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Theory of Division

I Let Z = {· · · ,−2,−1, 0, 1, 2, · · · } be the set of integers.

I Division Theorem: For any integer a and any positive integer n,
there exist unique integers q and r s.t.: a = qn+ r where
0 ≤ r < n.

I Given a, n ∈ Z, n > 0 the notation r = a mod n represents the
remainder of the division of a by n and q = ba/nc represents the
quotient of the division.

I [a]n be the equivalence classes according to the remainders
modulo n.

I Formally, [a]n = {a+ kn : k ∈ Z}
I Example: [3]7 = {· · · ,−11,−4, 3, 10, 17, · · · } = [−4]7 = [10]7
I Thus, a ∈ [b]n is the same as writing a ≡ b (mod n).

I Set of all such equivalence classes: Zn = {[a]n : 0 ≤ a ≤ n− 1}
will be read as {0, 1, · · · , n− 1}
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Common Divisors

I If d|a and d|b, we say d is a common divisor of a and b.

I From above⇒ d|a+ b, d|a− b. In general, d|ax+ by for any
integers x and y.

I Greatest Common Divisor (gcd): Among all the common divisors
of a and b, the largest among them is the gcd(a, b)

I Eg: gcd(24, 30) = 6.
I 24 = 2.2.2.3
I 30 = 2.3.5

I A useful characterization of gcd: If a and b are nonzero, then
gcd(a, b) is the smallest positive number of the set
{ax+ by : x, y ∈ Z}.

I If gcd(a, b) = 1, then a and b are relatively prime.
I Relatively prime integers: gcd(a, b) = 1

I Note: No efficient solution for integer factorization.
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Euclid’s Greatest Common Divisor Algorithm

I Euclid in his “The Elements” (c. 300 BC) gave a recursive
algorithm: gcd(a, b) = gcd(b, a mod b)
I Let d = gcd(a, b). Then d | a, d | b.
I a mod b = a− qb where q = ba/bc. Thus, d | a mod b
I Similarly, can be shown that a mod b | d

I Eg:

gcd(30, 21) = gcd(21, 9)

= gcd(9, 3)

= gcd(3, 0)
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Extended Euclid’s Algorithm

d = gcd(a, b) = ax+ by.
I The algorithm solves for x and y. Note that x and y can be zero

or negative.
I As efficient as gcd(a, b) computation
I Required to compute modular multiplicative inverses.
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Modular Arithmetic
Finite groups
I Finite Group: (S,⊕) where S is finite.

I Properties:
1. Closure: For all a, b ∈ S, then a⊕ b ∈ S
2. Associativity: For all a, b, c ∈ S, we have (a⊕ b)⊕ c = a⊕ (b⊕ c)
3. Identity: There exists e ∈ S, s.t. a⊕ e = e⊕ a = a, for all a ∈ S.
4. Inverse: For each a ∈ S, there exists a unique b ∈ S s.t.

a⊕ b = b⊕ a = e.
I Eg: (Zn,+n) (Check?)
I What about (Zn, ∗n) – Answer is No!

I Not all elements have an inverse! Eg: 0, 2, 3, 4 ∈ Z6 have no inverses.

I Let Z∗
n = {[a]n : gcd(a, n) = ax+ by = 1, x, y ∈ Z}. Then (Z∗

n, ∗n)
is a finite group. Eg: Z∗

7 = {1, 2, 3, 4, 5, 6},
Z∗

15 = {1, 2, 4, 7, 8, 11, 13, 14}
I Thus, for a ∈ Z∗

n, we have ax ≡ 1 mod n.
I This multiplicative inverse x can quickly computed using Extended

Euclid.
I Eg: a = 5, n = 11. Then

(d, x, y) = Extended Euclid(a, n) = (1,−2, 1). Thus, the
multiplicative inverse of 5 is [−2]11 or [9]11.

I Observe: |Z∗n| < |Zn| when n is composite. Why?
I In practice, we choose Z∗p where p is prime.
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n, ∗n)

is a finite group. Eg: Z∗
7 = {1, 2, 3, 4, 5, 6},

Z∗
15 = {1, 2, 4, 7, 8, 11, 13, 14}

I Thus, for a ∈ Z∗
n, we have ax ≡ 1 mod n.

I This multiplicative inverse x can quickly computed using Extended
Euclid.

I Eg: a = 5, n = 11. Then
(d, x, y) = Extended Euclid(a, n) = (1,−2, 1). Thus, the
multiplicative inverse of 5 is [−2]11 or [9]11.

I Observe: |Z∗n| < |Zn| when n is composite. Why?

I In practice, we choose Z∗p where p is prime.
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Modular Arithmetic: Subgroups

I Given (S,⊕), choose any a ∈ S and compute
a(k) = a⊕ a⊕ · · · ⊕ a︸ ︷︷ ︸

k times

I The subgroup generated by a is denoted as (〈a〉,⊕) where
〈a〉 = {a(k) : k ≥ 1}

I Eg: Z6 = {0, 1, 2, 3, 4, 5}. Choose a = 2. Then
a(1) = 2, a(2) = 4, a(3) = 0, · · · (since ⊕ = +). For Z6, we have:
〈1〉 = {0, 1, 2, 3, 4, 5}
〈2〉 = {0, 2, 4}
〈3〉 = {0, 3}

I Eg: Z∗7 = {1, 2, 3, 4, 5, 6}. Choose a = 2. Then
a(1) = 2, a(2) = 4, a(3) = 1, · · · (since ⊕ = ∗).
〈1〉 = {1}
〈2〉 = {1, 2, 4}
〈3〉 = {1, 2, 3, 4, 5, 6}
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Modular Arithmetic (Continued): Subgroups

I Lagrange’s Theorem: If (S′,⊕) forms a subgroup of (S,⊕), then
|S′| divides |S|.

I For a subgroup 〈a〉, the element a is called the generator.

I Notice that there exists t s.t. a(t) = e. The smallest possible t is
called the order of 〈a〉 – denoted by ord(a).

I for group operaton + : a(t) = e is the same as at ≡ 0 mod n
I for group operaton ∗ : a(t) = e is the same as at ≡ 1 mod n

I If (S,⊕) is a finite group with identity e, then for all a ∈ S:
a(|S|) = e

I Proof from Lagrange’s Theorem that ord(a) | |S|
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Modular Linear Equations

Consider ax ≡ b mod n, where a, n > 0.
I Choose an a ∈ Zn. Then 〈a〉 = {ax mod n : x > 0}.

I Thus, the above equation has a solution if and only if [b] ∈ 〈a〉.

I Precise characterisation: 〈a〉 = 〈d〉 = {0, d, 2d, · · · , (n/d− 1)d},
where d = gcd(a, n). Thus, |〈a〉| = n/d.

I ax ≡ b mod n is solvable for x if and only if d | b, d = gcd(a, n).

I Either has d distinct solutions where d = gcd(a, n) ∧ d|b or has no
solution.

I 8x ≡ 2 mod 12. Any solution?
I when d = 1⇒ the above equation has a unique solution.
I Of special interest: b = 1 (multiplicative inverse of a)
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Symmetric Key Encryption

I The same key k is used for Encryption and decryption key
I Encryption produces ciphertext C = E(M,k). Decryption

recovers the message M = D(E(M,k), k)
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Symmetric Key Encryption (Continued)

I Substitution ciphers as encryption functions: Cipher alphabet
shifted, reversed, or scrambled (Eg: Caesar cipher)
I MEETME→ LOOQ LO
I Security is weak: Frequency distribution of ciphertext which can

allow formation of partial words. O is used 3 times. In English, top
letters that are frequent used are E, T, A etc. Replacing O with E
gives a partial word.

I Similarly, for Transposition cipher: Sliding alphabet of ciphertexts
to look for anagrams. Then search the space of anagrams.

I Need to rely on a key whose detection is hard - prime
factorisation of large semi-primes is presumably hard!

I Known Symmetric encryption algorithms: AES, 3DES, Blowfish.
I AES128: Runs in 16 rounds. Each round has substitution,

permutation, linear transformation, XOR with round key.
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More on Symmetric Encryption

I How to securely share the secret key among each pair of
communicating parties?
I Solution: Diffie-Hellman key exdchange protocol.

I After receiving the secret key, how to securely store them?
Threats from insider attacks, compromised privileged software
(such as the OS).
I Note that no data protection technique via key-based data

encryption will be adequate without a solution to the secure key
storage problem.

I The number of keys to be maintained by each machine is O(n)
(where n is the number of machines that it will communicate ).
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Diffie-Hellman Key Exchange Protocol
I Security of the protocol is derived from the presumed hardness

of the discrete logarithm problem.
I Protocol begins by choosing a publicly agreed upon a large

prime p and the associated primitive root g.
I Recall that primitive root is that special element g ∈ Z∗

p such that
〈g〉 = Z∗

p.
I Two participants A and B, then choose secret keys a and b,

respectively.

svs, suban: Introduction to Modular Arithmetic 14



Diffie-Hellman Key Exchange Protocol

I Participant A computes a ciphertext CA = ga (mod p). Similarly,
B computes CB = gb (mod p).

I Participant A sends CA to participant B and receives CB from B.
I A computes Ca

B (mod p) = gab (mod p) and B computes
Cb

A (mod p) = gab (mod p).
I Thus, the secret key gab (mod p) is established.
I Any intruder wishing to read the message will have to find the

value ab (i.e., solving the discrete logarithm problem).
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Discrete Logarithm Problem

Let us focus on Z∗n instead of Zn.
I We know that for all a ∈ Z∗n, a|Z

∗
n| ≡ 1 (mod n), n > 1

I This is also called Euler’s Theorem
I The Euler Phi function is defined as: φ(n) = |Z∗

n|
I Remember from earlier discussion that |Z∗p| = p− 1 when p is a

prime.
I From Fermat’s Theorem: ap−1 ≡ 1 (mod p) for all a ∈ Z∗p
I Let g ∈ Z∗n such that 〈g〉 = Z∗n . Then Z∗n is called cyclic.
I By definition of 〈g〉, for all a ∈ Z∗n, there exists z s.t.
gz ≡ a (mod n).
I z is called the discrete logarithm of a modulo n.
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One Way Functions

I Given x, computing F (x) is fast.
I However, given F (x), computing F−1(x) is difficult
I Discrete logarithm problem is an instance of a one-way function!

That is given g, z, n computing gz(mod n) is fast. But given g, n, a
computing logg(a)
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One-way Hash Functions

F (〈msg-arbitrary-size〉) = 〈msg-fixed-size〉
I Properties:

I Deterministic: same message produces the same hash.
I Collision-resistant: It is hard to find two inputs m1,m2 s.t. m1 6= m2

but F (m1) = F (m2).
I Avalanche effect: A small change in message leads to a large

change in the hashed message
I Used in digital signatures, MACs. Egs: SHA-256, MD5
I Security: Brute-force search, Caching the o/p of hash functions

(called rainbow table attack).
I Use of salt (a random data as an additional input to the hash

function) makes the attack infeasible.
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Public-key Cryptosystems

I Every participant computes and maintains a key.
I Each key has two parts: public P , secret S
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Public-key Cryptosystems(Cont.)
I Thus, machine A’s key is (PA, SA) and B’s key is (PB , SB).
I With a slight abuse of notation we will consider E(M,Px) in the

figure as Px(M) and D(M,Sx) as Sx(M).
I Public and secret keys are ”matched pairs”, in the sense that

they specify functions that are inverses of each other, i.e.,
Sx(Px(msg)) = Px(Sx(msg)).

I Security assumption: Even though Px is known publicly for all x,
it is hard for an intruder to ascertain Sx from Px. Only the owner
x can compute Sx in a practical amount of time.

I Data Confidentiality: Assume A is the sender and B is the
recipient of a message M . Then A encrypts by applying PB of B,
i.e. C = PB(M), Thus, only B can decode this message with SB

(i.e., SB(PB(M)) =M )
I Digital signatures can also be implemented with Public-key

cryptosystems: A can send a message M by encrypting it as
SA(M). Note that any machine with PA can decrypt this
message. However, only A could have sent this message, since
SA is a secret known only to A.
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Public-key Cryptosystems: RSA

A popular public-key cryptosystem is the Rivest–Shamir–Adleman
algorithnm (authors given Turing Award in 2002)
1. Select two very large primes p and q [Use the probabilistic

Miller-Rabin or Solovay-Strassen]
2. Compute n = pq. Compute φ(n) = (p− 1)(q − 1).
3. Choose an odd e s.t. 1 < e < φ(n) and gcd(e, φ(n)) = 1 [Use

Euclid’s gcd computation to select e]
4. Compute d as the multiplicative inverse of e, modulo φ(n). That

is ed ≡ 1 (mod φ(n)) [Apply Extended Euclid to solve for x s.t.
gcd(e, φ(n)) = 1 = ex+ φ(n)y]

5. Publish the public key P = (e, n) of the participant
6. Publish the private key S = (d, n) of the participant
7. The domain of a message D is Zn = {0, 1, 2, · · · , n− 1}.
8. Thus P (M) =Me (mod n) = C. And S(C) = Cd (mod n).
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Why does RSA work?

I Note P (S(M)) = S(P (M)) =Med (mod n).

I Also, ed = 1 + k(p− 1)(q − 1)

I So
Med (mod p) =M(Mp−1)k(q−1) (mod p) =M(1)k(q−1) (mod p)
[Follows from Fermat’s Theorem]

I Repeating the same argument, we will get
Med (mod q) =M (mod q). For all M

Med ≡M (mod p)

Med ≡M (mod q)

I From Chinese remainder theorem, Med ≡M (mod n)
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Chinese Remainder Theorem

If p1, p2, · · · , pk are pairwise relatively prime, then for any integers
a1, a2, · · · , ak, the set of equations: x ≡ ai mod pi has a unique
solution modulo p1p2 · · · pk.
I Eg: x ≡ 3 mod 5
x ≡ 5 mod 7
x ≡ 7 mod 11
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Chinese Remainder Theorem (Cont.)

I Consider three numbers x1, x2, x3 corresponding to the
coordinates (1, 0, 0), (0, 1, 0), (0, 0, 1) respectively.

I Then the point corresponding to the point (3, 5, 7) is
3x1 + 5x2 + 7x3.

I For x1:

x1 ≡ 1 (mod 5) (1)
x1 ≡ 0 (mod 7) (2)
x1 ≡ 0 (mod 11) (3)

I 7 ∗ 11 | x1. Thus 77x′1 ≡ 1 (mod 5). Using eqn (1), we get
x1 = 231.

I Similarly, one can compute x2 = 330 and x3 = 210.
I Thus, 3x1 + 5x2 + 7x3 = 3813. Take factors of 385 out. The

smallest positive number left is: 348 (solution to the original set of
modular linear equations).
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Chinese Remainder Theorem (Cont.)

I Provides a correspondence between a system of equations
modulo a set of pairwise relative prime and an equation modulo
the product of those pairwise relative primes

I ”Structure Theorem” – describes the structure of Zn is identical
to that of Zn1

× Zn2
× · · · × Znk

.
I As a result: Design of efficient algorithms (since working with Zni

is more efficient that working with Zn.

svs, suban: Introduction to Modular Arithmetic 25



Security and Runtime Complexity of RSA

Security of RSA
I Med ≡M (mod n). To derive e and d, one will have to factor n.

Typically, n is a product of two 1024 bit ( 300 digit) primes.
Runtime Complexity
I Applying P requires O(1) modular multiplications. Applying S

requires O(β) modular multiplications (where β is the number of
bits used to represent n).
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Digitial Signatures

I A’s digital signature for message M : (M,SA(M))

I B upon receiving the signature decrypts PA(SA(M)) and
performs the check PA(SA(M))

?
=M
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Digital Signatures (continued)

I Note however, that the message M is sent over as plaintext
I An efficient approach is to combine data encryption with

Cryptographic hash functions.
I CHF: allow fixed-length message fingerprints (provides message

integrity
I A’s digital signature for the message M: σ = SA(h(m)). A sends

the message C = PB(M,σ).
I Now, no eavesdropper can get the message in plaintext.
I Upon receiving the ciphertext, B decrypts by performing SB(C)

and extracts the message: (M,SA(h(M))). It further performs
the check h(m)

?
= PA(SA(h(m))).

svs, suban: Introduction to Modular Arithmetic 28



Digital Certificates

I Certificates makes distributing public keys much easier
I An actor A can obtain a signed message from a publicly trusted

authority T stating: A’s public key is PA.
I Actor A can include this certificate in her signed message.
I The recipient can now verify her signature with A’s public key and

the certificate from T .
I The recipient can now trust that A’s key is indeed hers because

of public trust in T .

svs, suban: Introduction to Modular Arithmetic 29


