
On nature of Computing

Subhashis Banerjee, Subodh Sharma

Department of Computer Science and Engineering
IIT Delhi

October 17, 2020

Subhashis Banerjee, Subodh Sharma On nature of Computing



Computer programming is an art form, like the creation of
poetry or music - Donald Knuth

If computers that you build are quantum,
Then spies everywhere will all want ’em.
Our codes will all fail,
And they’ll read our email,
Till we get crypto that’s quantum, and daunt ’em.

- Jennifer and Peter Shor

To read our E-mail, how mean
of the spies and their quantum machine;
be comforted though,
they do not yet know
how to factorize twelve or fifteen.

- Volker Strassen
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Computing: Hardware models

I Abacus (Greek Abakos; Hebrew Abaq).

I Mechanical digital calculator: Blaise Pascal (1642), Leibnitz (1671).
Leibnitz’s version was commercially available in 1820.

I Charles Babbage’s Analytic engine (1822). Could compute
polynomial functions. Had if-then-else and while-do. Friend Ada
Augusta is considered to be the first computer programmer.

I James Thomson’s (1876) mechanical wheel-and-disc integrator
became the foundation of analog computation. Were in use during
World War I for gunnery calculations.
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Computing: Hardware models

I Herman Hollerith’s (1880) electro-mechanical sensing system. Used
for the 1880 US census.

I Konrad Zuse’s (1939) Z1, Z2, Z3 and Z4. Z3 was based on
discarded telephone relays. Used George Bool’s algebra.
Programming notation Plankalkul.

I Howard Aiken’s Harvard Mark I (1944; joint effort of IBM and
Harvard). Based on electro-mechanical relays, very similar to Z3 but
larger.

I John Mauchly and Presper Eckert’s (1946; Moore school,
Pennsylvania) ENIAC (Electronic Numeric Integrator and Automatic
Calculator). Used vacuum tubes for switching.

I John von Neumann’s (1945) architecture and the RAM model.
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Early algorithms

n! =

{
1 if n = 0
n × (n − 1)! otherwise

O(n) multiplications. Euclid’s Elements. 300 BC.

gcd(m, n) =

{
m if n = 0
gcd(n,m mod n) otherwise

O(log n) steps. Euclid’s Elements. 300 BC.
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Early algorithms

xn =

{
1 if n = 0
x × xn−1 otherwise

O(n) multiplications. Dates back to the Egyptians.
2000 BC.

xn =


1 if n = 0
x × sqr(xn/2) if odd(n)
sqr(xn/2) if even(n)

O(log n) multiplications. Acharya Pingala in Chandah
Sutra. 200 BC.
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Models of computation

Recursive functions: Inductively defined functions f : Nn → N
RAM model: Any programming language that supports assignment,

if-then-else, while-do, an infinite array, 0 and s ← s + 1.

Turing machine: A mathematical model due to Alan Turing (1936).
Consists of an infinite tape, a finite state control, a
read-write head and a program.

Circuit model: Acyclic logic circuits of n input bits consisting of NAND,
FANOUT and CROSSOVER; whose description can be
generated by a Turing machine.
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Church-Turing thesis

I All reasonable models of computations have turned out to be
equivalent in terms of what they can compute.

I There can be a Universal Turing machine which can be used to
simulate any Turing machine.

I The Universal Turing machine completely captures what it means to
perform a computational task by algorithmic means.

The above has led to the assertion called the Church-Turing thesis:
If an algorithm can be performed on any piece of hardware (including a
modern computer) then there is an equivalent algorithm for a Universal
Turing machine which performs the same task.
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What about efficiency?

I Roughly speaking, an efficient algorithm is one which runs in time
polynomial in the size of the input.

I In contrast, an inefficient algorithm takes super-polynomial (typically
exponential) time.
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I Strengthened version of Church-Turing thesis: Any algorithmic
process can be simulated efficiently using a Turing machine.
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Big O

f (n) is O(g(n)) if there exist c > 0, n0 ≥ 0 such that f (n) ≤ cg(n)
whenever n ≥ n0.
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Decision problems and complexity classes

Decision problems:

I Given a composite integer m and l < m, does m have a non-trivial
factor less than l?

I Does a given graph have a Hamiltonian cycle?

Complexity classes:

I P is the class of decision problems that a UTM can solve in
polynomial time.

I NP is the class of decision problems whose solutions a UTM can
verify in polynomial time.
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Does “coin toss” help?

I Consider a function f : {0, . . . , 2n − 1} → {0, 1}.
I Suppose we are given that f (x) is either constant (0 or 1 for all values of

x) or balanced (0 for exactly half for all possible x and 1 for the other
half).

I Our problem is to decide what type f is?

I Clearly, any deterministic algorithm will take at least 2n−1 + 1 queries in
the worst case.

I Alternatively, we can choose k (fixed) values of x uniformly at random. If
f (x) is different for any two conclude balanced, else conclude constant. In
the latter case there is a non-zero probability of error, equal to 2−k .

I The probability bound is arbitrary. Chernoff bound can be used to amplify
the probability to near 0 with only a few (logarithmic) repetitions.
[Suppose X1,X2, . . .Xn are independent and identically distributed random
variables, each taking the value 1 with probability 1/2 + ε and the value 0
with probability 1/2− ε. Then

p

(
n∑

i=1

Xi ≤ n/2

)
≤ e−2ε2n

]
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Randomized algorithms

I Solovay and Strassen showed, in mid 1970’s, that a randomized
algorithm could determine whether a number n is a prime (with an
arbitrarily low probability 2−k) or a composite (with certainty) in
O(k log3 n) time.

I No efficient deterministic algorithm was known for the problem till
Manindra Agarwal et. al. in 2003.

I Strengthened version of Church-Turing thesis: Any algorithmic
process can be simulated efficiently using a probabilistic Turing
machine.

I BPP is the class of problems that can solved efficiently using a
probabilistic TM.
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What is (not) known about complexity?

I Some other complexity classes: L, PSPACE, EXP.

I It is known that L ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP.

Is P = NP?

I It is also known that P ⊂ EXP and L ⊂ PSPACE. Hence at least
one of the inclusions above must be strict. Which one?

I Also, clearly, P ⊆ BPP

I If an NP-Complete problem can be solved in time t, then all
problems in NP can be solved in time poly(t).
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Where does quantum computing fit?

I Peter Shor (1994) gave an O(n3) quantum algorithm for factoring
an n bit number. The best known classical algorithm for the
problem is number field sieve which works in exp(O(n1/3 log2/3 n)).

I Lov Grover (1995) gave an O(
√
n) quantum algorithm for search in

an unstructured search space of size n.

I If an O(log n) algorithm could be found for search it would have
established that NPC problems can be solved efficiently on quantum
computers.
Not to be - Grover’s algorithm has been proved to be optimal.

I It is known that P ⊆ BQP ⊆ PSPACE.

I Is P ⊂ BQP? .
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