtime directory (i.e. "${dist.dir}/${config.name}_${target.name}"). See for a complete list of command line options.Running the RVM

Building on Windows

Windows support is still a work in progress, the following is collecting current wisdom.

Prerequisites

Windows SDK (free)
Visual C++ (the free Express Edition is ok)
Apache Ant
An installed Java Development Kit (JDK)
Cygwin - in particular you need: mercurial, bison, byacc, gcc, perl

Environment Variables

JAVA_HOME - point at JDK installation directory

Building Patched Versions

As part of the research process there will be a need to evaluate a set of changes to the source tree. To make this process easier the property
named can be set to a non-empty string. This will cause the output directory to have the name patch.name

} rather than }, thus making it easy to${config.name}_${target.name}_${config.variant ${config.name}_${target.name
differentiate between the patched and unpatched runtimes.

The following steps will create a runtime without the patch in and a runtime with the patch applied in dist/prototype_ia32-linux
.dist/prototype_ia32-linux_ReadBarriers

% cd $RVM_ROOT
% ant -Dconfig.name=prototype -Dhost.name=ia32-linux
% patch -p0 < ReadBarriers.diff
% ant -Dconfig.variant=ReadBarriers -Dconfig.name=prototype -Dhost.name=ia32-linux
% patch -R -p0 < ReadBarriers.diff

The property is also supported and reported as part of the test infrastructure.config.variant

Cross-Platform Building

The Jikes RVM build process consists of two major phases: the building of a , and the building of a . The boot image is™ boot image boot loader
built using a Java™ program executed within a host JVM and is therefore platform-neutral. By contrast, the boot loader is written in C, and must
be compiled on the target platform.

Because building the boot image can be time-consuming, you may prefer to build the boot image on a faster machine than the target platform.
You may also be porting Jikes RVM to a target platform that lacks tools such or whose development environment is otherwise unpleasant. To
cross-build, simply set your and properties to different values.host.name target.name

For example, to build the configuration for AIX on a Linux host:prototype ™

http://en.wikipedia.org/wiki/Microsoft_Windows_SDK
http://www.microsoft.com/express/download/#webInstall
http://ant.apache.org/
http://www.cygwin.com/

1.

2.

3.

% cd $RVM_ROOT
% ant -Dconfig.name=prototype -Dhost.name=ia32-linux -Dtarget.name=ppc32-aix cross-compile-host

The build process is then completed by building just the boot loader on an AIX host:

% cd $RVM_ROOT
% ant -Dconfig.name=prototype -Dhost.name=ppc32-aix cross-compile-target

After the script has completed successfully, you should be able to run Jikes RVM.

The building of the boot loader must occur in the same directory as the rest of the build. This can either be done transparently via a network file
system, or by copying the build directory from the first host to the target.

Dependencies

To compile the boot image on the host system you will also need to have built any dependencies on the target machine and then copied them to
the host machine. You will also need to add an appropriate line into your file such as the following (if the${components.dir}components.properties
target system was pppc32-linux).

ppc32-linux.classpath.lib.dir=path/to/components/classpath/95/ppc32-linux/lib

Note

It may be possible to simply build the dependencies on the host machine, modify the ${components.dir}/components.properties
so that the dependency property for target machine maps to the same value as the dependency property on the host machine.
This works at the current time but may fail in the future if classpath changes the API between platforms. i.e.

ppc32-linux.classpath.lib.dir=path/to/components/classpath/95/ia32-linux/lib

Primordial Class List

The primordial class list indicates which classes should be compiled and baked into the boot image. The bare minimum set of classes needed in
the primordial list includes;

All classes that are needed to load a class from the file system. The class may need to be loaded as a single class file or out of a jar.
Failing this there will be an infinite regress on the first class load.
All classes that are needed by the baseline compiler to compile any method. Failing this we regress when attempting to compile a method
so we can execute it.
Enough of the core VM services and data structures, and class library (java.*) to support the above. This includes threading, memory
management, runtime support for compiled code, etc.

For increased performance and decreased startup time it is possible to include extra classes that are expected to be needed. i.e. the optimizing
compiler or the adaptive system. There are some pieces of these components that would be awkward to load dynamically (there's a core subset
of the opt compiler, the classes in the org.jikesrvm.compilers.opt.runtimesupport packages, the must be loaded and fully compiled before any
opt-compiled code can be allowed to executed), but it's theoretically possible to do so.

If you took a full closure of the classes referenced by things that have to be in the bootimage you'd actually end up with a lot more in the
bootimage than we currently have. The culprit here would I think mainly be java.* classes that we need in the bootimage, but only use in restricted
ways, so we don't actually have to drag in everything they depend on to meet the "real" constraints of what has to go in the bootimage. It is
unknown how much difference there is between hand-crafted include lists and what an automated tool would discover.

Using buildit

Overview

The buildit script is a handy way to build and test the system. It has countless features and options to make building and testing really easy,
particularly in a multi-machine environment, where you edit on one machine and build and test on others. If you really want to get the most of it,
take a look at all the options by running:

bin/buildit -h

...or read the script itself.

Examples

Here we just provide a hand full of examples of how it is often used, first for and secondly for (which includes building). Pleasebuilding testing
add to the list if you have other really useful ways of using it. In the examples below, we'll use three hypothetical hosts: (your desktop),habanero

 (a remote x86 machine) and (a remote PowerPC machine).jalapeno chipotle

Building

To build a production image on your desktop, , do the following: habanero

bin/buildit habanero production

Or :equivalently

bin/buildit localhost production

To build a production image on the remote machine , do the following: jalapeno

bin/buildit jalapeno production

Cross Platform Building

To build a production image on the remote PowerPC machine , do the following: chipotle

bin/buildit chipotle production

Since building on a PowerPC machine can take a long time, you might prefer to build on your x86 machine and cross-build to . jalapeno chipotle
In that case you would just do the following:

bin/buildit jalapeno -c chipotle production

In each case, buildit figures out the host types by interrogating them and does the right thing (forcing a PPC build on the x86 host jalapeno since
you've told it you want a build for chipotle, which it knows is PPC). Buildit caches the host information, and will prompt you the first time it
encounters a new host.

Full Build Specification

If you want to specify the build fully, you can do something like this:

bin/buildit jalapeno FastAdaptive MarkSweep

If you want to specify multiple different GCs you could do:

bin/buildit jalapeno FastAdaptive MarkSweep SemiSpace GenMS

which would build all three configurations on jalapeno.

Profiled Builds

Jikes RVM has the capacity to profile the boot image and then re-build an optimized boot image based on the profiles. This process takes a little
longer, but results in measurably faster builds, and so should be used when doing performance testing. Buildit lets you do this trivially:

bin/buildit jalapeno --profile production

Testing

Jikes RVM currently has a notion of a " ", which defines a complete test scenario, including tests and builds. An example is ,test-run pre-commit
which runs a small suite of pre-commit tests. It also has the notion of a " ", which just specifies a particular set of tests, not the full scenario. test
An example is , which just runs the test suite (see the testing/tests directory for the available tests).dacapo DaCapo

Running a test-run

To run the pre-commit test-run on your host jalapeno just do:

bin/buildit jalapeno --test-run pre-commit jalapeno

Running a test

To run the dacapo tests against a production on the host jalapeno, do:

bin/buildit jalapeno -t dacapo production

http://dacapo-bench.org

To run the dacapo tests against a FastAdaptive MarkSweep build, on the host jalapeno, do:

bin/buildit jalapeno -t dacapo FastAdaptive MarkSweep

To run the dacapo and SPECjvm98 tests against production on the host jalapeno, do:

bin/buildit jalapeno -t dacapo -t SPECjvm98 production

Configuring the RVM

The build process requires a number of build time parameters that specify the features and components for a Jikes RVM build. Typically the build
parameters are defined within a property file located in the directory. The following table defines the parameters for the buildbuild/configs
configuration.

Property Description Default

config.name A unique name that identifies the set of build parameters. None

config.bootimage.compiler Parameter selects the compiler used when creating the bootimage. Must be either or .opt base base

config.bootimage.compiler.args Parameter specifies any extra args that are passed to the bootimage compiler. ""

config.runtime.compiler Parameter selects the compiler used at runtime. Must be either or .opt base base

config.include.aos Include the adaptive system if set to true. Parameter will be ignored if config.runtime.compiler
is not .opt

false

config.assertions Parameter specifies the level of assertions in the code base. Must be one of , extreme normal
or .none

normal

config.include.all-classes Include all the Jikes RVM classes in the bootimage if set to true. false

config.default-heapsize.initial Parameter specifying the default initial heap size in MB. 20

config.default-heapsize.maximum Parameter specifying the default maximum heap size in MB. 100

config.include.gcspy Set to true to build RVM with GCSpy support. See for more details.Using GCSpy false

config.include.gcspy-client Set to true to bundle the GCSpy client with the Jikes RVM build. Parameter will be ignored if
config.include.gcspy is not .true

false

config.include.gcspy-stub Set to true to use the GCSpy stub rather than the real GCSpy component. Parameter will be
ignored if config.include.gcspy is not .true

false

config.stress-gc-interval The build will stress test the gc subsytem if set to a positive value. The value indicates the
number of allocations between collections

0

config.mmtk.plan The name of the GC plan to use for the build. See for more details.MMTk None

Jikes RVM Configurations

A typical user will use one of the existing build configurations and thus the build system only requires that the user specify the config.name
property. The name should match one of the files located in the build/configs/ directory minus the ' ' extension..properties

Logical Configurations

There are many possible Jikes RVM configurations. Therefore, we define four "logical" configurations that are most suitable for casual or novice

http://jikesrvm.hg.sourceforge.net/hgweb/jikesrvm/jikesrvm/file/tip/build/configs/

1.
2.
3.

users of the system. The four configurations are:

prototype: A simple, fast to build, but low performance configuration of Jikes RVM. This configuration does not include the optimizing
compiler or adaptive system. Most useful for rapid prototyping of the core virtual machine.
prototype-opt: A simple, fast to build, but low performance configuration of Jikes RVM. Unlike prototype, this configuration does include
the optimizing compiler and adaptive system. Most useful for rapid prototyping of the core virtual machine, adaptive system, and
optimizing compiler.
development: A fully functional configuration of Jikes RVM with reasonable performance that includes the adaptive system and
optimizing compiler. This configuration takes longer to build than the two prototype configurations.
production: The same as the development configuration, except all assertions are disabled. This is the highest performance
configuration of Jikes RVM and is the one to use for benchmarking and performance analysis. Build times are similar to the development
configuration.

The mapping of logical to actual configurations may vary from release to release. In particular, it is expected that the choice of garbage collector
for these logical configurations may be different as MMTk evolves.

Configurations in Depth

Most standard Jikes RVM configuration files loosely follow the following naming scheme:

<boot image compiler> " " "Base | Adaptive <garbage collector>
where

the is the compiler used to compile Jikes RVM's boot image.<boot image compiler>
" " "Base | Adaptive denotes whether or not the adaptive system and optimizing compiler are included in the build.

the is the garbage collection scheme used.garbage collector

The following garbage collection suffixes are available:

"NoGC" no garbage collection is performed.
"SemiSpace" a copying semi-space collector.
"MarkSweep" a mark-and-sweep (non copying) collector
"GenCopy" a classic copying generational collector with a copying higher generation
"GenMS" a copying generational collector with a non-copying mark-and-sweep mature space
"CopyMS" a hybrid non-generational collector with a copying space (into which all allocation goes), and a non-copying space into which
survivors go.
"RefCount" a reference counting collector with synchronous (non-concurrent) cycle collection

For example, to specify a Jikes RVM configuration:

with a baseline-compiled boot image,
that will compile classes loaded at runtime using the baseline compiler and
that uses a non-generational semi-space copying garbage collector,

use the name ." "BaseBaseSemiSpace

Some files augment the standard configurations as follows:

The word at the beginning of the configuration name identifies a configuration such that all the Jikes RVM classes are included in" "Full
the boot image. (By default only a small subset of these classes are included in the boot image.)
" "FullAdaptive images have all of the included classes already compiled by the optimizing compiler.
" "FullBaseAdaptive images have the included classes already compiled by the baseline compiler; the adaptive system will later
recompile any hot methods.
The word at the beginning of the configuration name identifies a configuration where all assertion checking has been" "Fast " "Full
turned off. Note: and boot images run faster but take longer to build." "Full " "Fast
Prefixing the configuration with indicate that the configuration parameter is set to " "ExtremeAssertions config.assertions

. This turns on a number of expensive assertions.extreme

In configurations that include the adaptive system (denoted by in their name), methods are initially compiled by one compiler (by" "Adaptive
default the baseline compiler) and then online profiling is used to automatically select hot methods for recompilation by the optimizing compiler at
an appropriate optimization level.

For example, to a build for an adaptive configuration, where the optimizing compiler is used to compile the boot image and the semi-space
garbage collector is used, use the following command:

% ant -Dconfig.name=OptAdaptiveSemiSpace

Debugging the RVM

There are different tools for debugging Jikes RVM:

GDB

There is a limited amount of C code used to start Jikes RVM. The rvm script will start Jikes RVM using GDB (the GNU debugger) if the first
argument is . Break points can be set in the C code, variables, registers can be expected in the C code.-gdb

rvm -gdb <RVM args> <name of Java application> <application args>

The dynamically created Java code doesn't provide GDB with the necessary symbol information for debugging. As some of the Java code is
created in the boot image, it is possible to find the location of some Java methods and to break upon them. To determine the location use the
RVM.map file. A script to enable use of the RVM.map as debugger information inside GDB is provided .here

Details of how to manually walk the stack in GDB can be found here

Other Tools

Other tools, such as valgrind, are occasionally useful in debugging or understanding the behaviour of JikesRVM. The rvm script facilitates using
these tools with the '-wrap' argument.

rvm -wrap "<wrapper-script-and-args>" <rest of command line>

For example, cachegrind can be invoked by

rvm -wrap "/path/to/valgrind --tool=cachegrind" <java-command-line>

The command and arguments immediately after the -wrap argument will be inserted into the script on the command line that invokes the boot
image runner. One useful variant is

rvm -wrap echo <rest of command line>

Debugger Thread

Jikes has an interactive debugger that you can invoke by sending SIGQUIT to Jikes while it's running:

pkill -SIGQUIT JikesRVM

In previous versions of Jikes, that stopped all threads and provided an interactive prompt, but currently it just dumps the state of the VM and
continues immediately (that's a known issue:).http://jira.codehaus.org/browse/RVM-570

 Java Platform Debugger Architecture (JPDA)

In general the JPDA provides 3 mechanisms for debugging Java applications:

The is an API for debugging Java code from Java.Java Debug Interface
The is an API for writing native/C code for debugging a JVM, it is similar to the Java Native Interface (JNI).JVM Tools Interface
The is a network protocol for debugging Java code running on JVMs.Java Debug Wire Protocol

Currently JDWP code is being implemented in Jikes RVM based on the GNU Classpath implementation.

GDB Stack Walking

Sometimes it is desirable to examine the state of the Java stack whilst using GDB to step instructions, break on addresses or watch particular
variables. These instructions are based on an email sent by Martin Hirzel to the rvm-devel list around 15th September 2003. The instructions have
been updated by Laurence Hellyer to deal with native threading and renamed RVM classes.

1) To learn about the stack frame layout on IA32, look at rvm/src/org/jikesrvm/ia32/StackframeLayoutConstants.java

http://sourceforge.net/tracker/index.php?func=detail&aid=1160674&group_id=128805&atid=723235
http://jira.codehaus.org/browse/RVM-570
http://java.sun.com/j2se/1.5.0/docs/guide/jpda/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/jpda/jdi/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/jvmti.html
http://java.sun.com/j2se/1.5.0/docs/guide/jpda/jdwp-spec.html

Currently (2009/10/23) the layout is:
+4: return address
fp -> 0: caller's fp
-4: method id
(remember stack grows from high to low)

2) To learn how to get the current frame pointer and other context information, look at the genPrologue() method in
rvm/src/org/jikesrvm/compilers/baseline/ia32/BaselineCompilerImpl.java. It first retrieves the thread register (esi on IA32), which points to an
instance of RVMThread, and then retrieve fields from that instance.

3) To find the offset of field RVMThread.framePointer, add the following lines to the end of BootImageWriter.main(String[]):

// added to get framePointer offset from RVMThread to manually walk stacks in GDB
 say("offset of RVMThread.framePointer== " + ArchEntrypoints.framePointerField.getOffset());

Do a build to print this info. On my config I got +148, but this can change between versions

4) To get started, let's examine an example stack that contains methods whose code is in the boot image. We pick one that is likely to be invoked
even in a simple hello-world program. In my RVM.map, 0x351eae9c is the address of
org.jikesrvm.mm.mmtk.ReferenceProcessor.growReferenceTable();

5) Setting a break point on this address

(gdb) break *0x351eae9c
Breakpoint 2 at 0x351eae9c

And run the program to the break point

Breakpoint 2, 0x351eae9c in ?? ()

Step some instructions into the method and then dump the registers

(gdb) stepi 30
0x351eaf03 in ?? ()
(gdb) info registers
eax 0x200 512
ecx 0x0 0
edx 0x0 0
ebx 0x7431 29745
esp 0x420e1934 0x420e1934
ebp 0xb0206ed0 0xb0206ed0
esi 0x4100758c 1090549132
edi 0x19c54 105556
eip 0x351eaf03 0x351eaf03
eflags 0x202 514
cs 0x17 23
ss 0x1f 31
ds 0x1f 31
es 0x1f 31
fs 0x1f 31
gs 0x37 55

The current FP is stored in RVMThread.framePointer which we found out in 3) is at offset +148. ESI points to the current RVMThread object so
we can access the FP value like so:

(gdb) x ($esi+148)
0x41007620: 0x420e1954

Note that the FP is at a higher address than ESP which is what we would expect

The return address is at FP+4 so to get the return address we can do:

(gdb) x (*($esi+148))+4
0x420e1958: 0x351eadde

We can look in RVM.map for the largest method address smaller than 0x351eadde which is
org.jikesrvm.mm.mmtk.ReferenceProcessor.addCandidate(java.lang.ref.Reference, org.vmmagic.unboxed.ObjectReference). Examining
ReferenceProcessor.java we find that this is the only method that calls growReferenceTable so this is correct

Get the return address from the next frame

(gdb) x *(*($esi+148))+4
0x420e1980: 0x352ebd1e

Which corresponds to org.jikesrvm.mm.mmtk.ReferenceProcessor.addSoftCandidate(java.lang.ref.SoftReference,
org.vmmagic.unboxed.ObjectReference) which is a caller of addCandidate.

We can follow the stack back up to the top where we will read a FP of 0 (look in rvm/src/org/jikesrvm/ia32/StackframeLayoutConstants.java for
details)

Experimental Guidelines

This section provides some tips on collecting performance numbers with Jikes RVM.

Which boot image should I use?

To make a long story short the best performing configuration of Jikes RVM will almost always be . Unless you really know what youproduction
are doing, don't use any other configuration to do a performance evaluation of Jikes RVM.

Any boot image you use for performance evaluation must have the following characteristics for the results to be meaningful:

config.assertions=none. Unless this is set, the runtime system and optimizing compiler will perform fairly extensive assertion checking.
This introduces significant runtime overhead. By convention, a configuration with the Fast prefix disables assertion checking.
config.bootimage.compiler=opt. Unless this is set, the boot image will be compiled with the baseline compiler and virtual machine
performance will be abysmal. Jikes RVM has been designed under the assumption that aggressive inlining and optimization will be
applied to the VM source code.

What command-line arguments should I use?

For best performance we recommend the following:

-X:processors=all: By default, Jikes™ RVM uses only one processor for garbage collection. Setting this option tells the garbage
collection system to utilize all available processors.
Set the heap size generously. We typically set the heap size to at least half the physical memory on a machine.

 Compiler Replay

The compiler-replay methodology is deterministic and eliminates memory allocation and mutator variations due to non-deterministic application of
the adaptive compiler. We need this latter methodology because the non-determinism of the adaptive compilation system makes it a difficult
platform for detailed performance studies. For example, we cannot determine if a variation is due to the system change being studied or just a
different application of the adaptive compiler. The information we record and use are hot methods and blocks information. We also record
dynamic call graph with calling frequency on each edge for inlining decisions.

Note that in December 2011, compiler replay was significantly improved. The notes below apply to the post December 2011 version of replay.

Here is how to use it:

1.

2.

3.

Generate advice.

There are three kinds of advice used by the replay system, each is workload-specific (ie you should generate advice files for each benchmark):

Compilation advice (.ca file). This advice records for every compiled method which compiler (base or opt) and if opt, at which
optimization level it should be compiled. Replay compilation will not work without a compilation advice file.
Edge counts (.ec file). This advice captures edge counts generated by the execution of baseline-compiled code. Edge counts are used
by the compiler to understand which edges in the control flow graph are hot. At the time of writing, edge counts were measured as
contributing about 2% to the bottom line in terms of performance (average of DaCapo, jvm98 and jbb)
Dynamic callgraph (.dc file). This advice captures the dynamic call graph, which allows the compiler to understand the frequency with
which particular call chains occur. This is particularly useful in guiding inlining decisions. At the time of writing the call graph contributes
about 8% to the bottom line in terms of performance.

One way to gather advice is to execute the benchmark multiple times under controlled settings, producing profiles at each execution. Then
establish the fastest execution among the set of runs, and choose the profiles associated with that execution as the advice files. A common
methodology is to invoke each benchmark 20 times (ie take the best invocation from a set of 20 trials), and in each invocation, run 10 iterations of
the benchmark (ie the advice will then capture the warmed-up, steady state of the benchmark).

When generating the advice, you will need to use the following command line arguments (typically use all six arguments, so that all three advice
files are generated at each invocation):

For adaptive compilation profile

-X: -X:aos:enable_advice_generation=true aos:cafo=my_compiler_advice_file.ca

For edge count profile

-X: -X:base:profile_edge_counters=true base:profile_edge_counter_file=my_edge_counter_file.ec

For dynamic call graph profile

-X: -X:aos:dcfo=my_dynamic_call_graph_file.dc aos:final_report_level=2

Executing with advice.

The basic model is simple. At a nominated time in the execution of a program, all methods specified in the .ca advice file will be (re)compiled with
the compiler and optimization level nominated in the advice file. Broadly, there are two ways of initiating bulk compilation: a) by calling the
method during execution, and b) by using the org.jikesrvm.adaptive.recompilation.BulkCompile.compileAllMethods()

 flag at the command line to trigger bulk compilation at boot time. A standard methodology is to use a-X:aos:enable_precompile=true
benchmark harness call back mechanism to call at the end of the first iteration of the benchmark. At the time ofcompileAllMethods()
writing this gave performance roughly 2% faster than the 10th iteration of regular adaptive compilation. Because precompilation occurs early, the
compiler has less information about the classes, and in consequence the performance of precompilation is about 9% slower than the 10th
iteration of adaptive compilation.

For 'warmup' replay (where is called at theorg.jikesrvm.adaptive.recompilation.BulkCompile.compileAllMethods()
end of the first iteration):

-X: -X: -X: -X: -X:aos:initial_compiler=base aos:enable_bulk_compile=true aos:enable_recompilation=false aos:cafi=benchmark.ca
 -X:vm:edgeCounterFile=benchmark.ec aos:dcfi=benchmark.dc

For precompile replay (where bulk compilation occurs at boot time):

-X: -X: -X: -X: -X:aos:initial_compiler=base aos:enable_precompile=true aos:enable_recompilation=false aos:cafi=benchmark.ca
 -X:vm:edgeCounterFile=benchmark.ec aos:dcfi=benchmark.dc

Verbosity.

You can alter the verbosity of the replay behavior with the flag , which by default (0) is silent, but will-X:aos:bulk_compilation_verbosity
produce more information about the recompilation with values of 1 or 2.

Measuring GC performance

 MMTk includes a statistics subsystem and a harness mechanism for measuring its performance. If you are using the DaCapo benchmarks, the
MMTk harness can be invoked using the '-c MMTkCallback' command line option, but for other benchmarks you will need to invoke the harness
by calling the static methods

http://aosenable_advice_generation=true
http://aoscafo=my_compiler_advice_file
http://baseprofile_edge_counters=true
http://baseprofile_edge_counter_file=my_edge_counter_file
http://aosdcfo=my_dynamic_call_graph_file
http://aosfinal_report_level=2
http://aosinitial_compiler=base
http://aosenable_bulk_compile=true
http://aosenable_recompilation=false
http://aosinitial_compiler=base
http://aosenable_precompile=true
http://aosenable_recompilation=false
http://aosenable_precompile=true

1.
2.

3.

4.

org.mmtk.plan.Plan.harnessBegin()
org.mmtk.plan.Plan.harnessEnd()

at the appropriate places. Other command line switches that affect the collection of statistics are

Option Description

-X:gc:printPhaseStats=true Print statistics for each mutator/gc phase during the run

-X:gc:xmlStats=true Print statistics in an XML format (as opposed to human-readable format)

-X:gc:verbose This is incompatible with MMTk's statistics system.

-X:gc:variableSizeHeap=false Disable dynamic resizing of the heap

Unless you are specifically researching flexible heap sizes, it is best to run benchmarks in a fixed size heap, using a range of heap sizes to
produce a curve that reflects the space-time tradeoff. Using replay compilation and measuring the second iteration of a benchmark is a good way
to produce results with low noise.

There is an active debate among memory management and VM researchers about how best to measure performance, and this section is not
meant to dictate or advocate any particular position, simply to describe one particular methodology.

Jikes RVM is really slow! What am I doing wrong?

Perhaps you are not seeing stellar Jikes™ RVM performance. If Jikes RVM as described above is not competitive product JVMs, we recommend
you test your installation with the DaCapo benchmarks. We expect Jikes RVM performance to be very close to Sun's HotSpot 1.5 server running
the DaCapo benchmarks (see our page for the daily data). Of course, running DaCapo well does notNighlty DaCapo performance comparisions
guarantee that Jikes RVM runs all codes well.

Some kinds of code will not run fast on Jikes RVM. Known issues include:

Jikes RVM start-up may be slow compared to the some product JVMs.
Remember that the non-adaptive configurations (-X:aos:enable_recompilation=false -X:aos:initial_compiler=opt) opt-compile every
method the first time it executes. With aggressive optimization levels, opt-compiling will severely slow down the first execution of each
method. For many benchmarks, it is possible to test the quality of generated code by either running for several iterations and ignoring the
first, or by building a warm-up period into the code. The SPEC benchmarks already use these strategies. The adaptive configuration does
not have this problem; however, we cannot stipulate that the adaptive system will compete with the product on short-running codes of a
few seconds.
Performance on tight loops may suffer. The Jikes RVM mechanism for safe points (thread preemption for garbage collection,
on-stack-replacement, profiling, etc) relies on the insertion of a yield test on every back edge. This will hurt tight loops, including many
simple microbenchmarks. We should someday alleviate this problem by strip-mining and hoisting the yield point out of hot loops, or
implementing a safe point mechanism that does not require an explicit check.
The load balancing in the system is naive and unfair. This can hurt some styles of codes, including bulk-synchronous parallel programs.

The Jikes RVM developers wish to ensure that Jikes RVM delivers competitive performance. If you can isolate reproducible performance
problems, please let us know.

Get The Source

The source code for the Jikes RVM is stored in a repository. You can browse the online mercurial repository at Mercurial
.http://jikesrvm.hg.sourceforge.net/hgweb/jikesrvm/jikesrvm/

A developer can either work with the version control system or download one of the releases. If you are interested in doing development of Jikes
RVM you should probably use Mercurial instead of downloading a release.

Download a Release

Major and minor releases of Jikes RVM occur at regular intervals. These releases are archived in the area in either tar-gzipfile download
(jikesrvm-<version>.tar.gz) or tar-bzip2 (jikesrvm-<version>.tar.bz2) format. Use your web browser to download the latest version of Jikes RVM
then to extract the tar-gzip archive type:

$ tar xvzf jikesrvm-<version>.tar.gz

or for the tar-bzip2 archive type:

http://jikesrvm.anu.edu.au/~dacapo/release/index.php
http://mercurial.selenic.com/
http://jikesrvm.hg.sourceforge.net/hgweb/jikesrvm/jikesrvm/
http://sourceforge.net/projects/jikesrvm/files/

$ tar xvjf jikesrvm-<version>.tar.bz2

Use Mercurial

The source code for Jikes RVM is stored in a repository. Mercurial and other distributed revision control systems are quite different fromMercurial
centralized version control systems like CVS and Subversion. If you are not familiar with Mercurial, you can find instructions on Mercurial use at

. There is also a .http://mercurial.selenic.com/guide/ Mercurial Book

After installing Mercurial the current version of source can be downloaded via:

$ hg clone http://jikesrvm.hg.sourceforge.net:8000/hgroot/jikesrvm/jikesrvm

This will clone the Jikes RVM repository into the newly created directory jikesrvm.

If you need a specific version, it is recommended to clone the complete repository nonetheless. You can then switch to a specific release, e.g.
2.4.6, by doing the following:

$ cd jikesrvm
$ hg checkout 2.4.6

If you are a not core developer you will not be able to push changes to the main Jikes RVM repository directly. If you want to contribute to the
Jikes RVM, please take a look at .this page

Modifying the RVM

The following sections give a rough overview on existing coding conventions.

Coding Style
Coding Conventions

Warning

Jikes RVM is a bleeding-edge research project. You will find that some of the code does not live up to product quality
standards. Don't hesitate to help rectify this by contributing clean-ups, bug fixes, and missing documentation to the
project. We are in the process of consolidating and simplifying the codebase at the moment.

One goal of the JikesRVM project over recent years has been the ability to develop JikesRVM in a development environment such as Eclipse.
This has been possible for the MMTk component since 2005, and as of early 2007 (release 2.9.0) it is possible to work with the majority of the
JikesRVM codebase in Eclipse and similar environments. This is not yet as straightforward as we would like, and can be expected to improve
with time.

Editing JikesRVM in an IDE
Compiler DNA
Adding a New GC

Adding a New GC

Overview

This document describes how to add a new garbage collector to Jikes RVM. We don't address how to design a new GC algorithm, just how to
add a "new" GC to the system and then build it. We do this by cloning an existing GC. We leave it to you to design your own GC!

Prerequisites

Ensure that you have got a clean copy of the (either a recent release or the hg tip) and can correctly and successfully build one of thesource
base garbage collectors. There's little point in trying to build your own until you can reliably build an existing one. I suggest you start with
MarkSweep, and that you use the script:buildit

$ bin/buildit <targetmachine> BaseBase MarkSweep

 Then test your GC:

http://mercurial.selenic.com/
http://mercurial.selenic.com/guide/
http://hgbook.red-bean.com
http://jikesrvm.hg.sourceforge.net:8000/hgroot/jikesrvm/jikesrvm

1.

a.
b.
c.
d.

a.
b.

2.
a.
b.
c.

3.

1.
2.
3.

4.

$ bin/buildit <targetmachine> -t gctest BaseBase MarkSweep

 You should have seen some output like this:

test:
 [echo] Test Result for [BaseBaseMarkSweep|gctest] InlineAllocation (default) : SUCCESS
 [echo] Test Result for [BaseBaseMarkSweep|gctest] ReferenceTest (default) : SUCCESS
 [echo] Test Result for [BaseBaseMarkSweep|gctest] ReferenceStress (default) : SUCCESS
 [echo] Test Result for [BaseBaseMarkSweep|gctest] FixedLive (default) : SUCCESS
 [echo] Test Result for [BaseBaseMarkSweep|gctest] LargeAlloc (default) : SUCCESS
 [echo] Test Result for [BaseBaseMarkSweep|gctest] Exhaust (default) : SUCCESS

If this is not working, you should probably go and (re) read the on how to build and run the VM.section in the user guide

Cloning the MarkSweep GC

 The best way to do this is in eclipse or a similar tool (see for how to work with eclipse):here

Clone the as org.mmtk.plan.marksweep org.mmtk.plan.mygc
You can do this with :Eclipse

Navigagte to (within)org.mmtk.plan.marksweep MMTk/src
Right click over and select "Copy"org.mmtk.plan.marksweep
Right click again, and select "Paste", and name the target (or whatever you like)org.mmtk.plan.mygc
This will have cloned the marksweep GC in a new package called org.mmtk.plan.mygc

or :by hand
Copy the directory to MMTk/org/mmtk/plan/marksweep MMTk/org/mmtk/plan/mygc
Edit each file within and change its package declaration to MMTk/org/mmtk/plan/mygc org.mmtk.plan.mygc

We can leave the GC called "MS" for now (the file names will all be MMTk/org/mmtk/plan/mygc/MS*.java)
Clone the BaseBaseMarkSweep.properties file as :BaseBaseMyGC.properties

Go to , and right click over , and select "Copy"build/configs BaseBaseMarkSweep.properties
Right click and select "Paste", and paste as BaseBaseMyGC.properties
Edit BaseBaseMyGC.properties, changing the text: " " to "config.mmtk.plan=org.mmtk.plan.marksweep.MS

"config.mmtk.plan=org.mmtk.plan.mygc.MS
Now test your new GC:

$ bin/buildit <targetmachine> -t gctest BaseBase MyGC

You should have got similar output to your test of MarkSweep above.

That's it. You're done.

Making it Prettier

You may have noticed that when you cloned the package , all the classes retained their old names (although in yourorg.mmtk.plan.marksweep
new namespace;). You can trivially change the class names in an IDE like eclipse. You can do the same with your favoriteorg.mmtk.plan.mygc
text editor, but you'll need to be sure that you change the references carefully. To change the class names in eclipse, just follow the procedure
below for each class in :org.mmtk.plan.mygc

Navigate to the class you want changed (eg org.mmtk.plan.mygc.MS)
Right click on the class (MS) and select and then type in your new name, (eg)"Refactor->Rename..." MyGC
Do the same for each of the other classes:#* #* MS -> MyGC MSCollector -> MyGCCollector

MSConstraints -> MyGCConstraints
MSMutator -> MyGCMutator
MSTraceLocal -> MyGCTraceLocal

Edit your configuration/s to ensure they refer to the renamed classes (since your IDE is unlikely to have done this automatically for you)
Go to , and edit each file to refer to your renamed classesbuild/configs *MyGC.properties

Beyond BaseBaseMyGC

You probably want to build with configurations other than just BaseBase. If so, clone configurations from MarkSweep, just as you did above (for
example, clone as).FastAdaptiveMarkSweep FastAdaptiveMyGC

What Next?

Once you have this working, you have successfully created and tested your own GC without writing a line of code!! You are ready to start the
slightly more tricky process of writing your own garbage collector code.

If you are writing a new GC, you should definitely be aware of the MMTk , which allows you to test and debug MMTk in a very welltest harness
contained pure Java environment, without the rest of Jikes RVM. This allows you to write unit tests and corner cases, and moreover, allows you
to edit and debug MMTk entirely from within your IDE

Coding Conventions

Assertions

Partly for historical reasons, we use our own built-in assertion facility rather than the one that appeared in Sun®'s JDK 1.4. All assertion checks
have one of the two forms:

if (VM.VerifyAssertions) VM._assert(condition)
 if (VM.VerifyAssertions) VM._assert(condition, message)

VM.VerifyAssertions is a field. The configuration variable determines public static final config.assertions
' value. If is set to , Jikes RVM has no assertion overhead.VM.VerifyAssertions config.assertions none

If you use the form without a , then the default message " " will appear.message vm internal error at:

If you use the form with a the message be a single string literal. Doing string appends in assertions can be a source of horriblemessage must
performance problems when assertions are enabled (i.e. most development builds). If you want to provide a more detailed error message when
the assertion fails, then you must use the following coding pattern:

if (VM.VerifyAssertions && condition) VM._assert(false, message);

An assertion failure is always followed by a stack dump.

Coding Style

Regrettably, some code in the current system does not follow any consistent coding style. This is an unfortunate residuum of the system's
evolution. To alleviate this problem, we present this style guide for new Java™ code; it's just a small tweak of Sun®'s style guide. We also use
checkstyle to support a gradually expanding subset of these conventions. The current set of enforced checkstyle rules are defined by
$RVM_ROOT/build/checkstyle/rvm-checks.xml and are verified as part of the pre-commit test run.

File Headers

Every file needs to have the license header.

A Java example of the notices follows.

/*
* This file is part of the Jikes RVM project (http://jikesrvm.org).
*
* This file is licensed to You under the Common Public License (CPL);
* You may not use this file except in compliance with the License. You
* may obtain a copy of the License at
*
* http://www.opensource.org/licenses/cpl1.0.php
*
* See the COPYRIGHT.txt file distributed with this work for information
* regarding copyright ownership.
*/
package org.jikesrvm;

import org.jikesrvm.classloader.ClassLoader; // FILL ME IN

/**
* TODO Substitute a brief description of what this program or library does.
*/

Coding style description

The Jikes™ RVM coding style guidelines are defined with reference to the Sun® Microsystems "Code Conventions for the Java™ Programming

1.

2.

3.

4.

1.
2.

3.

1.

2.
3.

4.
5.
6.
7.

8.

9.

10.

1.

Language", with a few exceptions listed below. Most of the style guide is intuitive; however, please read through the document (or at least look at
its sample code).

We have adopted four modifications to the Sun code conventions:

Two-space indenting The Sun coding convention suggests 4 space indenting; however with 80-column lines and four-space indenting,
there is very little room left for code. Thus, we recommend using 2 space indenting. There are to be no tabs in the source files or trailing
white space on any line.
132 column lines in exceptional cases The Sun coding convention is that lines be no longer than 80 columns. Several Jikes RVM
contributors have found this constraining. Therefore, we allow 132 column lines for exceptional cases, such as to avoid bad line breaks.
if (VM.VerifyAssertions) As a special case, the condition is usually immediately followed by theif (VM.VerifyAssertions)
call to , with a single space substituting for the normal newline-and-indentation. There's an example elsewhere in thisVM._assert()
document.
Capitalized fields Under the Sun coding conventions, and as specified in , the namesThe Java Language Specification, Second Edition
of fields begin with a lowercase letter. (The only exception they give is for some constants, which have namesfinal static
ALL_IN_CAPITAL_LETTERS, with underscores separating them.) That convention reserves
IdentifiersBeginningWithACapitalLetterFollowedByMixedCase for the names of classes and interfaces. However, most of the final
fields in the class and the interface also are in that format. Since the class inherits fields from both Configuration Properties VM

 and , that's how we get , etc.Properties Configuration VM.VerifyAssertions

Javadoc requirements

All files should contain descriptive comments in ™ form so that documentation can be generated automatically. Of course, additionalJavadoc
non-Javadoc source code comments should appear as appropriate.

All classes and methods should have a block comment describing them
All methods contain a short description of their arguments (using), the return value (using) and the exceptions they@param @return
may throw (using).@throws
Each class should include and references as appropriate.@see @link

Compiler DNA

The Jikes RVM adaptive system uses the compiler DNA found in org.jikesrvm.adaptive.recompilation.CompilerDNA. The important values in here
are the compilationRates and the speedupRates. If you modify Jikes RVM then it's likely you need to recalibrate the adaptive system for your
changes. The following are the steps you need to perform to do this:

run the compiler-dna test harness ("ant -f test.xml -Dtest-run.name=compiler-dna"). This will automatically compile and run Jikes RVM on
SPEC JVM '98. You will want to configure the ant property external.lib.dir to be a directory containing your SPEC JVM '98 directory. Your
SPEC JVM '98 directory must be named "SPECjvm98".
load the xml file "results/tests/compiler-dna/Report.xml" into either an XML viewer (such as a web browser) or into a text editor
find the section named , then look within this section for statistics and find the static . ForMeasure_Compilation_Base Base.bcb/ms
example, '<statistic key="Base.bcb/ms" value="1069.66"/>'. In the compilationRates array this will be the value of element 0, it
corresponds to how many bytecodes the baseline compiler can compile per millisecond.
find the section named and the statistic . This is element 1 in the compilationRates array.Measure_Compilation_Opt_0 Opt.bcb/ms
find the section named and the statistic . This is element 2 in the compilationRates array.Measure_Compilation_Opt_1 Opt.bcb/ms
find the section named and the statistic . This is element 3 in the compilationRates array.Measure_Compilation_Opt_2 Opt.bcb/ms
find the section named and the statistic named and record its value. For example, forMeasure_Performance_Base aggregate.best.score
'<statistic key="aggregate.best.score" value="28.90"/>' you would record 28.90.
find the section named and the statistic named . Divide this value by the value youMeasure_Performance_Opt_0 aggregate.best.score
recorded in step 7, this is the value for element 1 in the speedupRates array. For example, for '<statistic key="aggregate.best.score"
value="137.50"/>' the speedupRates array element 1 should have a value of 4.76.
find the section named and the statistic named . As with stage 8 divide this value byMeasure_Performance_Opt_1 aggregate.best.score
the value recorded in step 7, this is the value for element 2 in the speedupRates array.
find the section named and the statistic named . As with stage 8 divide this value byMeasure_Performance_Opt_2 aggregate.best.score
the value recorded in step 7, this is the value for element 3 in the speedupRates array.

You should then save CompilerDNA and recompile a production RVM which will use these values.

 If you are frequently changing the compiler dna, you may want to use the command line option -X:aos:dna=<file name> to dynamically load
compiler dna data without having to rebuild Jikes RVM.

Editing JikesRVM in an IDE

One goal of the JikesRVM project over recent years has been the ability to develop JikesRVM in a development environment such as Eclipse.
This has been possible for the MMTk component since 2005, and as of early 2007 (release 2.9.0) it is possible to work with the majority of the
JikesRVM codebase in Eclipse and similar environments. With Jikes RVM release 2.9.1, setting up your Eclipse environment to work with Jikes
RVM became even easier.

Editing JikesRVM in Eclipse

These instructions assume you are working with Jikes RVM version or later.2.9.1

http://java.sun.com/j2se/javadoc/index.html

1.

2.

a.
b.
c.

3.
a.
b.

c.

Create a JikesRVM source tree either via Mercurial checkout or untar-ing a distribution.
$ hg clone http://jikesrvm.hg.sourceforge.net:8000/hgroot/jikesrvm/jikesrvm

Create the machine-generated files and eclipse metadata:
If you have a of Jikes RVM ():recent version 3.0 onwards

$ cd jikesrvm
$ bin/buildit --eclipse localhost

, substitute localhost for the name of a host you can build on (builditNote that if you will not or cannot build on your local machine
will perform the build remotely and then copy the requisite files back).
If you are working on an (), you can follow this procedure:older version 2.9.1 - 2.9.3

$ cd jikesrvm
$ ant -Dhost.name=ia32-linux -Dconfig.name=development
$ ant -Dhost.name=ia32-linux -Dconfig.name=development eclipse-project

If you will not or cannot build on your local machine:
copy your tree to build build host somehow
perform the above ant tasks
copy the following generated files and directories back to the machine you will edit on:

jikesrvm/.project
jikesrvm/.classpath
jikesrvm/eclipse

Import the newly created Eclipse project into your Eclipse workspace.
From Eclipse, select File-->Import
Select "Existing Projects Into Workspace"

http://jikesrvm.hg.sourceforge.net:8000/hgroot/jikesrvm/jikesrvm

3.

c.
d.

e.

1.
2.
3.

a.
b.
c.
d.

1.
2.
3.

Browse to find the top-level directory.
Select the project (in this case JikesRVM ia32-linux development)

Hit Finish

Editing JikesRVM in NetBeans

Follow the instructions for Eclipse including building the eclipse project with ant
Install the Eclipse project importer
Select File- ->Eclipse Project>Import Project

Choose to import project ignoring project dependencies
Select the top-level directory you created with the JikesRVM in as the project to import
Select a new folder as the destination (workspace) for the import
Hit Finish

Profiling Applications with Jikes RVM

The Jikes RVM adaptive system can also be used as a tool for gathering profile data to find application/VM hotspots. In particular, the same
low-overhead time-based sampling mechanism that is used to drive recompilation decisions can also be used to produce an aggregate profile of
the execution of an application. Here's how.

Build an adaptive configuration of Jikes RVM. For the most accurate profile, use the production configuration.
Run the application normally, but with the additional command line argument -X:aos:gather_profile_data=true
When the application terminates, data on which methods and call graph edges were sampled during execution will be printed to stdout
(you may want to redirect execution to a file for analysis).

The sampled methods represent compiled versions of methods, so as methods are recompiled and old versions are replaced some of the
methods sampled earlier in the run may be OBSOLETE by the time the profile data is printed at the end of the run.

http://www.netbeans.org/kb/articles/import-eclipse.html
http://www.netbeans.org/kb/articles/eclipse-dependencies.html

1.

1.

1.

1.

In addition to the sampling-based mechanisms, the baseline compiler can inject code to gather branch probabilites on all executed conditional
branches. This profiling is enabled by default in adaptive configurations of Jikes RVM and can be enabled via the command line in non-adaptive
configurations (-X:base:edge_counters=true). In an adaptive configuration, use -X:aos:final_report_level=2 to cause the edge counter data to be
dumped to a file. In non-adaptive configurations, enabling edge counters implies that the file should be generated (-X:base:edge_counters=true is
sufficient). The default name of the file is EdgeCounters, which can be changed with -X:base:edge_counter_file=<file_name>. Note that the
profiling is only injected in baseline compiled code, so in a normal adaptive configuration, the gathered probabilities only represent a subset of
program execution (branches in opt-compiled code are not profiled). Note that unless the bootimage is (a) baseline compiled and (b) edge
counters were enabled at bootimage writing time, edge counter data will not be gathered for bootimage code.

Instrumented Event Counters

This section describes how the Jikes RVM optimizing compiler can be used to insert counters in the optimized code to count the frequency of
specific events. Infrastructure for counting events is in place that hides many of the implementation details of the counters, so that (hopefully)
adding new code to count events should be easy. All of the instrumentation phases described below require an adaptive boot image (any one
should work). The code regarding instrumentation lives in the package.org.jikesrvm.aos

To instrument all dynamically compiled code, use the following command line arguments to force all dynamically compiled methods to be
compiled by the optimizing compiler: -X:aos:enable_recompilation=false -X:aos:initial_compiler=opt

Existing Instrumentation Phases

There are several existing instrumentation phases that can be enabled by giving the adaptive optimization system command line arguments.
These counters are synchronized (as discussed later), so they should not be considered precise.not

Method Invocation Counters Inserts a counter in each opt compiled method prologue. Prints counters to stderr at end. Enabled by the
command line argument. .-X:aos:insert_method_counters_opt=true

Yieldpoint Counters Inserts a counter after each yieldpoint instruction. Maintains a separate counter for backedge and prologue
yieldpoints. Enabled by .-X:aos:insert_yieldpoint_counters=true

Instruction Counters Inserts a counters on each instruction. A separate count is maintained for each opcode, and results are dumped to
stderr at end of run. The results look something like:

Printing Instruction Counters:

109.0 call
0.0 int_ifcmp
30415.0 getfield
20039.0 getstatic
63.0 putfield
20013.0 putstatic
Total: 302933

This is useful for debugging or assessing the effectiveness of an optimization because you can see a dynamic execution count, rather
than relying on timing.

NOTE: Currently the counters are inserted at the end of HIR, so the counts capture the effect of HIR optimizations, and will capturewill not
optimization that occurs in LIR or later.

Debugging Counters This flag does not produce observable behavior by itself, but is designed to allow debugging counters to be
inserted easily in opt-compiler to help debugging of opt-compiler transformations. If you would like to know the dynamic frequency of a
particular event, simply turn on this flag, and you can easily count dynamic frequencies of events by calling the method

. This method returns an AOSDatabase.debuggingCounterData.getCounterInstructionForEvent(String eventName);
 that can be inserted into the code. The instruction will increment a counter associated with the String name "eventName",Instruction

and the counter will be printed at the end of execution.

For an example, see . Look for the code guarded by the flag . Enabled by Inliner.java COUNT_FAILED_METHOD_GUARDS
.-X:aos:insert_debugging_counters=true

Writing new instrumentation phases

This subsection describes the event counting infrastructure. It is not a step-by-step for writing new phases, but instead is a description of the main
ideas of the counter infrastructure. This description, in combination with the above examples, should be enough to allow new users to write new
instrumentation phases.

Counter Managers:

Counters are created and inserted into the code using the interface. The purpose of the counterInstrumentedEventCounterManager
manager interface is to abstract away the implementation details of the counters, making instrumentation phases simpler and allowing the counter

1.
2.
3.
4.
5.

implementation to be changed easily (new counter managers can be used without changing any of the instrumentation phases). Currently there
exists only one counter manager, , which implements unsynchronized counters. When instrumentation options areCounterArrayManager
turned on in the adaptive system, creates an instance of a .Instrumentation.boot() CounterArrayManager

Managed Data:

The class is used to keep track of counter data that is managed using a counter manager. This purpose of the dataManagedCounterData
object is to maintain the mapping between the counters themselves (which are indexed by number) and the events that they represent. For
example, is used record the fact that counter #1 maps to the event named "FooBar".StringEventCounterData
Depending on what you are counting, there may be one data object for the whole program (such as and YieldpointCounterData

), or one per method. There is also a generic data object called that allowsMethodInvocationCounterData StringEventCounterData
events to be give string names (see Debugging Counters above).

Instrumentation Phases:

The instrumentation itself is inserted by a compiler phase. (see , , InsertInstructionCounters.java InsertYieldpointCounters.java
). The instrumentation phase inserts high level "count event" instructions (which are obtained byInsertMethodInvocationCounter.java

asking the counter manager) into the code. It also updates the instrumented counter to remember which counters correspond to which events.

Lower Instrumentation Phase:

This phase converts the high level "count event" instruction into the actual counter code by using the counter manager. It currently occurs at the
end of LIR, so instrumentation can not be inserted using this mechanism after LIR. This phase does not need to be modified if you add a new
phase, except that the method needs to have your instrumentation listed, so this phase is run when your instrumentation isshouldPerform()
turned on.

Quick Start Guide

hg clone http://jikesrvm.hg.sourceforge.net:8000/hgroot/jikesrvm/jikesrvm
cd jikesrvm
echo "host.name=ia32-linux" > .ant.properties # Change this to match appropriate host
ant -Dconfig.name=prototype-opt # Change this to select appopriate configuration
./dist/prototype-opt_ia32-linux/rvm -version # Change dir to use selected host and configuration

Running the RVM

Jikes RVM executes Java virtual machine byte code instructions from files. It does compile Java source code. Therefore, you™ .class not ™
must compile all Java source files into bytecode using your favorite Java compiler.

For example, to run class with source code in file :foo foo.java

% javac foo.java
% rvm foo

The general syntax is

rvm [rvm options...] class [args...]

You may choose from a myriad of options for the command-line. Options fall into two categories: and . Non-standardrvm standard non-standard
options are preceded by " ".-X:

Standard Command-Line Options

We currently support a subset of the JDK 1.5 standard options. Below is a list of all options and their descriptions. Unless otherwise noted each
option is supported in Jikes RVM.

Option Description

{-cp or -classpath} <directories and zip/jar files separated by ":"> set search path for application classes and resources

http://jikesrvm.hg.sourceforge.net:8000/hgroot/jikesrvm/jikesrvm

-D<name>=<value> set a system property

-verbose:[class | gc | jni] enable verbose output

-version print current VM version and terminate the run

-showversion print current VM version and continue running

-fullversion like "-version", but with more information

-? or -help print help message

-X print help on non-standard options

-jar execute a jar file

-javaagent:<jarpath>[=<options>] load Java programming language agent, see java.lang.instrument

Non-Standard Command-Line Options

The non standard command-line options are grouped according to the subsystem that they control. The following sections list the available
options in each group.

Core Non-Standard Command-Line Options

Option Description

-X:verbose Print out additional lowlevel information for GC and hardware trap handling

-X:verboseBoot=<number> Print out additional information while VM is booting, using verbosity level <number>

-X:sysLogfile=<filename> Write standard error message to <filename>

-X:ic=<filename> Read boot image code from <filename>

-X:id=<filename> Read boot image data from <filename>

-X:ir=<filename> Read boot image ref map from <filename>

-X:vmClasses=<path> Load the com.ibm.jikesrvm.* and java.* classes from <path>

-X:processors=<number|"all"> The number of processors that the garbage collector will use

Memory Non-Standard Command-Line Options

Option Description

-Xms<number><unit> Initial size of heap where <number> is an integer, an extended-precision floating point or a hexadecimal value and
<unit> is one of T (Terabytes), G (Gigabytes), M (Megabytes), pages (of size 4096), K (Kilobytes) or <no unit> for
bytes

-Xmx<number><unit> Maximum size of heap. See above for definition of <number> and <unit>

Garbage Collector Non-Standard Command-Line Options

These options are all prefixed by .-X:gc:

Boolean options.

Option Description

protectOnRelease Should memory be protected on release?

echoOptions Echo when options are set?

printPhaseStats When printing statistics, should statistics for each gc-mutator phase be printed?

xmlStats Print end-of-run statistics in XML format

eagerCompleteSweep Should we eagerly finish sweeping at the start of a collection

fragmentationStats Should we print fragmentation statistics for the free list allocator?

verboseFragmentationStats Should we print verbose fragmentation statistics for the free list allocator?

verboseTiming Should we display detailed breakdown of where GC time is spent?

noFinalizer Should finalization be disabled?

noReferenceTypes Should reference type processing be disabled?

fullHeapSystemGC Should a major GC be performed when a system GC is triggered?

ignoreSystemGC Should we ignore calls to java.lang.System.gc?

variableSizeHeap Should we shrink/grow the heap to adjust to application working set?

eagerMmapSpaces If true, all spaces are eagerly demand zero mmapped at boot time

sanityCheck Perform sanity checks before and after each collection?

Value options.

Option Type Description

markSweepMarkBits int Number of bits to use for the header cycle of mark sweep spaces

verbose int GC verbosity level

stressFactor bytes Force a collection after this much allocation

metaDataLimit bytes Trigger a GC if the meta data volume grows to this limit

boundedNursery bytes Bound the maximum size of the nursery to this value

fixedNursery bytes Fix the minimum and maximum size of the nursery to this value

debugAddress address Specify an address at runtime for use in debugging

Base Compiler Non-Standard Command-Line Options

Boolean options

Option Description

edge_counters Insert edge counters on all bytecode-level conditional branches

invocation_counters Select methods for optimized recompilation by using invocation counters

Opt Compiler Non-Standard Command-Line Options

Boolean options.

Option Description

local_constant_prop Perform local constant propagation

local_copy_prop Perform local copy propagation

local_cse Perform local common subexpression elimination

global_bounds Perform global Array Bound Check elimination on Demand

monitor_removal Try to remove unnecessary monitor operations

invokee_thread_local Compile the method assuming the invokee is thread-local

no_callee_exceptions Assert that any callee of this compiled method will not throw exceptions?

simple_escape_ipa Eagerly compute method summaries for simple escape analysis

field_analysis Eagerly compute method summaries for flow-insensitive field analysis

scalar_replace_aggregates Perform scalar replacement of aggregates

reorder_code Reorder basic blocks for improved locality and branch prediction

reorder_code_ph Reorder basic blocks using Pettis and Hansen Algo2

inline_new Inline allocation of scalars and arrays

inline_write_barrier Inline write barriers for generational collectors

inline Inline statically resolvable calls

guarded_inline Guarded inlining of non-final virtual calls

guarded_inline_interface Speculatively inline non-final interface calls

static_splitting CFG splitting to create hot traces based on static heuristics

redundant_branch_elimination Eliminate redundant conditional branches

preex_inline Pre-existence based inlining

ssa Should SSA form be constructed on the HIR?

load_elimination Should we perform redundant load elimination during SSA pass?

coalesce_after_ssa Should we coalesce move instructions after leaving SSA?

expression_folding Should we try to fold expressions with constants in SSA form?

live_range_splitting Split live ranges using LIR SSA pass?

gcp Perform global code placement

gcse Perform global code placement

verbose_gcp Perform noisy global code placement

licm_ignore_pei Assume PEIs do not throw or state is not observable

unwhile Turn whiles into untils

loop_versioning Loop versioning

handler_liveness Store liveness for handlers to improve dependence graph at PEIs

schedule_prepass Perform prepass instruction scheduling

no_checkcast Should all checkcast operations be (unsafely) eliminated?

no_checkstore Should all checkstore operations be (unsafely) eliminated?

no_bounds_check Should all bounds check operations be (unsafely) eliminated?

no_null_check Should all null check operations be (unsafely) eliminated?

no_synchro Should all synchronization operations be (unsafely) eliminated?

no_threads Should all yield points be (unsafely) eliminated?

no_cache_flush Should cache flush instructions (PowerPC SYNC/ISYNC) be omitted? NOTE: Cannot be correctly changed
via the command line!

reads_kill Should we constrain optimizations by enforcing reads-kill?

monitor_nop Should we treat all monitorenter/monitorexit bytecodes as nops?

static_stats Should we dump out compile-time statistics for basic blocks?

code_patch_nop Should all patch point be (unsafely) eliminated (at initial HIR)?

instrumentation_sampling Perform code transformation to sample instrumentation code.

no_duplication When performing inst. sampling, should it be done without duplicating code?

processor_specific_counter Should there be one CBS counter per processor for SMP performance?

remove_yp_from_checking Should yieldpoints be removed from the checking code (requires finite sample interval).

Value options.

Option Description

ic_max_target_size Static inlining heuristic: Upper bound on callee size

ic_max_inline_depth Static inlining heuristic: Upper bound on depth of inlining

ic_max_always_inline_target_size Static inlining heuristic: Always inline callees of this size or smaller

ic_massive_method_size Static inlining heuristic: If root method is already this big, then only inline trivial methods

ai_max_target_size Adaptive inlining heuristic: Upper bound on callee size

ai_min_callsite_fraction Adaptive inlining heuristc: Minimum fraction of callsite distribution for guarded inlining of a callee

edge_count_input_file Input file of edge counter profile data

inlining_guard Selection of guard mechanism for inlined virtual calls that cannot be statically bound

fp_mode Selection of strictness level for floating point computations

exclude Exclude methods from being opt compiled

unroll_log Unroll loops. Duplicates the loop body 2^n times.

cond_move_cutoff How many extra instructions will we insert in order to remove a conditional branch?

load_elimination_rounds How many rounds of redundant load elimination will we attempt?

alloc_advice_sites Read allocation advice attributes for all classes from this file

frequency_strategy How to compute block and edge frequencies?

spill_cost_estimate Selection of spilling heuristic

infrequent_threshold Cumulative threshold which defines the set of infrequent basic blocks

cbs_hotness Threshold at which a conditional branch is considered to be skewed

ir_print_level Only print IR compiled above this level

Adaptive System Non-Standard Command-Line Options

Boolean options

Option Description

enable_recompilation Should the adaptive system recompile hot methods?

enable_advice_generation Do we need to generate advice file?

enable_precompile Should the adaptive system precompile all methods given in the advice file before the user thread is
started?

enable_replay_compile Should the adaptive system use the pseudo-adaptive system that solely relies on the advice file?

gather_profile_data Should profile data be gathered and reported at the end of the run?

adaptive_inlining Should we use adaptive feedback-directed inlining?

early_exit Should AOS exit when the controller clock reaches early_exit_value?

osr_promotion Should AOS promote baseline-compiled methods to opt?

background_recompilation Should recompilation be done on a background thread or on next invocation?

insert_yieldpoint_counters Insert instrumentation in opt recompiled code to count yieldpoints executed?

insert_method_counters_opt Insert intrusive method counters in opt recompiled code?

insert_instruction_counters Insert counters on all instructions in opt recompiled code?

insert_debugging_counters Enable easy insertion of (debugging) counters in opt recompiled code.

report_interrupt_stats Report stats related to timer interrupts and AOS listeners on exit.

disable_recompile_all_methods Disable the ability for an app to request all methods to be recompiled.

Value options

Option Description

method_sample_size How many timer ticks of method samples to take before reporting method hotness to controller.

initial_compiler Selection of initial compiler.

recompilation_strategy Selection of mechanism for identifying methods for optimizing recompilation.

method_listener_trigger What triggers us to take a method sample?

call_graph_listener_trigger What triggers us to take a method sample?

logfile_name Name of log file.

compilation_advice_file_output Name of advice file.

dynamic_call_file_output Name of dynamic call graph file.

compiler_dna_file Name of compiler DNA file (no name ==> use default DNA). Discussed in a comment at the head of
VM_CompilerDNA.java.

compiler_advice_file_input File containing information about the methods to Opt compile.

dynamic_call_file_input File containing information about the hot call sites.

logging_level Control amount of event logging (larger ==> more).

final_report_level Control amount of info reported on exit (larger ==> more).

decay_frequency After how many clock ticks should we decay.

dcg_decay_rate What factor should we decay call graph edges hotness by.

dcg_sample_size After how many timer interrupts do we update the weights in the dynamic call graph?

ai_seed_multiplier Initial edge weight of call graph is set to ai_seed_multiplier * (1/ai_control_point).

offline_inline_plan_name Name of offline inline plan to be read and used for inlining.

early_exit_time Value of controller clock at which AOS should exit if early_exit is true.

invocation_count_threshold Invocation count at which a baseline compiled method should be recompiled.

invocation_count_opt_level Opt level for recompilation in invocation count based system.

counter_based_sample_interval What is the sample interval for counter-based sampling.

ai_hot_callsite_threshold What percentage of the total weight of the dcg demarcates warm/hot edges.

max_opt_level The maximum optimization level to enable.

Virtual Machine Non-Standard Command-Line Options

Boolean Options

Option Description

measureCompilation Time all compilations and report on exit.

measureCompilationPhases Time all compilation sub-phases and report on exit.

stackTraceFull Stack traces to consist of VM and application frames.

stackTraceAtExit Dump a stack trace (via VM.syswrite) upon exit.

verboseTraceClassLoading More detailed tracing then -verbose:class.

errorsFatal Exit when non-fatal errors are detected; used for regression testing.

 Value options

Option Description

maxSystemTroubleRecursionDepth If we get deeper than this in one of the System Trouble functions, try to die.

interruptQuantum Timer interrupt scheduling quantum in ms.

schedulingMultiplier Scheduling quantum = interruptQuantum * schedulingMultiplier.

traceThreadScheduling Trace actions taken by thread scheduling.

verboseStackTracePeriod Trace every nth time a stack trace is created.

edgeCounterFile Input file of edge counter profile data.

CBSCallSamplesPerTick How many CBS call samples (Prologue/Epilogue) should we take per time tick.

CBSCallSampleStride Stride between each CBS call sample (Prologue/Epilogue) within a sampling window.

CBSMethodSamplesPerTick How many CBS method samples (any yieldpoint) should we take per time tick.

CBSMethodSampleStride Stride between each CBS method sample (any yieldpoint) within a sampling window.

countThreadTransitions Count, and report, the number of thread state transitions. This works better on IA32 than on PPC at the
moment.

forceOneCPU Force all threads to run on one CPU. The argument specifies which CPU (starting from 0).

Running Jikes RVM with valgrind

 Jikes RVM can run under valgrind, as of SVN revision 6791 (29-Aug-2007). Applying a patch of this revision to release 3.2.1 should also
produce a working system. Versions of valgrind CVS prior to release 3.0 are also known to have worked.

To run a Jikes RVM build with valgrind, use the flag to invoke valgrind, eg-wrap

rvm -wrap "path/to/valgrind --smc-check=all <valgrind-options>" <jikesrvm-options> ...

this will insert the invocation of valgrind at the appropriate place for it to operate on Jikes RVM proper rather than a wrapper script.

Under some circumstances, valgrind will load shared object libraries or allocate memory in areas of the heap that conflict with Jikes RVM. Using
the flag -X:gc:eagerMmapSpaces=true will prevent and/or detect this. If this flag reveals errors while mapping the spaces, you will need to
rearrange the heap to avoid the addresses that valgrind is occupying.

Testing the RVM

Jikes RVM includes a testing framework for running functional and performance tests and it also includes a number of actual tests. See External
 for details or downloading prerequisites for the tests. The tests are executed using an Ant build file and produce results thatTest Resources

conform to the definition below. The results are aggregated and processed to produce a high level report defining the status of Jikes RVM.

The testing framework was designed to support continuous and periodical execution of tests. A " " occurs every time the testing frameworktest-run
is invoked. Every " " will execute one or more " "s. A " " defines a particular build " " (See test-run test-configuration test-configuration configuration

 for details) combined with a set of parameters that are passed to the RVM during the execution of the tests. i.e. a particular "Configuring the RVM
" may pass parameters such as test-configuration -X:aos:enable_recompilation=false -X:aos:initial_compiler=opt -X:irc:O1

to test the Level 1 Opt compiler optimizations.

Every " " will execute one or more " "s of tests. Every " " is defined by a Ant build.xml file in a separate sub-directory of test-configuration group group
. Each " " has a number of input parameters such as the classname to execute, the parameters to pass to the$RVM_ROOT/testing/tests test

RVM or to the program. The " " records a number of values such as execution time, exit code, result, standard output etc. and may also recordtest
a number of statistics if it is a performance test.

The project includes several different types of _test run_s and the description of each the test runs and their purpose is given in Test Run
.Descriptions

Note

The script provides a fast and easy way to build and the system. The script is simply a wrapper around the mechanismsbuildit
described below.

Ant Properties

There is a number of ant properties that control the test process. Besides the properties that are already defined in the followingBuilding the RVM
properties may also be specified.

Property Description Default

test-run.name The name of the . The name should match one of the files locatedtest-run
in the directory minus the '.properties' extension.build/test-runs/

pre-commit

results.dir The directory where Ant stores the results of the test run. ${jikesrvm.dir}/results

results.archive The directory where Ant gzips and archives a copy of test run results and
reports.

${results.dir}/archive

send.reports Define this property to send reports via email. (Undefined)

mail.from The from address used when emailing report. jikesrvm-core@lists.sourceforge.net

mail.to The to address used when emailing report. jikesrvm-regression@lists.sourceforge.net

mail.host The host to connect to when sending mail. localhost

mail.port The port to connect to when sending mail. 25

<configuration>.built If set to true, the test process will skip the build step for specified
configurations. For the test process to work the build must already be
present.

(Undefined)

skip.build If defined the test process will skip the build step for all configurations and
the javadoc generation step. For the test process to work the build must
already be present.

(Undefined)

skip.javadoc If defined the test process will skip the javadoc generation step. (Undefined)

http://jikesrvm.hg.sourceforge.net/hgweb/jikesrvm/jikesrvm/file/tip/build/test-runs/

Defining a test-run

A is defined by a number of properties located in a property file located in the directory.test-run build/test-runs/

The property is a whitespace separated list of "tags". Every tag uniquely identifies a particular .test.configs test-configuration test-configuration
Every is defined by a number of properties in the property file that are prefixed with and the following tabletest-configuration test.config.<tag>.
defines the possible properties.

Property Description Default

tests The names of the test groups to execute. None

name The unique identifier for .test-configuration ""

configuration The name of the RVM build configuration to test. <tag>

target The name of the RVM build target. This can be used to trigger compilation of a profiled image "main"

mode The test mode. May modify the way test groups execute. See individual groups for details. ""

extra.args Extra arguments that are passed to the RVM. ""

extra.rvm.args Extra arguments that are passed to the RVM. These may be varied for different runs using the same image. ""

Note

The order of the test-configurations in is the order that the test-configurations are tested. The order of the groups in test.configs
 is the order that the tests are executed.test.config.<tag>.test

The simplest is defined in the following figure. It will use the build configuration " " and execute tests in the " " group.test-run prototype basic

build/test-runs/simple.properties

test.configs=prototype
test.config.prototype.tests=basic

The test process also expands properties in the property file so it is possible to define a set of tests once but use them in multiple
test-configurations as occurs in the following figure. The groups basic, optests and dacapo are executed in both the prototype and prototype-opt
test\configurations.

build/test-runs/property-expansion.properties

test.set=basic optests dacapo
test.configs=prototype prototype-opt
test.config.prototype.tests=${test.set}
test.config.prototype-opt.tests=${test.set}

Test Specific Parameters

Each test can have additional parameters specified that will be used by the test infrastructure when starting the Jikes RVM instance to execute
the test. These additional parameters are described in the following table.

Parameter Description Default Property Default Value

http://jikesrvm.hg.sourceforge.net/hgweb/jikesrvm/jikesrvm/file/tip/build/test-runs

1.
a.
b.
c.
d.
e.

2.
3.

initial.heapsize The initial size of the heap. ${test.initial.heapsize} ${config.default-heapsize.initial}

max.heapsize The initial size of the heap. ${test.max.heapsize} ${config.default-heapsize.maximum}

max.opt.level The maximum optimization level for the tests or an empty
string to use the Jikes RVM default.

${test.max.opt.level} ""

processors The number of processors to use for garbage collection for
the test or 'all' to use all available processors.

${test.processors} all

time.limit The time limit for the test in seconds. After the time limit
expires the Jikes RVM instance will be forcefully terminated.

${test.time.limit} 1000

class.path The class path for the test. ${test.class.path}

extra.args Extra arguments that are passed to the RVM. ${test.rvm.extra.args} ""

exclude If set to true, the test will be not be executed. ""

To determine the value of a test specific parameters, the following mechanism is used;

Search for one of the the following ant properties, in order.
test.config.<build-configuration>.<group>.<test>.<parameter>
test.config.<build-configuration>.<group>.<parameter>
test.config.<build-configuration>.<parameter>
test.config.<build-configuration>.<group>.<test>.<parameter>
test.config.<build-configuration>.<group>.<parameter>

If none of the above properties are defined then use the parameter that was passed to the <rvm> macro in the ant build file.
If no parameter was passed to the <rvm> macro then use the default value which is stored in the "Default Property" as specified in the
above table. By default the value of the "Default Property" is specified as the "Default Value" in the above table, however a particular
build file may specify a different "Default Value".

Excluding tests

Sometimes it is desirable to exclude tests. The test exclusion may occur as the test is known to fail on a particular target platform, build
configuration or maybe it just takes too long. To exclude a test, you must define the test specific parameter "exclude" to true either in
.ant.properties or in the test-run properties file.

i.e. At the time of writing the Jikes RVM does not fully support volatile fields and as a result th test named "TestVolatile" in the "basic" group will
always fail. Rather than being notified of this failure we can disable the test by adding a property such as
"test.config.basic.TestVolatile.exclude=true" into test-run properties file.

Executing a test-run

The tests are executed by the Ant driver script . The property defines the particular test-run to execute and if not settest.xml test-run.name
defaults to " ". The command executes the test-run defined in sanity ant -f test.xml -Dtest-run.name=simple

. When this command completes you can point your browser at build/test-runs/simple.properties
 to get an overview on test run or at ${results.dir}/tests/${test-run.name}/Report.html

 for an xml document describing test results.${results.dir}/tests/${test-run.name}/Report.xml

External Test Resources

The tests included in the source tree are designed to test the correctness and performance of the Jikes RVM. This document gives a step by step
instructions for setting up the external dependencies for these tests.

The first step is selecting the base directory where all the external code is to be located. The property needs to be set toexternal.lib.dir
this location. i.e.

> echo "external.lib.dir=/home/peter/Research/External" >> .ant.properties
> mkdir -p /home/peter/Research/External

Then you need to follow the instructions below for the desired benchmarks. The instructions assume that the environment variable
 is set to the same location as the property.BENCHMARK_ROOT external.lib.dir

Open Source Benchmarks

In the future other benchmarks such as , or may be included.BigInteger Ashes Volano

Dacapo

Dacapo describes itself as "This benchmark suite is intended as a tool for Java benchmarking by the programming language, memory
management and computer architecture communities. It consists of a set of open source, real world applications with non-trivial memory loads.
The suite is the culmination of over five years work at eight institutions, as part of the DaCapo research project, which was funded by a National
Science Foundation ITR Grant, CCR-0085792."

Note: There is a page that tracks how JikesRVM is doing in Dacapo http://cs.anu.edu.au/people/Robin.Garner/dacapo/regression/

The release needs to be downloaded and placed in the $BENCHMARK_ROOT/dacapo/ directory. i.e.

> mkdir -p $BENCHMARK_ROOT/dacapo/
> cd $BENCHMARK_ROOT/dacapo/
> wget http://optusnet.dl.sourceforge.net/sourceforge/dacapobench/dacapo-2006-10.jar

jBYTEmark

jBYTEmark was a benchmark developed by a long time ago.Byte.com

> mkdir -p $BENCHMARK_ROOT/jBYTEmark-0.9
> cd $BENCHMARK_ROOT/jBYTEmark-0.9
> wget http://img.byte.com/byte/bmark/jbyte.zip
> unzip -jo jbyte.zip 'app/class/*'
> unzip -jo jbyte.zip 'app/src/jBYTEmark.java'
> ... Edit jBYTEmark.java to delete "while (true) {}" at the end of main. ...
> javac jBYTEmark.java
> jar cf jBYTEmark-0.9.jar *.class
> rm -f *.class jBYTEmark.java

CaffeineMark

CaffeineMark describes itself as "The CaffeineMark is a series of tests that measure the speed of Java programs running in various hardware and
software configurations. CaffeineMark scores roughly correlate with the number of Java instructions executed per second, and do not depend
significantly on the the amount of memory in the system or on the speed of a computers disk drives or internet connection."

> mkdir -p $BENCHMARK_ROOT/CaffeineMark-3.0
> cd $BENCHMARK_ROOT/CaffeineMark-3.0
> wget http://www.benchmarkhq.ru/cm30/cmkit.zip
> unzip cmkit.zip

xerces

Process some large documents using xerces XML parser.

> cd $BENCHMARK_ROOT
> wget http://archive.apache.org/dist/xml/xerces-j/Xerces-J-bin.2.8.1.tar.gz
> tar xzf Xerces-J-bin.2.8.1.tar.gz
> mkdir -p $BENCHMARK_ROOT/xmlFiles
> cd $BENCHMARK_ROOT/xmlFiles
> wget http://www.ibiblio.org/pub/sun-info/standards/xml/eg/shakespeare.1.10.xml.zip
> unzip shakespeare.1.10.xml.zip

Soot

Soot describes itself as "Soot is a Java bytecode analysis and transformation framework. It provides a Java API for building intermediate
representations (IRs), analyses and transformations; also it supports class file annotation."

> mkdir -p $BENCHMARK_ROOT/soot-2.2.3
> cd $BENCHMARK_ROOT/soot-2.2.3
> wget http://www.sable.mcgill.ca/software/sootclasses-2.2.3.jar
> wget http://www.sable.mcgill.ca/software/jasminclasses-2.2.3.jar

http://bigintbench.sourceforge.net/
http://www.sable.mcgill.ca/ashes/
http://www.volano.com/benchmarks.html
http://dacapobench.org/
http://cs.anu.edu.au/people/Robin.Garner/dacapo/regression/
http://optusnet.dl.sourceforge.net/sourceforge/dacapobench/dacapo-2006-10.jar
http://www.byte.com/art/9805/sec5/art4.htm
http://img.byte.com/byte/bmark/jbyte.zip
http://www.benchmarkhq.ru/cm30/info.html
http://www.benchmarkhq.ru/cm30/cmkit.zip
http://archive.apache.org/dist/xml/xerces-j/Xerces-J-bin.2.8.1.tar.gz
http://www.ibiblio.org/pub/sun-info/standards/xml/eg/shakespeare.1.10.xml.zip
http://www.sable.mcgill.ca/soot/
http://www.sable.mcgill.ca/software/sootclasses-2.2.3.jar
http://www.sable.mcgill.ca/software/jasminclasses-2.2.3.jar

Java Grande Forum Sequential Benchmarks

Java Grande Forum Sequential Benchmarks is a benchmark suite designed for single processor execution.

> mkdir -p $BENCHMARK_ROOT/JavaGrandeForum
> cd $BENCHMARK_ROOT/JavaGrandeForum
> wget http://www2.epcc.ed.ac.uk/javagrande/seq/jgf_v2.tar.gz
> tar xzf jgf_v2.tar.gz

Java Grande Forum Multi-threaded Benchmarks

Java Grande Forum Multi-threaded Benchmarks is a benchmark suite designed for parallel execution on shared memory multiprocessors.

> mkdir -p $BENCHMARK_ROOT/JavaGrandeForum
> cd $BENCHMARK_ROOT/JavaGrandeForum
> wget http://www2.epcc.ed.ac.uk/javagrande/threads/jgf_threadv1.0.tar.gz
> tar xzf jgf_threadv1.0.tar.gz

JLex Benchmark

JLex is a lexical analyzer generator, written for Java, in Java.

> mkdir -p $BENCHMARK_ROOT/JLex-1.2.6/classes/JLex
> cd $BENCHMARK_ROOT/JLex-1.2.6/classes/JLex
> wget http://www.cs.princeton.edu/~appel/modern/java/JLex/Archive/1.2.6/Main.java
> mkdir -p $BENCHMARK_ROOT/QBJC
> cd $BENCHMARK_ROOT/QBJC
> wget http://www.ocf.berkeley.edu/~horie/qbjlex.txt
> mv qbjlex.txt qb1.lex

Proprietary Benchmarks

SPECjbb2005

SPECjbb2005 describes itself as "SPECjbb2005 (Java Server Benchmark) is SPEC's benchmark for evaluating the performance of server side
Java. Like its predecessor, SPECjbb2000, SPECjbb2005 evaluates the performance of server side Java by emulating a three-tier client/server
system (with emphasis on the middle tier). The benchmark exercises the implementations of the JVM (Java Virtual Machine), JIT (Just-In-Time)
compiler, garbage collection, threads and some aspects of the operating system. It also measures the performance of CPUs, caches, memory
hierarchy and the scalability of shared memory processors (SMPs). SPECjbb2005 provides a new enhanced workload, implemented in a more
object-oriented manner to reflect how real-world applications are designed and introduces new features such as XML processing and BigDecimal
computations to make the benchmark a more realistic reflection of today's applications." SPECjbb2005 requires a license to download and use.

SPECjbb2005 can be run on command line via;

$RVM_ROOT/rvm -X:processors=1 -Xms400m -Xmx600m -classpath jbb.jar:check.jar spec.jbb.JBBmain -propfile SPECjbb.props

SPECjbb2005 may also be run as part regression tests.

> mkdir -p $BENCHMARK_ROOT/SPECjbb2005
> cd $BENCHMARK_ROOT/SPECjbb2005
> ...Extract package here???...

SPECjbb2000

SPECjbb2000 describes itself as "SPECjbb2000 (Java Business Benchmark) is SPEC's first benchmark for evaluating the performance of
server-side Java. Joining the client-side SPECjvm98, SPECjbb2000 continues the SPEC tradition of giving Java users the most objective and
representative benchmark for measuring a system's ability to run Java applications." SPECjbb2000 requires a license to download and use.
Benchmarks should no longer be performed using SPECjbb2000 as the benchmarks have very .different characteristics

> mkdir -p $BENCHMARK_ROOT/SPECjbb2000
> cd $BENCHMARK_ROOT/SPECjbb2000
> ...Extract package here???...

SPEC JVM98 Benchmarks

http://www.epcc.ed.ac.uk/javagrande/sequential.html
http://www2.epcc.ed.ac.uk/javagrande/seq/jgf_v2.tar.gz
http://www.epcc.ed.ac.uk/javagrande/threads.html
http://www2.epcc.ed.ac.uk/javagrande/threads/jgf_threadv1.0.tar.gz
http://www.cs.princeton.edu/~appel/modern/java/JLex/
http://www.cs.princeton.edu/~appel/modern/java/JLex/Archive/1.2.6/Main.java
http://www.ocf.berkeley.edu/~horie/qbjlex.txt
http://www.spec.org/jbb2005/
http://www.spec.org/jbb2000/
http://sourceforge.net/mailarchive/forum.php?thread_id=8789099&forum_id=43937

JVM98 features: "Measures performance of Java Virtual Machines. Applicable to networked and standalone Java client computers, either with
disk (e.g., PC, workstation) or without disk (e.g., network computer) executing programs in an ordinary Java platform environment. Requires Java
Virtual Machine compatible with JDK 1.1 API, or later." SPEC JVM98 Benchmarks require a license to download and use.

> mkdir -p $BENCHMARK_ROOT/SPECjvm98
> cd $BENCHMARK_ROOT/SPECjvm98
> ...Extract package here???...

Test Run Descriptions

The Jikes RVM project contains several different test runs with different purposes. This document attempts to capture the purpose of each
different test run.

Red test run

This test run be run prior to committing code. They are relatively short and are designed to capture as many potential bugs in the shortestMUST
possible time.It is expected that the red test run will take 15-20 minutes on modern intel architecture.

Green test run

There is a set of workloads we consider important (i.e. dacapo and SPEC*). There is a set of build configurations we consider important (ie
prototype, development, production). We as a group wish to guarantee that all important workloads will will run correctly on all important build
configurations. (i.e. We should regress). The green test run is designed to identify as early as possible any failures in this matrix of buildNEVER
configuration x workload. It is run continuously 24 hours a day (or at least every time a change is made). It is expected that the green test run will
take 2-6 hours to complete depending on the environment.

The best way to identify the failures is to stress test the system by forcing frequent garbage collections and compilation at specific optimization
levels (and perhaps frequent thread switching and frequent OSR events in the future). It is critical that we have a stable research base so
intermittent failures are NOT acceptable. If we can not pass a stress test then there is no guarantee that we have a stable research base.

Blue test run

The blue test run cover a larger number of build configurations and workloads. They may not always pass and may test many of the less
frequently used configurations (gctrace, gcspy, and individual stress tests) and less important workloads. Performance tests are also included in
this test run. Something we use to gauge the health of the project as a whole and to track regressions. These are run once a day on major
platforms. These time to complete can vary but expected to take several hours at the least.

Rainbow test runs

This is not a single test run but a set of test runs that are used for testing specific aspects of the system from performance, gcmap bug finding, io
hammering etc. There may also be a set of personal/site-specific test runs included in this set that are not checked into Mercurial repository.

Summary

We must regress in green test run. The red test run attempts to ensure no green regressions this while keeping running time reasonable.NEVER
The blue test run gives us an overall picture on the health of the code base. While the rainbow test runs are used at different times for different
purposes.

The MMTk Test Harness

Overview

The MMTk harness is a debugging tool. It allows you to run MMTk with a simple client - a simple Java-like scripting language - which can explicitly
allocate objects, create and delete references, etc. This allows MMTk to be run and debugged stand-alone, without the entire VM, greatly
simplifying initial debugging and reducing the edit-debug turnaround time. This is all accessible through the command line or an IDE such as
eclipse.

Running the test harness

The harness can be run standalone or via Eclipse (or other IDE).

Standalone

http://www.spec.org/jvm98/

ant mmtk-harness
java -jar target/mmtk/mmtk-harness.jar <script-file> [options...]

There is a collection of sample scripts in the MMTk/harness/test-scripts directory. There is a simple wrapper script that runs all the available
scripts against all the collectors,

bin/test-mmtk [options...]

 This script prints a PASS/FAIL line as it goes, and puts detailed output in results/mmtk.

In Eclipse

ant mmtk-harness-eclipse-project

Or in versions before 3.1.1

ant mmtk-harness && ant mmtk-harness-eclipse-project

Refresh the project (or import it into eclipse), and then run 'Project > Clean'.

Define a new run configuration with main class org.mmtk.harness.Main.

Click Run (actually the down-arrow next to the the green button), choose 'Run Configurations...'

Select "Java Application" from the left-hand panel, and click the "new" icon (top left).

Fill out the Main tab as below

Fill out the Arguments tab as below

The harness makes extensive use of the java 'assert' keyword, so you should run the harness with '-ea' in the VM options.

Click 'Apply' and then 'Run' to test the configuration. Eclipse will prompt for a value for the 'script' variable - enter the name of one of the available
test scripts, such as 'Lists', and click OK. The scripts provided with MMTk are in the directory MMTk/harness/test-scripts.

You can configure eclipse to display vmmagic values (Address/ObjectReference/etc) using their toString method through the Eclipse ->
Preferences... -> Java -> Debug -> Detail Formatters menu. The simplest option is to check the box to use toString 'As the label for all variables'.

Test harness options

Options are passed to the test harness as 'keyword=value' pairs. The standard MMTk options that are available through JikesRVM are accepted
(leave off the "-X:gc:"), as well as the following harness-specific options:

Option Meaning

plan The MMTk plan class. Defaults to org.mmtk.plan.marksweep.MS

collectors The number of concurrent collector threads (default: 1)

initHeap Initial heap size. It is also a good idea to use 'variableSizeHeap=false', since the heap growth manager uses elapsed
time to make its decisions, and time is seriously dilated by the MMTk Harness.

maxHeap Maximum heap size (default: 64 pages)

trace Debugging messages from the MMTk Harness. Useful trace options include

ALLOC - trace object allocation
AVBYTE - Mutations of the 'available byte' in each object header
COLLECT - Detailed information during GC
HASH - Hash code operations
MEMORY - page-level memory operations (map, unmap, zero)
OBJECT - trace object mutation events
REFERENCES - Reference type processing
REMSET - Remembered set processing
SANITY - Gives detailed information during Harness sanity checking
TRACEOBJECT - Traces every call to traceObject during GC (requires MMTk support)
See the class org.mmtk.harness.lang.Trace for more details and trace options - most of the remaining options
are only of interest to maintainers of the Harness itself.

watchAddress Set a watchpoint on a given address or comma-separated list of addresses. The harness will display every load and
store to that address.

watchObject Watch modifications to a given object or comma-separated list of objects, identified by object ID (sequence number).

gcEvery Force frequent GCs. Options are

ALLOC - GC after every object allocation
SAFEPOINT - GC at every GC safepoint

scheduler Optionally use the deterministic scheduler. Options are

JAVA (default) - Threads in the script are Java threads, scheduled by the host JVM
DETERMINISTIC - Threads are scheduled deterministically, with yield points at every memory access.

schedulerPolicy Select from several scheduling policies,

FIXED - Threads yield every 'nth' yield point
RANDOM - Threads yield according to a pseudo-random policy
NEVER - Threads only yield at mandatory yieldpoints

yieldInterval For the FIXED scheduling policy, the yield frequency.

randomPolicyLength

randomPolicySeed
randomPolicyMin
randomPolicyMax

Parameters for the RANDOM scheduler policy. Whenever a thread is created, the scheduler fixes a yield pattern of
'length' integers between 'min' and 'max'. These numbers are used as yield intervals in a circular manner.

policyStats Dump statistics for the deterministic scheduler's yield policy.

bits=32|64 Select between 32 and 64-bit memory models.

dumpPcode Dump the pseudo-code generated by the harness interpreter

timeout Abort collection if a GC takes longer than this value (seconds). Defaults to 30.

Scripts

The MMTk/harness/test-scripts directory contains several test scripts.

Script Purpose Description

Alignment Test allocator
alignment behaviour

Tests alignment by creating a list of objects aligned to a mixture of 4-byte and 8-byte boundaries.

CyclicGarbage Test cycle detector
in Reference
Counting collectors

Creates large amounts of cyclic garbage in the form of circular linked lists.

FixedLive General collection
test

Harness version of the FixedLive GC micro-benchmark. Creates a binary tree, then allocates
short-lived objects to force garbage collections.

HashCode Hash code test. Creates objects and verifies that their hashcode is unchanged after a GC.

LargeObject Large object
allocator test

Creates objects with sizes ranging from 2 to 32 pages (8k to 128k bytes).

Lists Generational
collector stress test

Creates a set of lists of varying lengths, and then allocates to force collections. Ensures that there
are Mature->Nursery, Nursery->Mature and Stack->Nursery and Stack->Mature pointers at every
GC. Remsets get a serious workout.

OutOfMemory Tests
out-of-memory
handling.

Allocates a linked list that grows until the heap fills up.

Quicksort General collection
test

Implements a list-based quicksort.

ReferenceTypes Reference type test Creates Weak references, forces collections and ensures that they are correctly handled.

Spawn Concurrency test Creates lots of threads which allocate objects.

SpreadAlloc Free-list allocator
test

Creates large numbers of objects with random size distributions, keeping a fraction of the objects
alive.

SpreadAlloc16 Concurrent free-list
allocator test

A multithreaded version of SpreadAlloc.

Scripting language

Basics

The language has three types: integer, object and user-defined. The object type behaves essentially like a double array of pointers and integers
(odd, I know, but the scripting language is basically concerned with filling up the heap with objects of a certain size and reachability).
User-defined types are like Java objects without methods, 'C' structs, Pascal record types etc.

Objects and user-defined types are allocated with the 'alloc' statement: alloc(p,n,align) allocates an object with 'p' pointers, 'n' integers and the
given alignment; alloc(type) allocates an object of the given type. Variables are declared 'c' style, and are optionally initialized at declaration.

 User-defined types are declared as follows:

type list {
 int value;
 list next;
}

and fields are accessed using java-style "dot" notation, eg

 list l = alloc(list);
 l.value = 0;
 l.next = null;

At this stage, fields can only be dereferenced to one level, eg 'l.next.next' is not valid syntax - you need to introduce a temporary variable to
achieve this.

Object fields are referenced using syntax like "tmp.int[5]" or "tmp.object[i*3]",
ie like a struct of arrays of the appropriate types.

Syntax

script ::= (method|type)...

method ::= ident "(" { type ident { "," type ident}... ")"
 ("{" statement... "}"
 | "intrinsic" "class" name "method" name "signature" "(" java-class {, java class} ")"

type ::= "type" ident "{" field... "}"
field ::= type ident ";"

statement ::=
 "if" "(" expr ")" block { "elif" "(" expr ")" block } ["else" block]
 | "while "(" expr ")" block
 | [[type] ident "="] "alloc" "(" expr "," expr ["," expr] ")" ";"
 | [ident "="] "hash" "(" expr ")" ";"
 | "gc" "(" ")"
 | "spawn" "(" ident ["," expr]... ")" ";"
 | type ident ["=" expr] ";"
 | lvalue "=" expr ";"

lvalue ::= ident "=" expr ";"
 | ident "." type "[" expr "]"

type ::= "int" | "object" | ident

expr ::= expr binop expr
 | unop expr
 | "(" expr ")"
 | ident
 | ident "." type "[" expr "]"
 | ident "." ident
 | int-const
 | intrinsic

intrinsic ::= "alloc" ("(" expr "," expr ["," expr] ")
 | type
)
 | "(" expr ")"
 | "gc " "(" ")"

binop ::= "+" | "-" | "*" | "/" | "%" | "&&" | "||" | "==" | "!="

unop ::= "!" | "-"

MMTk Unit Tests

There is a small set of unit tests available for MMTk, using the harness as scaffolding. These tests can be run in the standard test infrastructure
using the 'mmtk-unit-tests' test set, or the shell script 'bin/unit-test-mmtk'. Possibly more usefully, they can be run from Eclipse.

To run the unit tests in Eclipse, build the mmtk harness project (see above), and add the directory testing/tests/mmtk/src to your build path
(navigate to the directory in the package explorer pane in eclipse, right-click>build-path>Use as Source Folder). Either open one of the test
classes, or highlight it in the package explorer and press the 'run' button.

MMTk Tutorial

Overview

This tutorial will build up a sophisticated garbage collector from scratch, starting with the empty shell that is the "collector" in MMTkNoGC
(collector is a misnomer in this case since NoGC does not collect), and gradually adding functionality.

This tutorial will tell you the mechanics of a collector in MMTk. It will tell you but it does not tell you anything about . The tutorialbuilding how why
thus serves two purposes: 1) to give you some insight into the mechanics of MMTk (but the underlying reasons or design rationale), and 2)not
show you that the mechanics of building a non-trivial GC in MMTk is not hard, hopefully giving you confidence to start exploring MMTk more
deeply.

1.
a.

b.

c.

2.
a.

b.
c.

d.
i.

e.
i.

ii.

iii.

The current version of the tutorial was written with respect to the Jikes RVM just prior to 3.0.2. So please use either the head or
3.0.2 (if it is available).

1 Preliminaries

2 Building a Mark-sweep Collector

3 Building a Hybrid Copying/Mark-Sweep Collector

Building a Hybrid Collector

Extend the Tutorial plan to create a "copy-MS" collector, which allocates into a copying nursery and at collection time, copies nursery survivors
into a mark-sweep space. This plan does not require a write barrier (it is not strictly generational, as it will collect the whole heap each time the
heap is full). Later we will extended it with a write barrier, allowing the nursery to be collected in isolation. Such a collector would be a generational
mark-sweep collector, similar to GenMS.

Add a Copying Nursery

In , make the following changes:TutorialConstraints
Override the method to return , reecting that we are now building a copying collector:movesObjects() true

@Override
public boolean movesObjects() { return true; }

Remove the restriction on default alloc bytes (since default allocation will now go to a bump-pointed space). To do this, remove
the override of .maxNonLOSDefaultAllocBytes()
Add a restriction on the maximum size that may be copied into the (default) non-LOS mature space:

@Override
public int maxNonLOSCopyBytes() { return
SegregatedFreeListSpace.MAX_FREELIST_OBJECT_BYTES;}

In , add a nursery space:Tutorial
Create a new space, , of type . The new space will initially be a , so provide asnurserySpace CopySpace from-space false
the third argument. Initialize the space with a virtual memory region consuming 0.15 of the heap by passing " "contiguous 0.15
and " " as arguments to the constructor of (more on this later). Create and initialize a new integer constant totrue VMRequest
hold the descriptor for this new space:

public static final CopySpace nurserySpace = new CopySpace("nursery",
DEFAULT_POLL_FREQUENCY, false, VMRequest.create(0.15f, true));
public static final int NURSERY = nurserySpace.getDescriptor();

Add the necessary import statements
Add to the and phases of , prior to the existing calls to .nurserySpace PREPARE RELEASE collectionPhase() msTrace
Pass to indicating that the nursery is a during collection.true nurserySpace.prepare() from-space
Fix accounting so that accounts for space consumed by :Tutorial nurserySpace

Add to the equation in ,nurserySpace getPagesUsed()
Since initial allocation will be into a copying space, we need to account for copy reserve:

Change , replacing with getPagesRequired() msSpace.requiredPages() (nurserySpace.requiredPages()
* 2)
Add a method to override which returns getCollectionReserve() nurserySpace.reservedPages() +

,super.getCollectionReserve()
Add a method to override , returning ,getPagesAvail() super.getPagesAvail()/2

Add nursery allocation

In , replace the free-list allocator () with add a nursery allocator. Add an instance of , calling it TutorialMutator MarkSweepLocal CopyLocal
. The constructor argument should be :nursery Tutorial.nurserySpace

1.
2.

3.
4.

a.
b.

1.

1.

2.

1.
a.

b.

2.

change to use rather than .alloc() nursery.alloc() ms.alloc()
remove the call to from since there is no special post-allocation work necessary for the newmsSpace.postAlloc() postAlloc()
copy space. The call to should remain conditional on .super.postAlloc() allocator != Tutorial.ALLOC_DEFAULT
change the check within to check against and to return .getAllocatorFromSpace() Tutorial.nurserySpace nursery
adjust collectionPhase

replace call to with ms.prepare() nursery.reset()
remove call to since there are no actions necessary for the nursery allocator upon release.ms.release()

Add copying to the collector

In add the capacity for the collector to allocate (copy), since our new hybrid collector will perform copying.TutorialCollector

Add local allocators for both large object space and the mature space:

private final LargeObjectLocal los = new LargeObjectLocal(Plan.loSpace);
 private final MarkSweepLocal mature = new MarkSweepLocal(Tutorial.msSpace);

Add an method that conditionally allocates to the LOS or mature space:allocCopy()

@Override
public final Address allocCopy(ObjectReference original, int bytes,
 int align, int offset, int allocator) {
 if (allocator == Plan.ALLOC_LOS)
 return los.alloc(bytes, align, offset);
 else
 return mature.alloc(bytes, align, offset);
}

Add a method that conditionally calls LOS or mature space post-copy actions:postCopy()

@Override
public final void postCopy(ObjectReference object, ObjectReference typeRef,
 int bytes, int allocator) {
 if (allocator == Plan.ALLOC_LOS)
 Plan.loSpace.initializeHeader(object, false);
 else
 Tutorial.msSpace.postCopy(object, true);
}

Make necessary changes to TutorialTraceLocal

Add clauses to and :nurserySpace isLive() traceObject()
Add the following to :isLive()

if (Space.isInSpace(Tutorial.NURSERY, object))
 return Tutorial.nurserySpace.isLive(object);

Add the following to :traceObject()

if (Space.isInSpace(Tutorial.NURSERY, object))
 return Tutorial.nurserySpace.traceObject(this, object, Tutorial.ALLOC_DEFAULT);

Add a new method, which is necessary for all copying collectors:precopyObject()

2.

3.

1.

2.

3.

4.

@Override
public ObjectReference precopyObject(ObjectReference object) {
 if (object.isNull()) return object;
 else if (Space.isInSpace(Tutorial.NURSERY, object))
 return Tutorial.nurserySpace.traceObject(this, object, Tutorial.ALLOC_DEFAULT);
 else
 return object;
}

Add a new method, which identifies those objects which do not move (necessary for copyingwillNotMoveInCurrentCollection()
collectors):

@Override
public boolean willNotMoveInCurrentCollection(ObjectReference object) {
 return !Space.isInSpace(Tutorial.NURSERY, object);
}

With these changes, Tutorial should now work. You should be able to again build a BaseBaseTutorial image and test it against any benchmark.
Again, if you use you can see the movement of data among the spaces at each garbage collection.-X:gc:verbose=3

Checkpoint

This captures all of the above steps with respect to Jikes RVM 3.0.1. You can use the archive to verify you've completedzip file
the above steps correctly.

Building a Mark-sweep Collector

We will now modify the collector to perform allocation and collection according to a mark-sweep policy. First we will change theTutorial
allocation from bump-allocation to free-list allocation (but still no collector whatsoever), and then we will add a mark-sweep collection policy,
yielding a complete mark-sweep collector.

Free-list Allocation

This step will change your simple collector from using a bump pointer to a free list (but still without any garbage collection).

Update the constraints for this collector to reflect the constraints of a mark-sweep system, by updating asTutorialConstraints
follows:

gcHeaderBits() should return .MarkSweepSpace.LOCAL_GC_BITS_REQUIRED
gcHeaderWords() should return .MarkSweepSpace.GC_HEADER_WORDS_REQUIRED
The method should be added, overriding one provided by the base class, and shouldmaxNonLOSDefaultAllocBytes()
return (because this reflects the largest object size that canSegregatedFreeListSpace.MAX_FREELIST_OBJECT_BYTES
be allocated with the free list allocator).

In , replace the with a :Tutorial ImmortalSpace MarkSweepSpace
rename the variable to (right-click, RefactorRename...)noGCSpace msSpace
rename the variable to (right-click, RefactorRename...)NOGC MARK_SWEEP
change the string that identifies the space from "default" to "mark-sweep"
change the type and static initialization of appropriately (msSpace MarkSweepSpace msSpace = new

).MarkSweepSpace("ms", DEFAULT_POLL_FREQUENCY, VMRequest.create())
add an import for and remove the redundant import for .MarkSweepSpace ImmortalSpace

In , replace the (a bump pointer) with aTutorialMutator ImmortalLocal
(a free-list allocator)MarkSweepLocal

change the type of and change the static initializer appropriately.nogc
change the appropriate import statement from to .ImmortalLocal MarkSweepLocal
rename the variable to (right-click, RefactorRename...)nogc ms

Fix to initialize the mark-sweep header:postAlloc()

http://cs.anu.edu.au/people/Steve.Blackburn/misc/mmtk-tutorial/tutorial-04.zip

4.

1.

2.

if (allocator == Tutorial.ALLOC_DEFAULT) {
 Tutorial.msSpace.postAlloc(ref);
} else {
 super.postAlloc(ref, typeRef, bytes, allocator);
}

With these changes, Tutorial should now work, just as it did before, only exercising a free list (mark-sweep) allocator rather than a bump pointer
(immortal) allocator. Create a build, and test your system to ensure it performs just as it did before. You may notice that itsBaseBaseTutorial
memory is exhausted slightly earlier because the free list allocator is slightly less efficient in space utilization than the bump pointer allocator.

Checkpoint

This captures all of the above steps with respect to Jikes RVM 3.0.2. You can use the files in the archive to verify you'vezip file
completed the above steps correctly.

Mark-sweep Collection.

The next change required is to perform mark-and-sweep collection whenever the heap is exhausted. The poll() method of a plan is called at
appropriate intervals by other MMTk components to ask the plan whether a collection is required.

Change so that it inherits constraints from a collecting plan:TutorialConstraints

public class TutorialConstraints extends StopTheWorldConstraints

The plan needs to know how to perform a garbage collection. Collections are performed in phases, coordinated by data structures dened
in , and have global and thread-local components. First ensure the global components are behaving correctly. These areStopTheWorld
defined in (which is implicitly).Tutorial global

Make extend (for stop-the-world garbage collection) rather than (the superclass of Tutorial StopTheWorld Plan
: StopTheWorld public class Tutorial extends StopTheWorld

Rename the variable to (right-click, RefactorRename...)trace msTrace
Add code to ensure that Tutorial performs the correct global collection phases in :collectionPhase()

First remove the assertion that the code is never called (if (VM.VERIFY_ASSERTIONS)
).VM.assertions._assert(false);

Add the phase, preparing both the global tracer () and the space (), after first performing theprepare msTrace msSpace
preparation phases associated with the superclasses. Using the commented template in

, set the following within the clause for :Tutorial.collectionPhase() phaseId == PREPARE

if (phaseId == PREPARE) {
 super.collectionPhase(phaseId);
 msTrace.prepare();
 msSpace.prepare(true);
 return;
}

Add the phase, again preparing the global tracer ():closure msTrace

if (phaseId == CLOSURE) {
 msTrace.prepare();
 return;
}

Add the phase, releasing the global tracer () and the space () before performing the releaserelease msTrace msSpace
phases associated with the superclass:

http://cs.anu.edu.au/people/Steve.Blackburn/misc/mmtk-tutorial/tutorial-1.zip

2.

3.

if (phaseId == RELEASE) {
 msTrace.release();
 msSpace.release();
 super.collectionPhase(phaseId);
 return;
}

Finally ensure that for all other cases, the phases are delegated to the superclass, uncommenting the following after all
of the above conditionals:

super.collectionPhase(phaseId);

Add a new accounting method that determines how much space a collection needs to yield to the mutator. The method,
, overrides the one provided in the superclass:getPagesRequired StopTheWorld

@Override
public int getPagesRequired() {
 return super.getPagesRequired() + msSpace.requiredPages();
}

Add a new method that determines whether an object will move during collection:

@Override
public boolean willNeverMove(ObjectReference object) {
 if (Space.isInSpace(MARK_SWEEP, object))
 return true;
 return super.willNeverMove(object);
}

Next ensure that Tutorial correctly performs collection phases. These are defined in .local TutorialCollector
Make extend :TutorialCollector StopTheWorldCollector

Extend the class ().public class TutorialCollector extends StopTheWorldCollector
Import .StopTheWorldCollector
Remove some methods now implemented by : , , andStopTheWorldCollector collect() concurrentCollect()

.concurrentCollectionPhase()
Add code to ensure that performs the correct global collection phases in :TutorialCollector collectionPhase()

First remove the assertion that the code is never called (if (VM.VERIFY_ASSERTIONS)
).VM.assertions._assert(false);

Add the phase, preparing the local tracer () after first performing the preparation phases associated withprepare trace
the superclasses. Using the commented template in , set the following within theTutorial.collectionPhase()
clause for :phaseId == PREPARE

if (phaseId == Tutorial.PREPARE) {
 super.collectionPhase(phaseId, primary);
 trace.prepare();
 return;
}

Add the phase, again preparing the local tracer ():closure trace

if (phaseId == Tutorial.CLOSURE) {
 trace.completeTrace();
 return;
}

3.

4.

Add the phase, releasing the local tracer () before performing the release phases associated with therelease trace
superclass:

if (phaseId == Tutorial.RELEASE) {
 trace.release();
 super.collectionPhase(phaseId, primary);
 return;
}

Finally ensure that for all other cases, the phases are delegated to the superclass, uncommenting the following after all
of the above conditionals:

super.collectionPhase(phaseId, primary);

Finally ensure that Tutorial correctly performs local mutator-related collection activities:
Make extend :TutorialMutator StopTheWorldMutator

Extend the class: .public class TutorialMutator extends StopTheWorldMutator
Import .StopTheWorldMutator

Update the mutator-side collection phases:
Add the phase to which prepares mutator-side data structures(namely the per-threadprepare collectionPhase()
free lists) for the of a collection:start

if (phaseId == MS.PREPARE) {
 super.collectionPhase(phaseId, primary);
 ms.prepare();
 return;
}

Add the phase to which re-initializes mutator-side data structures (namely the per-threadrelease collectionPhase()
free lists) after the of a collection:end

if (phaseId == MS.RELEASE) {
 ms.release();
 super.collectionPhase(phaseId, primary);
 return;
}

Finally, delegate all other phases to the superclass:

super.collectionPhase(phaseId, primary);

With these changes, Tutorial should now work with both mark-sweep allocation collection. Create a build, and test yourand BaseBaseTutorial
system to ensure it performs just as it did before. You can observe the effect of garbage collection as the program runs by adding

 to your command line as the first argument after . If you run a very simple program (such as), you might-X:gc:verbose=1 rvm HelloWorld
not observe any garbage collection. In that case, try running a larger program such as a DaCapo benchmark. You may also observe that the
output from indicates that the heap is growing. Dynamic heap resizing is normal default behavior for a JVM. You can override-X:gc:verbose=1
this by providing minimum () and maximum () heap sizes (these are standard arguments respected by all JVMs. The heap size should-Xms -Xmx
be specified in bytes as an integer and a unit (, ,), for example: .K M G -Xms20M -Xmx20M

Checkpoint

This captures all of the above steps with respect to Jikes RVM 3.0.2. You can use the patch to verify you've completedzip file
the above steps correctly.

Optimized Mark-sweep Collection.

http://cs.anu.edu.au/people/Steve.Blackburn/misc/mmtk-tutorial/tutorial-2.zip

1.

2.

1.
2.
3.

4.

1.
2.
3.

4.

MMTk has a unique capacity to allow specialization of the performance-critical scanning loop. This is particularly valuable in collectors which have
more than one mode of collection (such as in a generational collector), so each of the collection paths is explicitly specialized at build time,
removing conditionals from the hot portion of the tracing loop at the core of the collector. Enabling this involves just two small steps:

Indicate the number of specialized scanning loops and give each a symbolic name, which at this stage is just one since we have a very
simple collector:

Override the getter method in :numSpecializedScans() TutorialConstraints

@Override
public int numSpecializedScans() { return 1; }

Define a constant to represent our (only) specialized scan in (we will call this scan "mark"):Tutorial

public static final int SCAN_MARK = 0;

Register the specialized method:
Add the following line to method in .:registerSpecializedMethods() Tutorial

TransitiveClosure.registerSpecializedScan(SCAN_MARK, TutorialTraceLocal.class);

Add as the first argument to the superclass constructor for :Tutorial.SCAN_MARK TutorialTraceLocal

public TutorialTraceLocal(Trace trace) {
 super(Tutorial.SCAN_MARK, trace);
}

Checkpoint

This captures all of the above steps with respect to Jikes RVM 3.0.2. You can use the archive to verify you've completedzip file
the above steps correctly.

MMTk Tutorial Preliminaries

Getting MMTk and Jikes RVM and Eclipse working.

Download Jikes RVM version 3.0.1 or later
Ensure you can and the RVM.Build Run
Ensure you can build and run the configuration (build with: , run withBaseBaseNoGC bin/buildit localhost BaseBaseNoGC
something like:

dist/BaseBaseNoGC_ia32-linux/rvm HelloWorld

Note that this configuration perform garbage collection so can only run small benchmarks which do not exhaust availabledoes not
memory. This configuration will be used as the basis for the tutorial.

Ensure that your source is (and editable) within an IDE such as Eclipse.successfully imported

Creating The Base Tutorial Collector

Copy the package to (copy and paste the package in Eclipse).org.mmtk.plan.nogc org.mmtk.plan.tutorial
Rename the constituent classes from to (use Refactor->Rename on each class in Eclipse).NoGC* Tutorial*
Create a new configuration file, , with a single line: build/configs/BaseBaseTutorial.properties
config.mmtk.plan=org.mmtk.plan.tutorial.Tutorial
Build and run the resulting collector:

build with something like:

bin/buildit localhost BaseBaseTutorial

http://cs.anu.edu.au/people/Steve.Blackburn/misc/mmtk-tutorial/tutorial-3.zip

4.

1.

2.

3.

4.

run with something like:

dist/BaseBaseTutorial_ia32-linux/rvm HelloWorld

Checkpoint

This captures all of the above steps with respect to Jikes RVM 3.0.1. You can use the patch to verify you've completedpatch
the above steps correctly.

MMTk Tutorial Mark-Sweep

We will now modify the collector to perform allocation and collection according to a mark-sweep policy. First we will change theTutorial
allocation from bump-allocation to free-list allocation (but still no collector whatsoever), and then we will add a mark-sweep collection policy,
yielding a complete mark-sweep collector.

Free-list Allocation

This step will change your simple collector from using a bump pointer to a free list (but still without any garbage collection).

Update the constraints for this collector to reflect the constraints of a mark-sweep system, by updating asTutorialConstraints
follows:

gcHeaderBits() should return .MarkSweepSpace.LOCAL_GC_BITS_REQUIRED
gcHeaderWords() should return .MarkSweepSpace.GC_HEADER_WORDS_REQUIRED
requiresLOS() should return (because the free list cannot accommodate large objects).true

In , replace the with a :Tutorial ImmortalSpace MarkSweepSpace
rename the variable to (right-click, RefactorRename...)defSpace msSpace
rename the variable to (right-click, RefactorRename...)DEF MARK_SWEEP
change the type and static initialization of appropriately (msSpace MarkSweepSpace msSpace = new

).MarkSweepSpace("ms", DEFAULT_POLL_FREQUENCY, VMRequest.create())
add an import for and remove the redundant import for .MarkSweepSpace ImmortalSpace

In , replace the (a bump pointer) with aTutorialMutator ImmortalLocal
(a free-list allocator)MarkSweepLocal

rename the variable to (right-click, RefactorRename...)def ms
change the type of and change the static initializer appropriately.ms
change the appropriate import statement from to .ImmortalLocal MarkSweepLocal

Fix to initialize the mark-sweep header:postAlloc()

if (allocator == Tutorial.ALLOC_DEFAULT) {
 Tutorial.msSpace.postAlloc(ref);
 } else {
 super.postAlloc(ref, typeRef, bytes, allocator);
 }

With these changes, Tutorial should now work, just as it did before, only
exercising a free list (mark-sweep) allocator rather than a bump pointer
(immortal) allocator. Create a build, and test your system BaseBaseTutorial
to ensure it performs just as it did before. You may notice that its memory
is exhausted slightly earlier because the free list allocator is slightly less
efficient in space utilization than the bump pointer allocator.

Checkpoint

This captures all of the above steps with respect to Jikes RVM 3.0.1. You can use the patch to verify you've completedpatch
the above steps correctly.

Mark-sweep Collection.

The next change required is to perform mark-and-sweep collection whenever

http://cs.anu.edu.au/people/Steve.Blackburn/misc/mmtk-tutorial/tutorial-00.patch
http://cs.anu.edu.au/people/Steve.Blackburn/misc/mmtk-tutorial/tutorial-01.patch

1.

2.

1.

the heap is exhausted. The poll() method of a plan is called at appropriate
intervals by other MMTk components to ask the plan whether a collection
is required.

Change so that it inherits constraints from a collecting plan:TutorialConstraints

public class TutorialConstraints extends StopTheWorldConstraints

The plan needs to know how to perform a garbage collection. Collections are performed in phases, coordinated by data structures dened
in , and have global and thread-local components. First ensure the global components are behaving correctly. These areStopTheWorld
defined in (which is implicitly).Tutorial global

Make extend (for stop-the-world garbage collection) rather than (the superclass of Tutorial StopTheWorld Plan
: StopTheWorld public class Tutorial extends StopTheWorld

Rename the variable to (right-click, RefactorRename...)trace mstrace
Add code to ensure that Tutorial performs the correct global collection phases in :collectionPhase()

First remove the assertion that the code is never called (if (VM.VERIFY_ASSERTIONS)
).VM.assertions._assert(false);

Add the phase, preparing both the global tracer () and the space (), after first performing theprepare msTrace msSpace
preparation phases associated with the superclasses. Using the commented template in

, set the following within the clause for :Tutorial.collectionPhase() phaseId == PREPARE

if (phaseId == PREPARE) {
 super.collectionPhase(phaseId);
 msTrace.prepare();
 msSpace.prepare(true);
 return;
 }

Add the phase, again preparing the global tracer ():closure msTrace

if (phaseId == CLOSURE) {
 msTrace.prepare();
 return;
 }

Add the phase, releasing the global tracer () and the space () before performing the releaserelease msTrace msSpace
phases associated with the superclass:

if (phaseId == RELEASE) {
 msTrace.release();
 msSpace.release();
 super.collectionPhase(phaseId);
 return;
 }

Finally ensure that for all other cases, the phases are delegated to the superclass, uncommenting the following after all
of the above conditionals:

super.collectionPhase(phaseId);

Add a new accounting method that determines how much space a collection needs to yield to the mutator. The method,
, overrides the one provided in the superclass:getPagesRequired StopTheWorld

1.

2.

3.

@Override
 public int getPagesRequired() {
 return super.getPagesRequired() + msSpace.requiredPages();
 }

Add a new method that determines whether an object will move during collection:

@Override
 public boolean willNeverMove(ObjectReference object) {
 if (Space.isInSpace(MARK_SWEEP, object))
 return true;
 return super.willNeverMove(object);
 }

Remove the method , falling back on the superclass, .collectionRequired() StopTheWorld
Next ensure that Tutorial correctly performs collection phases. These are defined in .local TutorialCollector

Make extend :TutorialCollector StopTheWorldCollector
Extend the class ().public class TutorialCollector extends StopTheWorldCollector
Import .StopTheWorldCollector
Remove some methods now implemented by : , , andStopTheWorldCollector collect() concurrentCollect()

.concurrentCollectionPhase()
Add code to ensure that performs the correct global collection phases in :TutorialCollector collectionPhase()

First remove the assertion that the code is never called (if (VM.VERIFY_ASSERTIONS)
).VM.assertions._assert(false);

Add the phase, preparing the local tracer () after first performing the preparation phases associated withprepare trace
the superclasses. Using the commented template in , set the following within theTutorial.collectionPhase()
clause for :phaseId == PREPARE

if (phaseId == Tutorial.PREPARE) {
 super.collectionPhase(phaseId, primary);
 trace.prepare();
 return;
 }

Add the phase, again preparing the local tracer ():closure trace

if (phaseId == Tutorial.CLOSURE) {
 trace.completeTrace();
 return;
 }

Add the phase, releasing the local tracer () before performing the release phases associated with therelease trace
superclass:

if (phaseId == Tutorial.RELEASE) {
 trace.release();
 super.collectionPhase(phaseId, primary);
 return;
 }

Finally ensure that for all other cases, the phases are delegated to the superclass, uncommenting the following after all
of the above conditionals:

super.collectionPhase(phaseId, primary);

3.

1.

2.

Finally ensure that Tutorial correctly performs local mutator-related collection activities:
Make extend :TutorialMutator StopTheWorldMutator

Extend the class: .public class TutorialMutator extends StopTheWorldMutator
Import .StopTheWorldMutator

Update the mutator-side collection phases:
Add the phase to which prepares mutator-side data structures(namely the per-threadprepare collectionPhase()
free lists) for the of a collection:start

if (phaseId == MS.PREPARE) {
 super.collectionPhase(phaseId, primary);
 ms.prepare();
 return;
 }

Add the phase to which re-initializes mutator-side data structures (namely the per-threadrelease collectionPhase()
free lists) after the of a collection:end

if (phaseId == MS.RELEASE) {
 ms.release();
 super.collectionPhase(phaseId, primary);
 return;
 }

Finally, delegate all other phases to the superclass:

super.collectionPhase(phaseId, primary);

With these changes, Tutorial should now work with both mark-sweep allocation collection. Create a build, and test yourand BaseBaseTutorial
system to ensure it performs just as it did before. You can observe the effect of garbage collection as the program runs by adding

 to your command line as the first argument after . If you run a very simple program (such as), you might-X:gc:verbose=1 rvm HelloWorld
not observe any garbage collection. In that case, try running a larger program such as a DaCapo benchmark. You may also observe that the
output from indicates that the heap is growing. Dynamic heap resizing is normal default behavior for a JVM. You can override-X:gc:verbose=1
this by providing minimum () and maximum () heap sizes (these are standard arguments respected by all JVMs. The heap size should-Xms -Xmx
be specified in bytes as an integer and a unit (, ,), for example: .K M G -Xms20M -Xmx20M

Checkpoint

This captures all of the above steps with respect to Jikes RVM 3.0.1. You can use the patch to verify you've completedpatch
the above steps correctly.

Optimized Mark-sweep Collection.

MMTk has a unique capacity to allow specialization of the performance-critical scanning loop. This is particularly valuable in collectors which have
more than one mode of collection (such as in a generational collector), so each of the collection paths is explicitly specialized at build time,
removing conditionals from the hot portion of the tracing loop at the core of the collector. Enabling this involves just two small steps:

Indicate the number of specialized scanning loops and give each a symbolic name, which at this stage is just one since we have a very
simple collector:

Override the getter method in :numSpecializedScans() TutorialConstraints

public int numSpecializedScans() { return 1; }

Define a constant to represent our (only) specialized scan in (we will call this scan "mark"):Tutorial

public static final int SCAN_MARK = 0;

http://cs.anu.edu.au/people/Steve.Blackburn/misc/mmtk-tutorial/tutorial-02.patch

2.

1.
2.
3.

4.
5.

1.
2.

3.
4.

5.

Register the specialized method by adding the following line to method in .:registerSpecializedMethods() Tutorial

TransitiveClosure.registerSpecializedScan(SCAN_MARK, TutorialTraceLocal.class);

Checkpoint

This captures all of the above steps with respect to Jikes RVM 3.0.1. You can use the patch to verify you've completedpatch
the above steps correctly.

Preliminaries

Getting MMTk and Jikes RVM and Eclipse working.

Download Jikes RVM version 3.0.2 or later (or use hg tip)
Ensure you can and the RVM.Build Run
Ensure you can build and run the configuration (build with: , run withBaseBaseNoGC bin/buildit localhost BaseBaseNoGC
something like:

dist/BaseBaseNoGC_ia32-linux/rvm HelloWorld

Note that this configuration perform garbage collection so can only run small benchmarks which do not exhaust availabledoes not
memory. This configuration will be used as the basis for the tutorial.

Ensure that your source is (and editable) within an IDE such as Eclipse.successfully imported
Set up an for the NoGC plan using the MMTk Test Harness.Eclipse Run configuration

Creating The Base Tutorial Collector

Copy the package to (copy and paste the package in Eclipse).org.mmtk.plan.nogc org.mmtk.plan.tutorial
Rename the constituent classes from to (use Refactor->Rename on each class within the NoGC* Tutorial*

 package in Eclipse).org.mmtk.plan.tutorial
Modify your MMTk Harness Eclipse Run Configuration to use the new Plan, and click 'Run' to run it.
Create a new configuration file, , with a single line: build/configs/BaseBaseTutorial.properties
config.mmtk.plan=org.mmtk.plan.tutorial.Tutorial
Build and run the resulting collector:

build with something like:

bin/buildit localhost BaseBaseTutorial

run with something like:

dist/BaseBaseTutorial_ia32-linux/rvm HelloWorld

Checkpoint

This captures all of the above steps with respect to Jikes RVM 3.0.2. You can use the files within thezip file
archive to verify you've completed the above steps correctly.

http://cs.anu.edu.au/people/Steve.Blackburn/misc/mmtk-tutorial/tutorial-03.patch
http://cs.anu.edu.au/people/Steve.Blackburn/misc/mmtk-tutorial/tutorial-0.zip

	User Guide
	Architecture
	Adaptive Optimization System
	AOS Controller
	Cost Benefit Model
	Jikes RVM's compilers
	Life Cycle of a Compiled Method
	Logging and Debugging
	Threading and Yieldpoints

	Compilers
	Baseline Compiler
	JNI Compiler
	Optimizing Compiler
	BURS
	Compiler Optimization Comparison Chart
	IR
	Method Compilation
	OptTestHarness

	Core Runtime Services
	Bootstrap
	Class and Code Management
	Exception Management
	JNI
	Object Model
	Thread Management
	VM Callbacks
	VM Conventions

	Magic
	Compiler Intrinsics
	Raw Memory Access
	Unboxed Types
	Uninterruptible Code

	MMTk
	Memory Allocation in JikesRVM
	Scanning Objects in JikesRVM
	Using GCSpy

	Care and Feeding
	Building the RVM
	Building on Windows
	Building Patched Versions
	Cross-Platform Building
	Primordial Class List
	Using buildit

	Configuring the RVM
	Debugging the RVM
	GDB Stack Walking

	Experimental Guidelines
	Get The Source
	Modifying the RVM
	Adding a New GC
	Coding Conventions
	Coding Style
	Compiler DNA
	Editing JikesRVM in an IDE

	Profiling Applications with Jikes RVM
	Quick Start Guide
	Running the RVM
	Testing the RVM
	External Test Resources
	Test Run Descriptions

	The MMTk Test Harness

	MMTk Tutorial
	Building a Hybrid Collector
	Building a Mark-sweep Collector
	MMTk Tutorial Preliminaries
	MMTk Tutorial Mark-Sweep

	Preliminaries

