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Abstract

We present a novel agorithm for dynamic adaptive triangulation
of spline surfaces. The algorithm is dynamic because it adjusts the
level of detail of the triangulation at each frame. It is adaptive be-
cause it samples each surface patch more densely in regions of high
curvature and less densely in regions of low curvature. The two
have not been combined before. Our algorithm pre-computes a pri-
oritized list of important samples on the surface. At rendering time,
it adds these points in the specified order to the triangulation. Once
the pre-computed points are exhausted and even more detail is re-
quired on some region of the patch, additional samples, now uni-
formly spaced, are added to the triangulation. The algorithm works
well in practice and has alow memory footprint.

CR Categoriesand Subject Descriptors: |.3.m [Computer Graph-
ics]: Spline, Surface display, Adaptive tessellation, Levels of detail

1 Introduction

Surface models are used in applications ranging from CAD indus-
try and medical visualization to entertainment industry. Interactive
display of these modelsisrequired for avariety of simulations. Al-
though, hardware triangle rendering speed hasincreased to millions
of triangles per second, the geometric detail of surface models has
increased faster. Hence, software techniques to reduce the number
of polygons sent to the graphics hardware remain popular.

Splines, especially of the Non-Uniform Rational B-Spline
(NURBS) and Bezier forms [12], remain the representation of
choice for a large class of application. Automobiles, submarines,
airplanes, etc. are commonly modeled as splines. Hence, splineren-
dering has been an active area of research for over two decades.
Ray tracing [33, 16, 25], pixel level subdivision [4, 30, 29], and
scan-line based algorithms [32, 3, 22] have been used in the past
to render surfaces. However, none of these are quite efficient on
current graphics systems. In order to exploit fast triangle rendering
hardware, research in the last decade has focussed on generating
polygonal approximations of surfaces using uniform tessellation
[28, 1, 24, 26, 20, 21] or adaptive tessellation [13, 31, 17]. The adap-
tive tessell ation algorithms are intended for off-line static triangula-
tion of models. A one-time static tessellation (in sufficient detail) of
many real-world models, would require hundreds of million of tri-
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angles [2]. Schemes based on view-dependent mesh simplification
[7,34,14,15, 9] arecommonly used to improve the rendering speed
on any given graphics system. Typically, these require management
of large amounts of data and are still unable to generate more de-
tail than the initial tessellation. Note that these methods first gener-
ate a large number of triangles and subsequently reduce the count.
We call these ‘backward’ techniques. ‘Forward’ techniques, on the
other hand, perform view-dependent tessellation [28, 1, 20, 21]. The
advantage of the forward technique lies in its ability for arbitrary
precision. However, considerable time must be allocated to evalu-
ate new samples at each frame and to update the triangulation. As
aresult, only simple surface sampling algorithms, e.g., uniform do-
main sampling, are used, thus causing over-tessellation for many
areas of the model. (We have done an empirical test of the vari-
ance of curvature across a Bézier patch and found it to be several
hundred times the mean in most cases.) The backward techniques,
on the other hand, are able to utilize significant resources in a pre-
processing step to limit dense sampling to areas of high curvature.
At run-time, only the traversal of a data structure, which stores all
sample points and connectivities, is required. The disadvantage is
thelarge storage requirement and an upper limit on the detail of the
model. Furthermore, due to geometric constraints, using high de-
tail in one part of the model may enforce high detail in other parts
where such high detail may not be necessary [9].

We present a novel approach that combines the advantages of both
methods in a unique way. We have been able to factor out suffi-
cient computation to the pre-processing stage to make interactive
adaptive view-dependent spline tessellation possible. This method
generates detail only where necessary thus reducing the total poly-
gon count, has low memory overhead, allows arbitrary detail and
still is simple to implement. In addition, the same basic method-
ology can also be used to improve the rendering of other classes
of smooth surfaces that may be parametrized. Our algorithm starts
by precomputing a good* object-space sampling for each surface
element (in our implementation, a Bézier patch). It stores these do-
main pointsin atopologically sorted order so the points that reduce
more the deviation between the resulting triangles and the surface
appear first. During rendering, the algorithm determines the sam-
ples that must be added or deleted to minimally achieve a user-
specified screen-space deviation. It maintains a Delaunay triangu-
lation [5, 8, 23, 10, 11] of the (two dimensional) domain samples,
incrementally adding and deleting the desired samples. The trian-
gles generated by mapping the domain samples to the surface form
the approximation and are sent to the rendering hardware. If de-
tail beyond the precomputed set of points is required, additional
points are generated by uniformly sampling each domain triangle.
Note that once sufficient points are added in areas of high detail,
each resulting triangular patch region is uniform enough. We avoid
tessellation-cracks by choosing the same samples on both patches
adjacent to any boundary curve. By speeding up the run-time sam-
pling test and reducing the number of generated triangles (for a
given deviation error), we are able to achieve a speed-up of about
2-4 over previous spline rendering methods [20, 21].

10ur measure of goodness is the geometric deviation. Arguably overall
deviation isimportant for rendering, shadows and other analyses [6].



1.1 Mathematical background

A rational tensor-product Bézier patch, F(u, V), of degree m x n,
defined for (u,v) € [0, 1] x [0, 1], is specified by amesh of control
points, pij, and their weights, w;;,0 <i<m,0<j<n:
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The normal direction is given by N(u,v) = F, x Fywhere Fy and Fy
arethe partial derivatives.

The Delaunay triangulation of points on a plane has the property
that the circumcircle of no triangle contains a point other than
its three vertices. This property avoids long and skinny triangles.
In fact, Delaunay triangulation produces the maximum possible
smallest-internal angle of any triangle.

1.2 Organization

In the rest of this paper, we assume familiarity with NURBS and
Bézier surfaces and Delaunay triangulation. We interchangeably
use the terms triangle and triangulation for the domain points as
well as the surface points. The meaning will be implicit in the con-
text. We start with the details of pre-computed sampling in Section
2 and then present the run-time algorithm. Section 3 describes our
implementation and reports its performance. Finally, conclusions
are drawn and future directions listed in Section 4.

2 Algorithm

Our algorithm is based on a simple idea and has two main steps:

Pre-sampling: We compute a set of sample points on the domain.
These sample points are ‘good’ in the sense that they are locally
best at reducing the deviation of the resulting triangular approxi-
mation from the surface. These points aso store the deviation of
the approximation after the points are added. This information is
used during rendering to decide which points to add.

View-dependent triangulation: At the rendering time, we start with
ahierarchical organization of the pre-computed domain samplesfor
each patch. We maintain a running Delaunay triangulation of the
subset required for each frame. Based on the viewing parameters,
we choose the samples that may be deleted and others that must be
added to insure that a user-specified deviation in screen space is not
exceeded. We incrementally update the Delaunay triangulation. If
more samples than have been pre-computed are needed, we resort
to uniform sampling [20] of the domain to add more samples.

One challenge is to decide which samples to pre-compute and in
what order to add or delete them to maintain coherence in triangu-
lation.

21 Presampling
In principle, at the rendering time we need to find:
e which regions of a patch deviate more from the surface than de-

sired and which points, if added to the triangulation, would re-
duce the deviation to the desired value.

e which points, if deleted, will leavethe resulting triangul ation still
close to the surface.

The optimal answer seems untractable. Even reducing the choice
to a pre-selected set of points, while possible in our framework,
keeps the sampling and triangulation time long: there are too many
combinations of pointsto consider. We instead use a heuristic. For
each patch, we compute the sorted list of samples as follows:

1. Start with a minimal sample set (e.g., the four corners of the
domain). These points are always included in the approximation.

2. Generate the Delaunay triangulation of the minimal set. Thisis
our first approximation.

3. While the deviation of the surface from the approximation is
greater than a user specified tolerance Ao:

o Find the point on the surface that is the farthest from the cur-
rent approximation (see section 2.2).

e Append the corresponding domain point to the list of pre-
samples. Store the resulting deviation with the point.

e |nsert the point in the Delaunay triangulation updating the
current approximation. (see Section 2.3).

At the end of the process, we have an ordered list, S, of domain
samples for each patch and the object-space deviation, Dj, between
the approximation and the surface if al points §,j < i, are added
to the triangulation for any i. Note that Di+y < Di” and Djs < A..
Thus, given a deviation bound d,, we can find the prefix of S that
generates an approximation with deviation less than d,.

2.2 Deviation computation

In order to find the point on the surface with the maximum devi-
ation from the current approximation, we compute the maximum
deviation of each triangle and use their maxima. Note that we need
to update the deviation of only the new triangles after a Delaunay
update. To find the maximum deviation corresponding to a domain
trianglet = (p1, P2, ps), pi = (ui, vi), of Bézier surface patch B:

e Compute, n, the unit normal to the plane of the triangle T =
B(p1), B(p2), B(ps)-

¢ Find the maximum distance, |B(p)tp|, where t,, is the projection
(along n) of B(p) on T, Vp € t. We use the Powell’s method [27]
to find the maxima, with the centroid of t as the starting guess.

In case atriangle is degenerate and lies on a straight line, we com-
pute the unit vector parallel to it and the objective function simply
computes the cross product of the displacement vector and this unit
vector. In case al the three vertices of the approximating triangle
coincide, the function returns the norm of the displacement vector.

Note that a fixed order among the samples of a patch is accept-
able for static tessellation but the relative “importance” of pointsis
view-dependent and can vary for patches large on screen. We main-
tain a hierarchical partitioning of domains (a two level hierarchy
is usually enough) into quads. As the projection of patch grows,
we switch to a finer partition. We sample each sub-domain inde-
pendently using the subsequence of patch pre-samples that lie on
that sub-domain. The deviation for each domain isbased on itsown
scale-factor (described in the next section).

2Technically, deviation could increase on adding a new point for some
degenerate patches. Even in such cases, adding a sequence of samples al-
ways leads to a lowering of deviation. We add or delete such samples to-
gether and assign a single index to them.
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2.3 Deaunay Triangulation

We use the algorithm by [10, 11] to perform incremental Delaunay
triangulation. The algorithm is outlined bel ow.

To insert a given point, p in a given triangulation A, we need to
find, ti, the triangles whose circumcircle contain p. We perform this
search by walking. We retain the centroid, C, of A, which servesas
the starting point of thiswalk. Searching proceeds as follows:

e Find a consecutive pair of edges, (g1, §2) of triangle tj; such that
p liesin the positive half-space of (g1 and g2).

o If piscontained in the circumcircle of t, find one of the inter-
cepted triangles.

e Otherwise, continue at another edge pair adjacent to one of the
vertices of t;,

If no intercepted triangle is found, we simply connect p to the vis-
ible vertices of the convex hull of current triangulation. If an inter-
cepted triangle t is found, we perform a breadth first traversal of
the adjacency graph to discover t;, al intercepted triangles, whose
overall boundary forms a star shaped polygon, P. We delete al
and add an edge between p and al vertices of P. The centroid ver-
tex isalso updated at this stage. Storing the centroid vertex reduces
the expected search time to O(n®%) though the worst case remains
linear. The insertion procedure takes O(K) time where k is the num-
ber of edgesin P.

To delete a point, p, we first locate it in the triangulation A. We
delete all triangles adjacent to p thus obtaining again a star shaped
polygon, P. If P has more than three edges, weinsert each edge of P
inapriority queue. Thepriority valuefor an edgee = r?—(|ci —p|)?
where ¢ is the circumcenter of the triangle formed by edge @ and
a+1 (addition being modulo the number of edgesin P) and r; isits
radius. We then add triangles to A in the following order:

e Choose the edge, @ with the minimum priority and add the tri-
angleformed by @ and g+1 to A

e Replace g and e+1 from P and add the new edge.
e Repeat until Pisatriangle.
In the end, we update the centroid vertex. The expected search and

actual deletion times are similar to the one’s obtained during inser-
tion.

2.4 Render-time sample selection

Our rendering algorithm allows the users to bound the maximum
geometric deviation of the triangular approximation. This bound
may be specified in pixel units. If the user-specified screen-space
bound for a patch B is ds, object-space deviation required for the
approximation is do = s(B)ds, where S(B) is the scale-factor for
patch B. The scale-factor of a point p in object space is the length
of the smallest vector anchored at p that projects a unit vector in
screen-space (see Figure 1).

Different patches, indeed different points of a patch, may have dif-
ferent scale-factors. We use an octree based spatial partitioning of
space. For all patches contained in a sufficiently small partition, we
use the same scale-factor. Typically partitions close to the view-
point are more refined than those further away, as the scale factor
close to the viewpoint varies faster. The sample selection proceeds
asfollows:

1. Start with the octree cubes used in the previous frame. We call
acube terminal if the scale-factor of the four corners of a cube
differ by less than §S, a user-specified tolerance. If a cube is
non-terminal, we subdivide it. Otherwise, if a cube’s parent is
terminal, we recursively use the parent. If §Sis chosen to be d—ls
the approximation does not under-deviate by more than a pixel.

2. The scale-factor of a cube is the smallest of the scale-factors of
its corners. For each patch completely contained in a terminal
cube, C with scale-factor s(C), we choose all samples §,i <=,
such that the associated deviation D; < s(C) and D;—1 > s(C).

3. Suppose the value of j in previous frame is jurey and that in the
current frame isjeurr. If jourr > jprev, We add samples § .., - - Seur
to the Delaunay triangulation, otherwisewe delete S, ., . . Spe -

4. If apatch liesin more than oneterminal cube that are all adjacent
to each other, we assign to the patch, the minimum scale-factor
of those cubes.

5. For larger patches, however, we do need to use different scale-
factor in different regions of the patch. We subdivide the domain
of patches that span terminal cubes that are not adjacent to each
other. We use the scaling algorithm described above to each sub-
domain k to compute the required object-space deviation d,.
For each subdomain, we find the subset of pre-computed sam-
ples, S, of the patch that lie in that subdomain and apply the
algorithmin step 3.

Recall, that we pre-compute one linear ordered list of samples per
patch. The Delaunay triangulation, and hence the choice of sam-
ples, depends on this order. In step 5 above, however, we may add
sample § of the patch without adding another sample & for ak < j,
if § and & lie in different sub-domains. As a result, we could
theoretically obtain an approximation that deviates more than d
from the surface. On the other hand, in Delaunay triangulation only
neighboring points are connected by an edge in practice. Thus the
triangulation of the samples of the subdomain is mostly a subset of
the triangulation of the full patch. As a result, we would still get
mostly the same samples had we chosen to pre-sample each subdo-
main separately, thus respecting ds.

2.5 Uniform dynamic sampling

If the required deviation d, < D, for a patch with n precom-
puted samples, we compute more samples in a lazy fashion. We
do this render-time sampling using a variant of the uniform sam-
pling method of Kumar et al. [19]. We store, for each triangle t
of patch B, ty, = 1 (The maxima of

— = andt, = ;_
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partial derivatives are substituted in practice by the maxima among
the three corners of t.) At rendering time, the uniform step sizes
in u and v directions are given respectively by Kqgt,\/s(B)ds and
Katyy/S(B)ds, with constant Kq normally set to 1 (see [18] for de-
tails). Note that, this reduces to two multiplications per triangle in
addition to one multiplication and one square root per patch.

2.6 Crack prevention

If we independently tessellate two adjacent patches, we could
choose different samples on their common boundary. This results
in a crack in the resulting approximation (Color Plate A). In our
approach, we want to keep the tessellation of adjacent patches in-
dependent of each other to facilitate easy parallelization. We as-
sumethat the obj ect space representation of boundary curves arethe
same. We pre-compute the sampling of each boundary curve sepa-
rately from the interior. Ensuring that the same samples are used at
the boundary of both patches adjacent to it eliminates cracks (Color
Plate A). Bézier curve pre-sampling isaspecial case of Bézier patch
pre-sampling and werefer the reader to Section 2.2 for details. Once
each boundary curve is pre-sampled, we modify the interior patch
sampling by deleting samplestoo close to the boundary. If asample
S = (u,V) iscloser to the boundary than an e, i.e., u or v are either
less than e or greater than 1 — ¢, we add it to the interior sample
list only if: Sis closer to curve samples § and Si1 than 1|SS|,
where S and S are the two closest samples to S on the boundary
curve.

Note that the role of ¢ is primarily to reduce the number of times
the closest points are computed.

2.7 Discussion

Our algorithm combines pre-processing with render-time triangu-
lation update. One attractive feature of this algorithm is its abil-
ity to trade-off storage of pre-computed data against render-time
CPU usage. This can be effectively exploited to tune the render-
ing on different CPUs. We store the position (u, v) and deviation,
D, for each pre-computed sample point. In addition the following
pre-computed data may be retained and reused during rendering:

e Thethree spatial coordinates of the corresponding surface points
and the three normal coordinates of the sample may be stored.

e The star polygon P that must be re-triangulated when updating
the Delaunay triangulation may be stored to triangul ation update
cost. Note that the order in which points get added remains the
same until adomain is split, which occurs only occasionally.

e The entire update to the triangles may be stored.

Another advantage of our agorithm isits application to model com-
pression. Note that we need to store only four floating point values
per sample. Moreover, the actual domain position of each sample
is need not be very precise. In fact, using a single byte for u and
another for v is enough for high quality tessellation. In addition,
two bytes are enough to represent D (appropriately scaled). Thus,
we may represent a spline patch with its original control points,
some derivative values and 4n additional bytes, with n typically be-
ing less than 60 for bi-cubic patches. In return, we avoid significant
tessellation cost (see Section 3).

3 Implementation and results

We have implemented our algorithm and tested it on a variety of
models. All timings reported in this paper are from an Onyx2 with

Model Num Patches Avg num of Tris/frame
Ours | Kumar et a. [20]
Goblet 72 2302 6744
Coke 330 3994 5488
Dragon 5079 16804 42115
Garden 38646 83733 122360
Table 1 The conparison of the nunmber of tri-

angl es produced by our algorithmvs [20] for
the same screen-space deviation of two pix-
els.

Model Num Samples Pre-process If Vertex/Normal
pre-computed time are pre-computed
Goblet 6,500 48.78 Seconds 0.41 Seconds
Coke 23,109 58 Seconds .45 Seconds
Dragon 864,610 31 minutes 38 Seconds
Garden 838,152 13 minutes 14.1 Seconds

Table 3 Pre-sampling performance

a195 MHz R10000 InfiniteReality graphics. Our experiments con-
sisted of viewing a variety of model from many viewpoints col-
lected from a ssimulated walkthrough. We first compare the num-
ber of triangles produced by our agorithm with that by a uniform
tessellation algorithm [20] in Table 1. This, combined with faster
sample selection, resultsin the overall speedup, which is more pro-
nounced for large models. Plate B shows the differencein uniformly
sampled teapot and adaptively sampled teapot. Notice that the dif-
ference is significant in the lid and spout, which comprise patches
with large curvature variance. Plate C showsour initial pre-samples.
We set theinitial stopping deviation to 0.8 pixels with ascale-factor
of 1. Since our deviation bound is usually one pixel or more, pre-
computed samples are sufficient for most views.

In Table 2 we show the render-time behavior of our algorithm. The
number of samples that need to be added to or deleted from the
triangulation is less than 1% of the average triangle count and the
overhead of Delaunay triangulation islessthan 10% of overall time.
Thus, the per-frame operation is quite efficient. In addition, uniform
tessellation is needed for less than 0.15% of the patches on average.

Table 3 reports the pre-processing time. In addition, it liststhe time
it would take to pre-compute the three dimensional position and
normal values. Note that the number of pre-samplesis rather large,
but we keep only eight bytes per sample, including the multiplica-
tion factor needed for uniform sampling. Color plates D and E show
the levels of detail. Note the range of high detail in plate E. 98% of
the samples in the zoomed up view are pre-computed.

4 Conclusion and acknowledgements

We have presented the first view-dependent adaptive spline tessel-
lation algorithm. It can be updated at speeds that support interactive
display of tens of thousands of surface patches on current graphics
systems. This agorithm gracefully combines offline sampling and
run-time triangulation to achieve fast tessellation with low triangle
count and a small memory footprint. This provides an alternative
scheme to view dependent mesh simplification. Tessellation based
methods have better local control on adjustment of detail and allow
more convenient maintenance of texture coordinates. The overhead
of incremental triangulation, as we have shown, isvery small.

We areworking to extend our method to trimmed splines and subdi-



Model Number of sample | Timeto update | Overall rendering | Rendering rate
updates/ frame Triangulation frame-rate of [20]

Goblet 24 11 ms 72 42

Coke 53 .28 ms 65 23

Dragon 653 9ms 18 5

Garden 1485 16.2ms 6 17

Table 2 Run-time behavior of

our agorithm

vision surfaces. We have used Delaunay triangulation primarily due
to the availability of efficient implementation of an incremental al-
gorithm. More investigation is needed into other competing triangu-
lation schemes. Furthermore, atriangulation algorithm that directly
produces triangle strips would be immensely useful in speeding up
the rendering of resulting models.

We thank Shankar Krishnan for his maxima finding code. Models
were courtesy of Lifeng Wang, the modeling group at University
of British Columbia and XingXing Graphics Co. (Garden), David
Forsey (Dragon) and Alpha 1 system (Soda can and Goblet). Fi-
nally, we thank Jonathan Cohen for insightful discussions and the
reviewers for their helpful comments.
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