Introduction to Modular Arithmetic

Subodh Sharma

Subhashis Banerjee

IIT Delhi，Computer Science Department

Detour

Data Protection

Theory of Division

- Let $\mathbb{Z}=\{\cdots,-2,-1,0,1,2, \cdots\}$ be the set of integers.

Theory of Division

- Let $\mathbb{Z}=\{\cdots,-2,-1,0,1,2, \cdots\}$ be the set of integers.
- Division Theorem: For any integer a and any positive integer n, there exist unique integers q and r s.t.: $a=q n+r$ where $0 \leq r<n$.

Theory of Division

- Let $\mathbb{Z}=\{\cdots,-2,-1,0,1,2, \cdots\}$ be the set of integers.
- Division Theorem: For any integer a and any positive integer n, there exist unique integers q and r s.t.: $a=q n+r$ where $0 \leq r<n$.
- Given $a, n \in \mathbb{Z}, n>0$ the notation $r=a \bmod n$ represents the remainder of the division of a by n and $q=\lfloor a / n\rfloor$ represents the quotient of the division.

Theory of Division

- Let $\mathbb{Z}=\{\cdots,-2,-1,0,1,2, \cdots\}$ be the set of integers.
- Division Theorem: For any integer a and any positive integer n, there exist unique integers q and r s.t.: $a=q n+r$ where $0 \leq r<n$.
- Given $a, n \in \mathbb{Z}, n>0$ the notation $r=a \bmod n$ represents the remainder of the division of a by n and $q=\lfloor a / n\rfloor$ represents the quotient of the division.
- $[a]_{n}$ be the equivalence classes according to the remainders modulo n.

Theory of Division

- Let $\mathbb{Z}=\{\cdots,-2,-1,0,1,2, \cdots\}$ be the set of integers.
- Division Theorem: For any integer a and any positive integer n, there exist unique integers q and r s.t.: $a=q n+r$ where $0 \leq r<n$.
- Given $a, n \in \mathbb{Z}, n>0$ the notation $r=a \bmod n$ represents the remainder of the division of a by n and $q=\lfloor a / n\rfloor$ represents the quotient of the division.
- $[a]_{n}$ be the equivalence classes according to the remainders modulo n.
- Formally, $[a]_{n}=\{a+k n: k \in \mathbb{Z}\}$

Theory of Division

- Let $\mathbb{Z}=\{\cdots,-2,-1,0,1,2, \cdots\}$ be the set of integers.
- Division Theorem: For any integer a and any positive integer n, there exist unique integers q and r s.t.: $a=q n+r$ where $0 \leq r<n$.
- Given $a, n \in \mathbb{Z}, n>0$ the notation $r=a \bmod n$ represents the remainder of the division of a by n and $q=\lfloor a / n\rfloor$ represents the quotient of the division.
- $[a]_{n}$ be the equivalence classes according to the remainders modulo n.
- Formally, $[a]_{n}=\{a+k n: k \in \mathbb{Z}\}$
- Example: $[3]_{7}=\{\cdots,-11,-4,3,10,17, \cdots\}=[-4]_{7}=[10]_{7}$
- Thus, $a \in[b]_{n}$ is the same as writing $a \equiv b(\bmod n)$.

Theory of Division

- Let $\mathbb{Z}=\{\cdots,-2,-1,0,1,2, \cdots\}$ be the set of integers.
- Division Theorem: For any integer a and any positive integer n, there exist unique integers q and r s.t.: $a=q n+r$ where $0 \leq r<n$.
- Given $a, n \in \mathbb{Z}, n>0$ the notation $r=a \bmod n$ represents the remainder of the division of a by n and $q=\lfloor a / n\rfloor$ represents the quotient of the division.
- $[a]_{n}$ be the equivalence classes according to the remainders modulo n.
- Formally, $[a]_{n}=\{a+k n: k \in \mathbb{Z}\}$
- Example: $[3]_{7}=\{\cdots,-11,-4,3,10,17, \cdots\}=[-4]_{7}=[10]_{7}$
- Thus, $a \in[b]_{n}$ is the same as writing $a \equiv b(\bmod n)$.
- Set of all such equivalence classes: $\mathbb{Z}_{n}=\left\{[a]_{n}: 0 \leq a \leq n-1\right\}$ will be read as $\{0,1, \cdots, n-1\}$

Common Divisors

- If $d \mid a$ and $d \mid b$, we say d is a common divisor of a and b.

Common Divisors

- If $d \mid a$ and $d \mid b$, we say d is a common divisor of a and b.
- From above $\Rightarrow d|a+b, d| a-b$. In general, $d \mid a x+b y$ for any integers x and y.

Common Divisors

- If $d \mid a$ and $d \mid b$, we say d is a common divisor of a and b.
- From above $\Rightarrow d|a+b, d| a-b$. In general, $d \mid a x+b y$ for any integers x and y.
- Greatest Common Divisor (gcd): Among all the common divisors of a and b, the largest among them is the $\operatorname{gcd}(a, b)$

Common Divisors

- If $d \mid a$ and $d \mid b$, we say d is a common divisor of a and b.
- From above $\Rightarrow d|a+b, d| a-b$. In general, $d \mid a x+b y$ for any integers x and y.
- Greatest Common Divisor (gcd): Among all the common divisors of a and b, the largest among them is the $\operatorname{gcd}(a, b)$
- Eg: $\operatorname{gcd}(24,30)=6$.
- $24=2.2 .2 .3$
- $30=2.3 .5$

Common Divisors

- If $d \mid a$ and $d \mid b$, we say d is a common divisor of a and b.
- From above $\Rightarrow d|a+b, d| a-b$. In general, $d \mid a x+b y$ for any integers x and y.
- Greatest Common Divisor (gcd): Among all the common divisors of a and b, the largest among them is the $\operatorname{gcd}(a, b)$
- Eg: $\operatorname{gcd}(24,30)=6$.
- $24=2.2 .2 .3$
- $30=2.3 .5$
- A useful characterization of gcd: If a and b are nonzero, then $\operatorname{gcd}(a, b)$ is the smallest positive number of the set $\{a x+b y: x, y \in \mathbb{Z}\}$.

Common Divisors

- If $d \mid a$ and $d \mid b$, we say d is a common divisor of a and b.
- From above $\Rightarrow d|a+b, d| a-b$. In general, $d \mid a x+b y$ for any integers x and y.
- Greatest Common Divisor (gcd): Among all the common divisors of a and b, the largest among them is the $\operatorname{gcd}(a, b)$
- Eg: $\operatorname{gcd}(24,30)=6$.
- $24=2.2 .2 .3$
- $30=2.3 .5$
- A useful characterization of gcd: If a and b are nonzero, then $\operatorname{gcd}(a, b)$ is the smallest positive number of the set $\{a x+b y: x, y \in \mathbb{Z}\}$.
- If $\operatorname{gcd}(a, b)=1$, then a and b are relatively prime.

Common Divisors

- If $d \mid a$ and $d \mid b$, we say d is a common divisor of a and b.
- From above $\Rightarrow d|a+b, d| a-b$. In general, $d \mid a x+b y$ for any integers x and y.
- Greatest Common Divisor (gcd): Among all the common divisors of a and b, the largest among them is the $\operatorname{gcd}(a, b)$
- Eg: $\operatorname{gcd}(24,30)=6$.
- $24=2.2 .2 .3$
- $30=2.3 .5$
- A useful characterization of gcd: If a and b are nonzero, then $\operatorname{gcd}(a, b)$ is the smallest positive number of the set $\{a x+b y: x, y \in \mathbb{Z}\}$.
- If $\operatorname{gcd}(a, b)=1$, then a and b are relatively prime.
- Relatively prime integers: $\operatorname{gcd}(a, b)=1$

Common Divisors

- If $d \mid a$ and $d \mid b$, we say d is a common divisor of a and b.
- From above $\Rightarrow d|a+b, d| a-b$. In general, $d \mid a x+b y$ for any integers x and y.
- Greatest Common Divisor (gcd): Among all the common divisors of a and b, the largest among them is the $\operatorname{gcd}(a, b)$
- Eg: $\operatorname{gcd}(24,30)=6$.
- $24=2.2 .2 .3$
- $30=2.3 .5$
- A useful characterization of gcd: If a and b are nonzero, then $\operatorname{gcd}(a, b)$ is the smallest positive number of the set $\{a x+b y: x, y \in \mathbb{Z}\}$.
- If $\operatorname{gcd}(a, b)=1$, then a and b are relatively prime.
- Relatively prime integers: $\operatorname{gcd}(a, b)=1$
- Note: No efficient solution for integer factorization.

Euclid's Greatest Common Divisor Algorithm

- Euclid in his "The Elements" (c. 300 BC) gave a recursive algorithm: $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$
- Let $d=g c d(a, b)$. Then $d|a, d| b$.
- $a \bmod b=a-q b$ where $q=\lfloor a / b\rfloor$. Thus, $d \mid a \bmod b$
- Similarly, can be shown that $a \bmod b \mid d$
- Eg:

$$
\begin{aligned}
\operatorname{gcd}(30,21) & =\operatorname{gcd}(21,9) \\
& =\operatorname{gcd}(9,3) \\
& =\operatorname{gcd}(3,0)
\end{aligned}
$$

Extended Euclid's Algorithm

$d=g c d(a, b)=a x+b y$.

- The algorithm solves for x and y. Note that x and y can be zero or negative.
- As efficient as $\operatorname{gcd}(a, b)$ computation
- Required to compute modular multiplicative inverses.

Modular Arithmetic

Finite groups

- Finite Group: (S, \oplus) where S is finite.

Modular Arithmetic

Finite groups

- Finite Group: (S, \oplus) where S is finite.
- Properties:

1. Closure: For all $a, b \in S$, then $a \oplus b \in S$
2. Associativity: For all $a, b, c \in S$, we have $(a \oplus b) \oplus c=a \oplus(b \oplus c)$
3. Identity: There exists $e \in S$, s.t. $a \oplus e=e \oplus a=a$, for all $a \in S$.
4. Inverse: For each $a \in S$, there exists a unique $b \in S$ s.t.

$$
a \oplus b=b \oplus a=e .
$$

Modular Arithmetic

Finite groups

- Finite Group: (S, \oplus) where S is finite.
- Properties:

1. Closure: For all $a, b \in S$, then $a \oplus b \in S$
2. Associativity: For all $a, b, c \in S$, we have $(a \oplus b) \oplus c=a \oplus(b \oplus c)$
3. Identity: There exists $e \in S$, s.t. $a \oplus e=e \oplus a=a$, for all $a \in S$.
4. Inverse: For each $a \in S$, there exists a unique $b \in S$ s.t.

$$
a \oplus b=b \oplus a=e .
$$

- Eg: $\left(\mathbb{Z}_{n},+_{n}\right)$ (Check?)

Modular Arithmetic

Finite groups

- Finite Group: (S, \oplus) where S is finite.
- Properties:

1. Closure: For all $a, b \in S$, then $a \oplus b \in S$
2. Associativity: For all $a, b, c \in S$, we have $(a \oplus b) \oplus c=a \oplus(b \oplus c)$
3. Identity: There exists $e \in S$, s.t. $a \oplus e=e \oplus a=a$, for all $a \in S$.
4. Inverse: For each $a \in S$, there exists a unique $b \in S$ s.t.

$$
a \oplus b=b \oplus a=e .
$$

- Eg: $\left(\mathbb{Z}_{n},+_{n}\right)$ (Check?)
- What about $\left(\mathbb{Z}_{n}, *_{n}\right)$ - Answer is No!
- Not all elements have an inverse! Eg: $0,2,3,4 \in \mathbb{Z}_{6}$ have no inverses.

Modular Arithmetic

Finite groups

- Finite Group: (S, \oplus) where S is finite.
- Properties:

1. Closure: For all $a, b \in S$, then $a \oplus b \in S$
2. Associativity: For all $a, b, c \in S$, we have $(a \oplus b) \oplus c=a \oplus(b \oplus c)$
3. Identity: There exists $e \in S$, s.t. $a \oplus e=e \oplus a=a$, for all $a \in S$.
4. Inverse: For each $a \in S$, there exists a unique $b \in S$ s.t.

$$
a \oplus b=b \oplus a=e .
$$

- Eg: $\left(\mathbb{Z}_{n},+_{n}\right)$ (Check?)
- What about $\left(\mathbb{Z}_{n}, *_{n}\right)$ - Answer is No!
- Not all elements have an inverse! Eg: $0,2,3,4 \in \mathbb{Z}_{6}$ have no inverses.
- Let $\mathbb{Z}_{n}^{*}=\left\{[a]_{n}: \operatorname{gcd}(a, n)=a x+b y=1, x, y \in \mathbb{Z}\right\}$. Then $\left(\mathbb{Z}_{n}^{*}, *_{n}\right)$ is a finite group. $\mathrm{Eg}: \mathbb{Z}_{7}^{*}=\{1,2,3,4,5,6\}$, $\mathbb{Z}_{15}^{*}=\{1,2,4,7,8,11,13,14\}$

Modular Arithmetic

Finite groups

- Finite Group: (S, \oplus) where S is finite.
- Properties:

1. Closure: For all $a, b \in S$, then $a \oplus b \in S$
2. Associativity: For all $a, b, c \in S$, we have $(a \oplus b) \oplus c=a \oplus(b \oplus c)$
3. Identity: There exists $e \in S$, s.t. $a \oplus e=e \oplus a=a$, for all $a \in S$.
4. Inverse: For each $a \in S$, there exists a unique $b \in S$ s.t.

$$
a \oplus b=b \oplus a=e .
$$

- Eg: $\left(\mathbb{Z}_{n},+_{n}\right)$ (Check?)
- What about $\left(\mathbb{Z}_{n}, *_{n}\right)$ - Answer is No!
- Not all elements have an inverse! Eg: $0,2,3,4 \in \mathbb{Z}_{6}$ have no inverses.
- Let $\mathbb{Z}_{n}^{*}=\left\{[a]_{n}: \operatorname{gcd}(a, n)=a x+b y=1, x, y \in \mathbb{Z}\right\}$. Then $\left(\mathbb{Z}_{n}^{*}, *_{n}\right)$ is a finite group. $\mathrm{Eg}: \mathbb{Z}_{7}^{*}=\{1,2,3,4,5,6\}$, $\mathbb{Z}_{15}^{*}=\{1,2,4,7,8,11,13,14\}$
- Thus, for $a \in \mathbb{Z}_{n}^{*}$, we have $a x \equiv 1 \bmod n$.
- This multiplicative inverse x can quickly computed using Extended Euclid.

Modular Arithmetic

Finite groups

- Finite Group: (S, \oplus) where S is finite.
- Properties:

1. Closure: For all $a, b \in S$, then $a \oplus b \in S$
2. Associativity: For all $a, b, c \in S$, we have $(a \oplus b) \oplus c=a \oplus(b \oplus c)$
3. Identity: There exists $e \in S$, s.t. $a \oplus e=e \oplus a=a$, for all $a \in S$.
4. Inverse: For each $a \in S$, there exists a unique $b \in S$ s.t.

$$
a \oplus b=b \oplus a=e .
$$

- Eg: $\left(\mathbb{Z}_{n},+_{n}\right)$ (Check?)
- What about $\left(\mathbb{Z}_{n}, *_{n}\right)$ - Answer is No!
- Not all elements have an inverse! Eg: $0,2,3,4 \in \mathbb{Z}_{6}$ have no inverses.
- Let $\mathbb{Z}_{n}^{*}=\left\{[a]_{n}: \operatorname{gcd}(a, n)=a x+b y=1, x, y \in \mathbb{Z}\right\}$. Then $\left(\mathbb{Z}_{n}^{*}, *_{n}\right)$ is a finite group. $\mathrm{Eg}: \mathbb{Z}_{7}^{*}=\{1,2,3,4,5,6\}$, $\mathbb{Z}_{15}^{*}=\{1,2,4,7,8,11,13,14\}$
- Thus, for $a \in \mathbb{Z}_{n}^{*}$, we have $a x \equiv 1 \bmod n$.
- This multiplicative inverse x can quickly computed using Extended Euclid.
- Eg: $a=5, n=11$. Then $(d, x, y)=$ Extended_Euclid $(a, n)=(1,-2,1)$. Thus, the multiplicative inverse of 5 is $[-2]_{11}$ or $[9]_{1} 1$.

Modular Arithmetic

Finite groups

- Finite Group: (S, \oplus) where S is finite.
- Properties:

1. Closure: For all $a, b \in S$, then $a \oplus b \in S$
2. Associativity: For all $a, b, c \in S$, we have $(a \oplus b) \oplus c=a \oplus(b \oplus c)$
3. Identity: There exists $e \in S$, s.t. $a \oplus e=e \oplus a=a$, for all $a \in S$.
4. Inverse: For each $a \in S$, there exists a unique $b \in S$ s.t.

$$
a \oplus b=b \oplus a=e .
$$

- Eg: $\left(\mathbb{Z}_{n},+_{n}\right)$ (Check?)
- What about $\left(\mathbb{Z}_{n}, *_{n}\right)$ - Answer is No!
- Not all elements have an inverse! Eg: $0,2,3,4 \in \mathbb{Z}_{6}$ have no inverses.
- Let $\mathbb{Z}_{n}^{*}=\left\{[a]_{n}: \operatorname{gcd}(a, n)=a x+b y=1, x, y \in \mathbb{Z}\right\}$. Then $\left(\mathbb{Z}_{n}^{*}, *_{n}\right)$ is a finite group. Eg: $\mathbb{Z}_{7}^{*}=\{1,2,3,4,5,6\}$, $\mathbb{Z}_{15}^{*}=\{1,2,4,7,8,11,13,14\}$
- Thus, for $a \in \mathbb{Z}_{n}^{*}$, we have $a x \equiv 1 \bmod n$.
- This multiplicative inverse x can quickly computed using Extended Euclid.
- Eg: $a=5, n=11$. Then $(d, x, y)=$ Extended_Euclid $(a, n)=(1,-2,1)$. Thus, the multiplicative inverse of 5 is $[-2]_{11}$ or $[9]_{1} 1$.
- Observe: $\left|\mathbb{Z}_{n}^{*}\right|<\left|\mathbb{Z}_{n}\right|$ when n is composite. Why?

Modular Arithmetic

Finite groups

- Finite Group: (S, \oplus) where S is finite.
- Properties:

1. Closure: For all $a, b \in S$, then $a \oplus b \in S$
2. Associativity: For all $a, b, c \in S$, we have $(a \oplus b) \oplus c=a \oplus(b \oplus c)$
3. Identity: There exists $e \in S$, s.t. $a \oplus e=e \oplus a=a$, for all $a \in S$.
4. Inverse: For each $a \in S$, there exists a unique $b \in S$ s.t.

$$
a \oplus b=b \oplus a=e .
$$

- Eg: $\left(\mathbb{Z}_{n},+_{n}\right)$ (Check?)
- What about $\left(\mathbb{Z}_{n}, *_{n}\right)$ - Answer is No!
- Not all elements have an inverse! Eg: $0,2,3,4 \in \mathbb{Z}_{6}$ have no inverses.
- Let $\mathbb{Z}_{n}^{*}=\left\{[a]_{n}: \operatorname{gcd}(a, n)=a x+b y=1, x, y \in \mathbb{Z}\right\}$. Then $\left(\mathbb{Z}_{n}^{*}, *_{n}\right)$ is a finite group. $\mathrm{Eg}: \mathbb{Z}_{7}^{*}=\{1,2,3,4,5,6\}$, $\mathbb{Z}_{15}^{*}=\{1,2,4,7,8,11,13,14\}$
- Thus, for $a \in \mathbb{Z}_{n}^{*}$, we have $a x \equiv 1 \bmod n$.
- This multiplicative inverse x can quickly computed using Extended Euclid.
- Eg: $a=5, n=11$. Then $(d, x, y)=$ Extended_Euclid $(a, n)=(1,-2,1)$. Thus, the multiplicative inverse of 5 is $[-2]_{11}$ or $[9]_{1} 1$.
- Observe: $\left|\mathbb{Z}_{n}^{*}\right|<\left|\mathbb{Z}_{n}\right|$ when n is composite. Why?
- In practice, we choose \mathbb{Z}_{p}^{*} where p is prime.

Modular Arithmetic: Subgroups

- Given (S, \oplus), choose any $a \in S$ and compute

$$
a^{(k)}=\underbrace{a \oplus a \oplus \cdots \oplus a}_{\mathrm{k} \text { times }}
$$

Modular Arithmetic: Subgroups

- Given (S, \oplus), choose any $a \in S$ and compute

$$
a^{(k)}=\underbrace{a \oplus a \oplus \cdots \oplus a}_{\mathrm{k} \text { times }}
$$

- The subgroup generated by a is denoted as $(\langle a\rangle, \oplus)$ where $\langle a\rangle=\left\{a^{(k)}: k \geq 1\right\}$

Modular Arithmetic: Subgroups

- Given (S, \oplus), choose any $a \in S$ and compute

$$
a^{(k)}=\underbrace{a \oplus a \oplus \cdots \oplus a}_{\mathrm{k} \text { times }}
$$

- The subgroup generated by a is denoted as $(\langle a\rangle, \oplus)$ where $\langle a\rangle=\left\{a^{(k)}: k \geq 1\right\}$
- Eg: $\mathbb{Z}_{6}=\{0,1,2,3,4,5\}$. Choose $a=2$. Then
$a^{(1)}=2, a^{(2)}=4, a^{(3)}=0, \cdots$ (since $\oplus=+$). For \mathbb{Z}_{6}, we have:
$\langle 1\rangle=\{0,1,2,3,4,5\}$
$\langle 2\rangle=\{0,2,4\}$
$\langle 3\rangle=\{0,3\}$

Modular Arithmetic: Subgroups

- Given (S, \oplus), choose any $a \in S$ and compute

$$
a^{(k)}=\underbrace{a \oplus a \oplus \cdots \oplus a}_{\mathrm{k} \text { times }}
$$

- The subgroup generated by a is denoted as $(\langle a\rangle, \oplus)$ where $\langle a\rangle=\left\{a^{(k)}: k \geq 1\right\}$
- Eg: $\mathbb{Z}_{6}=\{0,1,2,3,4,5\}$. Choose $a=2$. Then
$a^{(1)}=2, a^{(2)}=4, a^{(3)}=0, \cdots$ (since $\oplus=+$). For \mathbb{Z}_{6}, we have:
$\langle 1\rangle=\{0,1,2,3,4,5\}$
$\langle 2\rangle=\{0,2,4\}$
$\langle 3\rangle=\{0,3\}$
- Eg: $\mathbb{Z}_{7}^{*}=\{1,2,3,4,5,6\}$. Choose $a=2$. Then
$a^{(1)}=2, a^{(2)}=4, a^{(3)}=1, \cdots$ (since $\oplus=*$).
$\langle 1\rangle=\{1\}$
$\langle 2\rangle=\{1,2,4\}$
$\langle 3\rangle=\{1,2,3,4,5,6\}$

Modular Arithmetic (Continued): Subgroups

- Lagrange's Theorem: If $\left(S^{\prime}, \oplus\right)$ forms a subgroup of (S, \oplus), then $\left|S^{\prime}\right|$ divides $|S|$.
- For a subgroup $\langle a\rangle$, the element a is called the generator.

Modular Arithmetic (Continued): Subgroups

- Lagrange's Theorem: If $\left(S^{\prime}, \oplus\right)$ forms a subgroup of (S, \oplus), then $\left|S^{\prime}\right|$ divides $|S|$.
- For a subgroup $\langle a\rangle$, the element a is called the generator.
- Notice that there exists t s.t. $a^{(t)}=e$. The smallest possible t is called the order of $\langle a\rangle$ - denoted by $\operatorname{ord}(a)$.

Modular Arithmetic (Continued): Subgroups

- Lagrange's Theorem: If $\left(S^{\prime}, \oplus\right)$ forms a subgroup of (S, \oplus), then $\left|S^{\prime}\right|$ divides $|S|$.
- For a subgroup $\langle a\rangle$, the element a is called the generator.
- Notice that there exists t s.t. $a^{(t)}=e$. The smallest possible t is called the order of $\langle a\rangle$ - denoted by $\operatorname{ord}(a)$.
- for group operaton $+: a^{(t)}=e$ is the same as $a t \equiv 0 \bmod n$

Modular Arithmetic (Continued): Subgroups

- Lagrange's Theorem: If $\left(S^{\prime}, \oplus\right)$ forms a subgroup of (S, \oplus), then $\left|S^{\prime}\right|$ divides $|S|$.
- For a subgroup $\langle a\rangle$, the element a is called the generator.
- Notice that there exists t s.t. $a^{(t)}=e$. The smallest possible t is called the order of $\langle a\rangle$ - denoted by $\operatorname{ord}(a)$.
- for group operaton $+: a^{(t)}=e$ is the same as $a t \equiv 0 \bmod n$
- for group operaton $*: a^{(t)}=e$ is the same as $a^{t} \equiv 1 \bmod n$

Modular Arithmetic (Continued): Subgroups

- Lagrange's Theorem: If $\left(S^{\prime}, \oplus\right)$ forms a subgroup of (S, \oplus), then $\left|S^{\prime}\right|$ divides $|S|$.
- For a subgroup $\langle a\rangle$, the element a is called the generator.
- Notice that there exists t s.t. $a^{(t)}=e$. The smallest possible t is called the order of $\langle a\rangle$ - denoted by $\operatorname{ord}(a)$.
- for group operaton $+: a^{(t)}=e$ is the same as $a t \equiv 0 \bmod n$
- for group operaton $*: a^{(t)}=e$ is the same as $a^{t} \equiv 1 \bmod n$
- If (S, \oplus) is a finite group with identity e, then for all $a \in S$:
$a^{(|S|)}=e$

Modular Arithmetic (Continued): Subgroups

- Lagrange's Theorem: If $\left(S^{\prime}, \oplus\right)$ forms a subgroup of (S, \oplus), then $\left|S^{\prime}\right|$ divides $|S|$.
- For a subgroup $\langle a\rangle$, the element a is called the generator.
- Notice that there exists t s.t. $a^{(t)}=e$. The smallest possible t is called the order of $\langle a\rangle$ - denoted by $\operatorname{ord}(a)$.
- for group operaton $+: a^{(t)}=e$ is the same as $a t \equiv 0 \bmod n$
- for group operaton $*: a^{(t)}=e$ is the same as $a^{t} \equiv 1 \bmod n$
- If (S, \oplus) is a finite group with identity e, then for all $a \in S$: $a^{(|S|)}=e$
- Proof from Lagrange's Theorem that $\operatorname{ord}(a)||S|$

Modular Linear Equations

Consider $a x \equiv b \bmod n$, where $a, n>0$.

- Choose an $a \in \mathbb{Z}_{n}$. Then $\langle a\rangle=\{a x \bmod n: x>0\}$.

Modular Linear Equations

Consider $a x \equiv b \bmod n$, where $a, n>0$.

- Choose an $a \in \mathbb{Z}_{n}$. Then $\langle a\rangle=\{a x \bmod n: x>0\}$.
- Thus, the above equation has a solution if and only if $[b] \in\langle a\rangle$.

Modular Linear Equations

Consider $a x \equiv b \bmod n$, where $a, n>0$.

- Choose an $a \in \mathbb{Z}_{n}$. Then $\langle a\rangle=\{a x \bmod n: x>0\}$.
- Thus, the above equation has a solution if and only if $[b] \in\langle a\rangle$.
- Precise characterisation: $\langle a\rangle=\langle d\rangle=\{0, d, 2 d, \cdots,(n / d-1) d\}$, where $d=\operatorname{gcd}(a, n)$. Thus, $|\langle a\rangle|=n / d$.

Modular Linear Equations

Consider $a x \equiv b \bmod n$, where $a, n>0$.

- Choose an $a \in \mathbb{Z}_{n}$. Then $\langle a\rangle=\{a x \bmod n: x>0\}$.
- Thus, the above equation has a solution if and only if $[b] \in\langle a\rangle$.
- Precise characterisation: $\langle a\rangle=\langle d\rangle=\{0, d, 2 d, \cdots,(n / d-1) d\}$, where $d=\operatorname{gcd}(a, n)$. Thus, $|\langle a\rangle|=n / d$.
- $a x \equiv b \bmod n$ is solvable for x if and only if $d \mid b, d=\operatorname{gcd}(a, n)$.

Modular Linear Equations

Consider $a x \equiv b \bmod n$, where $a, n>0$.

- Choose an $a \in \mathbb{Z}_{n}$. Then $\langle a\rangle=\{a x \bmod n: x>0\}$.
- Thus, the above equation has a solution if and only if $[b] \in\langle a\rangle$.
- Precise characterisation: $\langle a\rangle=\langle d\rangle=\{0, d, 2 d, \cdots,(n / d-1) d\}$, where $d=\operatorname{gcd}(a, n)$. Thus, $|\langle a\rangle|=n / d$.
- $a x \equiv b \bmod n$ is solvable for x if and only if $d \mid b, d=\operatorname{gcd}(a, n)$.
- Either has d distinct solutions where $d=\operatorname{gcd}(a, n) \wedge d \mid b$ or has no solution.

Modular Linear Equations

Consider $a x \equiv b \bmod n$, where $a, n>0$.

- Choose an $a \in \mathbb{Z}_{n}$. Then $\langle a\rangle=\{a x \bmod n: x>0\}$.
- Thus, the above equation has a solution if and only if $[b] \in\langle a\rangle$.
- Precise characterisation: $\langle a\rangle=\langle d\rangle=\{0, d, 2 d, \cdots,(n / d-1) d\}$, where $d=\operatorname{gcd}(a, n)$. Thus, $|\langle a\rangle|=n / d$.
- $a x \equiv b \bmod n$ is solvable for x if and only if $d \mid b, d=\operatorname{gcd}(a, n)$.
- Either has d distinct solutions where $d=\operatorname{gcd}(a, n) \wedge d \mid b$ or has no solution.
- $8 x \equiv 2 \bmod 12$. Any solution?

Modular Linear Equations

Consider $a x \equiv b \bmod n$, where $a, n>0$.

- Choose an $a \in \mathbb{Z}_{n}$. Then $\langle a\rangle=\{a x \bmod n: x>0\}$.
- Thus, the above equation has a solution if and only if $[b] \in\langle a\rangle$.
- Precise characterisation: $\langle a\rangle=\langle d\rangle=\{0, d, 2 d, \cdots,(n / d-1) d\}$, where $d=\operatorname{gcd}(a, n)$. Thus, $|\langle a\rangle|=n / d$.
- $a x \equiv b \bmod n$ is solvable for x if and only if $d \mid b, d=\operatorname{gcd}(a, n)$.
- Either has d distinct solutions where $d=\operatorname{gcd}(a, n) \wedge d \mid b$ or has no solution.
- $8 x \equiv 2$ mod 12 . Any solution?
- when $d=1 \Rightarrow$ the above equation has a unique solution.

Modular Linear Equations

Consider $a x \equiv b \bmod n$, where $a, n>0$.

- Choose an $a \in \mathbb{Z}_{n}$. Then $\langle a\rangle=\{a x \bmod n: x>0\}$.
- Thus, the above equation has a solution if and only if $[b] \in\langle a\rangle$.
- Precise characterisation: $\langle a\rangle=\langle d\rangle=\{0, d, 2 d, \cdots,(n / d-1) d\}$, where $d=\operatorname{gcd}(a, n)$. Thus, $|\langle a\rangle|=n / d$.
- $a x \equiv b \bmod n$ is solvable for x if and only if $d \mid b, d=\operatorname{gcd}(a, n)$.
- Either has d distinct solutions where $d=\operatorname{gcd}(a, n) \wedge d \mid b$ or has no solution.
- $8 x \equiv 2 \bmod 12$. Any solution?
- when $d=1 \Rightarrow$ the above equation has a unique solution.
- Of special interest: $b=1$ (multiplicative inverse of a)

Symmetric Key Encryption

- The same key k is used for Encryption and decryption key
- Encryption produces ciphertext $C=E(M, k)$. Decryption recovers the message $M=D(E(M, k), k)$

Symmetric Key Encryption (Continued)

- Substitution ciphers as encryption functions: Cipher alphabet shifted, reversed, or scrambled (Eg: Caesar cipher)
- MEETME \rightarrow LOOQ LO
- Security is weak: Frequency distribution of ciphertext which can allow formation of partial words. O is used 3 times. In English, top letters that are frequent used are E, T, A etc. Replacing O with E gives a partial word.
- Similarly, for Transposition cipher: Sliding alphabet of ciphertexts to look for anagrams. Then search the space of anagrams.
- Need to rely on a key whose detection is hard - prime factorisation of large semi-primes is presumably hard!
- Known Symmetric encryption algorithms: AES, 3DES, Blowfish.
- AES128: Runs in 16 rounds. Each round has substitution, permutation, linear transformation, XOR with round key.

More on Symmetric Encryption

- How to securely share the secret key among each pair of communicating parties?
- Solution: Diffie-Hellman key exdchange protocol.
- After receiving the secret key, how to securely store them? Threats from insider attacks, compromised privileged software (such as the OS).
- Note that no data protection technique via key-based data encryption will be adequate without a solution to the secure key storage problem.
- The number of keys to be maintained by each machine is $O(n)$ (where n is the number of machines that it will communicate).

Diffie-Hellman Key Exchange Protocol

- Security of the protocol is derived from the presumed hardness of the discrete logarithm problem.
- Protocol begins by choosing a publicly agreed upon a large prime p and the associated primitive root g.
- Recall that primitive root is that special element $g \in \mathbb{Z}_{p}^{*}$ such that $\langle g\rangle=\mathbb{Z}_{p}^{*}$.
- Two participants A and B, then choose secret keys a and b, respectively.

Diffie-Hellman Key Exchange Protocol

- Participant A computes a ciphertext $C_{A}=g^{a}(\bmod p)$. Similarly, B computes $C_{B}=g^{b}(\bmod p)$.
- Participant A sends C_{A} to participant B and receives C_{B} from B.
- A computes $C_{B}^{a}(\bmod p)=g^{a b}(\bmod p)$ and B computes $C_{A}^{b}(\bmod p)=g^{a b}(\bmod p)$.
- Thus, the secret key $g^{a b}(\bmod p)$ is established.
- Any intruder wishing to read the message will have to find the value $a b$ (i.e., solving the discrete logarithm problem).

Discrete Logarithm Problem

Let us focus on \mathbb{Z}_{n}^{*} instead of \mathbb{Z}_{n}.

- We know that for all $a \in \mathbb{Z}_{n}^{*}, a^{\left|\mathbb{Z}_{n}^{*}\right|} \equiv 1(\bmod n), n>1$
- This is also called Euler's Theorem
- The Euler Phi function is defined as: $\phi(n)=\left|\mathbb{Z}_{n}^{*}\right|$
- Remember from earlier discussion that $\left|\mathbb{Z}_{p}^{*}\right|=p-1$ when p is a prime.
- From Fermat's Theorem: $a^{p-1} \equiv 1(\bmod p)$ for all $a \in \mathbb{Z}_{p}^{*}$
- Let $g \in \mathbb{Z}_{n}^{*}$ such that $\langle g\rangle=\mathbb{Z}_{n}^{*}$. Then \mathbb{Z}_{n}^{*} is called cyclic.
- By definition of $\langle g\rangle$, for all $a \in \mathbb{Z}_{n}^{*}$, there exists z s.t. $g^{z} \equiv a(\bmod n)$.
- z is called the discrete logarithm of a modulo n.

One Way Functions

- Given x, computing $F(x)$ is fast.
- However, given $F(x)$, computing $F^{-1}(x)$ is difficult
- Discrete logarithm problem is an instance of a one-way function! That is given g, z, n computing $g^{z}(\bmod n)$ is fast. But given g, n, a computing $\log _{g}(a)$

One-way Hash Functions

$F(\langle\mathrm{msg}$-arbitrary-size $\rangle)=\langle\mathrm{msg}$-fixed-size \rangle

- Properties:
- Deterministic: same message produces the same hash.
- Collision-resistant: It is hard to find two inputs m_{1}, m_{2} s.t. $m_{1} \neq m_{2}$ but $F\left(m_{1}\right)=F\left(m_{2}\right)$.
- Avalanche effect: A small change in message leads to a large change in the hashed message
- Used in digital signatures, MACs. Egs: SHA-256, MD5
- Security: Brute-force search, Caching the o/p of hash functions (called rainbow table attack).
- Use of salt (a random data as an additional input to the hash function) makes the attack infeasible.

Public-key Cryptosystems

Every participant computes and maintains a key.
Each key has two parts: public P, secret S

Public-key Cryptosystems(Cont.)

- Thus, machine A's key is $\left(P_{A}, S_{A}\right)$ and B's key is $\left(P_{B}, S_{B}\right)$.
- With a slight abuse of notation we will consider $E\left(M, P_{x}\right)$ in the figure as $P_{x}(M)$ and $D\left(M, S_{x}\right)$ as $S_{x}(M)$.
- Public and secret keys are "matched pairs", in the sense that they specify functions that are inverses of each other, i.e., $S_{x}\left(P_{x}(m s g)\right)=P_{x}\left(S_{x}(m s g)\right)$.
- Security assumption: Even though P_{x} is known publicly for all x, it is hard for an intruder to ascertain S_{x} from P_{x}. Only the owner x can compute S_{x} in a practical amount of time.
- Data Confidentiality: Assume A is the sender and B is the recipient of a message M. Then A encrypts by applying P_{B} of B, i.e. $C=P_{B}(M)$, Thus, only B can decode this message with S_{B} (i.e., $S_{B}\left(P_{B}(M)\right)=M$)
- Digital signatures can also be implemented with Public-key cryptosystems: A can send a message M by encrypting it as $S_{A}(M)$. Note that any machine with P_{A} can decrypt this message. However, only A could have sent this message, since S_{A} is a secret known only to A.

Public-key Cryptosystems: RSA

A popular public-key cryptosystem is the Rivest-Shamir-Adleman algorithnm (authors given Turing Award in 2002)

1. Select two very large primes p and q [Use the probabilistic Miller-Rabin or Solovay-Strassen]
2. Compute $n=p q$. Compute $\phi(n)=(p-1)(q-1)$.
3. Choose an odd e s.t. $1<e<\phi(n)$ and $\operatorname{gcd}(e, \phi(n))=1$ [Use Euclid's gcd computation to select e]
4. Compute d as the multiplicative inverse of e, modulo $\phi(n)$. That is $e d \equiv 1(\bmod \phi(n))$ [Apply Extended Euclid to solve for x s.t. $\operatorname{gcd}(e, \phi(n))=1=e x+\phi(n) y]$
5. Publish the public key $P=(e, n)$ of the participant
6. Publish the private key $S=(d, n)$ of the participant
7. The domain of a message \mathcal{D} is $\mathbb{Z}_{n}=\{0,1,2, \cdots, n-1\}$.
8. Thus $P(M)=M^{e}(\bmod n)=C$. And $S(C)=C^{d}(\bmod n)$.

Why does RSA work?

- Note $P(S(M))=S(P(M))=M^{e d}(\bmod n)$.
- Also, $e d=1+k(p-1)(q-1)$
- So
$M^{e d}(\bmod p)=M\left(M^{p-1}\right)^{k(q-1)}(\bmod p)=M(1)^{k(q-1)}(\bmod p)$
[Follows from Fermat's Theorem]
- Repeating the same argument, we will get $M^{e d}(\bmod q)=M(\bmod q)$. For all M

$$
\begin{aligned}
M^{e d} & \equiv M(\bmod p) \\
M^{e d} & \equiv M(\bmod q)
\end{aligned}
$$

- From Chinese remainder theorem, $M^{e d} \equiv M(\bmod n)$

Chinese Remainder Theorem

If $p_{1}, p_{2}, \cdots, p_{k}$ are pairwise relatively prime, then for any integers $a_{1}, a_{2}, \cdots, a_{k}$, the set of equations: $x \equiv a_{i} \bmod p_{i}$ has a unique solution modulo $p_{1} p_{2} \cdots p_{k}$.

- Eg: $x \equiv 3 \bmod 5$

$$
\begin{aligned}
& x \equiv 5 \bmod 7 \\
& x \equiv 7 \bmod 11
\end{aligned}
$$

Chinese Remainder Theorem (Cont.)

- Consider three numbers $x_{1}, x_{2}, x 3$ corresponding to the coordinates $(1,0,0),(0,1,0),(0,0,1)$ respectively.
- Then the point corresponding to the point $(3,5,7)$ is $3 x_{1}+5 x_{2}+7 x_{3}$.
- For x_{1} :

$$
\begin{align*}
& x_{1} \equiv 1(\bmod 5) \tag{1}\\
& x_{1} \equiv 0(\bmod 7) \tag{2}\\
& x_{1} \equiv 0(\bmod 11) \tag{3}
\end{align*}
$$

- $7 * 11 \mid x_{1}$. Thus $77 x_{1}^{\prime} \equiv 1(\bmod 5)$. Using eqn (1), we get $x_{1}=231$.
- Similarly, one can compute $x_{2}=330$ and $x_{3}=210$.
- Thus, $3 x_{1}+5 x_{2}+7 x_{3}=3813$. Take factors of 385 out. The smallest positive number left is: 348 (solution to the original set of modular linear equations).

Chinese Remainder Theorem (Cont.)

- Provides a correspondence between a system of equations modulo a set of pairwise relative prime and an equation modulo the product of those pairwise relative primes
- "Structure Theorem" - describes the structure of \mathbb{Z}_{n} is identical to that of $\mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}} \times \cdots \times \mathbb{Z}_{n_{k}}$.
- As a result: Design of efficient algorithms (since working with $\mathbb{Z}_{n_{i}}$ is more efficient that working with \mathbb{Z}_{n}.

Security and Runtime Complexity of RSA

Security of RSA

- $M^{e d} \equiv M(\bmod n)$. To derive e and d, one will have to factor n. Typically, n is a product of two 1024 bit (300 digit) primes.
Runtime Complexity
- Applying P requires $O(1)$ modular multiplications. Applying S requires $O(\beta)$ modular multiplications (where β is the number of bits used to represent n).

Digitial Signatures

- Not encrypted
- For Encryption

- A's digital signature for message M : $\left(M, S_{A}(M)\right)$
- B upon receiving the signature decrypts $P_{A}\left(S_{A}(M)\right)$ and performs the check $P_{A}\left(S_{A}(M)\right) \stackrel{?}{=} M$

Digital Signatures (continued)

- Note however, that the message M is sent over as plaintext
- An efficient approach is to combine data encryption with Cryptographic hash functions.
- CHF: allow fixed-length message fingerprints (provides message integrity
- A's digital signature for the message M: $\sigma=S_{A}(h(m))$. A sends the message $C=P_{B}(M, \sigma)$.
- Now, no eavesdropper can get the message in plaintext.
- Upon receiving the ciphertext, B decrypts by performing $S_{B}(C)$ and extracts the message: $\left(M, S_{A}(h(M))\right)$. It further performs the check $h(m) \stackrel{?}{=} P_{A}\left(S_{A}(h(m))\right)$.

Digital Certificates

- Certificates makes distributing public keys much easier
- An actor A can obtain a signed message from a publicly trusted authority T stating: A 's public key is P_{A}.
- Actor A can include this certificate in her signed message.
- The recipient can now verify her signature with A's public key and the certificate from T.
- The recipient can now trust that A 's key is indeed hers because of public trust in T.

