Error Detection and Correction

Bit Errors

- Modulation
 - provides some robustness against errors
 - Cannot guarantee zero error
- Some applications require zero error
 - Examples:
- How to detect errors?

- Channel coder introduce some redundant bits
 - Sort of signature correlated with information bits
- Channel decoder
 - Check if signature and information match each other

How to Code?

• Ideas?

Block Codes

- Map each *k*-bit word to a unique *n*-bit word
- Split input data stream into blocks of *k*-bits

Design of Block Code

• Is the following a good mapping *f* ?

Hamming Distance

- Hamming distance d(x,y) between two binary words x and y is the number of differences between corresponding bits
- Examples: *d*(000,011)=2; *d*(011,101)=2;
- Minimum Hamming distance of a set of words $\{x_1, x_2, ...\}$ is

$$d_{\min} = \min_{i, j \atop i \neq j} d(x_i, x_j)$$

Detecting Errors

• To guarantee the detection of up to s bit errors in all cases

 $d_{min} > s$

Correcting Errors

• To guarantee correction of up to *t* errors in all cases

 $d_{min} > 2t$

• How to design good codes?

Repetition Codes

• Simply repeat each bit *n* times

(3, 1) repetition code Input: 10010...

Output: 111000000111000.....

• How many bit errors can we detect?

• How many bit errors can we correct?

Notation for Block Codes (n,k)

Simple Parity Check Code

- n=k+1
- Add a bit to make total number of 1's even

• How many errors can we detect, correct?

Hamming Codes

Multiple parity bits; each corresponds to different set of input bits

$$r_0 = a_0 \oplus a_1 \oplus a_2$$

$$r_1 = a_3 \oplus a_1 \oplus a_2$$

$$r_2 = a_0 \oplus a_1 \oplus a_3$$

 $s_0 = b_0 \oplus b_1 \oplus b_2 \oplus q_0$ $s_1 = b_3 \oplus b_1 \oplus b_2 \oplus q_1$ $s_2 = b_0 \oplus b_1 \oplus b_3 \oplus q_2$

Hamming Codes: Error Correction

• We can correct 1 bit errors by looking at the syndrome

 $s_0 = b_0 \oplus b_1 \oplus b_2 \oplus q_0$ $s_1 = b_3 \oplus b_1 \oplus b_2 \oplus q_1$ $s_2 = b_0 \oplus b_1 \oplus b_3 \oplus q_2$

Syndrome $(s_0 s_1 s_2)$ 000 001 010 011 100 101 110 111 Error - $q_0 q_1 b_2 q_2 b_0 b_3 b_1$

Generator and Parity Check Matrices

 Write down generation of codewords and checking of parity in matrix form

Convolutional Codes

- Do not split data into separate blocks like in block codes
- Compute parity bits over moving window

Trellis

- Correlation between one state and next since generated from overlapping windows of data
- Captured by trellis

- Some paths valid, some not
- If path invalid, find "nearest valid path" using fast algorithm called "Viterbi algorithm"