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Introduction 

We are working upon the design and implementation for an indoor navigation system for the 

visually impaired. Our long-term goal is for a portable, self-contained system that will allow 

visually impaired individuals to travel through familiar and unfamiliar environments without 

the assistance of guides. The system shall consist of the following functional components:  

1. assistance for determining the user’s position and orientation in the building,  

2. a detailed map of the interior of the building, and  
3. the user interface.  

By pressing keys on his/her mobile unit, directions concerning position, orientation and 

navigation can be obtained by the portable system that can prompt them acoustically over a 

text-to-speech engine. We aim to develop an industry deployable embedded solution to this 
problem. 

Currently, we have divided the project into 4 major parts: 

1. Maps 

2. Mobile application 

3. Algorithms 

4. Hardware: user module and buzzer system. 

  



5.  

PART I: Creation of a .map file using Google 

Maps/Earth: 

 

• Google Earth/maps allow the creation of a .kml file through a GUI available on 

maps.google.com or by downloading Google Earth from earth.google.com  

• The Keyhole Markup Language (KML) is the format for storing maps in the form of Place 

marks, Lines, Ground Overlays etc. It is an XML-based language schema for expressing 

geographic annotation and visualization on Internet-based, two-dimensional maps and 

three-dimensional Earth browsers. 

• The kml parser is written in Java with the help of freely available open source library 

Geokmlib: http://code.google.com/p/gekmllib/ 

• The .map file generated by the parser has the following format: 

Line 0: Orientation Angle (= Actual North - Map's 'North') 

Line 1: Global Coordinates of Node #1 

Line 2...N: <Listing of nodes> 

Where each line of <Listing of nodes> is as follows: 

<Node No.>, <Global Coordinates>, <Properties>, <North Node #>, <NW Node #>, <West Node 

#>,…, <NE Node #> 

 

The <Properties> is a class, with the following members: 

• (bool) is PublicUtility 

• (String) publicUtilityType 

• (String) nodeName 

• (int) priorityOrder; // 0 by default if not applicable 

The .map file generated by the parser can then be downloaded from a web link provided to 

the mobile through user module upon entering the building. The nearest building node 

transmits the web-link over the CC2500 channel upon receiving request from the user module. 



  

 

Progress report: 
 

• The parser whose block diagram is given on the right is complete under the assumption 

that the user makes the map using Google Maps (i.e. it cannot handle floor/altitude 

information for now) 

• The parser is able to parse the .kml file, and generates a .map file which contains a list of 

nodes; however the creation of graphs between the nodes is yet to be done. 

 

 

 

 

 



PART II: Mobile Application: 

• Mobile uses the data collected from user sensor module to position the person on the 

map downloaded from the building. It also interacts with the user through keypad input 

and voice output. The steps of working are shown alongside in the block diagram. 

 

 

Progress report: 

Specific codes for downloading map from a server, communicating with the BT module on the 

user device are complete. The DS for map is also complete. The algorithm in the block diagram 

remains to be implemented. 

 



PART III: Hardware-User Module and Buzzer 

system 

a> Data/signal flow: IMU sensor module generates acceleration, gyroscopic and 

magnetometer data. This is sent to the onboard MCU which processes this data to get 

heading and distance travelled.  Heading and distance travelled are regularly sent to the 

mobile phone over Bluetooth. From this data mobile updates the user’s current 

location. The onboard MCU also sends signal to buzzers in the building over RF. Once 

the user is in proximity with the destination buzzer, it triggers giving the exact location 

of the destination. 

 

 

 

 

 

 

b> Hardware Overview: The hardware consists of off the shelf components. 

�  Razor-v1.4 is used as the sensor module. It has ATmega328 onboard MCU  

� MCU receives and pushes data of sensors into Bluetooth module (blueSMiRF-v1). 

� Data can be received by mobile phone (or a PC for testing algorithms) 

IMU data generated by 

sensor module on foot.  

processing of data by onboard 

MCU: Direction and distance 

travelled are sent to the mobile 

Receives distance 

travelled and orientation 

information. 

Signal sent to buzzer 



  

 

 

Softwares/interfacing/testing tools 

MATLAB:  

• Used to write initial code and test them quickly. It’s extremely large library and 

toolbox set helps in quick code development. Since, MATLAB works with matrices by 

default; it is very apt for this project where computations involve moving matrices 

around. 

• If MATLAB is installed on a Bluetooth enabled PC, which is very common, then it can 

be used to receive data from sensors in real time, and the code tested for near real 

situation. Almost all the laptops today are Bluetooth enabled. The desktop PC can be 

Bluetooth enabled by using a BT dongle. The above used BT module appears as a 

virtual serial port. 

 

 

 

 

IMU Razor v1.4 

1> Acc:ADXL345 

2> Gyro: LPR530AL & LY530ALH 

3> Magnetometer: HMC5843 

MCU: AtMega328 

(onboard Razor module) 

BlueSMiRF RN-v1 Mobile/PC 

(inbuilt Bluetooth ) 

Cc2500 module 

 Buzzer and decision 

making circuit.  

Cc2500 module 

USART  

SPI  

RF 

Bluetooth 



Hyperterminal:  

• Hyperterminal is a very handy tool that can be used to set up instant serial 

communication with any serial device. It is very helpful in testing and debugging 

modules. In the present project, it can be used for: 

• Testing BT module 

• Testing CC2500 module 

• Receiving/testing sensor module data via Bluetooth. 

Custom Hardware development: 

Hardware forms an imp part of the project. User module consisting of IMU sensors, a 

powerful processor, two wireless communications (BT and RF) is fairly complex and has 

special requirements. It was decided to develop custom hardware for the project. 

However, looking at the overall complexity of the project it was suggested, to work with 

ready-made modules in the beginning. As a result, the hardware development was 

delayed and kept out of the semester target. 

Specifications: 

• Triple axis accelerometer:  LSM303DLH 

• Triple axis magnetometer:  LSM303DLH 

• Triple axis gyroscope:   ITG-3200 

• Bluetooth module   RN14 

• RF module:     cc2500   

• MCU:     ARM7 

 

Progress report: 

Sensor module, Bluetooth module, CC2500 modules and arduino board have been procured. 

The sensor board and Bluetooth module have been tested and are working fine. CC2500 

modules have also been tested. The communication channels of Bluetooth and RF were 

successfully setup. 

  



 

PART IV: Algorithms 

1. Bias Calculation: 

• Gyroscope: 

o Offset: Keep the module stationary for about ten minutes (The longer the better). 

Then take the average of the readings. The average values are the offset for the 

corresponding axes. 

o Scaling Factors: The module is rotated (say x rotations) about a particular axis of 

the gyroscope. The ratio of the “actual number of rotations” to the “number of 

rotations calculated by integrating the accelerometer readings” is the scaling 

factor for that particular axis. 

 

 

• Accelerometer and Compass: 

The offset as well as the scaling factors of the accelerometer and the compass is 

calculated by using the “ellipsoid fitting method”. The module is rotated in such a 

way to cover the “Euclidian Space” in the best possible way. The ordered readings 

are then ellipsoid fitted. The centre of the ellipsoid is the offset value and the radii 

are the corresponding scaling factors. 

 

 

 

Bias Calculation

Gyroscope bias

offset (constant)

S.F. (rotation)

Accelerometer 
and compass

Ellipsoid fitting 
(least  mean sq 

fitting)



 

2. Algorithm and Programming: 

• Low Pass Filter: 

For implementing the low pass filter in software the following algorithm was 

used: 

x[];   // Raw input 

y[];  // Filtered output 

dt;    //Time interval 

RC;   //Time Constant=1/omega 

α=dt/(RC + dt);  

y[0]=x[0]; 

For (i=1; i<n; i++) 

{ 

y[i]= α*x[i] + (1- α)*y[i-1]; 

}  

“x” is the raw input. 

“y” is the filtered data. 

 

• Initial Orientation: 

o Assumption: The module is initially stationary. 

o We use Euler Angle and the rotation matrix to keep track of the orientation 

of the module. If the module is stationary then the Euler Angles can be 

calculates using the following formulae: 

Pitch =  atan(x_acc/sqrt(y_acc^2+z_acc^2)); 

Roll = atan(y_acc/z_acc); 

Yaw = atan(y_field/x_field); 

 

 

 

 

Raw data LPF
Module frame 
to earth frame

step counting

Kalman filter



 

 

• Module frame to Earth frame: 

o If the orientation and thus the Rotation Matrix is know, we can transform 

the vector values from the module frame to the inertial (Earth) frame. The 

equations used are: 

o For Gyroscope: 

RGyro= [ 0 sin(phi)*sec(theta)  cos(phi)*sec(theta); 

          0 cos(phi)     sin(phi); 

                   1 sin(phi)*tan(theta)   cos(phi)*tan(theta)     ]; 

 

Rotation_Earth=RGyro*Rotation_module;   

o For accelerometer and compass: 

 

RAcc = [cos(theta) sin(phi)*sin(theta ) cos(phi)*sin(theta); 

             0  cos(phi)  -sin(phi); 

         -sin(theta)   sin(phi)*cos(theta)   cos(phi)*cos(theta) ]; 

 

RCmp=RAcc;      

EarthAcceleration=RAcc*ModuleAcceleration; 

 

The Rotation Matrix for accelerometer and compass are same, but it is 

different for the gyroscope transformation. 

 

• New orientation: 

Even when not stationary, using the transformation matrix for gyroscope, and the 

angular velocity values, we can calculate the new rotation matrix, and thus get 

transform the vectors from module frame to the inertial frame. 

The equation to obtain the new transformation matrix is: 

R_new = dR * R_old; 

The dR matrix is the rotation matrix over a small rotation. 

 

• Integrations: 

Having obtained the acceleration value in the inertial frame, obtaining the 

velocity and displacement is just integration, or the Reimann Sum. 

 



 

 

• Kalman Filtering: 

Kalman filtering is generally used for data fusion. 

We observe that, here after every step (when the module is stationary), we have 

redundant data. The orientation is obtained using the accelerometer and compass 

(using the equations mentioned above). It can also be calculated using the last 

stationary state orientation and the gyroscope readings. 

As the gyroscope bias is not constant, so we can keep updating the gyroscope bias 

at every step. 

 

3. Step Detection: 

• Waist: 

For step detection when mounted on the waist we used the following algorithm: 

We detected the maxima and minima. 

Only the maximas above the threshold and minimas below a threshold are 

considered. 

 Between two maximas (or minimas), there should be a minimum time difference, 

say slightly less than the walking frequency. 

The number of maximas (or minimas) satisfying the above conditions, is 

approximately the number of steps.  

 

• Foot: 

We observe that the foot is stationary for about 0.25 seconds. Thus by checking if 

the readings are within g-delta and g+delta for about that period, we can 

conclude if the module is stationary or not.  

 

• Positioning using step detection: 

Using step detection also we can determine the position of the user. The direction 

of motion can be found out using the compass at the beginning and end of every 

step. Step length is supposed to be known. Thus the displacement over each step 

is known. Summing the displacements, we can calculate the total displacement. 

 

 

 

 



 

4. Foot mounted v/s Waist: 

Foot mounted IMU Waist mounted IMU 

Better Step Detection  

Kalman Filter is not Required  

Computations are reduced 

significantly 

 

Can be used effectively for zero 

velocity updates 

 

 Is easy to mount. 

 Easy for the user. 

 No need of wireless communication 

between the module and the mobile. 

 

5. Results: 

• Stationary module: 

We kept the module stationary, and then used the rotations and double 

integrations.  

We observed that after about 15 seconds, the displacement values shoot outside 

limits (0.5m). 

 

• Step detection: 

Two-three samples of data were collected for “straight path” of about 50m. Using 

step detection, the number of steps and the displacement was calculated 

correctly (Error of about 1 meter). The result is yet to be tested on various other 

paths and samples.’ 

For  a walk at normal speed(Step length = 0.62m) from front of DHD to GCL (about 

50m), the obtained results are: 



                          

East Displacement 

North Displacement 

                                 

 

6. Current Work and Progress Report: 

The above mentioned functions are working satisfactorily. 

The current work is on “Adaptive Step Length” to calculate the step lengths. 


