

Error Detection and Correction

Bit Errors

 Modulation
− provides some robustness against errors
− Cannot guarantee zero error

 Some applications require zero error
− Examples:

 How to detect errors?

Information bits Information bits

demodulation
Modulation

(BPSK, QAM etc) Channel
(attenuation,

distortion, noise)

Signal
elements

Distorted signal
elements

Channel Coding

 Channel coder - introduce some redundant bits
− Sort of signature correlated with information bits

 Channel decoder
− Check if signature and information match each other

Information bits Information bits

demodulation
Modulation

(BPSK, QAM etc)
Channel

(attenuation,
distortion, noise)

Signal
elements

Distorted signal
elements

Channel coder
(add redundancy) Channel decoder

(detect/correct errors)

How to Code?
 Ideas?

Block Codes

 Map each k-bit word to a unique n-bit word
 Split input data stream into blocks of k-bits

00000...00
00000...01
00000...10

.

.

.

.

.

.
11111...10
11111...11

000...00
000...01
000...10

.

.

.
111...10
111...11

k bits n bits

2k
2n

f : 0,1k0,1n

k-bitsk-bitsk-bitsk-bitsk-bitsk-bits

n-bitsn-bits n-bitsn-bits

Input to
block coder

Output from
block coder

f : 0,1k0,1n

Design of Block Code
 Is the following a good mapping f ?

00

01

10

11

0000

0001

1000

1001

Hamming Distance
 Hamming distance d(x,y) between two binary words x and y is

the number of differences between corresponding bits

 Examples: d(000,011)=2; d(011,101)=2;

 Minimum Hamming distance of a set of words is {x1 , x2 ,...}

dmin=min i , j
i≠ j

d x i , x j

Detecting Errors
 To guarantee the detection of up to s bit errors in all cases

dmins

Correcting Errors
 To guarantee correction of up to t errors in all cases

 How to design good codes?

dmin2 t

Repetition Codes
 Simply repeat each bit n times

 How many bit errors can we detect?

 How many bit errors can we correct?

Input: 10010...

Output: 111000000111000.....

(3,1) repetition code
Notation for Block Codes

(n,k)

Simple Parity Check Code
 n=k+1
 Add a bit to make total number of 1's even

 How many errors can we detect, correct?

k=4

Hamming Codes
 Multiple parity bits; each corresponds to different set of input

bits

r0=a0⊕a1⊕a2

r 2=a0⊕a1⊕a3

r1=a3⊕a1⊕a2

s0=b0⊕b1⊕b2⊕q0

s1=b3⊕b1⊕b2⊕q1

s2=b0⊕b1⊕b3⊕q2

Hamming Codes: Error Correction
 We can correct 1 bit errors by looking at the syndrome

s0=b0⊕b1⊕b2⊕q0

s1=b3⊕b1⊕b2⊕q1

s2=b0⊕b1⊕b3⊕q2

Syndrome 000 001 010 011 100 101 110 111

Error - q0 q1 b2 q2 b0 b3 b1

s0 s1 s2

Generator and Parity Check Matrices
 Write down generation of codewords and checking of parity in

matrix form

x=Ga s=H x
input

Generator
matrix

Parity check
matrixsyndrome

G=[
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 1 1
0 1 1 1
1 1 1 0

] H=[1 0 1 1 1 0 0
1 1 1 0 0 1 0
0 1 1 1 0 0 1]Hamming code (7,4) :

Convolutional Codes
 Do not split data into separate blocks like in block codes
 Compute parity bits over moving window

Data: 100011100110111110000011000001100100100110000000000111111.......

01001111101111001001001000100100100010001001001...........

 00011001010010100010001000100010011111111111000...........

.

.

.

.

10010010001001010010010000100000010010010001000...........

Convolutional
coder

x i
1

x i
2 

.

.

.

.
x i
m 

State:

O
ut

pu
t b

its

x i i=1 2 3 4

Trellis
 Correlation between one state and next since generated from

overlapping windows of data
 Captured by trellis

 Some paths valid, some not
 If path invalid, find “nearest valid path” using fast algorithm

called “Viterbi algorithm”

x0 x1 x2 x3 x4

