Introduction to Vector Spaces

Why Vector Spaces?

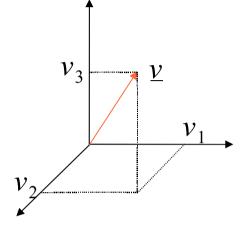
- Several issues better understood using vector spaces
 - point-to-point communications
 - error correction
 - multiple access

• Signals, codes etc. – vectors

Euclidean Space

- Vector $\underline{v} = (v_1, v_2, \dots, v_n)$
- Addition $\underline{v} + \underline{w} = (v_1 + w_1, v_2 + w_2, \dots, v_n + w_n)$
- Scalar Multiplication

$$a \underline{v} = (av_1, av_2, \dots, av_n)$$



 $\underline{e_n} = (0, 0, \dots, 1)$

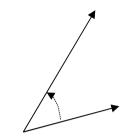
• Representation in-terms of basis

$$\underline{v} = \sum_{i=1}^{n} v_i \underline{e}_i$$

Euclidean Norm and Inner Product

• Inner Product of two vectors (related to angle)

$$\langle \underline{v}, \underline{w} \rangle = \sum_{i=1}^{n} v_i w_i = ||v|| ||w|| \cos(\underline{v} \not \prec \underline{w})$$



• Norm of vector

$$||v|| = \sqrt{\langle \underline{v}, \underline{v} \rangle} = \sqrt{\sum_{i=1}^{n} v_i^2}$$

Distance between vectors

$$d(\underline{v},\underline{w}) = ||\underline{v} - \underline{w}|| = \sqrt{\sum_{i=1}^{n} (v_i - w_i)^2}$$

General Vector Space

- Set of vectors $V = \{\underline{v}, \underline{w}, ...\}$
- Addition results in a vector $\underline{v} + \underline{w} \in V$
- Scalar Multiplication results in a vector

$$a \underline{v} \in V \forall a \in \mathbb{R}$$

 Basis vectors - set of linearly independent vectors (no vector in the set can be written as a linear combination of others)

 $\{\underline{e_1}, \underline{e_2}, \dots\} \subset V$ such that any vector can be written as linear combination of basis vectors

$$\underline{v} = \sum_{i} b_{i} \underline{e}_{i}$$

Normed and Inner Product Spaces

- Normed spaces are vector spaces with a norm $||\cdot||: V \rightarrow \mathbb{R}_+$
- Properties of norm
 - Positivity $||\underline{v}|| \ge 0 \quad \forall \underline{v} \in V$
 - Scalability $||a \underline{v}|| = |a| ||\underline{v}|| \quad \forall a \in \mathbb{R}$
 - Triangle inequality $||\underline{v} + \underline{w}|| \le ||\underline{v}|| + ||\underline{w}||$
- Inner product spaces are vector spaces with inner product $\langle ., . \rangle : V \times V \rightarrow \mathbb{C}$
- Properties of inner product
 - Conjugate Symmetry $\langle \underline{v}, \underline{w} \rangle = \overline{\langle \underline{w}, \underline{v} \rangle}$

- Linearity
$$\langle a \underline{v}, \underline{w} \rangle = a \langle \underline{v}, \underline{w} \rangle \quad \forall a \in \mathbb{R}$$

 $\langle \underline{v} + u, \underline{w} \rangle = \langle \underline{v}, \underline{w} \rangle + \langle u, \underline{w} \rangle \quad \forall \underline{v}, u, \underline{w} \in V$

- non-negativity $\langle \underline{v}, \underline{v} \rangle \ge 0$

Space of 1-Dim Finite Energy Functions

- Call set of all 1-dim finite energy functions L^2
- Vector space (denote function v(t) by \underline{v})
 - Addition Let $\underline{h} = \underline{v} + \underline{w}$ then h(t) = v(t) + w(t)
 - Scalar multiplication

Let $\underline{h} = a \underline{v}$ then h(t) = av(t)

Inner Product

$$\langle \underline{v}, \underline{w} \rangle = \int v(t) \overline{w(t)} dt$$

• Basis functions $\{e_f: f \in \mathbb{R}\}$

$$e_f = \exp\{2i\pi ft\} = \cos(2\pi ft) + i\sin(2\pi ft); i = \sqrt{-1}$$

Can represent any function as linear combination of complex exponentials

Space of Binary Vectors

• N-dimensional vector

 $\underline{v} = (v_{1}, v_{2}, \dots, v_{n}); v_{i} \in \{0, 1\}$

• Addition: add corresponding bits modulo 2

0 ⊕	0	0
0 ⊕	1	1
1 ⊕	0	1
1 ⊕	1	0

- Scalars for multiplication are either 0 or 1
- Subtraction and addition are equivalent, why?
- Norm: total number of 1's in vector