
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
CSL 102 ; Introduction to Computer Science

Semester II 2006-07
Handout : Ocaml Author Sandeep Sen

Contents

1 Introduction to Caml 3

2 The Caml Calculator - getting started 3
2.1 INTEGER FUNCTIONS . 5
2.2 FLOATING POINT FUNCTIONS . 5
2.3 STRING FUNCTIONS . 6
2.4 RELATIONAL OPERATORS . 6
2.5 BOOLEAN OPERATIONS . 7

3 Writing functions in Caml 7
3.1 Functions defined by cases . 10
3.2 Repetitive application of functions . 12

4 Some Useful top level directives 14

5 More on recursive definitions 14
5.1 Cost of computation . 16
5.2 A measure of cost . 18
5.3 An example - primality testing . 20
5.4 A special kind of recursive definitions . 20

6 Functions as parameters 21

7 Scope 22

8 Processing Lists: variable length input 23

9 Declaring Types 24
9.1 Variant types . 25
9.2 Defining new types using recursion . 26

10 Exception 26

11 Arrays and mutable structures 27
11.1 References . 27

12 Objects and classes 28

13 Imperative constructs 29

1

14 Input/Output and Files 31

2

1 Introduction to Caml

This write-up gives a brief introduction to the Objective Caml language (referred to as Caml hereafter)
through some tutorial examples. There are many advanced and important features of this language
that are not covered in this document. For the purpose of the course the students are advised to restrict
themselves to the features described in this document when writing Caml programs.

Caml is a very strongly typed language that is primarily functional in flavour although it supports
full fledged imperetive features (like Pascal, C, etc). A functional programming language views every
program as a mathematical function, namely one that maps input (data) to output (results). Although
this is true in general for any program, most programming languages do not explicitly present com-
putation as evaluating functions with some given arguments. Like every function has a well-defined
domain and well-defined co-domain (also called range), Caml wants the programmer to specify the
domain and the co-domain very precisely and refuses to proceed in case of mix-ups or ambiguity.

Suppose you want to write a program to compute the square of a given number. Using mathematical
language that you are familiar with, you may define a function square as

let square x = x times x

This function takes in one parameter, namely x, and maps it to the number x2 using the multiplication
of two numbers. Multiplication is itself a function of two parameters that you may not bother to
elaborate to anyone above grade 2. We are assuming implicitly that the parameter x is such that
multiplication is allowed, i.e., it is a number and not, (say) an alphabet. However Caml will need
information if the input numbers will be from the set of integers (Z) or set of reals (R). Although in
hand-computation, we multiply the integers and the real numbers in a similar fashion, most computers
have specialised circuits to handle multiplication of integers and reals (called floating point numbers)
that are separate. So, by specifying the precise nature of the inputs, we are (implicitly) making use
of specialised circuit. A deeper reason for enforcing types has its roots in program specification and
verification. These are very important issues in writing large software and are outside the scope of this
course.

Some of the most common types like integer, floats, boolean, character-strings are pre-defined in
Caml. However, it also offers a versatile repertoire for defining new types, complex record types as
well as higher-order functions. Similarly, Caml has an in-built repository of large number of common
functions like addition, subtraction, division, multiplication, square, square-root, trigonometric func-
tions etc. More importantly, it supports very powerful mechanisms for defining your own functions -
this is what programming is about. So do not despair if you don’t find a certain useful function, say
exponentiation or cube-root - we should be able to build our own personalised library of functions.
This is actually half the fun(ction).

2 The Caml Calculator - getting started

When you type the command ocaml, you are inside the Ocaml interpreter and you see the following
on your screen, with the cursor next to the # prompt.

Objective Caml version 1.03

#

3

You can exit ocaml by typing #quit ;; or cntrl-D (control-D). You can carry out simple calculations
like addition, subtraction etc. The prompt # accepts your commands for calculations in a fairly intuitive
format. Each command ends with ‘;;’ (two consecitive semi-colons) and as soon as you press < enter >
the result appears in the next line beginning with ”- :” followed by its type (int is integer).

3 + 5 ;; <enter>

- : int = 8

The < enter > key does not appear on the screen but it moves the cursor to the next line. Hereafter,
it will be implicit in the remaining examples. You may type a single calculation command over several
lines and the result will be identical. This is because the white spaces are skipped by Caml interpreter
and the result is evaluated only after the ”;;” characters.

3

+ 5 ;;

- : int = 8

However it is advisable that you try to type it in a neat format that is easy to read.

3 + 5.0 ;;

This expression has type float but is here used with type int

Caml distinguishes between integers and floats (real numbers) by use of a decimal point following the
number. In the above example, Caml does not like the mixing up of an integer (3) and float (5.0) in
the same mathematical expression. In fact it reserves the use of ‘+’ for integers only (both summands
should be integers).

3.0 +. 5.0 ;; (* a good thumb-rule is that the floating-point operators

have a ‘.’ along-side the integer operator*)

- : float = 8

4.0 *. 5.0 ;;

- : float = 20

6 / 4 ;; (* quotient function defined for integers only*)

- : int = 1

6 mod 4 ;; (* remainder function defined for integers only*)

- : int = 2

We know from mathematics that for two positive integers, m and n, there are unique integers q and r
such that m = n · q + r, where 0 ≤ r < n. Here q and r are called quotient and remainder respectively.
Division as we know, is defined for floats only.

Notice that anything enclosed within (**) is ignored by Caml for evaluation purposes. It is
a good practice to provide comments that are helpful for future references.

4

6.0 /. 4.0 ;; (* real division *)

- : float = 1.5

Below, we give a more complete description the available functions for the types int (integers), float
(reals), string and bool (boolean).

2.1 INTEGER FUNCTIONS

~- 1 ;; (*unary negation - this is also a function of one argument*)

- : int = -1

succ 4 ;; (* successor *)

- : int = 5

pred 5 ;; (* predecessor*)

- : int = 4

abs ~-8 ;; (* absolute value *);;

- : int = 8

max_int ;; (*maximum value of an integer *)

- : int = 1073741823

min_int ;; (* minimum value of an integer *)

- : int = -1073741824

2.2 FLOATING POINT FUNCTIONS

exp 3.0 ;; (* e to the power 3.0*)

- : float = 20.0855369232

log 10.0 ;; (* log to the base e *)

- : float = 2.07944154168

sqrt 4.0 ;; (* square root *)

- : float = 2

sin 1.5 ;;

- : float = 0.997494986604

cos 1.5 ;;

- : float = 0.0707372016677

abs_float ~-.2.3 ;; (* absolute value of a negative *)

5

- : float = 2.3

float 3 ;; (* convert integer to float *)

- : float = 3

truncate 5.3 (* floor function *) ;;

- : int = 5

2.3 STRING FUNCTIONS

"abcde" ;; (* a character string *)

- : string = "abcde"

"abc" ^ "ef2" ;; (* concatenation of two strings *)

- : string = "abcef2"

Note that the string ”0” is not the same as integer 0 in Caml. Although they both look alike on the
screen, the internal representations are different. For example, we cannot apply the addition operation
to strings ”56” and ”23”. Sometimes, you may find the following type conversion functions useful.

string_of_int 853 ;; (* converts an integer to string *)

- : string = "853"

string_of_float 23.567 ;; (* converts a float to string *)

- : string = "23.567"

2.4 RELATIONAL OPERATORS

These return true or false.

5 = 5 ;;

- : bool = true

5 = 6 ;; (* equality testing *)

- : bool = false

8 > 9 ;;

- : bool = false

9 < 8 ;;

- : bool = false

6 <= 6 ;; (* less than or equal to *)

- : bool = true

8 >= 8 ;; (* greater than or equal to *)

- : bool = true

6

9 <> 10 ;; (* not equal *)

- : bool = true

2.5 BOOLEAN OPERATIONS

not true ;; (* negation *)

- : bool = false

true && false (* boolean AND *);;

- : bool = false

false || true ;; (* boolean OR *)

- : bool = true

Exercise 1 What do the folowing expressions evaluate to ?

(i) 2 + 3 * 5 ;;

(ii) 25 + 6 * ~- 15 mod 8 ;;

(iii) 2.0 /. 3.0 /. 2.0 ;;

What did you expect and how can you enforce it ?

Exercise 2 Find out the truth-table of the boolean AND (&&) and boolean OR (||) by exhaustively
listing all the possible arguments.
How many distinct boolean functions are possible that take in two arguments ?

3 Writing functions in Caml

What makes a programming language more powerful than a calculator is the ability to define new
functions. We will often use symbolic references for values for the ease of writing and generalization.
In mathematics and physics, it is a standard accepted practice to use symbols like π or h (Plank’s
constant) rather than the exact numerical value. The simplest of all is binding a value to a symbolic
name. The ”let” directive binds the value of the expression on the right of the ”=” to the symbolic
name on the left of the ”=”.

let x = 3 ;;

val x : int = 3

#let y = x ;;

val y : int = 3

#let pi = 22.0 /. 7.0 ;;

val pi : float = 3.14285714286

7

#let x = 4 ;;

val x : int = 4

#y ;; (* returns the value of the symbolic name y *)

-: int = 3 ;;

Notice that although x was redefined as 4, y retained its previous value, namely 3. So once a value
is defined, it remains unchanged till it is explicitly changed again (within its scope - a concept that we
will discuss in near future).

A recurring theme in functional languages is that no distinction is made between values and func-
tions. Binding a value to a symbolic name is similar to binding a function-description to a symbolic
name. This may seem a little unnatural in the beginning but you will begin to appreciate this as we
write more complex programs. This is also consistent with modern advanced mathematics. Let us look
at some simple example of functions that you are used to.

let square : int -> int =

function x -> x*x (* the actual definition of the

function square *)

;;

val square : int -> int = <fun>

The function name is ”square” and has domain and co-domain as integers. This is referred to as
the type of the function. The definition of the function says that it maps an integer x to x*x. Here x is
the formal parameter. Whenever we want to make use of the function square we must invoke it with
an actual parameter.

#square 4 ;; (* invoking the function with argument 4 *)

- : int = 16

square 4.0 ;;

This expression has type float but is here used with type int

of the RIGHT TYPE.

#square ;;

- : int -> int =<fun>

The last statement is similar to our previous experience with values. Unfortunately it only returns
the type of the function and not the actual definition.

Let us delve some more.

let cube x = x*x*x ;;

val cube : int -> int = <fun>

cube 3 ;;

- : int = 27

8

So Caml is actually somewhat intelligent ! It is able to conclude from the rather sloppy statement that
cube is a function mapping integers to integers. Although Caml has forgiven you for an incomplete
definition, your instructor may not and so let us stick to the more rigid format. Shortcuts or terse
statements will not be appreciated in programming especially when are starting out.

let quad : int -> int = function

x -> x*x*x*x

;;

val quad : int -> int = <fun>

let quad2 : int -> int = function

x -> (square x)*(square x)

;;

val quad2 : int -> int = <fun>

quad 3 ;;

- : int = 81

quad2 3 ;;

- : int = 81

The two definitions quad and quad2 take a given integer parameter and raise it to the fourth power.
The first one is the straightforward definition where as the second one actually makes use of a previous
definition square. That it saves some typing (imagine writing a function to raise x to its hundredth
power) is a secondary issue. The main advantage is that we can build up more and more complex
functions starting from simple functions as building blocks. The more complex function can become a
building block for further definitions. This hierarchy of function definitions will be a recurring theme
for writing any complex program.

One of the most important issues in this exercise is being consistent about the types of the functions
we are trying to manipulate. In the previous example, function square has type int -> int, so we can
use the integer multiplication * to multiply the resulting integers. Notice that Caml actually verifies
it and concludes that quad2 has the type int -> int consistent with its definition.

Here is another way of computing the fourth power using function composition.

let quad3 : int -> int = function

x -> square(square x)

;;

val quad3 : int -> int = <fun>

quad3 3 ;;

- : int = 81

We have simply exploited the well known fact that (x2)
2

= x4. Again Caml could verify the type of
the function quad3 from its definition by function composition of square. A critical thing for function
composition fog (read as f of g) is that the co-domain of g must be the domain of f . For the function
square it is clearly so, namely int.

9

So far we have been looking at functions of one parameter. There is a natural extension to functions
of multiple parameters.

let length : float*float -> float = function

(x,y) -> sqrt(x *. x +. y *. y)

;;

val length : float * float -> float = <fun>

length (3.0 , 4.0) ;;

- : float = 5

let norm3 : float*float*float -> float = function

(x,y,z) -> (x *. y) +. z

;;

val norm3 : float * float * float -> float = <fun>

norm3 (1.1 , 2.0 , ~-.2.1) ;;

- : float = 0.1

Exercise 3 Write a function area for computing the area of a circle whose diameter is given.

Exercise 4 Write a function that returns the intersection point of two (non-parallel) straight lines.

3.1 Functions defined by cases

Until now, we were looking at functions that were relatively smooth in a mathematical sense. However
there are functions that we define in terms of several cases of simple smooth functions. For instance,
the absolute value is defined mathematically as

abs(x) =

{

x if x ≥ 0
−x otherwise

All programming languages provide mechanisms for condition checking in some form that are self-
explanatory. In Caml, the above function can be written as

let absol : float -> float = function

x -> (if x >= 0.0) then x else (~-. x)

;;

val absol : float -> float = <fun>

absol 3.2 ;;

- : float = 3.2

absol ~-.3.2 ;;

- : float = 3.2

The basic syntax (format) of a conditional statement in Caml (as in most other languages) is
If < condition > then < action > else < action >
The < action > itself may be another conditional statement and several levels of nesting is allowed.

10

let zerorone : int -> string = function

x -> if (x <2) then if (x >= 0) then if (x = 0) then "zero"

else "one"

else "smaller"

else "larger"

;;

val zerorone : int -> string = <fun>

zerorone 1 ;;

- : string = "one"

zerorone 5 ;;

- : string = "larger"

zerorone ~-2 ;;

- : string = "smaller"

Long nested conditional statements are not easy to read or verify. However in some situations where
the number of possibilities is finite, we can use the match instruction in the following manner

let imply : bool * bool -> bool = function (x, y) ->

match (x,y) with (false , false) -> true |

(false , true) -> true |

(true, true) -> true |

(true , false) -> false ;;

val exor : bool * bool -> bool = <fun>

imply (true , false) ;;

- : bool = false

This is much simpler to read, but if the domain is not finite or if all cases are not covered, then Ocaml
issues a warning that it is not a fully specified (over the entire domain) function

let lower_upper : char -> char = function x -> match x with

’a’ -> ’A’ |

’b’ -> ’B’|

’c’ -> ’C’ ;;

Warning: this pattern-matching is not exhaustive.

Here is an example of a value that is not matched:

’d’

val lower_upper : char -> char = <fun>

When use of nested if-then-else statements is unavoidable, try to indent it properly as it has been
done above - the else statements have been written directly below the condition that it is associated
with. The thumb rule is that an < elseaction > gets associated with the nearest < ifstatement >.

11

Exercise 5 Write a Caml function to determine the roots of a quadratic equation. Figure out a way
to handle the case when the the roots are not real.

Exercise 6 Let d be an integer and m be a string. Write a Caml function that returns true iff d and
m form a valid date (assume non-leap year). For example 31 April is not a valid date.

3.2 Repetitive application of functions

Let us start with a specific example - that of writing a function fact for computing the factorial of a
given (positive) integer. Recall that

fact(n) =

{

1 if n = 0
∏n

i=1 i otherwise

The techniques described until now do not let us write a function that requires an unbounded number
(not known in advance) of operations. Here, it is the number of times we have to multiply the numbers
1 to n. Since n is itself a parameter of the function, we cannot write it in terms of a fixed number of
operations. Notice however that the notation

∏n
i=1 i itself is a reasonable description of what we have

to do. You are perhaps more used to the summation notation
∑n

i=i. As long as such formulae are
regular and nice, we can hope to write them compactly using regular mathematical notations.

However, you may encounter much more complicated situations - say the problem of finding out
the sum of the first n prime numbers. Till now, mathematics has not given us a compact closed-form
formula to compute the i-th prime number for any i. Lest you think that this is an unreasonable
problem, rest assured that it will be one of your assignment problems. A more important fact is that
the above problem can be certainly solved by hand for small values of n and given a suitable reward
you may even go upto n = 1000. Theoretically, there is no reason why you cannot do it for any value
of n given enough time and resources. In other words, you have a method that works for all n. So, it is
only reasonable that we should be able to write a function for it, given some additional features. This
is a central thesis of computer science, i.e., we are able to write functions (programs) for problems that
we can solve intuitively.

A very versatile technique for describing functions is recursive definitions. This is basically an
application of the principle of mathematical induction. Before we deal with the previous problem,
let us first look at the relatively simpler problem of computing factorial. We can define the factorial
function alternatively as

fact(n) =

{

0 if n = 0
n ∗ fact(n − 1) otherwise

In order to compute factorial of 5, fact(5) needs to know the value of fact(4) which in turn needs
fact(3) and so on. Eventually, fact(0) is computed directly as 1. And, then the actual calculations
begin in the reverse direction. The entire process can be viewed as having two phases - the unfolding
phase and then the calculation phase. These are sometimes referred to as top-down and bottom-up
phases. We will discuss more about these in the near future.

The above recursive definition can be directly written in Caml as

let rec fact : int-> int = function

n -> if n = 0 then 1

else n*(fact (n-1))

12

;;

val fact : int -> int = <fun>

fact 5 ;;

- : int = 120

The ‘let rec’ indicates to Caml that the function definition that follows is a recursive definition.
Here is another example involving two variables - power (x,n) that computes xn for any non-negative

integer n.

let rec power : float*int -> float = function

(x,n) -> if n = 0 then 1.0

else x*.(power(x, (n-1)))

;;

val power : float * int -> float = <fun>

power (1.0 , 10) ;;

- : float = 1

power (2.0 , 16) ;;

- : float = 65536

Can you write the above function without recursive definition - the way we had written for some fixed
powers of x earlier like x2 and x4 ?

Until now we have been defining functions in Caml and testing it by applying it on some arbitrary
input. We were satisfied if it gave the expected answer for that input. But how do we know that it
will give the correct answer for all possible inputs ? . A program is useless if it does not produce
correct results. There are many critical applications (like in space) where the slightest error could lead
to disasters. So how do we check the correctness of a program ? It may not always be possible or
practically feasible, especially for large softwares. It also depends on the way the program is written
and here lies the advantage of recursive definitions. We can use the principle of Mathematical Induction
(MI) directly to prove the correctness of recursively defined functions.

Consider the power function defined above. To use MI, we must define our Induction Assertion
P (n) formally and precisely. In this case, it can be stated as:
P(n) : power(x,n) = xn

The goal of MI is to establish that P (n) is true for all n ≥ 0.
BASE CASE n = 0, it is clearly true as power(x, n) = 1.
Now we will show that for all k [P (k) ⇒ P (k + 1)]. 1 From the Caml function,

power(x, (k + 1)) = x ∗ power(x, k)

= x ∗ xk from Inductive hypothesis P(k)

= xk+1.

1Recall that there is another form of induction where you must show that [for all k < n P (k)] ⇒ P (n). These forms
are logically equivalent and their use depends on the convenience of the proof.

13

This completes the proof of correctness. Although this proof is very simple, you may come across
situations where even the formulation of the Induction Assertion may be very tricky. We shall look at
more examples a little later.

Exercise 7 Use the principle of mathematical induction to prove the following

• For all n ≥ 1, x2n−1 + y2n−1 is divisible by x + y.

• For all n ≥ 1,

1 +
1√
2

+
1√
3

+
1√
4
· · · 1√

n
> 2(

√
n + 1 − 1)

Exercise 8 The greatest-common-divisor (gcd) of two non-negative integers m,n is known to satisfy
the identity gcd(m,n) = gcd(m,n + m). Prove it.
Then use it to give a recursive definition of gcd of two (non-negative) integers in Caml.

Exercise 9 Using the observation that (xk)
2

= x2k, give an alternate recursive definition of the func-
tion power(x, n) that computes xn and write a corresponding Caml program.
Hint : If n is odd then n-1 is even !

Exercise 10 Can you write the following functional definition of power in Caml directly ? Explain
what happens and what can you conclude.

power(x, n) =

{

1 if n = 0
power(x, (n + 1))/x otherwise

4 Some Useful top level directives

The interpreter has very poor editorial features. You may want to use your favourite editor like vi or
emacs and load the file into the interpreter using use command prefixed with ”#”. Here is a list of
some useful commands (all prefixed with ”#”).

#use <filename> ;; (* the text in the file will be included as if typed

from within the interpreter *)

#trace <function-name> ;; (* The argument and the result will be displayed

at each call to the function. It can be a very useful debugging

tool but it may clutter up your screen if not used discreetly *)

#untrace <function-name> ;; (* stops tracing the function *)

#untrace_all ;; (* stops tracing all functions traced so far *)

5 More on recursive definitions

Let us now look at a more complex function, that is primality testing. We want to determine if a given
integer is prime (or composite). There is no magic formula for prime but we can exploit the definition

14

of prime. Recall that a number n > 2 is prime if and only if it is not divisible by any number other
than 1 and itself. So the straightforward algorithm will be to check if there is any number in the set
{2, 3 . . . n − 1} that divides n. Here division pertains to integer division, that is x divides y if the
remainder of y/x is zero. So we can begin by trying to divide n by 2. If it is divisible, then we can
pronounce that n is not prime. Otherwise, we try dividing by 3 and so on. If we haven’t found an
integer that divides n till n − 1, then we can certify that n is prime.

To write this algorithm as a Caml function, we will first write an intermediate function that checks
if an integer x divides n. If so, then it returns false (i.e. n is not prime) else it tries to check if x + 1
divides n. Let us call this intermediate function trynext. So trynext can be as follows.

let rec trynext : int*int -> bool = function

(i, n) -> if (n mod i = 0) then false (* n is not prime *)

else trynext ((i+1) , n) (* try next number *)

;;

val trynext : int * int -> bool = <fun>

This is the most important operative component in our algorithm. Now, we can try writing the
primality testing function by invoking this with parameters (2, n).

let prime : int -> bool = function n -> if (n =2) then true

else trynext (2, n) ;;

val prime : int -> bool = <fun>

What is the problem with this function ? What happens if n is prime ? There is no stopping criterion
in the function trynext if n is prime - that is, if we have tried out all potential divisors, we must declare
n to be prime. In absence of that, this function will go on for ever trying out the entire set of integers
(until max int). Hence it is not a valid algorithm !

Exercise 11 Modify trynext appropriately so that it always terminates and then use it in the function
prime.

Exercise 12 Along the lines of the previous function power, work out a formal proof of correctness of
the function prime.
Hint : How about the inductive assertion - trynext (j, n) is invoked iff n is not divisible by {2, 3 . . . j−1}.
Notice that the inductive assertion is stronger than the end-result that we need.

In the previous examples of recursive definitions, the function was being invoked at most once in
the definition. There is no such restriction in the in the next example. The Fibonacci sequence is
defined as follows:

Fibi =

0 if i = 0
1 if i = 1
Fibi−1 + Fibi−2 otherwise

The equivalent Caml function (any sequence is a function from the domain of integers) can be
written readily as

15

let rec fib : int -> int = function

i -> if i = 0 then 0

else if i = 1 then 1

else (fib (i-1)) + (fib (i-2))

;;

val fib : int -> int = <fun>

fib 10 ;;

- : int = 55

5.1 Cost of computation

If you execute a function using paper and pencil (and your mental prowess), the cost of computation
is related to amount of paper you use (space complexity) and time you spend (time complexity). We
have ignored the cost of computation because we are not paying to use the computer ! However, you
may have experienced that during certain hours of the day, when there are lots of users, the computer
does not respond instantaneously. So the computer does get bogged down if there are too many jobs
running - that is, it takes more time to service individual requests. If you could isolate your computer
(like your PC if you have one), then you can claim to get rid of this problem. So now you expect to get
answers to your Caml functions in a blink. Try fib 50 - the 50th Fibonacci number using the previous
definition.

To see why it is so, let us first study the execution of the factorial function fact that we had defined
earlier. The execution profile is basically expanding or unfolding the recursive function calls.

fact 5 = 5*(fact(4))

= 5*(4*(fact(3)))

= 5*(4*(3*(fact(2))))

= 5*(4*(3*(2*(fact(1)))))

= 5*(4*(3*(2*(1*(fact(0))))))

= 5*(4*(3*(2*(1*1))))

= 5*(4*(3*(2*1)))

= 5*(4*(3*2))

= 5*(4*6)

= 5*(24)

= 120

It has two distinct phases - one where the recursive definition is being unfolded and a second phase
where the actual computation is taking place. For each function call and for each computation (in this
case integer multiplication), the computer spends some time say u. For simplicity, we are assuming
that all operations take the same time. The actual value of u depends on the speed of the underlying
hardware-circuit and differs from machine to machine. In today’s technology, u can be as small as 10−9

(nano) seconds which may appear to be negligible at first sight. In the above computation, if we were
to compute the factorial of 109, then it would take about 1 second. This is quite encouraging as we will
rarely be computing factorial of numbers larger than 100. You may want to ponder over the following
question - does it take you longer to multiply two 20 digit numbers than it takes you to multiply two
4 digit numbers by hand ? Does it have any bearing in computing factorial ?

16

Exercise 13 How big (number of digits) is factorial of 100 ?
You may find the following approximation called Stirling’s approximation quite useful, namely,

n! ≈
√

2πn
(n

e

)n

.

In the above computation of factorial, we end up multiplying the sequence 1 · 2 · 3 . . . n just the way
it is defined but the unfolding phase is an artifact of the recursive definition of factorial. If we were to
do it on a piece of paper, we may want to do the multiplications immediately rather than waiting for
the second phase without affecting the answer. Namely

fact(5) = 5*(fact(4))

= 20*(fact(3))

= 60*(fact(2))

= 120*(fact(1))

= 120*(fact(0))

= 120

How do we force the computation to proceed like above ?

let rec facti : int*int -> int = function (x, y) ->

if (y =0) then x

else facti(x*y , (y-1))

;;

val facti : int * int -> int = <fun>

let factnew : int -> int = function

n -> facti (1 , n)

;;

val factnew : int -> int = <fun>

factnew 5 ;;

- : int = 120

Convince yourself by tracing the computation profile of the new definition of factorial - that uses the
recursive function facti.

Exercise 14 Write an alternate (equivalent) definition of the function facti that multiplies the numbers
in the order 1 . . . n instead of n . . . 1. Prove the correctness of factorial using the new definition. Note
that in this case we are computing the factorial of i from the value of factorial of i − 1.

The advantage in writing the new definition of factorial is not as drastic as it will be in our next
example. Using the previous definition of Fibonacci sequence calculation, try to compute fib 50. Don’t
wait for ever as you can terminate the computation by typing ^C. Let us try to analyse what is happening
by unfolding the recursion. It will look like a tree branching upside-down. How many operations have
to occur for fib 10 ? How about a general formula for fib n ?

Exercise 15 Verify using induction that

Fibn =
1√
5
(φn − φ′n)

17

where φ′ = 1 − φ = 1
2 (1 −

√
5).

Also prove that

Fibi+1 = 1 +

i
∑

j=1

Fibj

We claim that the number of function calls for fib n equals fib n. So what is the time taken to compute
fib 100 assuming 1 nano-second per operation ? A rough calculation yields about 10,000 years !

But there is some hope. Perhaps we can use the same idea as the previous exercise. That is, given
the values of Fibi−1 and Fibi−2, we can compute Fibi by just one addition operation. In other words,
to compute Fibn, we can start writing down Fib0, F ib1, F ib2 . . . F ibi−2, F ibi−1, F ibi . . . F ibn where

Fibi = Fibi−1 + Fibi−2

from the inductive definition. In this case, we need n− 1 additions which is very reasonable and much
smaller than Fibn itself. A little thought brings forth the realization that we only need to retain the
previous two numbers of the Fibonacci sequence in order to compute the next one instead of writing
down the entire sequence.

let rec ifib : int*int*int*int -> int = function

(prev, curr, i , n) -> if i= n then curr (* prev = Fib(i-1), curr = Fib(i) *)

else ifib(curr, prev+curr, i+1, n)

;;

val ifib : int * int * int * int -> int = <fun>

let fibnew : int -> int = function

n -> if n = 0 then 0

else if (n =1) then 1

else ifib(0, 1, 1, n)

;;

val fibnew : int -> int = <fun>

fibnew 35 ;;

- : int = 9227465

Exercise 16 Establish the correctness of the function fibnew using MI.

5.2 A measure of cost

It must be clear that the cost of computation depends critically on the way we write the function. Of
course we would like to write it in a way so as to reduce the cost. What is a sound way to measure
the cost ? If we manage to actually time it (in seconds or some appropriately chosen unit) then it will
vary from computer to computer - a Pentium will be much faster than a 286 and so on even if we use
the same function. This does not appear to be fair as we would like to focus on the way the function
is written rather than the machine that it executes on. Moreover, the time for executing fib 10 will be
less than fib 50 as 50 > 10. Ideally, we would like to know how much time fib n would take for any n.

This leads us to the notion of growth rate or a functional measure of the running time in terms of
some basic primitive operations. The basic predefined operations supported by the hardware (which

18

may not be the same as Caml) forms the set of primitive functions. Formally, the time complexity of
a program is defined as a function (not to be confused with the program) that gives a rough estimate
of the number of basic operations required to execute the program in terms of the size of the input.

The size of input is related to the length of the representation of the input. It is a common mistake
to confuse the size of the input with the magnitude of the input. For instance, the input to the factorial
function is a number n whose magnitude is n but its length is the number of digits. If n = 50000,
the length of n is only 5. If we are dealing with decimal representation then the size of n is roughly
log10 n. Therefore the factorial function takes roughly 10(|n|) operations. We will use |x| to denote the
size of x. Is it a reasonable measure considering that factorial seemingly takes exponential number of
operations ? Do most basic operations take as many ? Addition of two d digit numbers takes about d
single digit additions and carry computation using the straightforward method.

Exercise 17 Show that the conventional method of multiplying of two numbers m and n takes roughly
log10 m · log10 n operations where an operation is adding or multiplying two single digits.

It is strongly recommended that you spend some time analysing the time-complexity (as a function
of the input-size) for every program that you write. The field of computer science dealing with designing
algorithms places tremendous importance on time complexity of a given problem. There are several
techniques that aid in designing faster algorithms. The notion of faster is in the functional domain as
we are dealing with time-complexity. How can we compare two functions ? Consider f1(x) = x2 + 20
and f2(x) = 20x. If you plot the graphs, you will find that initially (for small values of x ≥ 0 as input
sizes are always non-negative), f1(x) < f2(x) but subsequently, after say x ≥ xo f1(x) ≥ f2(x). In
essence, we are comparing the functions in an asymptotic manner, that is, when x → ∞.

A common notation used for time-complexity is the O() (pronounced Big-Oh) that is keeping with
the asymptotic growth rate. We say that an algorithm A has time complexity O(g(x)) where g(x) is
a function of the input-size x if the actual number of steps f(x) satisfies the following as x → ∞

c · g(x)

f(x)
≥ 1 for some constant c.

Intuitively f(x) never exceeds g(x) for large values of x modulo a constant factor. This is also referred
to as the worst-case time-complexity. For an input-size x, we are trying to bound the number of steps
in the worst-case scenario, i.e., whatever be the actual input. Using this notation, we can say that the
conventional method for multiplying two d digit numbers has time complexity O(d2).
Remark If f(x) = x, then f(x) is O(x) as well as O(x2) from the definition. In particular, the O
notation should not be used in the sense of equality but is closer in spirit to inequality (≤) that gives
an upper-bound.

What is a desirable time complexity when we are designing algorithms ?. The conven-
tional wisdom over the past few decades broadly classifies an exponential time-complexity (something
like 2x) to be impractical and a low degree polynomial time-complexity (say x3) as acceptable. The rea-
son for this distinction is self-explanatory as the exponential growth rate is too high for the algorithm
to terminate in one’s lifetime even for modest input sizes as 50. The first definition of the Fibonacci
sequence has an exponential time-complexity whereas the subsequent definition is only a linear (degree
1) polynomial.

Obviously, the faster your algorithm is, the better. But you cannot make an algorithm as fast as
we want even if you are the cleverest person on earth. There are fundamental limitations to how fast
an algorithm can be that is dependent on the problem. These are called lower-bounds and this topic is
quite deep and outside the scope of this course.

19

5.3 An example - primality testing

Let us analyse the Caml function for primality testing at the beginning of the section. The Caml
function prime (n) calls trynext (2, n). So, we must analyse trynext (2, n) or in a more general
situation - trynext (x, y). The function trynext is supposed to determine if there is an integer t,
x ≤ t < y that divides y. The function trynext uses the in-built Caml function ”mod” to check if
some integer t divides y. Let us assume that ”mod” (more generally all arithmetic function) takes one
operation. We will also assume that the condition checking takes one operation. That makes a total
of 2 operations for every recursive call.

What is the worst-case (maximising the number of operations) behaviour of trynext (x, y) ? Clearly,
it is the maximum number of t for which the recursive calls are made. This in turn depends on the
stopping criterion that we ommitted, but it is pointless to try any t greater than y. This yields at most
2(y−x) operations. Therefore, prime(2, n) takes at most 2(n−2) operations. The input size of n, that
is |n| = ⌈log10 n⌉. Therefore, the number of operations as a function of |n| is less than 2(10|n| − 2). In
the Big-Oh notation we can write O(exp(|n|)).

This is not good news because it is an exponential algorithm. We can do somewhat better by
changing the stopping criterion (How ?). However, it remains an open problem to design a polynomial
time-complexity algorithm (without using probabilistic analysis).

Exercise 18 We made an assumption that the mod function takes one operation. Recall that integer
division (including remainder) that we do by hand is proportional to the number of the digits in the
divisor and the dividend. Reanalyse the primality algorithm in light of this.
Hint: Show that the long division takes O(|divisor|) · |dividend|) operations.

5.4 A special kind of recursive definitions

Most of the recursive functions that we developed in this section have the following form.

f(n) =

{

direct evaluation if base case
f(k) otherwise, where k < n

More specifically, the recursive call f(k) does not involve any operations involving f(k) like g(k) ⊙ f(k)
where ⊙ is some operation and g(k) is a function of k. Recall that for factorial g(k) = n and ⊙ = ×.
Consequently, there is no need for the computation phase as the answer is available immediately after
the terminating condition. In other words, if you were to work it out using a pencil and paper, you only
need to remember the last recursive call - there is no need to work backwards. Additionally, if you are
armed with an eraser, you may even cut down the cost of paper drastically. You will use the paper to
remember only the last recursive call, calculate the new parameters and overwrite the old parameters.
Here over-writing implies erasing and writing.

If recursive function definition has the above simple form, then it is referred to as tail recursion.
As we have seen in this section, it is possible to rewrite a more general recursive function as tail-
recursion like the functions for factorial and Fibonacci sequence. Whether it is possible in a more
general setting is something that we won’t be able to discuss formally as it requires some knowledge of
general recurrences. But from now, we will try to write tail recursive definitions for functions for the
obvious benifits.

The work involved in calculating the new parameters from the old parameters is often referred to as
an iteration. Using a pencil and paper we perform the iterations until a certain terminating condition

20

is satisfied. At this point one of the parameters gives us the final answer. So, an alternative scheme for
doing the same computation is to think in terms of iterations directly instead of tail-recursive defini-
tions. Most computer languages support constructs for writing iterations (also called loops). We shall
soon see that iterative style often leads to more efficient excution in computers.

In the beginning, it is advisable to work out the iterative scheme starting
from a tail-recursive definition. It is easier to verify correctness and analyse
time-complexity of a function expressed in terms of tail-recursion because
we can use mathematical induction more directly and naturally.

We have ignored the issue of space-complexity so far which is related to the memory in the computer.
Memory is used for storage which is critical for the computation to proceed - recall how recursive
functions are unfolded and then evaluated. Even for tail-recursive definitions, we must remember the
previous parameters. The memory in the computer is reusable, otherwise we will be running out of
memory very quickly. This is analogous to doing computation on paper without an eraser. We have
already seen that tail-recursion can be quite parsimonious in its use of storage although it is not clear
how it is done inside Caml functions. This will be our next topic where we will discuss a style of
programming where we will be explicitly managing storage elements inside the program. This will
enable us to exercise for control in our use of memory.

Exercise 19 Write tail recursive Caml functions for the following problems

(i) Summing n terms of a series where the i-th term is given by (−1)i · 2i

i! .

(ii) Summing the first n prime numbers.

(iii) Number of digits in a given integer. For example 84653 has 5 digits.

Exercise 20 Write a tail recursive definition for the method outlined in Exercise 9 and analyse the
time-complexity.

6 Functions as parameters

Functions do not have any special status in ocaml (or for that matter any functional languages) and
can be freely passed as parameters to other functions. The description of the function is the function
as opposed to the evaluation of the function for a given parameter value. For example the description
of the function that squares its input is

function x -> x*x ;;

The following function is the implementation of the bisection method for computing a (real) root of a
given function. This takes as parameters an initial interval that contains exactly one root, the function
for which the root is being computed and the precision to which it needs to be computed.

let rec bisection = function (* passing function f as a parameter *)

(low, high, f , eps) -> if f ((low +. high)/. 2.0) > eps then

bisection (low, (low +. high)/. 2.0, f, eps)

21

else if (f ((low +. high)/. 2.0) +. eps < 0.0)

then bisection((low +. high)/. 2.0, high, f, eps)

else (low +. high)/. 2.0 ;;

bisection (0.0 , 8.0 , (function x -> x*.x -. 8.0) , 0.001) ;;

- : float = 2.82836914062

Exercise 21 Write an OCAML function for computing the numerical derivative of a given function.
The numerical derivative of a function f at a point x is defined as f(x+dx)−f(x)

dx
for a very small (pre-

defined) value dx.

Exercise 22 Write an OCAML function compose that takes two functions f and g as input and
returns the composition g(f).

7 Scope

When you type ocaml, we enter the top level of the interpreter. Any assignment of values or functional
description to identifiers are valid in this environment. Only the latest assignment is relevant. As each
function is executed, the parameters of the function is relevant only within the function and are distinct
from the top-level.

let x = 5; binds x to 5 but is distinct from the parameter x in let sqr = function x -> x*x ;; This
is important especially in the context of recursive function definitions where each level of function call
creates a new set of identifiers valid only within that level and distinct from the other levels. The
interpreter keeps track of these and hence the the programmer is freed from the burden of finding new
names for every level of function calls. It is a good practice to define the identifiers within the function
where it is required rather than globally (valid within the entire top level). For instance we can define
pi only within the area function using the construct let < binding>in

let area : float -> float

= function r -> let pi = 22.0 /. 7.0 in pi *. r*. r ;;

val area : float -> float = <fun>

In the top-level pi is undefined

pi ;;

Unbound value pi

We can have several bindings in an environment using let binding1 and binding2 and .. in.

let area : float -> float

= function r -> let pi = 22.0 /. 7.0 and

sqr : float -> float = function x -> x*. x

in pi *. sqr r ;;

val area : float -> float = <fun>

area 4.0 ;;

- : float = 50.2857142857

22

8 Processing Lists: variable length input

Till now we have defined functions with a fixed number of input - in many occasions that is not known.
For instance what if we try to find out the average marks in a class of students and we don’t want to
write a separate program for each class size. OCAML has a data type called lists to handle such a
scenario.

A list is an ordered set of elements of the same type. A list is empty if it has no elements which
is denoted by []. Otherwise a list can be partitioned into the head which is the first element and the
remaining called the tail. Note that a tail may be empty for a one element list. The head is attached
to the tail using the cons operator denoted by ”::”. A list in OCAML is represented by its ordered set
of elements separated by ”;”.

let l = ["is" ; "was" ; "will" ; "may"] ;;

val l : string list = ["is"; "was"; "will"; "may"]

let l2 = [3 ; 45 ; 97 ; ~-4 ; 100] ;;

val l2 : int list = [3; 45; 97; -4; 100]

11:: l2 ;;

- : int list = [11; 3; 45; 97; -4; 100]

23:: [] ;;

- : int list = [23]

The base type of the elements in a list defines the type of lists - integer list, string list , float list etc.
One can define a list of lists. One can apply the same function to all elements of the list by using the
(higher order) function List.map. For instance

List.map (function x -> x*x) [0; 2 ; 4; 9] ;;

- : int list = [0; 4; 16; 81]

Exercise 23 What is the domain and range of List.map ?

The following program generates all the sub-lists of a given list by a clever use of the List.map function.

let rec powerset l = match l with

[] -> [[]] |

hd::tail -> let cons a b = a::b in

(powerset tail) @ (List.map (cons hd) (powerset tail)) ;;

The most common way of processing the lists is to process it recursively beginning from the head. For
example if we are interested in reversing a given list, then we can concatenate the head of the list at
the end of the (recursively) reversed tail. The concatenation operation joins two given lists in the order
that it is given.

[3; 4] @[4] ;; (* @ is the concatenation operator *)

- : int list = [3; 4; 4]

The following function reverses any given list.

23

let revlist = function l -> if l = [] then [] else

let rec revlist1 = function head::tail -> if tail = [] then

[head] else (revlist1 tail) @ [head] in

revlist1 l ;;

Warning: this pattern-matching is not exhaustive.

Here is an example of a value that is not matched:

[]

val revlist : ’a list -> ’a list = <fun>

The first condition was necessary to take care of empty list but the function revlist1 cannot handle
empty-list for which OCAML has issued the warning. To handle such cases we can use the ”match”
statement that is able to handle all possible structures of the lists.

let rec revlist l = match l with [] -> []

| head::tail -> (revlist tail) @ [head] ;;

val revlist : ’a list -> ’a list = <fun>

revlist [2 ; 3; 4; 5] ;;

- : int list = [5; 4; 3; 2]

Exercise 24 Write an OCAML function to find the minimum element in a list

Exercise 25 Write an OCAML function to arrange a list in ascending order.

Exercise 26 Write an OCAML function to implement List.map function defined earlier using match-
ing.

9 Declaring Types

Quite frequently, you may have felt the limitation of predefined types in OCAML. For instance there
is no predefined type rational (which can be viewed as a tuple of numerator and denominator) or a
polynomial. OCAML provides very powerful mechanisms for defining new types. We will look at some
very simple examples.

type rational = {num: int ; den : int} ;;

type rational = { num : int; den : int; }

By this we have defined rational to be a new type that has two components num and den both of type
integer. To declare a new rational number we must define the two components.

#let r = {num = 5 ; den = 10 } ;;

val r : rational = {num = 5; den = 10}

r.num ;;

- : int = 5

Once you have a new type you will like to define functions on these. One of the common requirements
of a rational number is that the numerator and denominator should be co-primes (i.e. no common
factors). For that we can define a function reduce that will remove common factors.

24

#let reduce : rational -> rational = function r ->

let rec gcd : int*int -> int = function (a,b) ->

if a > b then gcd (b, a)

else if (b mod a = 0) then a

else gcd (a, b-a) in

{num = r.num / gcd(r.num , r.den) ; den = r.den/gcd(r.num , r.den) } ;;

reduce { num = 5 ; den = 10 } ;;

- : rational = {num = 1; den = 2}

Exercise 27 Prove the correctness of the gcd (greatest common divisor) function - popularly known
as Euclid’s algorithm.
Hint: You may have to use recursion on two variables, i.e. let it be true for all numerator ≤ denomi-
nator ≤ n. Then prove for all numerator ≤ denominator ≤ n + 1.

Exercise 28 Define functions that adds, multiplies and divides two rational numbers.

Exercise 29 Can you make the gcd algorithm more efficient ?

You can now build more complex data types for instance, you may keep a list of all students with
various attributes like name, address, ranks etc.

#type stdrecord = { name : string ; address : string ; marks : float } ;;

type stdrecord = { name : string; address : string; marks : float; }

[{name = "x1" ; address = "y1" ; marks = 50.0 } ; { name = "x2" ; address =

"y2" ; marks = 65.3 }] ;;

- : stdrecord list =

[{name = "x1"; address = "y1"; marks = 50.};

{name = "x2"; address = "y2"; marks = 65.3}]

Suppose we want to define a new type that has finite (small) number of values, say gender which takes
two values.

type gender = Male | Female ;; (*must begin with upper-case unlike identifier

names*)

type gender = Male | Female

9.1 Variant types

If you want to mix up types or define a superset of previously defined types, that is done as follows

type realnumber = Int of int | Float of float | Rational of rational ;;

type realnumber = Int of int | Float of float | Rational of rational

The following example shows how to generalise the multiply function to realnumber (it is somewhat
incomplete - try to complete all cases).

25

#let ratmult x y = { num = x.num * y.num ; den = x.den * y.den } ;;

#type number = Int of int | Float of float | Rational of rational ;;

#let mulnumber x y = match (x, y) with

(Int a , Int b) -> Int (a * b) |

(Float a , Float b) -> Float (a *. b) |

(Rational a , Rational b) -> Rational (ratmult a b) |

(Int a , Float b) -> Float ((float a) *. b);;

9.2 Defining new types using recursion

The predefined type list can be thought of like the first element followed by the remaining list.
type ’a lst = Empty | Element of ’a* ’a lst ;; (* our own list type *) Example of such
a list is Element(2 , Element (4 , Element (1, Empty))) ;; We can define functions on this
type exactly the same way as we did for the predefined lists.

let rec listlen lst1 = match lst1 with (* computes length of list*)

Empty -> 0 |

Element(a, b) -> 1+ listlen(b) ;;

More complex functions like Insertion sort can also written in the same way.

let rec insort lst = match lst with

Empty -> Empty |

Element(head, tail) -> let rec insert x ylst =

match ylst with

Empty -> Element(x, Empty) |

Element (head1, tail1) -> if x <= head1 then Element(x, ylst)

else Element(head1 , (insert x tail1))

in insert head (insort tail) ;;

10 Exception

Most modern programming languages provide useful clues for handling unexpected execution - a classic
example being divide by zero. There are essentially run-time errors and we can define exceptions that
are tailor made for our applications.

exception Empty_list ;; (* defining exception *)

let rec maxlist1 = function lst ->

match lst with

[] -> raise Empty_list |

head :: [] -> head |

head :: tail -> let r = maxlist1 tail in

if head >= r then head else r ;;

26

One very common use of exception can be for giving precise error messages by using a parameterized
exception.

exception Input_type of string ;

let rec fact n = match (n <0) with

true -> raise (Input_type "factorial not defined for negative") |

false -> if n = 0 then 1 else n*fact(n-1) ;;

The construct try ..with can be used to exit a nested sequence of function calls in a controlled
manner.

let pastestring = function a -> (maxlist1 a), "valid" ;;

(* if pastestring throws an exception, it is handled in the main function*)

let maxlist lst = let pastestring = function a -> (maxlist1 a), "valid" in

try pastestring lst with

Empty_list -> (0 , "not valid") ;;

11 Arrays and mutable structures

Arrays in Ocaml are defined as

let a = [| 21 ; 3 ; 45 ; 1 |] ;;

val a : int array = [|21; 3; 45; 1|]

To access the element corresponding to i-th index, we use a.(i). Note that the index begins from 0
(and not 1). Each array location behaves like a memory location, i.e., it can be modified by writing.

a.(1) <- 5 ;; (* assignment operator *)

- : unit = ()

a.(1) ;;

- : int = 5

Unlike the ”let” statement, no new location is created but the contents of the existing location is
modified. Also note that assignment doesn’t return any value - it is unit.

11.1 References

We can declare references (pointers) to variables of a certain type

let x = ref 5 ;;

val x : int ref = {contents = 5}

The contents of x can be referred as

!x ;;

- : int = 5

27

The contents of x can be modified with an assignment instruction.

x := 10 ;;

- : unit = ()

! x ;;

- : int = 10

x := !x + 2 ;;

- : unit = ()

!x ;;

- : int = 12

Note that the modification doesn’t return any value (it is unit). Although the reference behaves
somewhat like a pointer but you are not allowed to do any arithmetic on the references - i.e., x +1 is
undefined (beware C programmers). You can however assign references as follows.

let y = x ;;

val y : int ref = {contents = 12}

!y ;; (* x and y refer to the same data *)

- : int = 12

Here is an example that will distinguish a variable from the binding defined by let

let x = 2 ;;

val x : int = 2

let y = ref x;;

val y : int ref = {contents = 2}

let x = x + 1;; (* which x does it change ? *)

val x : int = 3

!y ;;

What is the value returned - is it 2 or 3 ?

12 Objects and classes

Object-oriented Programming is now one of the most widely accepted style of programming that views
the task of programming as interactions between different entities called objects. An object has various
attributes and associated methods with which it can interact with other objects and participate in some
computational tasks. The general characterization of an object is described as a class. For example,
the class rational can be described as

class rational (n : int) (d :int) =

object

val mutable num = n

val mutable den = d

method numerator =num

28

method denominator = den

method frac = float (num mod den) /. (float den) (* fractional part *)

method reduce = let d = gcd1 num den in (* gcd1 comoputes greatest common

divisor and the reduce makes num and den coprime *)

num <- num/d ; den <- den/d ;

end;;

class rational :

int ->

int ->

object

val mutable den : int

val mutable num : int

method denominator :int

method frac : float

method numerator : int

method reduce : unit

end

To create an instance of an object we use new which creates a reference to the object.

let a = new rational 8 6 ;;

val a : rational = <obj>

a#numerator ;;

- : int = 8

a#denominator ;;

- : int = 6

a#frac ;;

- : float = 0.333333333333333315

a#reduce ;; (* numerator and denominator are now co-prime *)

- : unit = ()

a#numerator ;;

- : int = 4

a#denominator ;;

- : int = 3

13 Imperative constructs

Ocaml supports the standard imperative features like for statements.

let int_array n = (* creates an array with contents 1, 2, ...n *)

let res = Array.create n 0 in

for i = 0 to n-1 do

res.(i) <- i + 1

done ;

29

res ;;

val int_array : int -> int array = <fun>

int_array 10 ;;

- : int array = [|1; 2; 3; 4; 5; 6; 7; 8; 9; 10|]

The familiar iterative version of computing sum of n numbers can be written using the while construct

let itersum n = let sum = ref 0 and i = ref 0 in

while !i <= n do

sum := !i + !sum;

i := !i +1 ;

done ;

!sum ;;

To initialize an m by n two dimensional array in Ocaml, you can use the following program that uses
Array.init instead of Array.create that seems to be inherently 1 dimensional. There is a natural
generalization to any arbitrary dimensional array.

let b = Array.init 4 (function i -> i) ;;

val b : int array = [|0; 1; 2; 3|]

#let a = Array.init 3 (function i -> Array.create 2 0) ;;

val a : int array array = [|[|0; 0|]; [|0; 0|]; [|0; 0|]|]

a.(0).(1) <- 1 ;;

- : unit = ()

a ;;

- : int array array = [|[|0; 1|]; [|0; 0|]; [|0; 0|]|]

In general, Array.init n f returns a fresh array of length n, with element number i initialized to the
result of f i. In other words, Array.init n f tabulates the results of f applied to the integers 0 to n-1.

The following function swaps two elements of an array (and returns the modified array).

let swap i j arr2 = let y = arr2.(j) in (arr2.(j) <- arr2.(i) ;

arr2.(i) <- y) ; arr2 ;; (* exchanging elements from index i and j *)

The following is an implementation of insertion sort on arrays.

let rec insortarr arr i j = (* insertion sort from index i to j *)

let rec insert k j arr1 =

if k = j then arr1

else if arr1.(k) <= arr1.(k+1) then arr1

else insert (k+1) j (swap k (k+1) arr1) in

if (i = j) then arr else

insert i j (insortarr arr (i+1) j) ;;

A more complex example is that of enumerating permutations of numbers 12, . . . n.

30

let swap1 i j arr1 = let y = arr1.(j) in (arr1.(j) <- arr1.(i) ; arr1.(i)

<- y);;

let print arr = for k =0 to (Array.length arr -1) do print_int arr.(k) done;;

let rec perm arr i lst = if (Array.length arr) = i then

(* print arr ; print_char ’\n’ ;*)

lst := [Array.copy arr]@(!lst)

(* What happens if we simply append arr to lst without

creating a copy ? *)

else

for j = i to ((Array.length arr) - 1) do

swap1 i j arr ;

perm arr (i+1) lst;

swap1 i j arr ;

done ;;

let permute arr = let lst = ref [] in perm arr 0 lst ;

!lst ;;

The function permute returns a list (lst) of all permutations. To save space, we can instead print out
the permutation as soon as it is generated (currently commented).

permute (int_array 3) ;;

- : int array list =

[[|3; 1; 2|]; [|3; 2; 1|]; [|2; 3; 1|]; [|2; 1; 3|]; [|1; 3; 2|];

[|1; 2; 3|]]

Exercise 30 (i) Write a program to generate permutations of n objects when all of them are not dis-
tinct.
(ii) Enumerate all the permutations using the following strategy -
After generating all possible permutations of n-1 objects, insert the n-th object in each of the n gaps
induced by the n-1 objects.
(iii) Write a program to generate all choices of k objects from n > k distinct objects. Like the permu-
tation program, use an extra array of size k to keep track of the current choices.

14 Input/Output and Files

One of the most important imperative features of any programming language is its ability to support
input and output instructions from a file. A program that deals with large amount of data mst have
the ability to obtain its input froma file and print its answer to a file. The default input and output,
referred to as std_in and std_out is set to the keyboard input and monitor output. Reading from
std_in and Writing to std_out ar performed using the following self-explanatory functions -

31

read_int read_float read_line (*for reading integers, floats and reading

an entire line of characters *)

print_char print_int print_float print_string (* for printing character,

integer, floats and strings *)

Here is an example of reading an array and printing the elements.

let readwrite len = let arr = Array.create len 0 in

for k =0 to (Array.length arr -1) do arr.(k) <- read_int() done;

for k =0 to (Array.length arr -1) do print_int arr.(k); print_char ’,’ done ;;

One must be careful that the input is provided as one integer per line - separating them by any other
character leads to an exception that the input is not of proper type. Therefore for many applications
it is advisable that we deal only with character inputs and perform our own conversions (to integer or
floats). When we view the file as a file of characters, it is called a character file. We must understand
the basic methodology of handling files and in particular how Ocaml views files.

To read from a file, a file must be first opened - this is required for some bookkeeping operation by
the operating system since all files cannot simultaneously reside on the main memory and preparation
is required to access the contents of a file. After completion of input it is customary to close it. The
files are read sequentially, but we can have several access points simultaneously called channels2 in
Ocaml.

Likewise a file must be opened for writing (the contents are cleaned up, so one must be careful
about opening for writing) and once writing is over us should be closed for protection. The open and
close functions are as follows.

#let stream1 = open_in "readfile" in (* open_in returns a stream *)

input_char stream1 ; (*input_char returns the present character*)

close_in stream1 ;; (* in a stream and then adjusts the position of the stream

to the next character in the file*)

- : char = ’t’

The function close_in closes a channel (not the filename as there may be more than one channel).
In the following example we write two strings in the file outfile (including two special end-of-line

characters)

let stream2 = open_out "outfile" in

output_string stream2 "fdtfdfukwgdwhdg\nqgfdgqfdyfqdf\n";

close_out stream2;;

- : unit = ()

Other useful functions are input_line (for reading a line) and output_char (for writing a single
character). To detect end of file (while reading), there is a predefined exception End-of-file.

2A channel is considered to be a special type with distinctions between in-channel and out-channel

32

let read_print f = let chan1 = open_in f in (* reading till end of file*)

try

while (1=1) do

print_char (input_char chan1)

done

with End_of_file -> close_in chan1 ;;

Exercise 31 Given a character file F1, write a function that copies the contents to another file F2,
such that consecutive blank spaces are compressed into a single space.

33

