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Theory of Division

> LetZ={--,-2,-1,0,1,2,---} be the set of integers.
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> LetZ={--,-2,-1,0,1,2,---} be the set of integers.

» Division Theorem: For any integer a and any positive integer n,
there exist unique integers ¢ and r s.t.: a = qn + r where
0<r<n.
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Theory of Division

> LetZ={--,-2,-1,0,1,2,---} be the set of integers.

» Division Theorem: For any integer a and any positive integer n,
there exist unique integers ¢ and r s.t.: a = qn + r where
0<r<n.

» Given a,n € Z,n > 0 the notation » = a mod n represents the
remainder of the division of a by n and ¢ = |a/n | represents the
quotient of the division.
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Theory of Division

> LetZ={--,-2,-1,0,1,2,---} be the set of integers.

» Division Theorem: For any integer a and any positive integer n,
there exist unique integers ¢ and r s.t.: a = qn + r where
0<r<n.

» Given a,n € Z,n > 0 the notation » = a mod n represents the
remainder of the division of a by n and ¢ = |a/n | represents the
quotient of the division.

> [a], be the equivalence classes according to the remainders
modulo n.
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Theory of Division

> LetZ={--,-2,-1,0,1,2,---} be the set of integers.

» Division Theorem: For any integer a and any positive integer n,
there exist unique integers ¢ and r s.t.: a = qn + r where
0<r<n.

» Given a,n € Z,n > 0 the notation » = a mod n represents the
remainder of the division of a by n and ¢ = |a/n | represents the
quotient of the division.

> [a], be the equivalence classes according to the remainders

modulo n.
> Formally, [a], = {a+kn: ke Z}
» Example: [3]7 = {---,—11,—4,3,10,17,--- } = [—4]7 = [10]7

> Thus, a € [b], is the same as writing a = b (mod n).
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Theory of Division
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> LetZ={--,-2,-1,0,1,2,---} be the set of integers.

» Division Theorem: For any integer a and any positive integer n,
there exist unique integers ¢ and r s.t.: a = qn + r where
0<r<n.

» Given a,n € Z,n > 0 the notation » = a mod n represents the
remainder of the division of a by n and ¢ = |a/n | represents the
quotient of the division.

> [a], be the equivalence classes according to the remainders
modulo n.

> Formally, [a], = {a+kn: ke Z}

» Example: [3]7 = {---,—11,—4,3,10,17,--- } = [—4]7 = [10]7

> Thus, a € [b], is the same as writing a = b (mod n).

> Set of all such equivalence classes: Z,, = {[a], : 0 < a <n —1}
will be read as {0,1,--- ,n — 1}




Common Divisors

» If d|la and d|b, we say d is a common divisor of a and b.
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Common Divisors i

ﬁ

» If d|la and d|b, we say d is a common divisor of a and b.

» From above = d|a + b, d|a — b. In general, d|ax + by for any
integers = and y.
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Common Divisors

» If d|a and d|b, we say d is a common divisor of ¢ and b.
» From above = d|a + b, d|a — b. In general, d|ax + by for any
integers = and y.

» Greatest Common Divisor (gcd): Among all the common divisors
of a and b, the largest among them is the gcd(a, b)
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Common Divisors

» If d|la and d|b, we say d is a common divisor of a and b.

» From above = d|a + b, d|a — b. In general, d|ax + by for any
integers = and y.
» Greatest Common Divisor (gcd): Among all the common divisors
of a and b, the largest among them is the gcd(a, b)
> Eg: ged(24,30) = 6.
> 24=12223
> 30= 235

svs, suban: Ir ion to Modular Ari



Common Divisors

» If d|la and d|b, we say d is a common divisor of a and b.

» From above = d|a + b, d|a — b. In general, d|ax + by for any
integers = and y.
» Greatest Common Divisor (gcd): Among all the common divisors
of a and b, the largest among them is the gcd(a, b)
> Eg: ged(24,30) = 6.
> 24=12223
> 30= 235

> A useful characterization of gcd: If @ and b are nonzero, then
gcd(a, b) is the smallest positive number of the set
{ax + by :z,y € Z}.
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Common Divisors

» If d|la and d|b, we say d is a common divisor of a and b.

» From above = d|a + b, d|a — b. In general, d|ax + by for any
integers = and y.
» Greatest Common Divisor (gcd): Among all the common divisors
of a and b, the largest among them is the gcd(a, b)
> Eg: ged(24,30) = 6.
> 24=12223
> 30= 235

> A useful characterization of gcd: If @ and b are nonzero, then
gcd(a, b) is the smallest positive number of the set
{ax + by :z,y € Z}.

» If ged(a,b) = 1, then a and b are relatively prime.
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Common Divisors

» If d|la and d|b, we say d is a common divisor of a and b.

» From above = d|a + b, d|a — b. In general, d|ax + by for any
integers = and y.

» Greatest Common Divisor (gcd): Among all the common divisors
of a and b, the largest among them is the gcd(a, b)
> Eg: ged(24,30) = 6.
> 24=2223
> 30= 235
> A useful characterization of gcd: If @ and b are nonzero, then
gcd(a, b) is the smallest positive number of the set
{ax + by :z,y € Z}.
> If ged(a,b) = 1, then a and b are relatively prime.
> Relatively prime integers: gcd(a,b) =1
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Common Divisors

» If d|la and d|b, we say d is a common divisor of a and b.

» From above = d|a + b, d|a — b. In general, d|ax + by for any
integers = and y.

» Greatest Common Divisor (gcd): Among all the common divisors
of a and b, the largest among them is the gcd(a, b)
> Eg: ged(24,30) = 6.
> 24=2223
> 30= 235
> A useful characterization of gcd: If @ and b are nonzero, then
gcd(a, b) is the smallest positive number of the set
{ax + by :z,y € Z}.
» If ged(a,b) = 1, then a and b are relatively prime.
> Relatively prime integers: gcd(a,b) =1

» Note: No efficient solution for integer factorization.
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Euclid’s Greatest Common Divisor Algorithm

» Euclid in his “The Elements” (c. 300 BC) gave a recursive
algorithm: gcd(a, b) = ged(b, a mod b)
> Letd = gcd(a,b). Thend | a,d | 0.
» amodb=a— qgbwhere ¢ = |a/b]. Thus, d | a mod b
» Similarly, can be shown that a mod b | d

> Eg:

gcd(30,21) = ged(21,9)
= gcd(9,3)
= ged(3,0)
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Extended Euclid’s Algorithm {

ﬁ

d = ged(a, b) = ax + by.
» The algorithm solves for = and y. Note that  and y can be zero
or negative.

> As efficient as ged(a, b) computation
» Required to compute modular multiplicative inverses.
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Modular Arithmetic
Finite groups
> Finite Group: (S, @) where S is finite.
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Modular Arithmetic
Finite groups

> Finite Group: (S, @) where S is finite.
> Properties:

1.
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Closure: Forall a,b € S,thena®be S

2. Associativity: For all a,b,c € S,we have (a &b) dc=a® (bSc)
3.
4. Inverse: For each a € S, there exists a unique b € S s.t.

Identity: There existse € S,st. a®e=e®a=a,foralla € S.

adbb=bda=ce.




Modular Arithmetic
Finite groups
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> Finite Group: (S, @) where S is finite.
> Properties:

1.

2.
3.
4.

Closure: Forall a,b € S,thena®be S

Associativity: For all a,b,c € S, we have (a ®b)dc=aP (bdc)
Identity: There existse € S,st. a®e=e®a=a,foralla € S.
Inverse: For each a € S, there exists a unique b € S s.t.
adbb=bda=ce.

» EQ: (Zn,+n) (Check?)




Modular Arithmetic
Finite groups
» Finite Group: (S, ®) where S is finite.

> Properties:
1. Closure: Forall a,b € S,thena®be S
2. Associativity: For all a,b,c € S,we have (a &b) dc=a® (bSc)
3. Identity: There existse € S,st.a®e=e®a=a,forala € S.
4. Inverse: For each a € S, there exists a unique b € S s.t.

adbb=bda=ce.

» EQ: (Zn,+n) (Check?)

» What about (Z,, *,) — Answer is No!
> Not all elements have an inverse! Eg: 0,2, 3,4 € Zg have no inverses.
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Modular Arithmetic
Finite groups
» Finite Group: (S, ®) where S is finite.
> Properties:
1. Closure: Forall a,b € S,thena®be S
2. Associativity: For all a,b,c € S,we have (a &b) dc=a® (bSc)
3. Identity: There existse € S,st.a®e=e®a=a,forala € S.
4. Inverse: For each a € S, there exists a unique b € S s.t.
adbb=bda=ce.
» EQ: (Zn,+n) (Check?)
» What about (Z,, *,) — Answer is No!
> Not all elements have an inverse! Eg: 0,2, 3,4 € Zg have no inverses.
> LetZ;, = {[a]n : gcd(a,n) = ax + by = 1,z,y € Z}. Then (Z;,, *»)
is a finite group. Eg: Z7 = {1,2,3,4,5,6},
Zis ={1,2,4,7,8,11,13,14}
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Modular Arithmetic
Finite groups
» Finite Group: (S, ®) where S is finite.
> Properties:
1. Closure: Forall a,b € S,thena®be S
2. Associativity: For all a,b,c € S,we have (a &b) dc=a® (bSc)
3. Identity: There existse € S,st.a®e=e®a=a,forala € S.
4. Inverse: For each a € S, there exists a unique b € S s.t.
adb=bda=ce.
» EQ: (Zn,+n) (Check?)
» What about (Z,, *,) — Answer is No!
> Not all elements have an inverse! Eg: 0,2, 3,4 € Zg have no inverses.
> LetZ;, = {[a]n : gcd(a,n) = ax + by = 1,z,y € Z}. Then (Z;,, *»)
is a finite group. Eg: Z7 = {1,2,3,4,5,6},
Zis ={1,2,4,7,8,11,13,14}
» Thus, for a € Z;,, we have ax = 1 mod n.
> This multiplicative inverse = can quickly computed using Extended
Euclid.
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Modular Arithmetic
Finite groups
» Finite Group: (S, ®) where S is finite.
> Properties:
1. Closure: Forall a,b € S,thena®be S
2. Associativity: For all a,b,c € S,we have (a &b) dc=a® (bSc)
3. Identity: There existse € S,st.a®e=e®a=a,forala € S.
4. Inverse: For each a € S, there exists a unique b € S s.t.
adb=bda=ce.
» EQ: (Zn,+n) (Check?)
» What about (Z,, *,) — Answer is No!
> Not all elements have an inverse! Eg: 0,2, 3,4 € Zg have no inverses.
> LetZ;, = {[a]n : gcd(a,n) = ax+ by = 1,z,y € Z}. Then (Z;,, *n)
is a finite group. Eg: Z7 = {1,2,3,4,5,6},
Zis =1{1,2,4,7,8,11,13,14}
» Thus, for a € Z;,, we have ax = 1 mod n.
> This multiplicative inverse = can quickly computed using Extended
Euclid.
> Eg: a=5,n=11. Then
(d,z,y) = Extended_Euclid(a,n) = (1,-2,1). Thus, the
multiplicative inverse of 5 is [—2]11 or [9]11.
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Modular Arithmetic
Finite groups
» Finite Group: (S, ®) where S is finite.
> Properties:
1. Closure: Forall a,b € S,thena®be S
2. Associativity: For all a,b,c € S,we have (a &b) dc=a® (bSc)
3. Identity: There existse € S,st.a®e=e®a=a,forala € S.
4. Inverse: For each a € S, there exists a unique b € S s.t.
adb=bda=ce.
» EQ: (Zn,+n) (Check?)
» What about (Z,, *,) — Answer is No!
> Not all elements have an inverse! Eg: 0,2, 3,4 € Zg have no inverses.
> LetZ;, = {[a]n : gcd(a,n) = ax+ by = 1,z,y € Z}. Then (Z;,, *n)
is a finite group. Eg: Z7 = {1,2,3,4,5,6},
Zis =1{1,2,4,7,8,11,13,14}
» Thus, for a € Z;,, we have ax = 1 mod n.
> This multiplicative inverse = can quickly computed using Extended
Euclid.
> Eg: a=5,n=11. Then
(d,z,y) = Extended_Euclid(a,n) = (1,-2,1). Thus, the
multiplicative inverse of 5 is [—2]11 or [9]11.
» Observe: |Z%| < |Z,| when n is composite. Why?

svs, suban: Ir ion to Modular Ari




Modular Arithmetic
Finite groups
» Finite Group: (S, ®) where S is finite.
> Properties:
1. Closure: Forall a,b € S,thena®be S
2. Associativity: For all a,b,c € S,we have (a &b) dc=a® (bSc)
3. Identity: There existse € S,st.a®e=e®a=a,forala € S.
4. Inverse: For each a € S, there exists a unique b € S s.t.
adb=bda=ce.
> EQ: (Zn,+n) (Check?)
» What about (Z,, *,) — Answer is No!
> Not all elements have an inverse! Eg: 0,2, 3,4 € Zg have no inverses.
> LetZ;, = {[a]n : gcd(a,n) = ax + by = 1,z,y € Z}. Then (Z;,, *»)
is a finite group. Eg: Z7 = {1,2,3,4,5,6},
Zis =1{1,2,4,7,8,11,13,14}
» Thus, for a € Z;,, we have ax = 1 mod n.
> This multiplicative inverse = can quickly computed using Extended
Euclid.
> Eg: a=5,n=11. Then
(d,z,y) = Extended_Euclid(a,n) = (1,-2,1). Thus, the
multiplicative inverse of 5 is [—2]11 or [9]11.
» Observe: |Z%| < |Z,| when n is composite. Why?
» In practice, we choose Z} where p is prime.
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Modular Arithmetic: Subgroups

> Given (S, @), choose any a € S and compute
a(k) :a@a@...@a/
—_— ——

k times
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Modular Arithmetic: Subgroups

> Given (S, @), choose any a € S and compute
a® =adad - -Da
k times
> The subgroup generated by a is denoted as ({(a), ®) where
(a) = {a® : k> 1}
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> Given (S, @), choose any a € S and compute
a® =adad - -Da
k times
> The subgroup generated by a is denoted as ({(a), ®) where
(a) = {a® : k> 1}
> Eg: Zs = {0,1,2,3,4,5}. Choose a = 2. Then
a® =24a® =440 =0,--- (since ® = +). For Zg, we have:
(1y ={0,1,2,3,4,5}
(2) ={0,2,4}
(3) =10,3}




Modular Arithmetic: Subgroups

> Given (S, @), choose any a € S and compute
a® =adad - -Da
k times
> The subgroup generated by a is denoted as ({(a), ®) where
(a) = {a® : k> 1}
> Eg: Zs = {0,1,2,3,4,5}. Choose a = 2. Then
a® =24a® =440 =0,--- (since ® = +). For Zg, we have:
(1y ={0,1,2,3,4,5}
(2) ={0,2,4}
(3) =10,3}
» Eg: Z% ={1,2,3,4,5,6}. Choose a = 2. Then
a® =20a® =460 =1,... (since @ = x).
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Modular Arithmetic (Continued): Subgroups

» Lagrange’s Theorem: If (S’, &) forms a subgroup of (S, &), then
|S’| divides |S]|.
» For a subgroup (a), the element « is called the generator.
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Modular Arithmetic (Continued): Subgroups

» Lagrange’s Theorem: If (S’, &) forms a subgroup of (S, &), then
|S’| divides |S]|.
» For a subgroup (a), the element « is called the generator.

> Notice that there exists ¢ s.t. a(¥) = e. The smallest possible ¢ is
called the order of (a) — denoted by ord(a).
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Modular Arithmetic (Continued): Subgroups

» Lagrange’s Theorem: If (S’, &) forms a subgroup of (S, &), then
|S’| divides |S]|.
» For a subgroup (a), the element « is called the generator.

> Notice that there exists ¢ s.t. a(¥) = e. The smallest possible ¢ is
called the order of (a) — denoted by ord(a).

> for group operaton + : ¥ = e is the same as at = 0 mod n
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Modular Arithmetic (Continued): Subgroups

» Lagrange’s Theorem: If (S’, &) forms a subgroup of (S, &), then
|S’| divides |S]|.

» For a subgroup (a), the element « is called the generator.

> Notice that there exists ¢ s.t. a(¥) = e. The smallest possible ¢ is
called the order of (a) — denoted by ord(a).

> for group operaton + : a¥ = e is the same as at = 0 mod n
> for group operaton # : ' = ¢ is the same as a' = 1 mod n
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Modular Arithmetic (Continued): Subgroups

» Lagrange’s Theorem: If (S’, &) forms a subgroup of (S, &), then
|S’| divides |S]|.
» For a subgroup (a), the element « is called the generator.
> Notice that there exists ¢ s.t. a(¥) = e. The smallest possible ¢ is
called the order of (a) — denoted by ord(a).
> for group operaton + : ) = ¢ is the same as at = 0 mod n
> for group operaton x : oY) = e is the same as a* = 1 mod n

> If (S,®) is a finite group with identity e, then for all a € S:
a8) — ¢
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Modular Arithmetic (Continued): Subgroups

» Lagrange’s Theorem: If (S’, &) forms a subgroup of (S, &), then
|S’| divides |S]|.

» For a subgroup (a), the element « is called the generator.

> Notice that there exists ¢ s.t. a(¥) = e. The smallest possible ¢ is
called the order of (a) — denoted by ord(a).

> for group operaton + : a¥ = e is the same as at = 0 mod n
> for group operaton # : ' = ¢ is the same as a' = 1 mod n

> If (S,®) is a finite group with identity e, then for all a € S:
a8) — ¢

> Proof from Lagrange’s Theorem that ord(a) | |S|
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Modular Linear Equations

Consider ax = b mod n, where a,n > 0.
» Choose an a € Z,,. Then {(a) = {az mod n : x > 0}.
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Modular Linear Equations {

@
&

Consider ax = b mod n, where a,n > 0.
» Choose an a € Z,. Then {a) = {az mod n : x > 0}.
> Thus, the above equation has a solution if and only if [b] € (a).
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Modular Linear Equations {
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O

Consider ax = b mod n, where a,n > 0.
» Choose an a € Z,. Then {a) = {az mod n : x > 0}.
> Thus, the above equation has a solution if and only if [b] € (a).

> Precise characterisation: (a) = (d) = {0,d,2d,--- ,(n/d — 1)d},
where d = ged(a, n). Thus, [(a)| = n/d.
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Consider ax = b mod n, where a,n > 0.
» Choose an a € Z,. Then {a) = {az mod n : x > 0}.
> Thus, the above equation has a solution if and only if [b] € (a).
> Precise characterisation: (a) = (d) = {0,d,2d,--- ,(n/d — 1)d},
where d = ged(a, n). Thus, [(a)| = n/d.
» az = bmod n is solvable for x if and only if d | b,d = gcd(a,n).
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ﬁ

Consider ax = b mod n, where a,n > 0.
» Choose an a € Z,. Then {a) = {az mod n : x > 0}.
> Thus, the above equation has a solution if and only if [b] € (a).
> Precise characterisation: (a) = (d) = {0,d,2d,--- ,(n/d — 1)d},
where d = ged(a, n). Thus, [(a)| = n/d.
» az = bmod n is solvable for x if and only if d | b,d = gcd(a,n).

» Either has d distinct solutions where d = gcd(a,n) A d|b or has no
solution.
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Modular Linear Equations {

Consider ax = b mod n, where a,n > 0.
» Choose an a € Z,. Then {a) = {az mod n : x > 0}.
> Thus, the above equation has a solution if and only if [b] € (a).
> Precise characterisation: (a) = (d) = {0,d,2d,--- ,(n/d — 1)d},
where d = ged(a, n). Thus, [(a)| = n/d.
» az = bmod n is solvable for x if and only if d | b,d = gcd(a,n).

» Either has d distinct solutions where d = gcd(a,n) A d|b or has no
solution.

» 8z = 2 mod 12. Any solution?
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Modular Linear Equations @

Consider ax = b mod n, where a,n > 0.
» Choose an a € Z,. Then {a) = {az mod n : x > 0}.
> Thus, the above equation has a solution if and only if [b] € (a).
> Precise characterisation: (a) = (d) = {0,d,2d,--- ,(n/d — 1)d},
where d = ged(a, n). Thus, [(a)| = n/d.
» az = bmod n is solvable for x if and only if d | b,d = gcd(a,n).
» Either has d distinct solutions where d = gcd(a,n) A d|b or has no
solution.
» 8z = 2 mod 12. Any solution?
» when d = 1 = the above equation has a unique solution.
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Modular Linear Equations

Consider ax = b mod n, where a,n > 0.
» Choose an a € Z,. Then {a) = {az mod n : x > 0}.
> Thus, the above equation has a solution if and only if [b] € (a).
» Precise characterisation: (a) = (d) ={0,d,2d,--- ,(n/d — 1)d},
where d = ged(a, n). Thus, [(a)| = n/d.
» ax = bmod n is solvable for z if and only if d | b, d = ged(a,n).
» Either has d distinct solutions where d = gcd(a,n) A d|b or has no
solution.
» 8z = 2 mod 12. Any solution?
» when d = 1 = the above equation has a unique solution.

» Of special interest: b = 1 (multiplicative inverse of a)
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Symmetric Key Encryption

C-Enec (M, ) ’Der_(c) \<) =™

O Client //__SCW'
/)\ «—F|\™M/c / M/e
i =]

S =2 =

st hﬁc é’l«ovmig

» The same key k is used for Encryption and decryption key

> Encryption produces ciphertext C = E(M, k). Decryption
recovers the message M = D(E(M, k), k)
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Symmetric Key Encryption (Continued)
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Substitution ciphers as encryption functions: Cipher alphabet
shifted, reversed, or scrambled (Eg: Caesar cipher)
» MEETME — LOOQ LO
» Security is weak: Frequency distribution of ciphertext which can
allow formation of partial words. O is used 3 times. In English, top
letters that are frequent used are E, T, A etc. Replacing O with E
gives a partial word.

Similarly, for Transposition cipher: Sliding alphabet of ciphertexts
to look for anagrams. Then search the space of anagrams.
Need to rely on a key whose detection is hard - prime
factorisation of large semi-primes is presumably hard!

Known Symmetric encryption algorithms: AES, 3DES, Blowfish.

AES128: Runs in 16 rounds. Each round has substitution,
permutation, linear transformation, XOR with round key.




More on Symmetric Encryption

» How to securely share the secret key among each pair of
communicating parties?
» Solution: Diffie-Hellman key exdchange protocol.
> After receiving the secret key, how to securely store them?
Threats from insider attacks, compromised privileged software
(such as the OS).

> Note that no data protection technique via key-based data
encryption will be adequate without a solution to the secure key

storage problem.

» The number of keys to be maintained by each machine is O(n)
(where n is the number of machines that it will communicate ).
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Diffie-Hellman Key Exchange Protocol
» Security of the protocol is derived from the presumed hardness ™
of the discrete logarithm problem.
» Protocol begins by choosing a publicly agreed upon a large
prime p and the associated primitive root g.
> Recall that primitive root is that special element g € Z;, such that
(9) = Z.
» Two participants A and B, then choose secret keys a and b,
respectively.

rD'lnie - Hellwow Ha §7<c\,\°vd<

iER —» Known
—+Cna
\
=
Cn B

. cf_‘iu,, Z\C‘med\: =@ ]L . cw\,»& abxf‘\bé‘r_‘CE

St Jooing ot CA,Co N0 &n¢ Can dedi <Y O ond s
. Receive Cop . AReceive £p
=

. Com‘(:.,J:, C&q 'vv\oo\’r - CD‘FI);J‘;-’ Ca WD‘JF

ac.t:. Wod\’\@:/a wod‘v
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Diffie-Hellman Key Exchange Protocol

Participant A computes a ciphertext C4 = g* (mod p). Similarly,
B computes Cp = ¢° (mod p).

Participant A sends C'4 to participant B and receives Cp from B.
A computes C% (mod p) = g*® (mod p) and B computes

C% (mod p) = g** (mod p).

Thus, the secret key ¢g® (mod p) is established.

Any intruder wishing to read the message will have to find the
value ab (i.e., solving the discrete logarithm problem).
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Discrete Logarithm Problem

Let us focus on Z? instead of Z,,.

> We know that for all a € Z?, al%=l =1 (mod n),n > 1

» This is also called Euler’s Theorem
» The Euler Phi function is defined as: ¢(n) = |Z;,|

> Remember from earlier discussion that |Z;| = p — 1 when pis a
prime.

> From Fermat's Theorem: a?~! = 1 (mod p) for all a € Z;

> Let g € Z7 such that (¢) = Z7 . Then Z; is called cyclic.

» By definition of (g), for all a € Z, there exists z s.t.
9% = a (mod n).
> 2 is called the discrete logarithm of a modulo n.
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One Way Functions

Ov\e ')/Oc‘d %v\a\’;;\\ns
s SR

EM@ ‘o bw\r..}:
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» Given z, computing F'(z) is fast.
» However, given F(z), computing F~*(z) is difficult

» Discrete logarithm problem is an instance of a one-way function!
That is given g, z,n computing g*(mod n) is fast. But given g, n,a
computing log,(a)
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One-way Hash Functions

F

({msg-arbitrary-size)) = (msg-fixed-size)
» Properties:
» Deterministic: same message produces the same hash.
> Collision-resistant: It is hard to find two inputs m1, m2 s.t. m1 # mo
but F'(m1) = F(mz).
> Avalanche effect: A small change in message leads to a large
change in the hashed message

» Used in digital signatures, MACs. Egs: SHA-256, MD5
» Security: Brute-force search, Caching the o/p of hash functions
(called rainbow table attack).

> Use of salt (a random data as an additional input to the hash
function) makes the attack infeasible.
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Public-key Cryptosystems
[Caen })ovlﬂ't_'\‘rq\.c\-: Hed S )
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» Every participant computes and maintains a key.
» Each key has two parts: public P, secret S
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Public-key Cryptosystems(Cont.)
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>
>

>

Thus, machine A’s key is (P4, S4) and B’s key is (Pg, Sg).
With a slight abuse of notation we will consider E(M, P,) in the
figure as P,(M) and D(M, S,) as S,(M).

Public and secret keys are "matched pairs”, in the sense that
they specify functions that are inverses of each other, i.e.,
Sa(Py(msg)) = Po(Sz(msg)).

Security assumption: Even though P, is known publicly for all z,
it is hard for an intruder to ascertain S, from P,.. Only the owner
2 can compute S, in a practical amount of time.

Data Confidentiality: Assume A is the sender and B is the
recipient of a message M. Then A encrypts by applying Pg of B,
i.e. C = Pg(M), Thus, only B can decode this message with Sp
(ie., Sp(Pp(M)) = M)

Digital signatures can also be implemented with Public-key
cryptosystems: A can send a message M by encrypting it as
Sa(M). Note that any machine with P4 can decrypt this
message. However, only A could have sent this message, since
S is a secret known only to A.

ion to Modular Ari
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Public-key Cryptosystems: RSA

A popular public-key cryptosystem is the Rivest—Shamir—Adleman
algorithnm (authors given Turing Award in 2002)
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1.

Select two very large primes p and ¢ [Use the probabilistic
Miller-Rabin or Solovay-Strassen]

2. Compute n = pq. Compute ¢(n) = (p — 1)(q — 1).
3. Choose anodd e s.t. 1 < e < ¢(n) and ged(e, p(n)) = 1 [Use

® N> o

Euclid’s gcd computation to select €]

. Compute d as the multiplicative inverse of e, modulo ¢(n). That

is ed = 1 (mod ¢(n)) [Apply Extended Euclid to solve for x s.t.
ged(e,d(n)) =1 =ex + ¢(n)y]

Publish the public key P = (e, n) of the participant

Publish the private key S = (d,n) of the participant

The domain of a message D is Z,, = {0,1,2,--- ,n — 1}.
Thus P(M) = M*® (mod n) = C. And S(C) = C?¢ (mod n).




Why does RSA work?

» Note P(S(M)) = S(P(M)) = M®? (mod n).
> Also,ed=1+k(p—1)(g—1)

» So
Me? (mod p) = M(MP~1)*a=1D) (mod p) = M(1)*4=D) (mod p)
[Follows from Fermat’s Theorem]

» Repeating the same argument, we will get
Me4 (mod q) = M (mod q). For all M

M = M (mod p)
M = M (mod q)

» From Chinese remainder theorem, M¢? = M (mod n)
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Chinese Remainder Theorem
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pr17p27"

-, pr, are pairwise relatively prime, then for any integers
ai,ag,- -

, ak, the set of equations: x = a; mod p; has a unique
solution modulo pips - - - pg-

» Eg: z =3 mod 5
r =5mod7
T =7 mod 11

wmod il

Xz 3o 5)
X = Slmod )
= Z(™od W\
red 7 RE >
(3.5,%) S®Z R\ =385
. T| x dsa sol}
(@5 C) deem Ao N
. X+ 3RS K
zZ "
™od 5
\'#= 2 mod § <02 e (2,3,6D
7= 3 modF x?_scwoag)]ﬁ s\
17 = 6 wodl N = 3 (ved 5)

23



Chinese Remainder Theorem (Cont.)

>

>

>

Consider three numbers z1, x5, 23 corresponding to the
coordinates (1,0,0), (0,1, 0), (0,0,1) respectively.

Then the point corresponding to the point (3,5, 7) is
3x1 + dxo + Txs.

For z1:
x1 =1 (mod 5) (1)
x1 =0 (mod 7) (2)
x1 =0 (mod 11) )
7x 11| 21. Thus 7727 =1 (mod 5). Using egn (1), we get

r, = 231.
Similarly, one can compute z» = 330 and z3 = 210.

Thus, 3z1 + 59 + Tx3 = 3813. Take factors of 385 out. The
smallest positive number left is: 348 (solution to the original set of
modular linear equations).
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Chinese Remainder Theorem (Cont.)

» Provides a correspondence between a system of equations
modulo a set of pairwise relative prime and an equation modulo
the product of those pairwise relative primes

» “Structure Theorem” — describes the structure of Z,, is identical
to that of Z,,, X Zy, X -+ X Zy,,.

» As a result: Design of efficient algorithms (since working with Z,,,
is more efficient that working with Z,.
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Security and Runtime Complexity of RSA

Security of RSA

» M = M (mod n). To derive e and d, one will have to factor n.
Typically, n is a product of two 1024 bit ( 300 digit) primes.

Runtime Complexity
> Applying P requires O(1) modular multiplications. Applying S
requires O(3) modular multiplications (where 5 is the number of
bits used to represent n).
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Digitial Signatures

A = S(MD) I
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» A’s digital signature for message M: (M, S4(

2

performs the check P4(S4(M)) = M
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M))

» B upon receiving the signature decrypts P4 (Sa(

M)) and
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Digital Signatures (continued)

[ 4
4

>

Note however, that the message M is sent over as plaintext

An efficient approach is to combine data encryption with
Cryptographic hash functions.

CHEF: allow fixed-length message fingerprints (provides message
integrity

A’s digital signature for the message M: 0 = S4(h(m)). A sends
the message C' = Pg(M, o).

Now, no eavesdropper can get the message in plaintext.

Upon receiving the ciphertext, B decrypts by performing S (C)
and extracts the message: (M, Sa(h(M))). It further performs

the check h(m) = Pa(Sa(h(m))).
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Digital Certificates

Certificates makes distributing public keys much easier

An actor A can obtain a signed message from a publicly trusted
authority T stating: A’s public key is P4.

Actor A can include this certificate in her signed message.

The recipient can now verify her signature with A’s public key and
the certificate from 7.

The recipient can now trust that A’s key is indeed hers because
of public trust in T'.
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