Error Detection and Correction

Bit Errors

- Modulation
- provides some robustness against errors
- Cannot guarantee zero error
- Some applications require zero error
- Examples:
- How to detect errors?

Channel Coding

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display
0 changed to 1

- Channel coder - introduce some redundant bits
- Sort of signature correlated with information bits
- Channel decoder
- Check if signature and information match each other

How to Code?

- Ideas?

Block Codes

- Map each k-bit word to a unique n-bit word
- Split input data stream into blocks of k-bits

Design of Block Code

- Is the following a good mapping f ?
$00 \longrightarrow 0000$
$01 \longrightarrow 0001$
$10 \longrightarrow 1000$
$11 \longrightarrow 1001$

Hamming Distance

- Hamming distance $d(x, y)$ between two binary words x and y is the number of differences between corresponding bits
- Examples: $d(000,011)=2 ; d(011,101)=2$;
- Minimum Hamming distance of a set of words $\left\{x_{1}, x_{2}, \ldots\right\}$ is

$$
d_{\text {min }}=\min _{\substack{i, j \\ i \neq j}} d\left(x_{i}, x_{j}\right)
$$

Detecting Errors

- To guarantee the detection of up to s bit errors in all cases

$$
d_{\text {min }}>s
$$

Correcting Errors

- To guarantee correction of up to t errors in all cases

$$
d_{\min }>2 t
$$

Legend
\square Any valid codeword

- Any corrupted codeword with 1 to t errors
- How to design good codes?

Repetition Codes

- Simply repeat each bit n times
$(3,1)$ repetition code Input: 10010...

Notation for Block Codes (n, k)

Output: 111000000111000.....

- How many bit errors can we detect?
- How many bit errors can we correct?

Simple Parity Check Code

- $n=k+1$
- Add a bit to make total number of 1's even

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Sender

- How many errors can we detect, correct?

Hamming Codes

- Multiple parity bits; each corresponds to different set of input bits

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Sender

$$
\begin{aligned}
& r_{0}=a_{0} \oplus a_{1} \oplus a_{2} \\
& r_{1}=a_{3} \oplus a_{1} \oplus a_{2} \\
& r_{2}=a_{0} \oplus a_{1} \oplus a_{3}
\end{aligned}
$$

$$
\begin{aligned}
& s_{0}=b_{0} \oplus b_{1} \oplus b_{2} \oplus q_{0} \\
& s_{1}=b_{3} \oplus b_{1} \oplus b_{2} \oplus q_{1} \\
& s_{2}=b_{0} \oplus b_{1} \oplus b_{3} \oplus q_{2}
\end{aligned}
$$

Hamming Codes: Error Correction

- We can correct 1 bit errors by looking at the syndrome

$$
\begin{aligned}
& s_{0}=b_{0} \oplus b_{1} \oplus b_{2} \oplus q_{0} \\
& s_{1}=b_{3} \oplus b_{1} \oplus b_{2} \oplus q_{1} \\
& s_{2}=b_{0} \oplus b_{1} \oplus b_{3} \oplus q_{2}
\end{aligned}
$$

Syndrome $\left(s_{0} s_{1} s_{2}\right) \quad 000 \quad 001 \quad 010 \quad 011 \quad 100 \quad 101 \quad 110 \quad 111$
Error $\quad-\quad q_{0} \quad q_{1} \quad b_{2} \quad q_{2} \quad b_{0} \quad b_{3} \quad b_{1}$

Generator and Parity Check Matrices

- Write down generation of codewords and checking of parity in matrix form

Hamming code $(7,4): \quad G=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0\end{array}\right] \quad H=\left[\begin{array}{lllllll}1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Convolutional Codes

- Do not split data into separate blocks like in block codes
- Compute parity bits over moving window

Trellis

- Correlation between one state and next since generated from overlapping windows of data
- Captured by trellis

- Some paths valid, some not
- If path invalid, find "nearest valid path" using fast algorithm called "Viterbi algorithm"

