
Department of Computer Science and Engineering, IIT Delhi

An operational architecture for
privacy-by-design

Prashant Agrawal*

*Joint work with Anubhutie Singh, Malavika Raghavan, Subodh Sharma and Subhashis Banerjee

Impossibility of absolute privacy
Absolute privacy goal (aka inferential privacy): should not obtain any information
about an individual that cannot obtain without access to

A
B DB

DB

A B

Impossibility of absolute privacy
Absolute privacy goal (aka inferential privacy): should not obtain any information
about an individual that cannot obtain without access to

A
B DB

DB

A B

If the adversary has arbitrary side-information, above absolute privacy goal is
impossible to achieve. (Dwork ’05)

Impossibility of absolute privacy
Absolute privacy goal (aka inferential privacy): should not obtain any information
about an individual that cannot obtain without access to

A
B DB

avg(salary)

savg

salarydirector = 2 * avg(salary)

DB

salarydirector = 2 * avg(salary)

A B

If the adversary has arbitrary side-information, above absolute privacy goal is
impossible to achieve. (Dwork ’05)

Impossibility of absolute privacy
Absolute privacy goal (aka inferential privacy): should not obtain any information
about an individual that cannot obtain without access to

A
B DB

avg(salary)

savg

salarydirector = 2 * avg(salary)

DB

salarydirector = 2 * avg(salary)

A B

If the adversary has arbitrary side-information, above absolute privacy goal is
impossible to achieve. (Dwork ’05)

Observe: Privacy of director’s salary is compromised even if the director is not in the DB

So now what?

• “Privacy is dead, get over it”
• “Burn everything down”
• Differential privacy:

• Make sure that the privacy protection is as good (or as bad) as the case when you

(specifically) did not even choose to participate in the database

• Rather narrow view of the privacy harms

• Mainly a statistical notion, to allow privacy-preserving analytics and machine learning on

personal information

• Puttaswamy judgment:
• The proportionality test for balancing utility and privacy

An economic perspective: Who really cares
about privacy?

• Us, the individuals

• Not the corporations, not the government

• They care about the utility of our data

• Privacy will always take the back seat, especially if it conflicts with utility

• Individuals by themselves are often powerless, naive and ignorant

Privacy Utility

The false notion of consent

• Consent is broken, as evidenced by the customary ``I Agree’’
• Consent can be overridden
• Unfamiliarity with legal rights, technology
• Inability to envisage or judge potential harms of digitisation use cases, both to

self and society
• Unfamiliarity with privacy management tools
•

What does the court say?
The proportionality test (Puttaswamy I and II)

• Must be sanctioned by law

• Must be necessary in a democratic society for a legitimate state aim

• Extent of interference must be proportionate to the aim

• Rational nexus with the objective

• Least intrusive for the purpose

• Must not have disproportionate impact (balancing)

• There must be procedural guarantees against abuse from such interference

Resolving the tension between privacy,
utility and usability
• Offload the responsibility of privacy management from

individuals to regulatory authorities

• But keep the regulator accountable (Trust but verify)

Regulator’s responsibilities

• Identify a privacy policy considering utility and privacy goals (should be backed by
appropriate law). The policy should be able to express:

• data minimisation goals (outputting only minimum information, preventing linking

attacks)

• dynamic and parametric access control (access control based on personalised

context, revocation, etc.)

• purpose limitation

• Enforce compliance to the privacy policy: Nothing except what is allowed by the
policy should ever leak to anyone, not even an insider

• Demonstrate to the general public that the privacy has been upheld as per the
policy and will always be upheld.

Example: contact tracing

Example policy: contact tracing

• Individuals should be able to learn only about their own infection.

• Local authorities should be able to learn about the contact details of only high risk

individuals.

• Only individuals with legitimately high risk should be classified as such.

• Epidemiologists should be able to learn about aggregate information only (maybe

only via a differentially private mechanism).

• Individuals must give their consent and they can opt out of the service at any point

of time.

• A doctor to which the individual wilfully visited should be able to fetch her medical

data.

• No one should be able to obtain any additional information even with insider access.

• No persistent identifiers should ever leak else they could be used to arbitrarily link

individuals’ data.

Example policy: contact tracing

• Individuals should be able to learn only about their own infection.

• Local authorities should be able to learn about the contact details of only high risk

individuals.

• Only individuals with legitimately high risk should be classified as such.

• Epidemiologists should be able to learn about aggregate information only (maybe

only via a differentially private mechanism).

• Individuals must give their consent and they can opt out of the service at any point

of time.

• A doctor to which the individual wilfully visited should be able to fetch her medical

data.

• No one should be able to obtain any additional information even with insider access.

• No persistent identifiers should ever leak else they could be used to arbitrarily link

individuals’ data.

Individual-level
access control

Example policy: contact tracing

• Individuals should be able to learn only about their own infection.

• Local authorities should be able to learn about the contact details of only high risk

individuals.

• Only individuals with legitimately high risk should be classified as such.

• Epidemiologists should be able to learn about aggregate information only (maybe

only via a differentially private mechanism).

• Individuals must give their consent and they can opt out of the service at any point

of time.

• A doctor to which the individual wilfully visited should be able to fetch her medical

data.

• No one should be able to obtain any additional information even with insider access.

• No persistent identifiers should ever leak else they could be used to arbitrarily link

individuals’ data.

Individual-level
access control

Purpose limitation,
access control

Example policy: contact tracing

• Individuals should be able to learn only about their own infection.

• Local authorities should be able to learn about the contact details of only high risk

individuals.

• Only individuals with legitimately high risk should be classified as such.

• Epidemiologists should be able to learn about aggregate information only (maybe

only via a differentially private mechanism).

• Individuals must give their consent and they can opt out of the service at any point

of time.

• A doctor to which the individual wilfully visited should be able to fetch her medical

data.

• No one should be able to obtain any additional information even with insider access.

• No persistent identifiers should ever leak else they could be used to arbitrarily link

individuals’ data.

Individual-level
access control

Purpose limitation,
access control

Correctness (indirectly
affects privacy; Kafkaesque)

Example policy: contact tracing

• Individuals should be able to learn only about their own infection.

• Local authorities should be able to learn about the contact details of only high risk

individuals.

• Only individuals with legitimately high risk should be classified as such.

• Epidemiologists should be able to learn about aggregate information only (maybe

only via a differentially private mechanism).

• Individuals must give their consent and they can opt out of the service at any point

of time.

• A doctor to which the individual wilfully visited should be able to fetch her medical

data.

• No one should be able to obtain any additional information even with insider access.

• No persistent identifiers should ever leak else they could be used to arbitrarily link

individuals’ data.

Individual-level
access control

Purpose limitation,
access control

Correctness (indirectly
affects privacy; Kafkaesque)

Purpose limitation,
access control

Example policy: contact tracing

• Individuals should be able to learn only about their own infection.

• Local authorities should be able to learn about the contact details of only high risk

individuals.

• Only individuals with legitimately high risk should be classified as such.

• Epidemiologists should be able to learn about aggregate information only (maybe

only via a differentially private mechanism).

• Individuals must give their consent and they can opt out of the service at any point

of time.

• A doctor to which the individual wilfully visited should be able to fetch her medical

data.

• No one should be able to obtain any additional information even with insider access.

• No persistent identifiers should ever leak else they could be used to arbitrarily link

individuals’ data.

Individual-level
access control

Purpose limitation,
access control

Correctness (indirectly
affects privacy; Kafkaesque)

Purpose limitation,
access control

Consent and revocation of consent
(conditional and dynamic access control)

Example policy: contact tracing

• Individuals should be able to learn only about their own infection.

• Local authorities should be able to learn about the contact details of only high risk

individuals.

• Only individuals with legitimately high risk should be classified as such.

• Epidemiologists should be able to learn about aggregate information only (maybe

only via a differentially private mechanism).

• Individuals must give their consent and they can opt out of the service at any point

of time.

• A doctor to which the individual wilfully visited should be able to fetch her medical

data.

• No one should be able to obtain any additional information even with insider access.

• No persistent identifiers should ever leak else they could be used to arbitrarily link

individuals’ data.

Individual-level
access control

Purpose limitation,
access control

Correctness (indirectly
affects privacy; Kafkaesque)

Purpose limitation,
access control

Consent and revocation of consent
(conditional and dynamic access control)

Access dependent on
relationships between individuals

Example policy: contact tracing

• Individuals should be able to learn only about their own infection.

• Local authorities should be able to learn about the contact details of only high risk

individuals.

• Only individuals with legitimately high risk should be classified as such.

• Epidemiologists should be able to learn about aggregate information only (maybe

only via a differentially private mechanism).

• Individuals must give their consent and they can opt out of the service at any point

of time.

• A doctor to which the individual wilfully visited should be able to fetch her medical

data.

• No one should be able to obtain any additional information even with insider access.

• No persistent identifiers should ever leak else they could be used to arbitrarily link

individuals’ data.

Individual-level
access control

Purpose limitation,
access control

Correctness (indirectly
affects privacy; Kafkaesque)

Purpose limitation,
access control

Consent and revocation of consent
(conditional and dynamic access control)

Access dependent on
relationships between individuals

Prevention of
insider attacks

Example policy: contact tracing

• Individuals should be able to learn only about their own infection.

• Local authorities should be able to learn about the contact details of only high risk

individuals.

• Only individuals with legitimately high risk should be classified as such.

• Epidemiologists should be able to learn about aggregate information only (maybe

only via a differentially private mechanism).

• Individuals must give their consent and they can opt out of the service at any point

of time.

• A doctor to which the individual wilfully visited should be able to fetch her medical

data.

• No one should be able to obtain any additional information even with insider access.

• No persistent identifiers should ever leak else they could be used to arbitrarily link

individuals’ data.

Individual-level
access control

Purpose limitation,
access control

Correctness (indirectly
affects privacy; Kafkaesque)

Purpose limitation,
access control

Consent and revocation of consent
(conditional and dynamic access control)

Access dependent on
relationships between individuals

Prevention of
insider attacks

Prevention of
linking attacks

Let’s start by looking at our
current identity infrastructure

Traditional PKI and the problem with it
• Encryption

c = Enc(m, pkB)

pkB, skB

pkB

m = Dec(c, skB)

Traditional PKI and the problem with it
• Encryption

• Signatures
No one who does not know

secret key corresponding to
 can forge a signature that
passes the verification

skA
pkA ss = sign(m, skA)

verify(s, m, pkA)

c = Enc(m, pkB)

pkB, skB

pkB

m = Dec(c, skB)

Traditional PKI and the problem with it
• Encryption

• Signatures
No one who does not know

secret key corresponding to
 can forge a signature that
passes the verification

skA
pkA ss = sign(m, skA)

verify(s, m, pkA)

c = Enc(m, pkB)

pkB, skB

pkB

m = Dec(c, skB)

• Credentials

s

verify(s, m(pkA), pkO)

s = sign(m(pkA), skO)

Traditional PKI and the problem with it
• Encryption

• Signatures
No one who does not know

secret key corresponding to
 can forge a signature that
passes the verification

skA
pkA ss = sign(m, skA)

verify(s, m, pkA)

c = Enc(m, pkB)

pkB, skB

pkB

m = Dec(c, skB)

• Credentials

s

verify(s, m(pkA), pkO)

s = sign(m(pkA), skO)or
Leaks persistent identifiers
and

pkA
pkO

Traditional PKI and the problem with it
• Encryption

• Signatures
No one who does not know

secret key corresponding to
 can forge a signature that
passes the verification

skA
pkA ss = sign(m, skA)

verify(s, m, pkA)

c = Enc(m, pkB)

pkB, skB

pkB

m = Dec(c, skB)

• Credentials

s

verify(s, m(pkA), pkO)

s = sign(m(pkA), skO)or
Leaks persistent identifiers
and

pkA
pkO

Traditional PKI is
designed to encrypt
messages for public

organisations and obtain
signatures from public

organisations

Virtual identities: an individual-centric notion
• Each individual owns a master secret key

• Individual can generate multiple unlinkable virtual identities using

a ska

a ska

• Notation: denotes the -th ever generated virtual identity by agent

• PKI is a special case: All agents only ever generate a single virtual identity and use it
everywhere. Thus the public key of agent is the only virtual identity generated by , and
its secret key would be its master secret key .

ai i a

a a0 a
ska

ai

ska

A B

a

aj
 and cannot link with ,

i.e., identify if they belong to
the same individual or not,
even if they collude

A B ai aj

Requirements from virtual identities
• Anonymous credentials

ai

s := sign(p(ai, bj, 𝖼𝗈𝗇𝗌𝗍), skA)

s, ai′

A Ba

verify(s, p(ai′ , bj, 𝖼𝗈𝗇𝗌𝗍), pkA)?

Requirements from virtual identities
• Anonymous credentials

ai

s := sign(p(ai, bj, 𝖼𝗈𝗇𝗌𝗍), skA)

s, ai′

A Ba

• Anonymous signatures
s := sign(m, ska), ai

a b

verify(s, m, ai)?

verify(s, p(ai′ , bj, 𝖼𝗈𝗇𝗌𝗍), pkA)?

Requirements from virtual identities
• Anonymous credentials

• Anonymous encryptions

ai

s := sign(p(ai, bj, 𝖼𝗈𝗇𝗌𝗍), skA)

s, ai′

A Ba

• Anonymous signatures
s := sign(m, ska), ai

a b

verify(s, m, ai)?

verify(s, p(ai′ , bj, 𝖼𝗈𝗇𝗌𝗍), pkA)?

c := Enc(m, bj)

a b

m := Dec(c, skb)bj

Requirements from virtual identities
• Anonymous credentials

• Anonymous encryptions

ai

s := sign(p(ai, bj, 𝖼𝗈𝗇𝗌𝗍), skA)

s, ai′

A Ba

• Anonymous signatures
s := sign(m, ska), ai

a b

verify(s, m, ai)?

verify(s, p(ai′ , bj, 𝖼𝗈𝗇𝗌𝗍), pkA)?

c := Enc(m, bj)

a b

m := Dec(c, skb)bj

Envisioned by Chaum ’85,
practically realised by

Camenisch & Lysyanskaya ’01
(but partial solutions only)

Requirements from virtual identities
• Anonymous credentials

• Anonymous encryptions

ai

s := sign(p(ai, bj, 𝖼𝗈𝗇𝗌𝗍), skA)

s, ai′

A Ba

• Anonymous signatures
s := sign(m, ska), ai

a b

verify(s, m, ai)?

verify(s, p(ai′ , bj, 𝖼𝗈𝗇𝗌𝗍), pkA)?

c := Enc(m, bj)

a b

m := Dec(c, skb)bj

Envisioned by Chaum ’85,
practically realised by

Camenisch & Lysyanskaya ’01
(but partial solutions only)

} Most likely open
problems

For now, let’s assume we have a solution
for virtual identities and move forward

Access control
• Access control should be parametric with respect to each individual

• “don’t release ’s data if has not given her consent.”

• relationships among individuals: “ can access ’s data only if is a family member of ”

x x

x y x y

• Access control should be context-dependant
• “access to ’s data may only be allowed if a warrant against can be produced.”

• “administrators are allowed to access one’s contact only if an algorithm classifies them as high-risk.”

x x

• Access control should be dynamic
• what is allowed today may be revoked tomorrow due to revocation of consent, signs, etc.

• “Public is Private”: just because something has been released to an agent once does not
mean there is no need to prevent access to it in the future.

In contrast

(Barth et al. ’06)

• Access control and privacy policy authoring languages are rather coarse:

• Typically characterised by fixed roles, and often do not parametrise the
data type with respect to the individuals

• Very poorly handle dynamically changing context

A privacy policy language

• Logic programs (or, colloquially, Prolog programs):

• Set of rules of the form , where each is a first-order
predicate containing variables (uppercase) and constants (lowercase):

• e.g., say

• If , i.e., a rule with only a head and no body, is called a fact, which is
unconditionally true

• All variables are implicitly universally quantified.

R p0 ← p1, p2, . . . , pn pi

R := {𝖺𝗅𝗅𝗈𝗐(z, X, 𝖬𝖾𝖽𝖣𝖺𝗍𝖺(Y)) ← 𝗌𝗂𝗀𝗇𝖾𝖽(𝖼𝗈𝗇𝗌𝗎𝗅𝗍𝖾𝖽(X), Y)}

n = 0

head body

A privacy policy language (contd.)

• Given a logic program and a (potentially first-order) predicate , it can be
answered in polynomial time whether is implied by the rules or not (we
write this as)

• E.g., check if ?

• Key idea: unification. Find substitutions for variables that makes two terms
syntactically identical.

• e.g., :=

R p
p R

R ⊢ p

R ⊢ 𝖺𝗅𝗅𝗈𝗐(z, 𝗏𝗂𝖽(x2), 𝖬𝖾𝖽𝖣𝖺𝗍𝖺(𝗏𝗂𝖽(y3)))

unify(p1(X, y), p1(x, Y)) [X/x, Y/y]

A privacy policy language (contd.)

• Basic access control procedure:

• Check if . If yes, then allow to send data labelled with
.

• Note: the rules in have a head of the form , with all three
potentially first-order variables

• On unifying the queried allow predicate with the head, we get the concrete
rule:

R ⊢ 𝖺𝗅𝗅𝗈𝗐(x, y, l) x y
l

R 𝖺𝗅𝗅𝗈𝗐(X, Y, L)

𝖺𝗅𝗅𝗈𝗐(z, 𝗏𝗂𝖽(x2), 𝖬𝖾𝖽𝖣𝖺𝗍𝖺(𝗏𝗂𝖽(y3))) ← 𝗌𝗂𝗀𝗇𝖾𝖽(𝖼𝗈𝗇𝗌𝗎𝗅𝗍𝖾𝖽(𝗏𝗂𝖽(x2)), 𝗏𝗂𝖽(y3))

Handling dynamic factors using signed predicates

• Claim: All reasonable dynamic factors can be expressed using a set of signed predicates
of the form: , denoting that has expressed that predicate is true.

• Consent/approvals:

• Credentials by public authorities: . Transformable by
 to be of the form

• Credentials by private individuals: . Transformable by
 to be of the form .

• Machine-generated facts: ?

• Revocation of previously granted access: ?

𝗌𝗂𝗀𝗇𝖾𝖽(P, A) A P

𝗌𝗂𝗀𝗇𝖾𝖽(𝖼𝗈𝗇𝗌𝖾𝗇𝗍(𝗏𝗂𝖽(b3), 𝖿𝗂𝗇𝖺𝗇𝖼𝖾𝖣𝖺𝗍𝖺(𝗏𝗂𝖽(a2)), 𝗏𝗂𝖽(a2))

𝗌𝗂𝗀𝗇𝖾𝖽(𝗉𝖺𝗌𝗌𝖾𝖽(𝗏𝗂𝖽(a2)), 𝗏𝗂𝖽(z0))
a 𝗌𝗂𝗀𝗇𝖾𝖽(𝗉𝖺𝗌𝗌𝖾𝖽(𝗏𝗂𝖽(a3)), 𝗏𝗂𝖽(z0))

𝗌𝗂𝗀𝗇𝖾𝖽(𝗉𝖺𝗌𝗌𝖾𝖽(𝗏𝗂𝖽(a2)), 𝗏𝗂𝖽(b3))
a 𝗌𝗂𝗀𝗇𝖾𝖽(𝗉𝖺𝗌𝗌𝖾𝖽(𝗏𝗂𝖽(a3)), 𝗏𝗂𝖽(b3))

𝗌𝗂𝗀𝗇𝖾𝖽(𝖼𝗎𝗋𝗋𝖳𝗂𝗆𝖾(t), 𝗍𝗂𝗆𝖾𝗋)

¬𝗌𝗂𝗀𝗇𝖾𝖽(𝖼𝗈𝗇𝗌𝖾𝗇𝗍𝖾𝖽(p), 𝗏𝗂𝖺(a2))

Handling dynamic factors using signed predicates

• Claim: All reasonable dynamic factors can be expressed using a set of signed predicates
of the form: , denoting that has expressed that predicate is true.

• Consent/approvals:

• Credentials by public authorities: . Transformable by
 to be of the form

• Credentials by private individuals: . Transformable by
 to be of the form .

• Machine-generated facts: ?

• Revocation of previously granted access: ?

𝗌𝗂𝗀𝗇𝖾𝖽(P, A) A P

𝗌𝗂𝗀𝗇𝖾𝖽(𝖼𝗈𝗇𝗌𝖾𝗇𝗍(𝗏𝗂𝖽(b3), 𝖿𝗂𝗇𝖺𝗇𝖼𝖾𝖣𝖺𝗍𝖺(𝗏𝗂𝖽(a2)), 𝗏𝗂𝖽(a2))

𝗌𝗂𝗀𝗇𝖾𝖽(𝗉𝖺𝗌𝗌𝖾𝖽(𝗏𝗂𝖽(a2)), 𝗏𝗂𝖽(z0))
a 𝗌𝗂𝗀𝗇𝖾𝖽(𝗉𝖺𝗌𝗌𝖾𝖽(𝗏𝗂𝖽(a3)), 𝗏𝗂𝖽(z0))

𝗌𝗂𝗀𝗇𝖾𝖽(𝗉𝖺𝗌𝗌𝖾𝖽(𝗏𝗂𝖽(a2)), 𝗏𝗂𝖽(b3))
a 𝗌𝗂𝗀𝗇𝖾𝖽(𝗉𝖺𝗌𝗌𝖾𝖽(𝗏𝗂𝖽(a3)), 𝗏𝗂𝖽(b3))

𝗌𝗂𝗀𝗇𝖾𝖽(𝖼𝗎𝗋𝗋𝖳𝗂𝗆𝖾(t), 𝗍𝗂𝗆𝖾𝗋)

¬𝗌𝗂𝗀𝗇𝖾𝖽(𝖼𝗈𝗇𝗌𝖾𝗇𝗍𝖾𝖽(p), 𝗏𝗂𝖺(a2))

Need to think about “identity”
and “signatures” of programs…

Need to think about contradictory
predicates in the logic program

Logic programs with exceptions

• Exceptions necessary to allow a rule override access given by the other rule

• In traditional logic, if you have a rule and a rule
, then it leads to a contradiction.

• We need a kind of exception mechanism that gives priority to the negative
rule.

𝖺𝗅𝗅𝗈𝗐(X, Y, L) ← B1
¬𝖺𝗅𝗅𝗈𝗐(X, Y, L) ← B2

𝖺𝗅𝗅𝗈𝗐(X, Y, L) ← 𝗇𝗈𝗍 𝖽𝖾𝗇𝗒(X, Y, L)

 is true if no rule of
the form

exists (closed world assumption;
different from)

𝗇𝗈𝗍 p
p ← p1, p2, . . . , pn

¬p

Logic programs with exceptions

• Positive rules and exception rules, with exceptions taking priority:

𝖽𝖾𝗇𝗒(Z, Y, L) ← 𝖼𝗈𝗇𝗍𝖺𝗂𝗇𝗌(L, X), 𝗌𝗂𝗀𝗇𝖾𝖽(𝗋𝖾𝗏𝗈𝗄𝖾𝖽(𝖼𝗈𝗇𝗌𝖾𝗇𝗍), X)

𝖺𝗅𝗅𝗈𝗐(𝖽𝖻, Y, 𝖬𝖾𝖽𝖣𝖺𝗍𝖺(X)) ← 𝗌𝗂𝗀𝗇𝖾𝖽(𝗏𝗂𝗌𝗂𝗍𝖾𝖽(Y), X)

𝖺𝗅𝗅𝗈𝗐(𝖽𝖻, Y, 𝖬𝖾𝖽𝖣𝖺𝗍𝖺(X)) ← 𝗌𝗂𝗀𝗇𝖾𝖽(𝗏𝗂𝗌𝗂𝗍𝖾𝖽(Y), X), 𝗇𝗈𝗍 𝖽𝖾𝗇𝗒(𝖽𝖻, Y, 𝖬𝖾𝖽𝖣𝖺𝗍𝖺(X))
𝖽𝖾𝗇𝗒(Z, Y, L) ← 𝖼𝗈𝗇𝗍𝖺𝗂𝗇𝗌(L, X), 𝗌𝗂𝗀𝗇𝖾𝖽(𝗋𝖾𝗏𝗈𝗄𝖾𝖽(𝖼𝗈𝗇𝗌𝖾𝗇𝗍), X)

Positive rules

Exception rules

Compiled to the following
logic program (to be
executed in Prolog)

Purpose limitation
• At the time of data collection, purpose should be stated and it must be assured that

purpose would not be violated.

• Reasoning about the future.

• Some preliminary formulations:

• Purpose identified with the organisational role of the accessor (Byun & Li ’05)

• Purpose identified with an action graph (Jafari et al. ’11)

• Purpose identified with a “plan” (Tschantz et al. ’12)

• Common theme:

• Either a poor proxy for purpose is chosen, or the enforcement mechanism is weak

Purpose limitation
• Our notion: Purpose identified by a “sandboxed program!”

• Sandboxing:

• Program runs within a black-box.

• No one can learn any intermediate execution information. Only official output is

learnable.

• No one can tamper with the execution of the program. Only official input can

affect the execution.

• Cryptographic notions: secure multiparty computation, functional encryption, …

• System security notions: hardware-based trusted execution environments, …

• A sandboxed program can be assigned an identifier that defines its purpose!

• Can talk about signatures generated within the sandbox and messages encrypted

for the sandbox.

• E.g., 𝗌𝗂𝗀𝗇𝖾𝖽(𝖼𝗎𝗋𝗋𝖳𝗂𝗆𝖾(t), 𝗍𝗂𝗆𝖾𝗋)

Some examples

𝖺𝗅𝗅𝗈𝗐(𝗏𝗂𝖽(X), 𝗆𝖺𝖼𝗁𝗂𝗇𝖾(𝖢𝖺𝗇𝖼𝖾𝗋𝖠𝗇𝖺𝗅𝗒𝗓𝖾𝗋), 𝖬𝖾𝖽𝖣𝖺𝗍𝖺(X))

𝖺𝗅𝗅𝗈𝗐(𝗆𝖺𝖼𝗁𝗂𝗇𝖾(𝖤𝗉𝗂𝖽𝖾𝗆𝗂𝖼𝖠𝗇𝖺𝗅𝗒𝗌𝗂𝗌𝖯𝗋𝗈𝗀), 𝗏𝗂𝖽(X), 𝗁𝗈𝗍𝗌𝗉𝗈𝗍𝗌) ← 𝗌𝗂𝗀𝗇𝖾𝖽(𝗂𝗌𝖠𝗇𝖺𝗅𝗒𝗌𝗍(𝗏𝗂𝖽(X)), 𝗏𝗂𝖽(z0))
Sandboxing achieves data

minimisation, correctness of output!

Sandboxing achieves purpose
limitation, access control for writes

What does it mean to be compliant to this policy?

• Remember the differential notion in all the security definitions we have seen so far.

• Can we write a similar definition expressing that the data controller does not leak
anything except what is allowed by this policy?

• Yes, using ideas from secure multiparty computation

Secure multiparty computation
x1 x2 x3 x4 x5

f1(x) f2(x) f3(x) f4(x) f5(x)

• All parties have private inputs and wish to compute a joint function of each others’
private inputs such that no party learns anything other than .

xi
i fi(x)

Security of secure multiparty computation

Trusted third party
computing ℱ

x1 x2 x3 x4 x5

f1(x) f2(x) f3(x) f4(x) f5(x)

Allowed leakage

Ideal-world
adversary

A hypothetical
ideal world
(secure by
definition):

• A real protocol secure computes functionality if an ideal-world adversary and the dummy parties can simulate a
view for the environment indistinguishable from its view when interacting with real parties and the real adversary.

ℱ

E
N
V
I
R
O
N
M
E
N
T

Privacy policy compliance as SMC
𝗏𝗂𝖽(a3), 𝖬𝖾𝖽𝖣𝖺𝗍𝖺(a3) 𝗌𝗂𝗀𝗇(𝗂𝗌𝖽𝗈𝖼(b2), c0)

1. Send to .(⟨D⟩, π) 𝒮

𝗏𝗂𝖽(a3), 𝖬𝖾𝖽𝖣𝖺𝗍𝖺(a3)

control-flow⟨D⟩, π,

Ideal-world
adversary ()𝒮

Policy π := (ℛ, ℰ)
Data controller description
⟨D⟩ := {(𝗂𝖽M, ⟨M⟩) : M ∈ D}

3. Check presented vids, sigs.
2. Store all created vids & sigs.

4. Check if allows read/write
access to an external agent.

π

5. Run each program
exactly as specified

⟨M⟩

ℱ⟨D⟩,π,A
𝖯𝖡𝖯 :

𝗏𝗂𝖽(b2)

Ideal
world:

Overall architecture: initialisation

⟨D⟩, π, pkR

Public bulletin
boardRegulator

⟨D⟩, π

Machine
𝗂𝖽M1, ⟨M1⟩

Machine
𝗂𝖽M2, ⟨M2⟩

sk𝗂𝖽M1
sk𝗂𝖽M2

skR

Real
world:

Overall architecture: during runtime
m := 𝗏𝗂𝖽(a3), 𝖬𝖾𝖽𝖣𝖺𝗍𝖺(a3)

𝗏𝗂𝖽(a3), 𝖬𝖾𝖽𝖣𝖺𝗍𝖺(a3)

Public bulletin
board

Regulator

⟨D⟩, π

Machine
𝗂𝖽M1, ⟨M1⟩

Machine
𝗂𝖽M2, ⟨M2⟩

sk𝗂𝖽M1
sk𝗂𝖽M2

, ctxskR

c := EpkR,𝗂𝖽M1
(m)

σ := σa3
(c)

dest := 𝗂𝖽M1

c := Eb2
(m)

σ := σpkR,𝗂𝖽M2
(c)

dest := 𝗏𝗂𝖽(b2)

⟨D⟩, π, pkRcheck
access

check
access

Real
world:

𝗌𝗂𝗀𝗇𝖾𝖽(𝗂𝗌𝖽𝗈𝖼(b2), c0)
𝗏𝗂𝖽(c0),

Larger questions

• Regulatory capacity and will

• Identity infrastructure

• Performance issues

• Trust model

• Fast-moving private sector use-cases

• Rivest et al. ’78: A Method for Obtaining Digital Signatures and Public-Key Cryptosystems, CACM, Vol 21 No. 2, 1978

• Diffie & Hellman ’76: New Directions in Cryptography, IEEE Tr. Information Theory, Vol 22 No. 6, 1976

• Goldwasser et al. ’89: The Knowledge Complexity of Interactive Proof Systems, SIAM J. Computing, Vol 18 pp. 186-208,

1989

• Goldreich et al. ’91: Proofs That Yield Nothing but Their Validity or All Languages in NP Have Zero-knowledge Proof

Systems, J. ACM, Vol 38 pp. 690-728, 1991

• Pedersen ’91: Non-interactive and information-theoretic secure verifiable secret sharing, CRYPTO, pp. 129-140, 1991

• Byun & Li ’06: Purpose-based access control for privacy protection in relational database systems, VLDB, 2006
• Jafari et al. ’11: Towards defining semantic foundations for purpose-based privacy policies, CODASPY, 2011

• Tschantz et al. ’11: Formalizing and Enforcing Purpose Restrictions in Privacy Policies, IEEE S&P, 2012

• Chaum ’85: Security without Identification, CACM, Vol 28 No. 10, 1985

• Camenisch & Lysyanskaya ’01: An efficient system for non-transferable anonymous credentials with optional anonymity

revocation, EUROCRYPT, 2001

• Barth et al. ’06: Privacy and contextual integrity: framework and applications, IEEE S&P, 2006

• Dinur & Nissim ’03: Revealing information while preserving privacy, PODS, 2003

• Dwork ’05: Differential privacy, ICALP, 2006

• Pinto & Santos ’19: Demystifying ARM Trustzone: A Comprehensive Survey, ACM Computing Surveys, Vol 51 Issue 6,

2019

References

