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ABSTRACT
IoT devices (e.g., voice assistants) that execute real-time speech
commands are proliferating fast in our daily lives. In such a device,
detecting the correct keyword spoken as a command triggers the
supported function, and hence keyword spotting (KWS) using a
machine learning (ML) model is the pivotal task in their functioning.
However, KWS is vulnerable to adversarial machine learning (AML)-
based attacks through which an adversary can craft an adversarial
audio sample that sounds like a benign keyword to a human, but is
detected as a different keyword by the KWS pipeline. In this paper,
we propose SpotOn, a novel KWS pipeline that both recovers from
AML attacks, as well as detects whether an attacker is using the
device to generate AML noise. Using the Google speech command
dataset, we demonstrate that SpotOn provides reasonable accuracy
in correctly detecting keywords in the absence or presence of AML
attacks. Through careful optimizations, we enable SpotOn to process
streaming speech input on resource-constrained IoT devices. Overall,
the design of SpotOn provides critical insights into making voice-
controlled IoT devices suitable for safety-critical systems.

CCS CONCEPTS
• Security and privacy → Systems security; • Computer systems
organization → Embedded systems.
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1 INTRODUCTION
Voice assistants have proliferated our daily lives accepting a myriad
of spoken commands, from setting timers and alarms, to control-
ling our home appliances, to fetching directions as we drive. While
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cloud support still handles Automatic Speech Recognition (ASR)
and other web-based APIs for these voice controlled services, a
significant portion of audio processing is being increasingly pushed
to the IoT or edge platform owned by the user [23, 27]. Increase
in responsiveness as cloud communication latencies are replaced
with on-device computations, as well as privacy of voice data of the
users, are two main reasons of moving audio processing from cloud
to IoT platforms. Embedded hardware platforms with multi-core
processors and even neural network accelerators are being sold now
to support on-device audio processing for voice assistants [9, 49, 50].
There is a simultaneous growth in efficient software libraries for
audio processing at the edge [19, 54].

Wake-word detection i.e. detecting words like "Alexa", "OK
Google", "Hello Siri" etc. that voice assistants constantly wait for, to
know whether they are being addressed by the user, keyword spotting
i.e. spotting a variety of words from a fixed vocabulary to trigger
different functions or web APIs on the voice assistant like playing
a song on Spotify or fetching directions from Google Maps, and
mapping word-to-intent for controlling specific tasks on smart de-
vices like changing colors of smart lights or altering cooking modes
on microwave-ovens, are now primarily handled by IoT platforms.
We term these tasks as Keyword Spotting or KWS in this paper. In
a typical KWS pipeline, the IoT device first extracts the features,
e.g., mel-frequency cepstral coefficients (MFCC), from the received
audio sample, then feeds the features to a machine learning (ML)
model to detect the keyword, and take appropriate actions based on
the detected word.

Unfortunately, similar to other domains using ML models (e.g.,
those in the computer vision domain [12]), the models used in KWS
are vulnerable to adversarial machine learning (AML)-based at-
tacks [6]. An attacker can intelligently craft an adversarial sam-
ple which sounds like a benign sample to any human listening to
the keyword, but when the adversarial sample is fed to the KWS
pipeline during its operation phase, it is detected as a different key-
word [8, 16, 29, 38, 44, 59]. This kind of attack can render a voice
assistant difficult to use for a device owner in the best case, and cause
breach of security (e.g. opening a smart lock instead of closing it),
in the worst case. As more and more audio ML happens at the edge
to enhance responsiveness and data privacy, user vulnerability can
gradually increase, unless appropriate safe-guards are placed within
the IoT platforms. This paper presents SpotOn, an end-to-end system
for adversarially robust keyword spotting on resource constrained
IoT platforms.

As ML based audio processing traditionally happened in the cloud
using ASR models, a vast body of systems security papers target
the problem of Adversarial ML attacks and possible defences for
ASR models in the cloud [6, 42, 53, 55, 67]. These AML defences
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for ASR models on the cloud report two important metrics: (1) be-
nign accuracy, i.e., the probability of correctly detecting the original
sentence or phrase from the benign audio samples in the absence of
any attack, and (2) adversarial robustness, i.e., the probability of
correctly detecting the original sentence or phrase from the adversar-
ial sample despite the perturbations added by the attacker. However,
in SpotOn, we need a third critical metric to be evaluated, namely
(3) Runtime latency, i.e., the time taken to execute the KWS pipeline
with added AML defence for detecting the keywords. IoT platforms
have limited computational resources to even run the neural models
for keyword detection. However, the users should not detect any
perceptible latency due to added security. Thus the choice of AML
defence strategy in SpotOn needs to evaluated for computational
efficiency on resource-constrained IoT platforms, while maintaining
high benign accuracy and high adversarial robustness. This creates
interesting trade-offs not analyzed in prior work on AML defences
for cloud platforms.

Another research gap between AML defences for ASR models
on cloud and AML defences for KWS models on IoT platforms, is
the defence for ASR can rely on the significant length of the spo-
ken sentences and phrases for the ASR task. The authors in [67],
for example, use temporal dependencies in natural languages to
detect and remove adversarial noise. Keywords, on the other hand,
are short, and can be completely garbled by adversarial noise addi-
tion. The robustness a phrase gets from significant length, is absent
for a keyword. Thus special care needs to be taken to preserve its
robustness.

1.1 Main Contributions
We make four significant contributions in this paper, to make KWS
pipelines more robust on real IoT hardware platforms, that are cur-
rently being used as voice assistants.

Our first contribution is runtime attack recovery from AML
attacks. SpotOn uses a smart combination of robust neural network
model architecture, with audio input transformations, for recover-
ing from AML attacks at runtime, while the user is using the voice
assistant. There is a wide variety of neural network (NN) architec-
tures with dense layers, convolutions, memory cells, transformers
etc. – which all show high accuracy in spotting keywords, with
appropriate model training. However, does any of these NN archi-
tectures have any significant advantage in AML robustness? We
empirically examine this for the first time using 8 different neural
network architectures, and three categories of AML attacks (white
box, gray box and black box). The self-attention mechanism of trans-
former architecture gives best adversarial accuracy, as well as least
attack transferability. We therefore use transformer architecture as
the backbone of SpotOn. Transformer alone, however, do not give
the necessary adversarial robustness against all attacks, e.g. more
powerful white box attacks. We therefore add input transformations
to the audio, before MFCC features are extracted, to first decompose
the audio waveform, discard some information and then reconstruct
the audio by estimation. AML noise is significantly reduced through
this process, which gives the desired adversarial robustness, when
combined with the transformer model.

Our second contribution is runtime attack detection of black
and gray box AML attacks, on the IoT platform itself. SpotOn

detects whether the IoT platform is being used by an attacker to train
adversarial noise. In black-box and gray-box attacks, the attacker
buys the same IoT platform as the victim user. The attacker then
iteratively queries the IoT platform, using a target keyword that he
wishes to garble, fine-tuning the adversarial noise to be added to that
keyword, based on the responses received from the IoT platform.
SpotOn keeps a running fingerprint of audio keywords queried by
the user, and if consecutive keywords exceed the similarity threshold
with the running fingerprint, SpotOn decides that the device is being
queried to train AML noise. It therefore stops responding to further
audio inputs. The runtime attack detection works in parallel with the
runtime attack recovery, as SpotOn cannot decide whether it is being
used by a normal user or an attacker, without running the processing.
We use the multi-core capability of voice assistant IoT platforms,
for concurrent running of attack detection and recovery. If attack
is detected, the recovered detected keyword is suppressed, while
recovered detected keyword is returned or used in subsequent tasks,
if no attack is detected.

Our third contribution lies in extensive optimizations to execute
the runtime attack recovery and detection of SpotOn on resource
constrained IoT platforms, in real time. We note that on low-end
IoT devices, running the transformer model is not feasible due to
their extremely limited computing capability and storage constraints.
Hence, we optimize the transformer model for shortening the model
size and reducing the computational overhead without affecting its
accuracy. Reducing the number of layers in the transformer model,
fusing the neural network layers, magnitude based weight pruning,
integer quantization, mapping of resultant neural network to most
efficient ARMNN kernels that use SIMD and vector instructions –
are significant optimizations SpotOn uses to meet these strict latency
requirements on resource constrained IoT platforms.

Our fourth contribution lies in a detailed analysis whether non-
runtime AML defences are possible for KWS tasks. While SpotOn
runs at high benign accuracy and adversarial robustness and pro-
cesses streaming audio data at runtime, if we could reduce runtime
computations for AML defences, it would be a huge plus for resource
constrained IoT platforms. We examine traditional adversarial train-
ing as a non-runtime defence, where adversarial samples are added
when the KWS model is trained. This, however, is limited by generat-
ing all possible adversarial samples from different attacks. We build
a second novel non-runtime defence, based on a recent observation
that attack noise overfits to the NN model the attacker uses [4]. We
first extract the MFCC features from the received audio samples, at
runtime. However, rather than feeding the features directly to the
ML model, we perform a secret key-based feature permutation and
feed the permuted features to the utilized transformer model. One
specific device performs the same permutation during the training as
well as the operation phase of its model. However, different devices
perform different permutations based on their keys. Hence, during
the training phase, the permutation results in a unique set of model
parameters for the specific device. During the operation phase, this
prevents the adaptive attacker from gaining any advantage after ob-
taining the knowledge that a permutation is being employed as the
defence. This novel non-runtime defence works very well for gray
and black box attacks, but unfortunately cannot defend against white
box attack. Also, training millions of different KWS models with
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different feature shuffling, so that each voice assistant comes with a
unique KWS model, has it own operational constraints.

In summary, this paper presents SpotOn, a runtime system to
recover from AML attacks for voice assistants, and simultaneously
detect, if the assistant is being used to generate AML noise by an
attacker. Non-runtime defence alternatives are examined for compre-
hensiveness, but shown to have limitations. SpotOn has 98% benign
accuracy and a decent adversarial robustness against black, gray
and white box attacks, and has been carefully optimized to run in
real-time on streaming data, on resource constrained IoT platforms.

2 RELATED WORK
Adversarial Machine Learning (AML) attacks: Recent works
have demonstrated numerous adversarial machine learning based
attacks on different Voice processing systems (VPS). These attacks
aim to generate adversarial examples that cause the target VPS to
mis-classify the input. Such examples are skilfully crafted to trick
the system into producing incorrect results. Optimization algorithms
like Fast Gradient Sign Method (FGSM), Projected Gradient Descent
(PGD), and Particle Swarm Optimization (PSO) have been exten-
sively used in literature [14, 24] to produce such examples. Attacks
like Kenansiville [5] and HVC [13] utilize signal processing based
approaches to produce adversarial examples. Attacks like [3, 44]
involve playing adversarial examples via compromised speakers.
Metamorph [16] and Imperio [59] produce highly robust adversarial
examples that remain successful even when played over-the-air. We
use three representative AML attacks [8, 14, 29], that use the above
adversarial noise generation techniques, to evaluate SpotOn. Our
three AML attacks are of black, gray and white box categories re-
spectively, with the attacker having increasing information of the
neural network model being targeted.
Defences against AML attacks: A variety of defence mechanisms
are being developed to at least detect AML attacks, and also remain
robust against them if possible. Rajaratnam et al. [55] pre-process
input audio using compression, band-pass filtering, audio panning
and lengthening. The raw and pre-processed audios are then passed
through a neural network. The two outputs match when the input
is benign, and hugely vary when the input is adversarial. Kwon et
al. [42] modify the input audio by adding a low level distortion using
a low-pass filter. The additional distortion significantly alters the
classification output of the adversarial input while having a negli-
gible impact on the classification output of benign audio. Yang et
al. [67] assess additional pre-processing techniques like quantiza-
tion, down-sampling and local-smoothing. They also compare the
transcription of a subset of utterance with the transcription for the
entire utterance, and detect adversarial examples if the difference
exceeds a threshold. These defences were, however, later shown to
be incomplete by [63].

Liu and Ditzler [45] detect adversarial examples based on the
DNN’s quantization error. Däubener’s [20] neural networks are
trained to utilize the uncertainties in the DNN estimation to de-
tect adversarial examples. Eisenhofer et al. [25] use psychoacoustic
filtering and a band-pass filter, to remove frequencies above and be-
low human perception. They train neural network model to augment
it with psychoacoustic filtering and a band-pass filter. The resulting
adversarial examples generated from such a model force adversarial

perturbation to be in the human audible range. The legitimate user
can hear the adversarial noise, and therefore detect the presence of
an adversary.

All these defences detect the presence of an adversarial attack. But
they do not allow the VPS system to operate to a reasonable extent
in the presence of an attack. Given an audio, SpotOn mitigates the
effect of adversarial perturbation added, if any, and allows the model
to produce correct classification result for the input keyword. It also
runs on streaming audio on resource-constrained IoT platforms,
while all previous defences were demonstrated on the cloud on ASR
systems.
Attack prevention techniques: Apart from detection of adversarial
examples, there is another line of research focussing on prevention
of adversarial ML attacks. In the image domain, some work has been
done to evade query-based black box attacks. Stateful Detection [15]
and Prada [39] focus on banning users who submit attack queries
but are vulnerable against attackers who use multiple accounts to
submit attack queries. On the other hand, Blacklight [43] is account-
agnostic and prevents query-based black-box attacks by instantly
identifying attack queries regardless of who issued them. To the best
of our knowledge, we are the first to propose a defence to mitigate
query-based black-box attacks in audio domain.
Defence practicality on IoT: To protect our smart IoT devices
running KWS from adversarial ML attacks, the IoT device has
to run the defence mechanism alongside KWS. This has its own
challenges in terms of computational resources and latency. Success-
ful software projects like Microsoft’s open-source Edge Machine
Learning library (EdgeML) [51] show the power of embedded ML
on IoT devices. Compression of the deployed ML models using
quantization, pruning of the ML model weights [32, 48, 66, 68],
training small ML models with simpler architectures and fewer
weights [22, 31, 40, 41, 56], specialized accelerators for matrix mul-
tiplication and other operations, all are collectively contributing to
making IoT devices intelligent. SpotOn carefully leverages these
neural network optimization techniques, to run on streaming audio
data on resource-constrained IoT platforms, without hampering user
experience.

3 THREAT MODEL, SYSTEM GOALS AND
ARCHITECTURE

3.1 Conventional KWS Pipeline
Ideally, we would like to talk to our IoT devices as we verbally
communicate with our fellow human beings. In practice, this task is
facilitated by ASR, the holy grail for smart interactions, where long
phrases and full sentences of free-form conversations are transcribed
by IoT platforms. However, as current IoT platforms are constrained
in compute, storage and power, the full-fledged ASR is executed
through cloud interactions. When we ask Alexa to turn off the lights,
Siri to start heart-rate monitoring, or Google Assistant to play a
particular song, the IoT platform locally processes the wake-words
“Alexa”, “Hey Siri”, or “Ok Google”. On detecting the wake-word,
the device then connects to the corresponding Amazon, Apple, or
Google cloud service. The bigger phrases following the wake-word,
e.g., “turn-off the lights”, are deciphered in the cloud using more
powerful ML models, and the results are sent back to the device to
perform the necessary action.
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However, to minimize the latency in processing speech com-
mands, a small set of keywords, other than the cloud-triggering ones,
are also programmed in the platforms to be detected locally using
KWS. For example, in the command, “Alexa, stop”, the keyword
“stop” can be detected locally. Only if the device fails to detect any
keyword in the utterance, it forwards the audio samples to the cloud
for ASR. KWS is especially relevant for limited-function IoT plat-
forms like smart watches and fitness bands, which can do only a few
tasks like start GPS, stop step count, pick a phone call, etc. Each
keyword (e.g., start, stop, play, or pause) corresponds to a particu-
lar task that the device can perform, and can be locally deciphered
using KWS without the cloud interaction and internet connectivity.
In addition to providing low latency in executing speech commands,
running KWS locally mitigates the potential of losing privacy by
avoiding the need of forwarding the user’s speech samples to the
cloud.

Microphone

Received Audio
Sample Signal 

Processing 
Feature

Extraction

Classification

IoT Device

Correct
Keyword

Features

Figure 1: Conventional keyword spotting pipeline.
Figure 1 shows how KWS works on a IoT platform. When the

user speaks a keyword, the received audio input is sampled by the
platform’s microphone. Then, the sampled audio is processed using
conventional signal processing techniques to mitigate the effects of
the external noise, and the processed sample is utilized to extract
(MFCC) features. Finally, the extracted features are processed by
the trained and stored ML-based classification model (henceforth
referred to as the KWS model) to detect the keyword.

3.2 Representative AML Attacks
We use the following representative AML attacks to quantify the
performance of different defence strategies.
GA Attack: It [8] is a black-box attack on Speech Commands
classification model [57], where given a benign sample, attacker
needs only their output labels from the target KWS model to craft
adversarial samples. The GA attack aims for a particular target label,
and hence it is a targeted attack. It needs the exact keyword audio
it will manipulate using a gradient free genetic algorithm to train
its adversarial noise. The authors assume that generated adversarial
audio is being fed directly to the classification model.
RL Attack: It [29] is a gray-box attack that needs the probability
distribution across all keywords the KWS model can detect. The RL
attack tries not to give the correct output label, and hence it is an
untargeted attack. Using a deep reinforcement learning architecture,
it designs a real-time perturbation generator that approximates an op-
timal adversarial perturbation for future time points using observed
data. The real-time adversarial perturbation generator is trained us-
ing a non-real-time adversarial perturbation generator by applying
imitation learning and behavioural cloning technique.
CW Attack: It [14] is a white box targeted attack against Mozilla
DeepSpeech ASR. To generate an adversarial perturbation, an at-
tacker minimizes the CTC loss between the ASR output and the

target transcription. It is a targeted attack which aims to change the
input audio into a desired, pre-specified transcription. The attack
operates directly on the raw samples used as input for the classifier.
This attack method achieves a 100% success rate regardless of the
desired transcription or the initial audio sample. By starting with
arbitrary waveforms, such as music, it can effectively conceal speech
within audio that would not typically be identified as speech. More-
over, by selecting silence as the target, it can successfully hide audio
from speech-to-text systems.

The CW attack has been demonstrated on an ASR system [34].
How we port the attack for the KWS systems running on IoT plat-
forms has been described in our experimental setup (Section 3.7).

3.3 Threat Model
The attacker’s goal is to cause the IoT device of the victim to mal-
function, without physically accessing it. As shown in Figure 2, the
attacker plays an adversarial noise using a remote speaker such that
the actual speech data of the user, corrupted with the noise, gets
sampled by the IoT device’s microphone. Due to this attack, the
KWS model taking the corrupted input from the microphone, fails
to detect the keyword correctly. This can cause annoyance and diffi-
culty in the best case, for example, a smart door does not open as
instructed with the “open" keyword by the user. The attacker can
also violate the user safety in the worst case, for example, the smart
door opens even if the user does not utter the “open" keyword and
says something else.

Figure 2: Keyword spotting in an adversarial setting.
Adversarial Noise Generation While a naive attacker can play
a random noise on the speaker to garble the legitimate keyword
spoken by the user, an advanced attacker can utilize the adversarial
ML attacks to disrupt the correct functioning of ML models. That
is, the attacker can first learn (or train) an appropriate adversarial
noise for a specific keyword by interacting with the KWS model,
and then play this learned noise. Figure 3 shows the workflow for
the generation of the adversarial noise.

Figure 3: Adversarial noise generation.

Typically, adversarial ML attacks consists of three phases:
❶ Pre-processing Phase:, where an adversary records the speech
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commands spoken by the victim.
❷ Design Phase: The attacker then skilfully modifies the benign
audio clip till he obtains an adversarial audio which satisfies his
attack goal of outputting a false or attacker-controlled output.
❸ Attack Phase: The adversarial audio is fed to the target device.

3.4 SpotOn System Architecture
In this section, we focus on the problem of safeguarding our IoT
devices from malicious users. To solve this problem, there are two
issues that need to be resolved: (1) protection from being mis-used
by an adversary, and (2) getting the keywords correctly classified by
the IoT device in presence of AML attacks.

Input
Transformation

Compute
Fingerprints

Fingerprints
Match?

Input

Audio Fingerprints

No

Transformed-Audio

Discard
output

Yes

Correct output

Attack Recovery

Attack Detection

Robust KWS Model

Figure 4: Proposed KWS pipeline called SpotOn.

We propose an end-to-end pipeline, SpotOn, that prevents an
adversary from misusing an IoT device and provides correct model
output even when the input is compromised by an adversary. For
robust KWS, SpotOn comprises of two parallel-running modules: a
detection module and a recovery module. Upon receiving an input,
the detection module executes an algorithm to determine whether
the input is an attack query. If so, the output is blocked, so the
attacker can’t learn what the model’s output is, which ultimately
hinders his attack process. The recovery module parallelly applies
input transformations based on signal processing to process the
input. The transformations based pre-processing makes sure that
any adversarially crafted noise present in the input gets filtered out
before being fed to the model for classification. We elaborate on
the design choices undertaken in the making of SpotOn in section 4
and 5.

3.5 SpotOn System Goals
SpotOn aims to optimize the following evaluation metrics.
❶ Benign Accuracy: It is the accuracy of the target KWS model
on the original or benign audio sample in the absence of any AML
attack. This should be high.
❷ Adversarial Robustness: It is the accuracy of the KWS model
against adversarial samples, i.e., benign audios perturbed by the
adversarial noise. This should be high.
❸ Attack Detection Accuracy: It is the percentage of query-based
attacks detected before the attack completes. It should be high.
❹ SpotOn Runtime: It is desirable to be able to process streaming
audio input without missing any input samples. Hence, low run-time
latency is necessary.

3.6 IoT Platforms
Table 1 presents the specifications of the two hardware platforms we
use for our implementation and performance evaluations. The Rasp-
berry Pi platform is analogous to a smart home system, like Alexa
and Siri. Sensortile is analogous to wearables like smart watches.
Both platforms use keyword spotting extensively to trigger different
actions they are programmed for and should be robust against AML
attacks.

Table 1: Specifications of the platforms used for evaluation.

Device Processor RAM Frequency
Raspberry Pi Quad-core Cortex-A72 4 GB 1.5 GHz
Sensortile [61] Cortex-M4 128 KB 80 MHz

3.7 Experimental Dataset:
We use a subset of the Google speech command dataset [65], as
shown in Appendix A. We implement a variety of neural network
architecture-based KWS models as shown in Table 2. More details
about these KWS models are presented in Appendix B. These imple-
mentations allow us to assess the contribution of model architecture
towards adversarial robustness.

Table 2: KWS model architectures and their notations.

Model Architecture Notation Benign
Accuracy (%)

Convolutional Neural Network cnn 95.14
Deep Neural Network dnn 87.58
Depthwise Separable Convolutional Neural Network dscnn 95.55
Convolutional Recurrent Neural Network crnn 97.09
Gated Recurrent Units gru 96.52
Long Short Term Memory Network lstm 82.42
Basic Long Short Term Memory Network b_lstm 96.32
Transformer trans 94.69

For GA attack, we randomly choose 50 audio clips from each
of the ten classes. We produce adversarial samples wherein for
each audio clip, we obtain nine audio clips corresponding to nine
other target classes, generating a total of 4,500 (=500*9) adversarial
samples. We have such a set of 4,500 adversarial samples for each
KWS model. To implement RL attack, we train the RL algorithm-
based adversarial model corresponding to a given KWS model using
30,000 audio samples from the dataset. The remaining 8,500 audio
samples are used as the test data which is neither seen by the victim
KWS model nor the adversarial model during its training. Then, the
adversarial model takes each unseen test data sample as the input
and generates a suitable adversarial noise. The 8,500 benign samples
perturbed by the adversarial noise become our adversarial samples
for a given KWS model. We repeat the procedure for each KWS
model, generating 8,500 adversarial samples for each. Similarly,
to adapt CW attack for KWS, we replaced DeepSpeech with a
transformer-based KWS model. For each class c of the ten classes,
90 benign audios are selected randomly from the rest of the 9 classes.
The target class for these 90 audios is set as c.The attack pipeline
is then run for these 900 audios to perturb them using CW attack to
generate adversarial audios.
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4 SPOTON: RUNTIME RECOVERY FROM
AML ATTACKS

In this section, we present the recovery module of SpotOn. We
discuss the design choices made in SpotOn to counter an attack if
the IoT device receives an adversarial input. This essentially means
the KWS model outputs correct classification keyword even when
an adversarial input is given.

4.1 Searching for a robust model architecture
In this section, we empirically measure the performance of various
KWS models in terms of both benign accuracy and adversarial
robustness. The objective is to determine whether there exists a
model that is robust enough to adversarial attacks.

Table 2 shows the benign accuracy and Table 3 shows the adver-
sarial robustness values for different KWS models. We observe that
the benign accuracy of all models is > 85%. As such, any of these
models can be used for KWS task. However, in Table 3, against
the GA attack, we find the adversarial robustness drops drastically
to 1−20%, for all models except the transformer. The transformer
model has a less drastic drop, with an adversarial accuracy of around
58%. Moreover, with the RL attack, the adversarial accuracy of all
models other than the transformer, drops to 30− 65%. The trans-
former model is very robust against the RL attack, maintaining the
robustness of more than 90%. CW attack, a white box attack is the
strongest attack among the three attacks being considered in this
work. Even the transformer model shows only 17% adversarial ro-
bustness towards CW attack. Evaluating other smaller models for
CW attack does not make sense as it is clear they will perform much
worse.

Table 3: Adversarial robustness of different KWS models.

Model Adversarial Robustness (%)
GA Attack RL Attack

cnn 11.22 61.13
dnn 1.29 64.66

dscnn 7.29 55.49
crnn 17.18 59.74
gru 9.38 49.34
lstm 9.44 34.29

basic-lstm 16.80 56.61
trans 57.99 90.01

Therefore, despite the fact that all models’ benign accuracy is suf-
ficient for practical application in IoT devices, they fail significantly
in terms of their resistance against AML attacks. The adversarial
robustness data in Table 3 show that some neural network models
are impacted more than others, and the transformer model is least
impacted.

4.2 Is ensemble of non-transformer models more
robust?

As shown above in Table 3, the KWS models (except for the trans-
former model) do not perform well in the face of the AML attacks.
To increase the adversarial robustness, one potential approach is
to employ an ensemble of non-transformer KWS models [2]. The
ensemble can be visualised as a giant neural network architecture

where each of the models provides the probabilities for each key-
word. To output the final keyword, different aggregation methods
can be used to combine the output probabilities, e.g. average of
the probabilities obtained from all models or the average across a
random subset of models. As we consider an adaptive adversary, the
adversarial sample training can adapt itself accordingly, i.e., the aver-
age probability value can be used to generate the adversarial samples.
We find that the robustness against the GA attack is still only 13%
with the ensemble approach. Robustness against RL attack (Table 4)
is also poor.

Table 4: Benign and adversarial accuracy for the RL attack with
the ensemble of seven non-transformer KWS models.

Aggregation Method Benign Accuracy Adversarial Robustness
(Mean/SD) (Mean/SD)

Average 97.73 66.52
Randomly pick 4 models 97.36/0.09 63.72/0.26
Randomly pick 1 model 92.98/0.21 55.25/0.26

Essentially, the probability distributions across keywords is so
similar across different KWS models that an ensemble also gives the
same distribution. Hence, the ensemble is as useful as an individual
KWS model for the attacker, making the ensemble approach less
effective as a defence.

4.3 Why are transformers more robust against
AML?

Transformer models are currently employed as the de-facto neural
network architecture in the computer vision domain because of their
high accuracy and excellent adversarial robustness. We also learn
from the evaluations in Section 4.1 that the Transformer is the most
robust model.
Self-attention mechanism in transformer To understand where
the transformer architecture’s adversarial robustness stems from, we
analyze the effectiveness of its self-attention mechanism.
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Figure 5: (a) Benign audio sample corresponding to the keyword
“Stop" and the corresponding adversarial noise in the GA and RL
attacks. (b) Attention masks generated by the transformer model
on the benign and adversarial audio samples show minimal
changes.

Figure 5a shows the benign audio sample for an instance of the
“Stop" keyword, and the noise generated for this particular audio
sample in the GA and RL attacks, respectively. Figure 5b shows the
attention masks generated in the transformer model on the benign
sample and the two adversarial samples. It is interesting to see in
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Figure 5b that even in the presence of adversarial noise, the attention
mask remains almost intact. This robustness of the attention mask has
also been observed in the vision domain, and potentially increases
the robustness against adversarial perturbations in KWS.

4.4 Attack transferability across models
We next evaluate attack transferability for the different neural net-
works. An AML attack is said to be transferable across models, if it
can successfully reduce accuracy of (target) KWS models other than
the (source) one it was trained with. This is relevant if the target IoT
device cannot be physically accessed by the adversary, then he will
not be able to query that model for the output label in the GA attack
or output the probability distribution across labels in the RL attack.
In that case, it has to produce the adversarial noise by querying other
KWS models (source model) it can access, and use that noise to
attack the model on the target device (target model).

Our evaluation results are shown in Table 5 and Table 6. We
do not evaluate CW attack for transferability as being a white-box
attack, it inherently assumes access to target model. In Table 5, we
observe that the RL attack is transferable across the models as the
robustness values in the non-diagonal cells are in the same range as
in the diagonal cells. Table 6 shows that the GA attack, however, is
not transferable across the models as the robustness values in the
non-diagonal cells are significantly higher than in the diagonal cells.

We finally focus on the transferability results for the transformer
model for both attacks. Independent of whichever model the adver-
sary learns with, the target device can be robust to both attacks if
it uses the transformer model (the last columns in Tables 5 and 6).
In other words, the transformer model not only provides robust-
ness when the adversarial sample is generated using the transformer
model but also when the adversarial samples are generated using
other KWS models. This further encourages us in using the trans-
former model in SpotOn for KWS tasks to improve adversarial
robustness.

4.5 Enhancing robustness with input
transformations

Transformer model alone cannot defend against powerful attacks
like GA and CW, with an adversarial robustness of 58% and 17%
respectively. Therefore, there is still some necessity of improvement
in the adversarial robustness of transformers. In this section, we
combine the notions of input transformation functions along with
the transformer model, to boost the robustness numbers above 80%
usability threshold.

Prior works have already applied Input-transformations includ-
ing audio compression, quantization-dequantization, down- and up-
sampling, and band-pass filtering. Even though the majority of these
transformations are capable of detecting adversarial samples, they
are useless against an adaptive attacker, who is well aware of the
defence mechanism. However, there exist certain transformations
that are more robust than others, even while facing an adaptable
adversary.

Waveguard [37] employs audio input transformations, Linear
Predictive Coding (LPC), and Mel Spectrogram Extraction and In-
version (Mel) to remove the effects of the adversarial noise in ASR.

These transformations compress audio and produce perceptually
informed representations.

Mel transformation comprises of extraction and inversion step.
Extraction step decomposes the input audio into time and frequency
components using the short-time Fourier transform (STFT). From
the complex STFT coefficients, the phase information is discarded
leaving behind only the magnitude spectrogram. This magnitude
spectrogram is then compressed to obtain Mel Spectrogram. There-
after, the inverse step begins wherein the Mel spectrogram is utilized
to estimate the magnitude spectrogram which in turn is utilized to es-
timate the phase information. The estimated magnitude spectrogram
and phase information are then used by inverse STFT to reconstruct
the audio.

LPC transformation divides the input audio into overlapping win-
dows. LPC coefficients for each window are estimated using a linear
regression method. The number of LPC coefficients determine the
compression level of the original audio. To reconstruct the audio
from the estimated LPC coefficients, a random-noise excitation sig-
nal is used.

It is the reconstruction phase in both the transformations that
potentially removes the adversarial perturbation, therefore yielding a
clean audio. To get around these transformations, an adversary has to
add a perturbation that could be retained in the Mel spectrogram for
mel transformation and in LPC coefficients for LPC transform. This
essentially means the perturbation no longer remains imperceptible.

Legitimate audio inputs are long in ASR unlike a single word in
KWS. Whether the same filters can defend KWS against adversarial
attacks, as effectively as they defend ASR, need to be empirically
examined.

We use the KWS models with the different neural network archi-
tectures and present the benign accuracy and adversarial robustness
values corresponding to the Mel and LPC filter-based input trans-
formations in Figure 6. As seen from Figure 6a, unfiltered audios
have around 90% benign accuracy and 80% adversarial robustness
for all non-transformer models. Adding the transformations on the
input audios reduces these benign accuracy values a little, but for
most of the models it still remains around 80%. For the transformer
model, the benign accuracy remains above 95% even after applying
the transformations. The effect of transformations in the absence of
attacks is, therefore, bit detrimental for the non-transformer models.

The GA attack drastically affects the adversarial robustness of all
KWS models, as seen from the pink bars in Figure 6b. The robustness
of all models, other than the transformer, with the unfiltered audios, is
between only 0-20% for the GA attack. The two filtering techniques
boost the adversarial robustness, as seen from the cyan and green
bars in Figure 6b, but the maximum observed adversarial robustness
lies below 80% for the non-transformer models. While as for the
transformer model, Mel filter boosts the adversarial accuracy from
58% to 82%. As seen from the adversarial robustness values shown
in Figure 6c, none of the two filtering mechanisms is effective against
the RL attack for most of the models. While as for CW attack, the
Mel filter greatly boosts the adversarial robustness of transformer
model from 10% to 91% as shown in Table 7. Thus, the adversarial
robustness of transformer model towards the GA and CW attacks,
can improve with the input-transformations like the Mel filter.
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Table 5: Transferability of the RL attack across KWS models.

Target Model
Source Model cnn dnn dscnn crnn gru lstm b_lstm trans
cnn 61.13 66.99 57.80 64.91 50.98 37.62 62.05 89.73
dnn 60.69 64.66 59.08 63.93 51.04 36.32 61.18 91.22
dscnn 59.61 65.21 55.49 64.06 50.47 37.33 60.87 90.51
crnn 58.92 62.39 53.45 59.74 49.84 34.14 56.55 89.91
gru 60.53 64.69 55.93 63.06 49.34 33.18 57.31 89.77
lstm 60.84 66.12 57.92 64.88 51.72 34.29 60.38 90.33
b_lstm 61.52 63.25 58.89 63.22 51.89 33.89 56.61 90.27
trans 67.30 65.37 65.50 65.76 57.43 65.79 71.76 90.01

Table 6: Transferability of the GA attack across KWS models.

Target Model
Source Model cnn dnn dscnn crnn gru lstm b_lstm trans
cnn 11.22 60.64 77.29 79.16 78.67 77.98 80.49 89.37
dnn 87.99 1.29 90.87 90.82 86.65 86.42 91.52 93.56
dscnn 81.62 69.67 7.29 82.49 84.73 83.64 87.27 92.11
crnn 74.93 63.96 70.22 17.18 75.27 75.13 78.13 89.37
gru 81.64 55.80 84.02 85.44 9.38 63.71 85.31 91.98
lstm 82.09 53.29 84.60 84.00 61.33 9.44 83.69 90.75
b_lstm 71.98 56.07 71.73 70.62 68.47 63.36 16.80 87.28
trans 82.02 73.04 87.95 86.48 84.62 84.28 87.68 57.99
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(a) Benign audio samples.
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(b) Adversarial audios generated with GA.
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(c) Adversarial audios generated with RL.

Figure 6: KWS accuracy of the conventional model (without any additional filter), and models with Mel and LPC filters.

Table 7: Adversarial Robustness of transformer model with LPC
and Mel Filter towards Carlini-Wagner attack.

No Filter LPC Filter Mel Filter
10.33 87.67 91.22

From the above evaluation, it is evident that applying input trans-
formations to non-transformer models does not yield good ad-
versarial robustness. Transformer model alone also does not help
against GA and CW attack. Hence, combination of both input
transformation and choice of robust model is critical for SpotOn.

5 SPOTON: RUNTIME DETECTION OF
ATTACKER QUERIES

In this section, we discuss the attack detection module of SpotOn.
This module is responsible for ensuring the IoT device can not be
used by an attacker to generate the attack samples.

For query-based attacks, an attacker repeatedly queries a target
model. The attacker starts with a benign audio that he wants to
make adversarial by perturbing it iteratively, checking the output
of each intermediate audio by sending it to the target model. The
output of the query determines the next perturbation to be added.
This process continues till he obtains a perturbed audio which is
being mis-classified by the model. In this process, attacker sends
hundreds to thousands of queries to the model. To prevent such type
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of attacks, there should be a mechanism to differentiate between
legitimate audios and attack queries. The user should receive the
model output for the legitimate audio while as an attacker should not
receive any output for the attack query. We can essentially stop the
attack from occurring if we prevent the attack queries from reaching
the model.

In a white-box setting, where an attacker has perfect knowledge
of the model architecture and its parameters, an attacker generates
an adversarial audio by directly interacting with the victim model.
Such type of attacks can be prevented by concealing the model
inside secure enclaves. Schemes like [10, 36, 46, 52, 58] protect the
model by keeping either the whole model or its critical layers inside
the secure enclaves. These secure enclaves prevent unauthorized
access from untrusted parties besides ensuring confidentiality of the
intermediate results.

In contrast, black-box attacks allow the attacker to conduct query-
based attacks by querying the model to retrieve either the whole
classification probability vector or just the classification label. Thus,
although the attacker has no knowledge of the model, he still suc-
ceeds in performing the attack by receiving the model output to his
attack queries. We therefore propose SpotOn, a detection mecha-
nism to detect attack queries against DNN models. SpotOn not only
stops the attack from happening, but also aids in recovery from the
attack. We next discuss the steps involved in the detection of attack
queries. The detection procedure consists of two steps, ❶ comput-
ing fingerprints of incoming audio and ❷ comparing and matching
fingerprints.
Audio Fingerprints: Similar to how fingerprints are used to identify
people, audio fingerprinting is a technique for matching or iden-
tifying an audio based on its distinctive features. It entails estab-
lishing a fingerprint of the audio data that can be compared to a
database of already-existing fingerprints to identify matches. Numer-
ous works [7, 26, 33, 64] on audio fingerprinting exist in literature.
We choose Olaf [60] as it is specifically designed for embedded
platforms. Explaining the working of Olaf is out of scope of this
paper.
Computing and Matching Fingerprints: Spoton computes finger-
print of each incoming audio before feeding it to the model. The
fingerprint comprises of a number of fingerprint objects. These ob-
jecs are secure-one way hashes and therefore not easy to reverse.
Since the attacker builds his attack by making changes to successive
attack queries, most parts of the consecutive attack queries remain
the same. We aim to capture this similarity among attack queries.

After extracting the fingerprints from an audio, we compare them
with the existing fingerprints. A match of certain fingerprint objects
will detect an audio as an attack query. The amount of match is
determined by a threshold value. We experimented with a number
of threshold settings and discovered that 0.1 worked best. As the
attack queries discovered using this approach won’t be sent to the
model for inference, the attacker’s ability to launch the attack will
be hindered. For legitimate audios, we find all the fingerprint objects
are distinct. Hence they are successfully forwarded to the model for
inference.

We evaluate the above approach on GA attack. GA attack with
an attack success rate of 87% needs 240 queries on an average to
generate an adversarial example. We take 10 benign audios from
each keyword class and generate adversarial examples from each

of them. Table 8 shows the results. We find that 96% of the attack
queries are getting detected within initial 1-2 queries.

Table 8: SpotOn’s Detection results

Without Prevention With Prevention
Attack Attack

Success
Rate

Average
#attack
queries

Attack
Detection

rate

Average
queries
to detect

GA 87% 240 99% 5

By blocking the model output for an adversary, SpotOn effectively
prevents an adversary from crafting adversarial samples. Thus,
SpotOn not only helps in producing correct classification output
for adversarial examples, but also prevents device mis-use.

6 SPOTON: OPTIMIZATIONS FOR IOT
PLATFORMS

SpotOn strengthens the KWS pipeline in two ways: (1) transform-
ing the input audio with signal-processing based filters, and (2)
by bolstering the model with the transformer architecture. Exist-
ing transformer-based models are large in size and computationally
heavy. For example, the Keyword Transformer (KWT) model [11],
inspired by the Vision Transformer (ViT) from the image classifica-
tion task, contains 5.5 million model parameters, requiring 28 MB of
space to be stored on the disk. It fits the Raspberry PI 4 IoT platform
(hardware specifications given in Table 1), with 4 GB RAM and
support for SD card of any arbitrary size. On wearable IoT platforms
like Sensortile with only 1 MB of flash memory for model storage
and 128 KB of RAM, the KWT model will not even fit on the device,
let alone run! As SpotOn strengthened KWS pipeline is designed to
run on resource-constrained IoT platforms, we next describe several
optimizations we implement in SpotOn for practical deployment on
resource-constrained IoT platforms.

6.1 Model Optimization for IoT Deployment
We apply several optimizations to the original KWT model with the
aim to fit the optimized model within the limited RAM and flash
size of a low-end IoT device and improve the KWS runtime latency.
SpotOn equipped with the optimized model should be able to process
streaming audio data on a device with a slow CPU processor, and
with hundreds of KBs of RAM and flash.
❶ Smaller model architecture: The KWT model inspired by the
ViT model, has three self-attention heads per layer. Each attention
head consists of a MLP layer with a significantly high dimension.
The output of the three heads is aggregated and passed to the next
layer. However, we observe that the voice data has a much lower
variability than image data, i.e., the images of the same object can
differ significantly while the audio samples of the same keyword
have similar spectrograms. This makes aggregating outputs from
three heads redundant, as shown in the spectrograms in Figure 7,
where the three spectrograms for the three self-attention heads of
the first layer of the KWT model show a very similar pattern. We,
therefore, reduce the number of attention heads in SpotOn.
❷ Layer fusion: Once the model has been trained, dead operations
are eliminated and successive expensive computations are fused to
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Figure 7: Spectrogram outputs corresponding to “Stop” ob-
served for the first three attention heads in the KWT model.

one faster combined operation. This reduces runtime latency without
affecting accuracy.
❸ Weight pruning: This technique has been inspired by the human
brain. Once the human brain has developed, it cuts connections
that have insignificant weights, in order to save on computation.
Similarly, once the model has been trained, we prune down weights
of magnitude below a threshold, which have an insignificant impact
on the model output.
❹ Integer quantization: The KWT model is initially trained us-
ing input data in “float32” dtype, with the model weights also in
“float32” dtype. Post-training, we quantize the model weights to
“int8” dtype, which reduces the storage requirement of each param-
eter of the model by 4x. Quantizing both weights and inputs also
reduces computational requirements. As model weights are fixed
post-training, the range of weights is known. The range of inputs is
estimated using a representative dataset, which samples about 100
examples from the dataset. This range estimation helps in maintain-
ing model accuracy post-quantization, as the quantized values are
still able to express the significant range of both weights and inputs.
❺ Kernel mapping: Hardware vendors release libraries of kernels
that are optimized for faster execution on their processors. For ex-
ample, ARM has released ARMNN and CMSIS-NN libraries for
Cortex-A application processors and Cortex-M micro-controllers
respectively, for faster execution of linear algebra and other op-
erators needed for neural networks. We map the functions of our
optimized model to these library functions, to take full advantage of
the hardware resources.

Specifically, we use the TensorFlow Lite Micro (TFLiteMicro)
library that uses the ARMNN or CMSIS-NN library under the
hood, depending on the deployment platform. We implement several
new operators for the KWT model using existing library functions.
For example, the operator tf.image.extract_patches is imple-
mented using space_to_batch_nd, reshape, split, stack, and
squeeze. space_to_batch_nd is implemented using transpose
and reshape. transpose is implemented using strided_slices
and reshape.

Table 9 shows the model size and inference latencies with and
without optimizations. Trans is the original KWT model which is 28
MB in size and takes 584 msecs to run on Raspberry PI 4. However,
this model cannot fit Sensortile, so the table has missing values there.
The optimized transformer model (Trans Opt.) takes 3.3 MB for PI
4 and only 500 KB for Sensortile. The difference between the sizes
of the Trans Opt. model between the two platforms comes from the
differences in their underlying software frameworks.

The Trans Opt. model processes 1 second of input audio, in 115
msecs on the PI 4 which has 1.5 GHz processor clock and quad-core
Cortex A-72 processors, and in 5 seconds on Sensortile which has

Table 9: Model Size and Latency.

Size (MB) Latency (ms)
Rpi Sensortile Rpi Sensortile

Trans 28 - 584 -
Trans Opt. 3.30 0.5 115 5226

80 MHz processor clock and single core Cortex-M4 processor. As
these models have to cope with streaming voice data without losing
any samples, these inference times dictate how much buffer will
be needed to hold incoming audio samples while ML processing is
going on. For PI 4, ping pong buffers of size two is enough, where
each buffer holds 1 second of incoming audio. While processing one
buffer with Trans Opt., another buffer stores incoming samples. For
Sensortile, six such buffers will be needed. As one second of audio
data takes only 32 KB to be stored in int8 format, both PI 4 and
Sensortile has enough storage to not miss any samples.

SpotOn equipped with the Trans Opt. model can therefore process
streaming data on both large and tiny wearable IoT platforms after
our careful optimizations. Raspberry PI 4 sees negligible latency to
get classification output, while Sensortile perceives a slight delay.
We will further improve this latency perceptibility of SpotOn on
wearable platforms in the future, with an additional focus on heating
and energy. Moreover, as shown in Appendix C, these optimizations
marginally reduces the adversarial robustness.

6.2 SpotOn Runtime
Given SpotOn strengthened KWS has to run on resource-constrained
IoT platforms, we need to analyze the defence’s processing time for
streaming audio data. In addition to the computations performed at
runtime by the transformer model, SpotOn’s detection module and
the component responsible for applying the Mel filter to the input
audio also add to the runtime computations, resulting in an increase
in runtime latency. We next measure the end-to-end runtime latency
of SpotOn on IoT platforms.

We implement and evaluate SpotOn on Raspberry Pi 4, which
is is analogous to a smart home system. The run-time breakup be-
tween the detection module (550ms), Mel filter (423 msecs) and
the transformer model (115 msecs) is given in Table 10. However,
as detection and recovery modules operate concurrently in SpotOn,
the full operation is completed in 800 ms. Thus, one second of au-
dio input takes 800ms on average, to be processed by SpotOn. The
processing time is significantly less than the buffering time, and
therefore guarantees no sample will be missed even with some stan-
dard deviation in processing time (40 msecs over 100 runs, as shown
in Table 10).

Table 10: SpotOn runtimes

Latency(ms) Std. Deviation(ms)
Mel Filter 423 64
Trans Model 115 21
Detection Module 550 12
SpotOn 800 40

SpotOn thus detects keywords on Raspberry Pi platform with
a reasonable accuracy in the absence of any attack, as well as in
presence of AML attacks, with a 800 msecs processing time for
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1 second of incoming audio. It thus perfectly meets the desired
values of the metrics we defined for our system, benign accuracy,
adversarial accuracy and runtime latency.

Devices like Alexa and Siri can therefore be effectively protected
against adversarial ML attacks using our defence pipeline which
comprises of input audio filtering and transformer-based KWS model
besides an attack detection module.

7 CAN RUN-TIME DEFENCES BE AVOIDED?
This section discusses additional defence strategies that are em-
ployed during model training phase. By training the model in a
specific way, these defences aim to harden the model and increase
its adversarial robustness. Such defences have the advantage of not
requiring IoT devices to execute a separate defence module, which
otherwise would increase runtime latency.

7.1 Adversarial Training
Adversarial training is one of the most effective defence strategies
against AML attacks in the computer vision literature [47, 62]. The
goal is to expose the victim ML model to adversarial examples
during training itself, so that the detrimental effects of attacks at
runtime are reduced. This is achieved by training the model with
adversarial examples, assuming the noise generation model used by
the attacker can be reproduced by the defenders. By learning the
features from the adversarial training data, the ML model is expected
to behave more robustly in an attack scenario.
Limitations of Adversarial training: A drawback of adversarial
training is that it necessitates having enough adversarial audios for
training as well as knowledge of the specifics of the attack strategy.
It is also unable to defend against new adversarial attacks.

7.2 Key-Based Feature Permutation
This defence is motivated by the work of Abdullah et al. [4]. In their
work, they claim that attack samples generated from optimization
attacks do not exhibit transferability even across models trained
with similar configurations. Thus, attack audios generated from
one model cannot fool another model trained with identical setup
(same architecture, hyperparameters, training data, random seed).
We leverage this limitation of optimization attacks to build a potential
defence.

In this defence, the features extracted from the received audio
sample are permuted before they are used for classification. This
permutation is done using a secret key which is known only to the
device and possibly the vendor supplying the device. The device per-
forms the same permutation during the training as well as operation
phase of the ML model, i.e., the model is trained with features per-
muted using the unique key, and the same key is used for permuting
the features at run-time for inference. Training using the unique key
results in a unique set of model parameters. Thus, each device has
a unique model and a unique way of permuting features. This miti-
gates the issue of the adaptive attacker gaining any advantage after
obtaining knowledge about the defence mechanism. The workflow
of this approach is shown in Figure 8

The number of extracted MFCC features is equal to the product
of two parameters viz. the number of sliding filters and the number
of Discrete Cosine Transform (DCT) coefficients computed for each

filter. In this work, we retain the sliding filters in their original
form while permuting the coefficients computed by each filter. We
highlight that the same permutation mapping must be utilized in each
filter to maintain the spectral correlation. Hence, given the number of
coefficients per filter as n, the number of possible permutations is n!.
With the typical value of n = 40, the feature permutation practically
prevents the attacker from guessing the model parameters of the
target device.

Feature
Permutation 

Correct
Keyword

Secret Key

Signal
Processing 

Feature
Extraction 

Classification
(Transformer)

Received  
Audio Sample

Figure 8: KWS pipeline with model strengthened with feature
permutation.
How to permute MFCC features? There could be multiple ways to
permute the extracted MFCC features, but not all of them provide the
desired values of benign accuracy and adversarial robustness. One
possible way is to permute the entire MFCC feature vector. With this
approach, for n features, n! permutations are possible. By permuting
the features in this way, we may produce a vast number of unique
models. The spectral correlation in the speech features is, however,
destroyed as features from nearby frames become distant. We have
observed poor benign accuracy as well as poor adversarial robustness
with such permutation (results omitted for space constraints). Thus,
although a large number of unique permutations are possible with
this approach, there exists an undesirable trade-off.

We keep the temporal windows of the MFCC features constant,
and shuffles the features within each window. This maintains the
larger temporal ordering within the audio frame, with shuffling done
at smaller time-scales. This approach thereby balances the require-
ment for a significant number of available unique permutations,
while maintaining high benign accuracy and adversarial robustness.
Importance of Feature Permutation We finally analyze the key
underlying hypothesis of this defence framework: that the adversarial
samples crafted by querying a model trained with features permuted
by a secret key k will not be very effective against a model trained
with features permuted with a secret key other than k. Figure 9
shows benign accuracy and adversarial robustness with conventional
KWS models, where input MFCC features are not permuted, vs.
models with MFCC features permuted. Benign accuracies and RL
adversarial robustness remain intact with feature permutation. GA
adversarial robustness greatly improves with feature permutation,
for all KWS models.

We specifically evaluate the effectiveness of the feature permuta-
tion mechanism on transformer-based KWS models. We train five
transformer-based KWS models, each using features permuted by a
unique key, ki, where i ∈ 1,5. These trained models are further used
to generate the adversarial samples using the two attacks. This way,
we obtain five sets of adversarial samples for each of the two attacks.
Finally, the adversarial samples generated with a particular model
are fed to the other four models to evaluate the adversarial accuracy.

The benign accuracy of the five models along with the conven-
tional model without any feature permutation is listed in Table 11.
We observe that the feature permutation does not adversely affect
the benign accuracy of the transformer model.
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(a) Benign audio samples.
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(b) GA adversarial audio samples.
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(c) RL adversarial audio samples.

Figure 9: KWS accuracy with and without feature permutation.
Table 11: Benign accuracy of Transformers using different keys.

Conventional Model k1 k2 k3 k4 k5

94.7 94.69 94.16 94.9 94.5 93.06

Table 12: Adversarial robustness of Transformers using different
keys against the GA attack.

Target Model
Source Model k1 k2 k3 k4 k5

k1 73.13 85.82 91.28 86.04 92.00
k2 89.98 54.95 93.44 88.66 94.08
k3 90.08 85.77 73.13 84.84 91.33
k4 92.66 88.00 92.51 60.60 93.2
k5 89.00 85.04 89.77 84.73 76.33

Table 13: Adversarial robustness of Transformers using different
keys against the RL attack.

Target Model
Source Model k1 k2 k3 k4 k5

k1 88.68 82.97 92.25 84.56 85.11
k2 89.32 84.77 92.64 85.12 90.08
k3 89.24 85.18 92.5 85.08 90.43
k4 88.72 83.56 92.41 84.88 85.98
k5 89.43 84.1 92.74 85.32 85.67

Table 14: Adversarial robustness of Transformers using different
keys against the CW attack.

Target Model
Source Model k1 k2 k3 k4

k1 16.66 18 19.77 30.66
k2 15.33 14.77 17.33 27.77
k3 16.44 14.77 20.22 29.33

The results corresponding to the GA, RL and CW attacks are
shown in Table 12, Table 13, and Table 14 respectively. It is evident
from these tables that in case of GA and RL attack, adversarial
examples generated using a particular permutation of the MFCC
features fed to the transformer model, are not able to fool the other
models using different feature permutations. Thus, having a unique

model in each device makes it difficult for the attacker to attack a
specific device even if it gets access to a similar device. However,
in case of CW attack, this defence does not seem promising as
adversarial audios are transferable to models other than their source
models as well.
Challenges: We next discuss the challenges of this defence scheme:
❶ Device specific model training: The proposed idea demands ev-
ery device to run a unique version of the KWS model. This requires
the vendor to train every single model separately with a unique key.
Upon training a transformer model with a sample random shuffle of
MFCC features, 90% accuracy is reached by the model within 500
epochs and 26 minutes of training time. Thus the per-device model
training overhead is reasonable. We try to overcome this overhead
by using SMT solvers like Gurobi [30] and Z3 [21]. Based upon
the recent advances in DNN verification [28], we use these solvers
to generate new models without actual re-training. The goal is to
obtain a new model by specifying a verification query on a model
which is satisfiable only when the original model can be modified
in a desired way. By specifying different constraints each time, the
solvers alter the original model and produce a new model within few
seconds. However, training a neural network with an SMT solver
has its own challenges [1]. We will therefore optimize further with
fine-tuning with pre-trained models, as part of our future work.
❷ Not applicable to all attacks: This defence does not seem ap-
plicable to all attacks as is evident from Table 14. Therefore, for
white-box attacks, more insights are needed.

8 CONCLUSION
Although the voice-based KWS is becoming increasing prevalent,
the existing literature fails to provide practical mechanisms for en-
hancing the robustness of KWS against adversarial ML attacks on
resource-constrained IoT devices. In this paper, we propose a system
SpotOn which provides reasonable benign accuracy and adversarial
robustness on IoT devices. SpotOn uses only a 3MB ML model
and runs within 800ms on an IoT platform. Our study provides the
intuition and paves the path for the development of novel signal
processing techniques and ML models not only from the perspective
to provide robustness against adversarial ML attacks, but also to
facilitate realtime speech processing on IoT devices.
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A GOOGLE SPEECH DATASET
Table 15 presents the details of the dataset used for experiments in
this paper.

Table 15: Utilized keywords from the Google speech dataset.

Keyword Total Samples
Samples for

Training
Samples for

Testing
Yes 4,044 3,000 1044
No 3,941 3,000 941
Up 3,723 3,000 723

Down 3,917 3,000 917
Left 3,801 3,000 801

Right 3,778 3,000 778
On 3,845 3,000 845
Off 3,745 3,000 745
Stop 3,872 3,000 872
Go 3,880 3,000 880

Total 38,546 30,000 8,546

B MACHINE LEARNING MODELS
Table 17 presents the architecture details of the different neural
networks used for experiments in this paper.
❶ Deep Neural Network (DNN): It is made up of Fully Connected
(FC) layers. Each layer is followed by a rectified linear unit (RELU)
based activation function. The output consists of a softmax layer that
outputs probabilities.
❷ Convolutional Neural Network (CNN): It comprises of convolu-
tional layers followed by RELU and a max-pooling layer, to reduce
feature dimensionality. To exploit the local spatial and temporal
features, it treats the speech input as an image and performs 2D
convolutions over it.
❸ Depth-wise Separable Convolutional Neural Network (DSCNN):
It convolves the input feature map with a 2D filter which is followed
by a point-wise convolution [18]. This reduces the parameters and
the number of computations. The output is obtained through pooling
and FC layers.
❹ Recurrent Neural Network (RNN): It feeds the output of the
current processing step as the input to the next processing step. If the
input sequence is long enough, RNNs fail to carry information from
earlier steps to later ones [69]. To mitigate this limitation, LSTM
and GRU cells have been developed [17, 35]. They have a gating
mechanism using which they regulate the flow of information and
capture long-term dependencies.
❺ Convolutional Recurrent Neural Network (CRNN): It com-
prises of a convolutional layer followed by an RNN layer and an FC
layer. The RNN layer is responsible for encoding the signal and is
made up of GRU cells. Using a mixture of CNN and RNN, CRNNs
are able to exploit both local and global temporal dependencies in
audio inputs.
❻ Transformer (TRANS): It comprises of encoder and decoder
units to compute self-attention (significance weights) across differ-
ent parts of the audio inputs. It also utilizes a multi-layer perceptron
(MLP) at the end of its pipeline.
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Table 16: SpotOn’s Recovery results

Attack GA RL CW
Model Transformer Trans Opt. Transformer Trans Opt. Transformer Trans Opt.

Only Model 57.99 51.17 99.21 94.73 10.33 8.0
LPC+Model 76.2 68.57 83.47 83.47 87.67 82.33
Mel+Model 82.2 73.88 78.58 73.49 91.22 86.67
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Figure 10: Benign accuracy of uncompressed and ONNX-compressed version of models in (a). Adversarial robustness with and without
transformer model optimizations in (b) and (c).

Table 17: KWS model architectures and sizes. C represents the
convolution layer and the numbers in parentheses correspond
to the number of convolution features, convolution filter height,
width, and stride along y-axis and x-axis directions, respectively.
L denotes the low-rank linear layer. For LSTM and GRU models,
the number in parentheses correspond to the number of memory
elements. DSC denotes depthwise separable convolution layer
and the number in the parentheses correspond to the number of
features, kernel size and stride in both time and frequency axes.

Model Architecture Size
cnn C(64,20,8,1,1)-C(64,10,4,1,1)-L(32)-FC(128) 3.8MB
dnn FC(144)-FC(144)-FC(144) 314KB

dscnn C(64,10,4,2,2)-DSC(64,3,1)-DSC(64,3,1)-
DSC(64,3,1)-DSC(64,3,1)-AvgPool

118KB

crnn C(48,10,4,2,2)-GRU(60)-GRU(60)-FC(84) 314KB
gru GRU(154) 317KB
lstm LSTM(144), Projection(98) 322KB

basic-lstm LSTM(118) 257KB
trans heads(3),encoders(12),dim(192),mlp-dim(768) 21.8MB

C PRACTICALITY VS. ADVERSARIAL
ROBUSTNESS TRADE-OFF

Figure 10a shows the benign accuracies of KWS models converted
to ONNX format. Trained models when converted to ONNX format
for deployment on the PI 4 platform, undergo some optimizations
discussed in Section 6.1 like layer fusion, dead layer removal, and
integer quantizations. As seen from the plot, these optimizations do
not seem to affect the benign accuracies of any model.

More interesting than benign accuracy, is the analysis of the
effect of model optimizations on adversarial robustness. On one
hand, we have highlighted the adversarial robustness of transformer
architecture in Section 4.3, arising from self-attention heads. On the
other hand, we have reduced self-attention heads in the transformer
model in Section 6.1 for practical deployment on IoT platforms.
We, therefore, need to evaluate how much self-attention is necessary
for adversarial robustness? Is there a trade-off between adversarial
robustness and practical deployment on IoT platforms?

Figure 10b and Figure 10c compare the original vs. optimized
transformer models, for adversarial robustness against attacks gen-
erated with all non-transformer KWS models listed along the x-
axis. Optimized transformer model (Trans Opt.) has the same ad-
versarial robustness against RL attack samples generated with all
non-transformer KWS models, as the conventional un-optimized
Transformer model (Figure 10c). Trans Opt. possesses nearly the
same adversarial robustness as the un-optimized transformer when
it comes to GA attack samples produced by non-transformer mod-
els. However, as shown in Table 16, the adversarial robustness of
transformer model post optimizations slightly drops from 99% to
95% for RL attack, 58 to 51% for GA attack and from 10% to 8%
against CW attack. Using input-transformations in combination with
optimized transformer model, can boost the robustness to 80%.

Our optimizations consider the characteristics of audio signals,
that one attention head per transformer layer is enough for audio
(Figure 7), while three have been used in the image classification do-
main. With such careful optimizations, optimized Transformer model
marginally reduces the adversarial robustness. This is an extremely
promising result, as in comparison to the original, un-optimized
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transformer model, these optimizations allow us to significantly re-
duce model size and runtime latency for practical IoT deployment
while maintaining benign accuracy and adversarial robustness.
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