Introduction to Modular Arithmetic

Subodh Sharma

Subhashis Banerjee

IIT Delhi, Computer Science Department

Detour

<ロ> <同> <同> < 回> < 回> < 回> = 三回

• Let $\mathbb{Z} = \{\cdots, -2, -1, 0, 1, 2, \cdots\}$ be the set of integers.

- Let $\mathbb{Z} = \{\cdots, -2, -1, 0, 1, 2, \cdots\}$ be the set of integers.
- ► Division Theorem: For any integer *a* and any positive integer *n*, there exist unique integers *q* and *r* s.t.: *a* = *qn* + *r* where 0 ≤ *r* < *n*.

- Let $\mathbb{Z} = \{\cdots, -2, -1, 0, 1, 2, \cdots\}$ be the set of integers.
- ► Division Theorem: For any integer *a* and any positive integer *n*, there exist unique integers *q* and *r* s.t.: *a* = *qn* + *r* where 0 ≤ *r* < *n*.
 - Given a, n ∈ Z, n > 0 the notation r = a mod n represents the remainder of the division of a by n and q = ⌊a/n⌋ represents the quotient of the division.

- Let $\mathbb{Z} = \{\cdots, -2, -1, 0, 1, 2, \cdots\}$ be the set of integers.
- ► Division Theorem: For any integer *a* and any positive integer *n*, there exist unique integers *q* and *r* s.t.: *a* = *qn* + *r* where 0 ≤ *r* < *n*.
 - Given a, n ∈ Z, n > 0 the notation r = a mod n represents the remainder of the division of a by n and q = ⌊a/n⌋ represents the quotient of the division.
- ► [*a*]_{*n*} be the equivalence classes according to the remainders modulo *n*.

- Let $\mathbb{Z} = \{\cdots, -2, -1, 0, 1, 2, \cdots\}$ be the set of integers.
- ► Division Theorem: For any integer *a* and any positive integer *n*, there exist unique integers *q* and *r* s.t.: *a* = *qn* + *r* where 0 ≤ *r* < *n*.
 - Given a, n ∈ Z, n > 0 the notation r = a mod n represents the remainder of the division of a by n and q = ⌊a/n⌋ represents the quotient of the division.
- ► [*a*]_{*n*} be the equivalence classes according to the remainders modulo *n*.
 - Formally, $[a]_n = \{a + kn : k \in \mathbb{Z}\}$

- Let $\mathbb{Z} = \{\cdots, -2, -1, 0, 1, 2, \cdots\}$ be the set of integers.
- ► Division Theorem: For any integer *a* and any positive integer *n*, there exist unique integers *q* and *r* s.t.: *a* = *qn* + *r* where 0 ≤ *r* < *n*.
 - Given a, n ∈ Z, n > 0 the notation r = a mod n represents the remainder of the division of a by n and q = ⌊a/n⌋ represents the quotient of the division.

► [*a*]_{*n*} be the equivalence classes according to the remainders modulo *n*.

- Formally, $[a]_n = \{a + kn : k \in \mathbb{Z}\}$
- Example: $[3]_7 = \{\cdots, -11, -4, 3, 10, 17, \cdots\} = [-4]_7 = [10]_7$
- Thus, $a \in [b]_n$ is the same as writing $a \equiv b \pmod{n}$.

- Let $\mathbb{Z} = \{\cdots, -2, -1, 0, 1, 2, \cdots\}$ be the set of integers.
- ► Division Theorem: For any integer *a* and any positive integer *n*, there exist unique integers *q* and *r* s.t.: *a* = *qn* + *r* where 0 ≤ *r* < *n*.
 - Given a, n ∈ Z, n > 0 the notation r = a mod n represents the remainder of the division of a by n and q = ⌊a/n⌋ represents the quotient of the division.
- ► [*a*]_{*n*} be the equivalence classes according to the remainders modulo *n*.
 - Formally, $[a]_n = \{a + kn : k \in \mathbb{Z}\}$
 - Example: $[3]_7 = \{\cdots, -11, -4, 3, 10, 17, \cdots\} = [-4]_7 = [10]_7$
 - Thus, $a \in [b]_n$ is the same as writing $a \equiv b \pmod{n}$.
- Set of all such equivalence classes: Z_n = {[a]_n : 0 ≤ a ≤ n − 1} will be read as {0, 1, · · · , n − 1}

• If d|a and d|b, we say d is a common divisor of a and b.

- If d|a and d|b, we say d is a common divisor of a and b.
- From above $\Rightarrow d|a+b, d|a-b$. In general, d|ax+by for any integers x and y.

- If d|a and d|b, we say d is a common divisor of a and b.
- From above $\Rightarrow d|a+b, d|a-b$. In general, d|ax+by for any integers x and y.
- Greatest Common Divisor (gcd): Among all the *common* divisors of a and b, the largest among them is the gcd(a, b)

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへの

- If d|a and d|b, we say d is a common divisor of a and b.
- From above $\Rightarrow d|a+b, d|a-b$. In general, d|ax+by for any integers x and y.
- Greatest Common Divisor (gcd): Among all the *common* divisors of *a* and *b*, the largest among them is the gcd(a, b)

• Eg:
$$gcd(24, 30) = 6$$
.

$$> 30 = 2.3.5$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

- If d|a and d|b, we say d is a common divisor of a and b.
- From above $\Rightarrow d|a+b, d|a-b$. In general, d|ax+by for any integers x and y.
- Greatest Common Divisor (gcd): Among all the *common* divisors of *a* and *b*, the largest among them is the gcd(a, b)
 - Eg: gcd(24, 30) = 6.
 - ▶ 24 = 2.2.2.3
 - ► 30 = 2.3.5
 - A useful characterization of gcd: If a and b are nonzero, then gcd(a, b) is the smallest positive number of the set $\{ax + by : x, y \in \mathbb{Z}\}.$

- If d|a and d|b, we say d is a common divisor of a and b.
- From above $\Rightarrow d|a+b, d|a-b$. In general, d|ax+by for any integers x and y.
- Greatest Common Divisor (gcd): Among all the *common* divisors of *a* and *b*, the largest among them is the gcd(a, b)
 - ▶ Eg: gcd(24, 30) = 6.
 - ▶ 24 = 2.2.2.3
 - ► 30 = 2.3.5
 - A useful characterization of gcd: If a and b are nonzero, then gcd(a, b) is the smallest positive number of the set $\{ax + by : x, y \in \mathbb{Z}\}.$
 - If gcd(a, b) = 1, then a and b are relatively prime.

- If d|a and d|b, we say d is a common divisor of a and b.
- From above $\Rightarrow d|a+b, d|a-b$. In general, d|ax+by for any integers x and y.
- Greatest Common Divisor (gcd): Among all the *common* divisors of *a* and *b*, the largest among them is the gcd(a, b)
 - Eg: gcd(24, 30) = 6.
 - ▶ 24 = 2.2.2.3
 - ► 30 = 2.3.5
 - A useful characterization of gcd: If a and b are nonzero, then gcd(a, b) is the smallest positive number of the set $\{ax + by : x, y \in \mathbb{Z}\}.$
 - If gcd(a, b) = 1, then a and b are relatively prime.
 - Relatively prime integers: gcd(a, b) = 1

- If d|a and d|b, we say d is a common divisor of a and b.
- From above $\Rightarrow d|a+b, d|a-b$. In general, d|ax+by for any integers x and y.
- Greatest Common Divisor (gcd): Among all the *common* divisors of a and b, the largest among them is the gcd(a, b)
 - ▶ Eg: gcd(24, 30) = 6.
 - ▶ 24 = 2.2.2.3
 - ► 30 = 2.3.5
 - A useful characterization of gcd: If a and b are nonzero, then gcd(a, b) is the smallest positive number of the set $\{ax + by : x, y \in \mathbb{Z}\}.$
 - If gcd(a, b) = 1, then a and b are relatively prime.
 - Relatively prime integers: gcd(a, b) = 1
- ► Note: No efficient solution for integer factorization.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへの

Euclid's Greatest Common Divisor Algorithm

► Euclid in his "The Elements" (c. 300 BC) gave a recursive algorithm: gcd(a, b) = gcd(b, a mod b)

- Let d = gcd(a, b). Then $d \mid a, d \mid b$.
- $a \mod b = a qb$ where $q = \lfloor a/b \rfloor$. Thus, $d \mid a \mod b$

Similarly, can be shown that $a \mod b \mid d$

Eg:

$$gcd(30,21) = gcd(21,9)$$

= $gcd(9,3)$
= $gcd(3,0)$

Extended Euclid's Algorithm

- d = gcd(a, b) = ax + by.
 - The algorithm solves for x and y. Note that x and y can be zero or negative.
 - As efficient as gcd(a, b) computation
 - Required to compute modular multiplicative inverses.

Finite groups

Finite Group: (S, \oplus) where S is finite.

Finite groups

- Finite Group: (S, \oplus) where S is finite.
 - Properties:
 - 1. Closure: For all $a, b \in S$, then $a \oplus b \in S$
 - 2. Associativity: For all $a, b, c \in S$, we have $(a \oplus b) \oplus c = a \oplus (b \oplus c)$
 - 3. Identity: There exists $e \in S$, s.t. $a \oplus e = e \oplus a = a$, for all $a \in S$.
 - 4. Inverse: For each $a \in S$, there exists a unique $b \in S$ s.t.

 $a\oplus b=b\oplus a=e.$

・ロン ・四 ・ ・ ヨ ・ ・ 日 ・

Finite groups

- Finite Group: (S, \oplus) where S is finite.
 - Properties:
 - 1. Closure: For all $a, b \in S$, then $a \oplus b \in S$
 - 2. Associativity: For all $a, b, c \in S$, we have $(a \oplus b) \oplus c = a \oplus (b \oplus c)$
 - 3. Identity: There exists $e \in S$, s.t. $a \oplus e = e \oplus a = a$, for all $a \in S$.
 - 4. Inverse: For each $a \in S$, there exists a unique $b \in S$ s.t. $a \oplus b = b \oplus a = e$.

Eg: $(\mathbb{Z}_n, +_n)$ (Check?)

・ロン ・四 ・ ・ 回 ・ ・ 回 ・

Finite groups

- Finite Group: (S, \oplus) where S is finite.
 - Properties:
 - 1. Closure: For all $a, b \in S$, then $a \oplus b \in S$
 - 2. Associativity: For all $a, b, c \in S$, we have $(a \oplus b) \oplus c = a \oplus (b \oplus c)$
 - 3. Identity: There exists $e \in S$, s.t. $a \oplus e = e \oplus a = a$, for all $a \in S$.
 - 4. Inverse: For each $a \in S$, there exists a unique $b \in S$ s.t. $a \oplus b = b \oplus a = e$.
 - Eg: $(\mathbb{Z}_n, +_n)$ (Check?)
 - What about $(\mathbb{Z}_n, *_n)$ Answer is No!
 - Not all elements have an inverse! Eg: $0, 2, 3, 4 \in \mathbb{Z}_6$ have no inverses.

<ロ> <同> <同> <巨> <巨> <

Finite groups

- Finite Group: (S, \oplus) where S is finite.
 - Properties:
 - 1. Closure: For all $a, b \in S$, then $a \oplus b \in S$
 - 2. Associativity: For all $a, b, c \in S$, we have $(a \oplus b) \oplus c = a \oplus (b \oplus c)$
 - 3. Identity: There exists $e \in S$, s.t. $a \oplus e = e \oplus a = a$, for all $a \in S$.
 - 4. Inverse: For each $a \in S$, there exists a unique $b \in S$ s.t. $a \oplus b = b \oplus a = e$.
 - Eg: $(\mathbb{Z}_n, +_n)$ (Check?)
 - What about $(\mathbb{Z}_n, *_n)$ Answer is No!
 - Not all elements have an inverse! Eg: $0, 2, 3, 4 \in \mathbb{Z}_6$ have no inverses.
 - ▶ Let $\mathbb{Z}_n^* = \{[a]_n : gcd(a, n) = ax + by = 1, x, y \in \mathbb{Z}\}$. Then $(\mathbb{Z}_n^*, *_n)$ is a finite group. Eg: $\mathbb{Z}_7^* = \{1, 2, 3, 4, 5, 6\}$, $\mathbb{Z}_{15}^* = \{1, 2, 4, 7, 8, 11, 13, 14\}$

・ロト ・回ト ・ヨト ・ヨト … ヨ

Finite groups

- Finite Group: (S, \oplus) where S is finite.
 - Properties:
 - 1. Closure: For all $a, b \in S$, then $a \oplus b \in S$
 - 2. Associativity: For all $a, b, c \in S$, we have $(a \oplus b) \oplus c = a \oplus (b \oplus c)$
 - 3. Identity: There exists $e \in S$, s.t. $a \oplus e = e \oplus a = a$, for all $a \in S$.
 - 4. Inverse: For each $a \in S$, there exists a unique $b \in S$ s.t. $a \oplus b = b \oplus a = e$.
 - Eg: $(\mathbb{Z}_n, +_n)$ (Check?)
 - What about $(\mathbb{Z}_n, *_n)$ Answer is No!
 - Not all elements have an inverse! Eg: $0, 2, 3, 4 \in \mathbb{Z}_6$ have no inverses.
 - ▶ Let $\mathbb{Z}_n^* = \{[a]_n : gcd(a, n) = ax + by = 1, x, y \in \mathbb{Z}\}$. Then $(\mathbb{Z}_n^*, *_n)$ is a finite group. Eg: $\mathbb{Z}_7^* = \{1, 2, 3, 4, 5, 6\}$, $\mathbb{Z}_{15}^* = \{1, 2, 4, 7, 8, 11, 13, 14\}$
 - Thus, for $a \in \mathbb{Z}_n^*$, we have $ax \equiv 1 \mod n$.
 - This multiplicative inverse x can quickly computed using Extended Euclid.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Finite groups

- Finite Group: (S, \oplus) where S is finite.
 - Properties:
 - 1. Closure: For all $a, b \in S$, then $a \oplus b \in S$
 - 2. Associativity: For all $a, b, c \in S$, we have $(a \oplus b) \oplus c = a \oplus (b \oplus c)$
 - 3. Identity: There exists $e \in S$, s.t. $a \oplus e = e \oplus a = a$, for all $a \in S$.
 - 4. Inverse: For each $a \in S$, there exists a unique $b \in S$ s.t. $a \oplus b = b \oplus a = e$.
 - Eg: $(\mathbb{Z}_n, +_n)$ (Check?)
 - What about $(\mathbb{Z}_n, *_n)$ Answer is No!
 - Not all elements have an inverse! Eg: $0, 2, 3, 4 \in \mathbb{Z}_6$ have no inverses.
 - ▶ Let $\mathbb{Z}_n^* = \{[a]_n : gcd(a, n) = ax + by = 1, x, y \in \mathbb{Z}\}$. Then $(\mathbb{Z}_n^*, *_n)$ is a finite group. Eg: $\mathbb{Z}_7^* = \{1, 2, 3, 4, 5, 6\}$, $\mathbb{Z}_{15}^* = \{1, 2, 4, 7, 8, 11, 13, 14\}$
 - Thus, for $a \in \mathbb{Z}_n^*$, we have $ax \equiv 1 \mod n$.
 - This multiplicative inverse x can quickly computed using Extended Euclid.
 - ► Eg: a = 5, n = 11. Then (d, x, y) = Extended_Euclid(a, n) = (1, -2, 1). Thus, the multiplicative inverse of 5 is [-2]₁₁ or [9]₁1.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Finite groups

- Finite Group: (S, \oplus) where S is finite.
 - Properties:
 - 1. Closure: For all $a, b \in S$, then $a \oplus b \in S$
 - 2. Associativity: For all $a, b, c \in S$, we have $(a \oplus b) \oplus c = a \oplus (b \oplus c)$
 - 3. Identity: There exists $e \in S$, s.t. $a \oplus e = e \oplus a = a$, for all $a \in S$.
 - 4. Inverse: For each $a \in S$, there exists a unique $b \in S$ s.t. $a \oplus b = b \oplus a = e$.
 - Eg: $(\mathbb{Z}_n, +_n)$ (Check?)
 - What about $(\mathbb{Z}_n, *_n)$ Answer is No!
 - Not all elements have an inverse! Eg: $0, 2, 3, 4 \in \mathbb{Z}_6$ have no inverses.
 - ▶ Let $\mathbb{Z}_n^* = \{[a]_n : gcd(a, n) = ax + by = 1, x, y \in \mathbb{Z}\}$. Then $(\mathbb{Z}_n^*, *_n)$ is a finite group. Eg: $\mathbb{Z}_7^* = \{1, 2, 3, 4, 5, 6\},$ $\mathbb{Z}_{15}^* = \{1, 2, 4, 7, 8, 11, 13, 14\}$
 - Thus, for $a \in \mathbb{Z}_n^*$, we have $ax \equiv 1 \mod n$.
 - This multiplicative inverse x can quickly computed using Extended Euclid.
 - Eg: a = 5, n = 11. Then $(d, x, y) = Extended_Euclid(a, n) = (1, -2, 1)$. Thus, the multiplicative inverse of 5 is $[-2]_{11}$ or $[9]_{11}$.
- ► Observe: $|\mathbb{Z}_n^*| < |\mathbb{Z}_n|$ when *n* is composite. Why?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Finite groups

- Finite Group: (S, \oplus) where S is finite.
 - Properties:
 - 1. Closure: For all $a, b \in S$, then $a \oplus b \in S$
 - 2. Associativity: For all $a, b, c \in S$, we have $(a \oplus b) \oplus c = a \oplus (b \oplus c)$
 - 3. Identity: There exists $e \in S$, s.t. $a \oplus e = e \oplus a = a$, for all $a \in S$.
 - Eg: $(\mathbb{Z}_n, +_n)$ (Check?)
 - What about $(\mathbb{Z}_n, *_n)$ Answer is No!
 - Not all elements have an inverse! Eg: $0, 2, 3, 4 \in \mathbb{Z}_6$ have no inverses.
 - ▶ Let $\mathbb{Z}_n^* = \{[a]_n : gcd(a, n) = ax + by = 1, x, y \in \mathbb{Z}\}$. Then $(\mathbb{Z}_n^*, *_n)$ is a finite group. Eg: $\mathbb{Z}_7^* = \{1, 2, 3, 4, 5, 6\},$ $\mathbb{Z}_{15}^* = \{1, 2, 4, 7, 8, 11, 13, 14\}$
 - Thus, for $a \in \mathbb{Z}_n^*$, we have $ax \equiv 1 \mod n$.
 - This multiplicative inverse x can quickly computed using Extended Euclid.
 - ► Eg: a = 5, n = 11. Then (d, x, y) = Extended_Euclid(a, n) = (1, -2, 1). Thus, the multiplicative inverse of 5 is [-2]₁₁ or [9]₁1.
- ▶ Observe: $|\mathbb{Z}_n^*| < |\mathbb{Z}_n|$ when *n* is composite. Why?

► Given
$$(S, \oplus)$$
, choose any $a \in S$ and compute
 $a^{(k)} = \underbrace{a \oplus a \oplus \cdots \oplus a}_{k \text{ times}}$

svs, suban: Introduction to Modular Arithmetic

◆□ → ◆□ → ◆三 → ◆三 → ● ◆ ● ◆

► Given
$$(S, \oplus)$$
, choose any $a \in S$ and compute
 $a^{(k)} = \underbrace{a \oplus a \oplus \cdots \oplus a}_{k \text{ times}}$

▶ The subgroup generated by a is denoted as $(\langle a \rangle, \oplus)$ where $\langle a \rangle = \{a^{(k)} : k \ge 1\}$

► Given
$$(S, \oplus)$$
, choose any $a \in S$ and compute
 $a^{(k)} = \underbrace{a \oplus a \oplus \cdots \oplus a}_{k \text{ times}}$

▶ The subgroup generated by a is denoted as $(\langle a \rangle, \oplus)$ where $\langle a \rangle = \{a^{(k)} : k \ge 1\}$

• Eg:
$$\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$$
. Choose $a = 2$. Then
 $a^{(1)} = 2, a^{(2)} = 4, a^{(3)} = 0, \cdots$ (since $\oplus = +$). For \mathbb{Z}_6 , we have:
 $\langle 1 \rangle = \{0, 1, 2, 3, 4, 5\}$
 $\langle 2 \rangle = \{0, 2, 4\}$
 $\langle 3 \rangle = \{0, 3\}$

◆□ → ◆□ → ◆三 → ◆三 → ● ◆ ● ◆

- ► Lagrange's Theorem: If (S', \oplus) forms a subgroup of (S, \oplus) , then |S'| divides |S|.
- For a subgroup $\langle a \rangle$, the element *a* is called the *generator*.

- ► Lagrange's Theorem: If (S', \oplus) forms a subgroup of (S, \oplus) , then |S'| divides |S|.
- For a subgroup $\langle a \rangle$, the element *a* is called the *generator*.
- ► Notice that there exists t s.t. a^(t) = e. The smallest possible t is called the order of ⟨a⟩ − denoted by ord(a).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

- ► Lagrange's Theorem: If (S', \oplus) forms a subgroup of (S, \oplus) , then |S'| divides |S|.
- For a subgroup $\langle a \rangle$, the element *a* is called the *generator*.
- ► Notice that there exists t s.t. a^(t) = e. The smallest possible t is called the order of ⟨a⟩ − denoted by ord(a).

• for group operaton $+: a^{(t)} = e$ is the same as $at \equiv 0 \mod n$

- ► Lagrange's Theorem: If (S', \oplus) forms a subgroup of (S, \oplus) , then |S'| divides |S|.
- For a subgroup $\langle a \rangle$, the element *a* is called the *generator*.
- Notice that there exists t s.t. a^(t) = e. The smallest possible t is called the order of ⟨a⟩ − denoted by ord(a).
 - ▶ for group operaton $+: a^{(t)} = e$ is the same as $at \equiv 0 \mod n$
 - for group operaton $*: a^{(t)} = e$ is the same as $a^t \equiv 1 \mod n$

- ► Lagrange's Theorem: If (S', \oplus) forms a subgroup of (S, \oplus) , then |S'| divides |S|.
- For a subgroup $\langle a \rangle$, the element *a* is called the *generator*.
- Notice that there exists t s.t. a^(t) = e. The smallest possible t is called the order of ⟨a⟩ − denoted by ord(a).
 - for group operaton $+: a^{(t)} = e$ is the same as $at \equiv 0 \mod n$
 - for group operaton $*: a^{(t)} = e$ is the same as $a^t \equiv 1 \mod n$
- ▶ If (S, \oplus) is a finite group with identity *e*, then for all *a* ∈ *S*: $a^{(|S|)} = e$

- ► Lagrange's Theorem: If (S', \oplus) forms a subgroup of (S, \oplus) , then |S'| divides |S|.
- For a subgroup $\langle a \rangle$, the element *a* is called the *generator*.
- Notice that there exists t s.t. a^(t) = e. The smallest possible t is called the order of ⟨a⟩ − denoted by ord(a).
 - ▶ for group operaton $+: a^{(t)} = e$ is the same as $at \equiv 0 \mod n$
 - ▶ for group operaton $*: a^{(t)} = e$ is the same as $a^t \equiv 1 \mod n$
- ▶ If (S, \oplus) is a finite group with identity *e*, then for all *a* ∈ *S*: $a^{(|S|)} = e$
 - ▶ Proof from Lagrange's Theorem that $ord(a) \mid |S|$

Consider $ax \equiv b \mod n$, where a, n > 0.

• Choose an
$$a \in \mathbb{Z}_n$$
. Then $\langle a \rangle = \{ax \mod n : x > 0\}.$

Consider $ax \equiv b \mod n$, where a, n > 0.

- Choose an $a \in \mathbb{Z}_n$. Then $\langle a \rangle = \{ax \mod n : x > 0\}.$
- ▶ Thus, the above equation has a solution if and only if $[b] \in \langle a \rangle$.

Consider $ax \equiv b \mod n$, where a, n > 0.

- Choose an $a \in \mathbb{Z}_n$. Then $\langle a \rangle = \{ax \mod n : x > 0\}.$
- ▶ Thus, the above equation has a solution if and only if $[b] \in \langle a \rangle$.
 - ▶ Precise characterisation: $\langle a \rangle = \langle d \rangle = \{0, d, 2d, \cdots, (n/d 1)d\},$ where d = gcd(a, n). Thus, $|\langle a \rangle| = n/d$.

Consider $ax \equiv b \mod n$, where a, n > 0.

- Choose an $a \in \mathbb{Z}_n$. Then $\langle a \rangle = \{ax \mod n : x > 0\}.$
- ▶ Thus, the above equation has a solution if and only if $[b] \in \langle a \rangle$.
 - ▶ Precise characterisation: $\langle a \rangle = \langle d \rangle = \{0, d, 2d, \cdots, (n/d 1)d\},$ where d = gcd(a, n). Thus, $|\langle a \rangle| = n/d$.
 - $ax \equiv b \mod n$ is solvable for x if and only if $d \mid b, d = gcd(a, n)$.

Consider $ax \equiv b \mod n$, where a, n > 0.

- Choose an $a \in \mathbb{Z}_n$. Then $\langle a \rangle = \{ax \mod n : x > 0\}.$
- ▶ Thus, the above equation has a solution if and only if $[b] \in \langle a \rangle$.
 - ▶ Precise characterisation: $\langle a \rangle = \langle d \rangle = \{0, d, 2d, \cdots, (n/d 1)d\},$ where d = gcd(a, n). Thus, $|\langle a \rangle| = n/d$.
 - $ax \equiv b \mod n$ is solvable for x if and only if $d \mid b, d = gcd(a, n)$.

Either has d distinct solutions where $d = gcd(a, n) \wedge d|b$ or has no solution.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Consider $ax \equiv b \mod n$, where a, n > 0.

- Choose an $a \in \mathbb{Z}_n$. Then $\langle a \rangle = \{ax \mod n : x > 0\}.$
- ▶ Thus, the above equation has a solution if and only if $[b] \in \langle a \rangle$.
 - ▶ Precise characterisation: $\langle a \rangle = \langle d \rangle = \{0, d, 2d, \cdots, (n/d 1)d\},$ where d = gcd(a, n). Thus, $|\langle a \rangle| = n/d$.
 - $ax \equiv b \mod n$ is solvable for x if and only if $d \mid b, d = gcd(a, n)$.
- Either has d distinct solutions where $d = gcd(a, n) \wedge d|b$ or has no solution.
- ▶ $8x \equiv 2 \mod 12$. Any solution?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Consider $ax \equiv b \mod n$, where a, n > 0.

- Choose an $a \in \mathbb{Z}_n$. Then $\langle a \rangle = \{ax \mod n : x > 0\}.$
- ▶ Thus, the above equation has a solution if and only if $[b] \in \langle a \rangle$.
 - ▶ Precise characterisation: $\langle a \rangle = \langle d \rangle = \{0, d, 2d, \cdots, (n/d 1)d\},$ where d = gcd(a, n). Thus, $|\langle a \rangle| = n/d$.
 - $ax \equiv b \mod n$ is solvable for x if and only if $d \mid b, d = gcd(a, n)$.
- Either has d distinct solutions where $d = gcd(a, n) \wedge d|b$ or has no solution.
- ▶ $8x \equiv 2 \mod 12$. Any solution?
- when $d = 1 \Rightarrow$ the above equation has a *unique* solution.

Consider $ax \equiv b \mod n$, where a, n > 0.

- Choose an $a \in \mathbb{Z}_n$. Then $\langle a \rangle = \{ax \mod n : x > 0\}.$
- ▶ Thus, the above equation has a solution if and only if $[b] \in \langle a \rangle$.
 - ▶ Precise characterisation: $\langle a \rangle = \langle d \rangle = \{0, d, 2d, \cdots, (n/d 1)d\},$ where d = gcd(a, n). Thus, $|\langle a \rangle| = n/d$.
 - $ax \equiv b \mod n$ is solvable for x if and only if $d \mid b, d = gcd(a, n)$.
- Either has d distinct solutions where $d = gcd(a, n) \wedge d|b$ or has no solution.
- ▶ $8x \equiv 2 \mod 12$. Any solution?
- when $d = 1 \Rightarrow$ the above equation has a *unique* solution.
- Of special interest: b = 1 (*multiplicative inverse* of a)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Symmetric Key Encryption

- \blacktriangleright The same key k is used for Encryption and decryption key
- Encryption produces ciphertext C = E(M, k). Decryption recovers the message M = D(E(M, k), k)

・ロット (母) ・ ヨ) ・ ヨ)

Symmetric Key Encryption (Continued)

- Substitution ciphers as encryption functions: Cipher alphabet shifted, reversed, or scrambled (Eg: Caesar cipher)
 - $\blacktriangleright \text{ MEETME} \rightarrow \text{LOOQ LO}$
 - Security is weak: Frequency distribution of ciphertext which can allow formation of partial words. O is used 3 times. In English, top letters that are frequent used are E, T, A etc. Replacing O with E gives a partial word.
- Similarly, for Transposition cipher: Sliding alphabet of ciphertexts to look for anagrams. Then search the space of anagrams.
- Need to rely on a key whose detection is hard prime factorisation of large semi-primes is presumably hard!
- ► Known Symmetric encryption algorithms: AES, 3DES, Blowfish.
- AES128: Runs in 16 rounds. Each round has substitution, permutation, linear transformation, XOR with round key.

・ロト ・回ト ・ヨト ・ヨト … ヨ

More on Symmetric Encryption

How to securely share the secret key among each pair of communicating parties?

- Solution: Diffie-Hellman key exdchange protocol.
- After receiving the secret key, how to securely *store* them? Threats from *insider attacks*, compromised privileged software (such as the OS).
 - Note that no data protection technique via key-based data encryption will be adequate without a solution to the secure key storage problem.
- The number of keys to be maintained by each machine is O(n) (where n is the number of machines that it will communicate).

Diffie-Hellman Key Exchange Protocol

- Security of the protocol is derived from the presumed hardness of the *discrete logarithm* problem.
- Protocol begins by choosing a publicly agreed upon a large prime p and the associated primitive root g.
 - ► Recall that primitive root is that special element $g \in \mathbb{Z}_p^*$ such that $\langle g \rangle = \mathbb{Z}_p^*$.

Two participants A and B, then choose secret keys a and b, respectively.

Diffie-Hellman Key Exchange Protocol

- ▶ Participant A computes a ciphertext $C_A = g^a \pmod{p}$. Similarly, B computes $C_B = g^b \pmod{p}$.
- Participant A sends C_A to participant B and receives C_B from B.
- ▶ A computes $C_B^a \pmod{p} = g^{ab} \pmod{p}$ and B computes $C_A^b \pmod{p} = g^{ab} \pmod{p}$.
- Thus, the secret key $g^{ab} \pmod{p}$ is established.
- Any intruder wishing to read the message will have to find the value *ab* (*i.e.*, solving the discrete logarithm problem).

Discrete Logarithm Problem

Let us focus on \mathbb{Z}_n^* instead of \mathbb{Z}_n .

- We know that for all $a \in \mathbb{Z}_n^*$, $a^{|\mathbb{Z}_n^*|} \equiv 1 \pmod{n}, n > 1$
 - This is also called Euler's Theorem
 - ▶ The Euler Phi function is defined as: $\phi(n) = |\mathbb{Z}_n^*|$
- ▶ Remember from earlier discussion that $|\mathbb{Z}_p^*| = p 1$ when p is a prime.
- From Fermat's Theorem: $a^{p-1} \equiv 1 \pmod{p}$ for all $a \in \mathbb{Z}_p^*$
- Let $g \in \mathbb{Z}_n^*$ such that $\langle g \rangle = \mathbb{Z}_n^*$. Then \mathbb{Z}_n^* is called *cyclic*.
- By definition of ⟨g⟩, for all a ∈ Z^{*}_n, there exists z s.t. g^z ≡ a (mod n).

 \blacktriangleright z is called the *discrete logarithm* of a modulo n.

One Way Functions

- Given x, computing F(x) is fast.
- However, given F(x), computing $F^{-1}(x)$ is difficult
- ► Discrete logarithm problem is an instance of a one-way function! That is given g, z, n computing g^z(mod n) is fast. But given g, n, a computing log_g(a)

One-way Hash Functions

 $F(\langle msg-arbitrary-size \rangle) = \langle msg-fixed-size \rangle$

- Properties:
 - Deterministic: same message produces the same hash.
 - Collision-resistant: It is hard to find two inputs m₁, m₂ s.t. m₁ ≠ m₂ but F(m₁) = F(m₂).
 - Avalanche effect: A small change in message leads to a large change in the hashed message
- Used in digital signatures, MACs. Egs: SHA-256, MD5
- Security: Brute-force search, Caching the o/p of hash functions (called rainbow table attack).
 - Use of salt (a random data as an additional input to the hash function) makes the attack infeasible.

Public-key Cryptosystems

- Every participant computes and maintains a key.
- Each key has two parts: public P, secret S

Public-key Cryptosystems(Cont.)

- ▶ Thus, machine A's key is (P_A, S_A) and B's key is (P_B, S_B) .
- ▶ With a slight abuse of notation we will consider $E(M, P_x)$ in the figure as $P_x(M)$ and $D(M, S_x)$ as $S_x(M)$.
- Public and secret keys are "matched pairs", in the sense that they specify functions that are inverses of each other, *i.e.*, $S_x(P_x(msg)) = P_x(S_x(msg))$.
- Security assumption: Even though P_x is known publicly for all x, it is *hard* for an intruder to ascertain S_x from P_x . Only the owner x can compute S_x in a practical amount of time.
- ► Data Confidentiality: Assume A is the sender and B is the recipient of a message M. Then A encrypts by applying P_B of B, *i.e.* C = P_B(M), Thus, only B can decode this message with S_B (*i.e.*, S_B(P_B(M)) = M)
- Digital signatures can also be implemented with Public-key cryptosystems: A can send a message M by encrypting it as $S_A(M)$. Note that any machine with P_A can decrypt this message. However, only A could have sent this message, since S_A is a secret known only to A.

Public-key Cryptosystems: RSA

A popular public-key cryptosystem is the Rivest–Shamir–Adleman algorithnm (authors given Turing Award in 2002)

- 1. Select two very large primes p and q [Use the probabilistic Miller-Rabin or Solovay-Strassen]
- 2. Compute n = pq. Compute $\phi(n) = (p-1)(q-1)$.
- 3. Choose an odd e s.t. $1 < e < \phi(n)$ and $gcd(e, \phi(n)) = 1$ [Use Euclid's gcd computation to select e]
- 4. Compute *d* as the multiplicative inverse of *e*, modulo $\phi(n)$. That is $ed \equiv 1 \pmod{\phi(n)}$ [Apply Extended Euclid to solve for *x* s.t. $gcd(e, \phi(n)) = 1 = ex + \phi(n)y$]
- 5. Publish the public key P = (e, n) of the participant
- 6. Publish the private key S = (d, n) of the participant
- 7. The domain of a message \mathcal{D} is $\mathbb{Z}_n = \{0, 1, 2, \cdots, n-1\}.$
- 8. Thus $P(M) = M^e \pmod{n} = C$. And $S(C) = C^d \pmod{n}$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Why does RSA work?

▶ Note $P(S(M)) = S(P(M)) = M^{ed} \pmod{n}$.

• Also,
$$ed = 1 + k(p-1)(q-1)$$

So

 $M^{ed} \ (mod \ p) = M(M^{p-1})^{k(q-1)} \ (mod \ p) = M(1)^{k(q-1)} \ (mod \ p)$ [Follows from Fermat's Theorem]

► Repeating the same argument, we will get M^{ed} (mod q) = M (mod q). For all M

 $M^{ed} \equiv M \pmod{p}$ $M^{ed} \equiv M \pmod{q}$

From Chinese remainder theorem, $M^{ed} \equiv M \pmod{n}$

Chinese Remainder Theorem

If p_1, p_2, \dots, p_k are pairwise relatively prime, then for any integers a_1, a_2, \dots, a_k , the set of equations: $x \equiv a_i \mod p_i$ has a unique solution modulo $p_1 p_2 \cdots p_k$.

Eg:
$$x \equiv 3 \mod 5$$

 $x \equiv 5 \mod 7$
 $x \equiv 7 \mod 11$

・ロト ・回ト ・ヨト ・ヨト … ヨ

Chinese Remainder Theorem (Cont.)

- ► Consider three numbers x₁, x₂, x₃ corresponding to the coordinates (1,0,0), (0,1,0), (0,0,1) respectively.
- Then the point corresponding to the point (3, 5, 7) is $3x_1 + 5x_2 + 7x_3$.
- For x_1 :

$$x_1 \equiv 1 \pmod{5} \tag{1}$$

$$x_1 \equiv 0 \pmod{7} \tag{2}$$

$$x_1 \equiv 0 \pmod{11} \tag{3}$$

- ▶ $7 * 11 \mid x_1$. Thus $77x'_1 \equiv 1 \pmod{5}$. Using eqn (1), we get $x_1 = 231$.
- Similarly, one can compute $x_2 = 330$ and $x_3 = 210$.
- ► Thus, 3x₁ + 5x₂ + 7x₃ = 3813. Take factors of 385 out. The smallest positive number left is: 348 (solution to the original set of modular linear equations).

Chinese Remainder Theorem (Cont.)

- Provides a correspondence between a system of equations modulo a set of pairwise relative prime and an equation modulo the product of those pairwise relative primes
- Structure Theorem" describes the structure of Z_n is identical to that of Z_{n1} × Z_{n2} × · · · × Z_{nk}.
- ► As a result: Design of efficient algorithms (since working with Z_{ni} is more efficient that working with Z_n.

Security and Runtime Complexity of RSA

Security of RSA

• $M^{ed} \equiv M \pmod{n}$. To derive *e* and *d*, one will have to factor *n*. Typically, *n* is a product of two 1024 bit (300 digit) primes.

Runtime Complexity

Applying P requires O(1) modular multiplications. Applying S requires O(β) modular multiplications (where β is the number of bits used to represent n).

(ロ) (部) (E) (E) (E)

Digitial Signatures

- A's digital signature for message M: $(M, S_A(M))$
- ▶ B upon receiving the signature decrypts $P_A(S_A(M))$ and performs the check $P_A(S_A(M)) \stackrel{?}{=} M$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

Digital Signatures (continued)

- Note however, that the message M is sent over as plaintext
- An efficient approach is to combine data encryption with Cryptographic hash functions.
- CHF: allow fixed-length message fingerprints (provides message integrity
- A's digital signature for the message M: $\sigma = S_A(h(m))$. A sends the message $C = P_B(M, \sigma)$.
- Now, no eavesdropper can get the message in plaintext.
- ▶ Upon receiving the ciphertext, B decrypts by performing $S_B(C)$ and extracts the message: $(M, S_A(h(M)))$. It further performs the check $h(m) \stackrel{?}{=} P_A(S_A(h(m)))$.

Digital Certificates

- Certificates makes distributing public keys much easier
- ► An actor *A* can obtain a signed message from a publicly trusted authority *T* stating: *A*'s public key is *P*_A.
- Actor *A* can include this certificate in her signed message.
- The recipient can now verify her signature with A's public key and the certificate from T.
- The recipient can now trust that A's key is indeed hers because of public trust in T.