
  

Error Detection and Correction



  

Bit Errors

 Modulation 
− provides some robustness against errors
− Cannot guarantee zero error

 Some applications require zero error
− Examples: ....

 How to detect errors?
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Channel Coding

 Channel coder - introduce some redundant bits
− Sort of signature correlated with information bits

 Channel decoder 
− Check if signature and information match each other
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How to Code?
 Ideas?



  

Block Codes

 Map each k-bit word to a unique n-bit word
 Split input data stream into blocks of k-bits

00000...00
00000...01
00000...10

.

.

.

.

.

.
11111...10
11111...11

000...00
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111...11

k bits n bits

2k
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f : 0,1k0,1n
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Design of Block Code
 Is the following a good mapping f ?
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Hamming Distance
 Hamming distance d(x,y) between two binary words x and y is 

the number of differences between corresponding bits 

 Examples: d(000,011)=2; d(011,101)=2;

 Minimum Hamming distance of a set of words  is {x1 , x2 ,...}

dmin=min i , j
i≠ j

d x i , x j



  

Detecting Errors
 To guarantee the detection of up to s bit errors in all cases

dmins



  

Correcting Errors
 To guarantee correction of up to t errors in all cases

 How to design good codes?

dmin2 t



  

Repetition Codes
 Simply repeat each bit n times

 How many bit errors can we detect?

 How many bit errors can we correct?

Input: 10010...

Output: 111000000111000.....

(3,1) repetition code
Notation for Block Codes

(n,k)



  

Simple Parity Check Code 
 n=k+1
 Add a bit to make total number of 1's even

 How many errors can we detect, correct?

k=4



  

Hamming Codes
 Multiple parity bits; each corresponds to different set of input 

bits

r0=a0⊕a1⊕a2

r 2=a0⊕a1⊕a3

r1=a3⊕a1⊕a2

s0=b0⊕b1⊕b2⊕q0

s1=b3⊕b1⊕b2⊕q1

s2=b0⊕b1⊕b3⊕q2



  

Hamming Codes: Error Correction 
 We can correct 1 bit errors by looking at the syndrome

s0=b0⊕b1⊕b2⊕q0

s1=b3⊕b1⊕b2⊕q1

s2=b0⊕b1⊕b3⊕q2

Syndrome            000    001    010    011    100    101    110    111
 

Error          -            q0 q1 b2 q2 b0 b3 b1

s0 s1 s2



  

Generator and Parity Check Matrices
 Write down generation of codewords and checking of parity in 

matrix form

x=Ga s=H x
input

Generator
matrix

Parity check
matrixsyndrome

G=[
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 1 1
0 1 1 1
1 1 1 0

] H=[1 0 1 1 1 0 0
1 1 1 0 0 1 0
0 1 1 1 0 0 1]Hamming code (7,4) :



  

Convolutional Codes
 Do not split data into separate blocks like in block codes
 Compute parity bits over moving window

Data: 100011100110111110000011000001100100100110000000000111111.......

01001111101111001001001000100100100010001001001...........

      00011001010010100010001000100010011111111111000...........

.

.

.

.

10010010001001010010010000100000010010010001000...........

Convolutional
coder
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Trellis
 Correlation between one state and next since generated from 

overlapping windows of data
 Captured by trellis

 Some paths valid, some not
 If path invalid, find “nearest valid path” using fast algorithm 

called “Viterbi algorithm”

x0 x1 x2 x3 x4


