
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CSL 101 ; Introduction to Computer Science

Semester II 2007-08
Brief Lecture Notes Instructor Sandeep Sen

1 The notion of computing

In our everyday life, we are involved in numerous activities that require numerical calculation,
starting from our grocery bills, keeping cricket scores to handling budget. It is not unusual
to find shopkeepers punching in numbers to produce bills for customers. In bigger stores, life
is made simpler where there are check-out machines where one has to only punch in the item
codes (rather than the item prices) for producing the bills, thus reducing the chances of error in
punching the prices. This also provides additional flexibility to the shopowners who can modify
the prices of items very easily by changing the ”table of prices.” The person at the check-out
counter doesn’t have to remember the prices and he/she can punch the same keys for the same
items. But this requires for sophisticated computing machines than calculators.

1.1 An abstract model of computer

A machine that executes instructions faithfully and very quickly. There are differences between
computers with regards to speed and instructions but the final answer will be same. The
computers are all more or less equally capable in their ability to solve problems and possibly
there is nothing better (Church-Turing thesis).

1.2 What is a programming language

A formal language that contains a set of instructions that will produce the same (modulo some
numerical precision) answers even if executed in diferent machines. Therefore, we need not
bother about the internals of a computer when we write a program.

All programming languages are again equally capable of solving problems, namely that they
have rich enough instruction set. (It is actually a very small set by which we can carry out all
computations.)

1.3 Can you compute everything

A very deep philosophical question that was answered in the negative by a German Mathematical
called Goedel, who proved that one cannot compute everything. This was done in setting of
proving theorems mechanically in an axiomatic system. Fortunately not many naturally occuring
problems fall in the non-computatble category.

Another paradox is that all this was done even before the first real computer was built. So
the notion of computation had existed much before computers were built.

1

1.4 What is interesting computation

A fixed sequence of instruction, for example, how to prepare cake is not particularly interesting
since it has nothing unpredictable about it. Or say, how to go from Shivalik hostel to Kailash
hostel is equally boring (perhaps not !) once someone has figured it out. However, given a
campus map, how do we get from point A to point B is a more challenging exercise.

If the number of source-destinations is fixed then again you can do a one-time computation
and store the routes. Just look up the table (as you do in case of a railway time table).

The problem becomes more interesting, if you are not told in advance which map you will
be searching, i.e. the map is also now part of the input.

1.5 An algorithm

Before you write a program, which is ready to be fed into a computer, we must reason out a
strategy to solve the problem. The strategy should be

• Finite (we can’t have infinite instructions)

• Correct for all possible inputs

• Terminate (in finite time, infact the sooner the better)

The last two properties must be formally argued/proved before we translate it into a program.
In fact the more time we spend on this, the chances of a successful program is higher. Any
strategy that satisfies the above properties is called an Algorithm for a given problem (and
there ican be more than one). With experience, the process of translating an algorithm into a
program becomes more mechanical. One may ask now, how do we describe an algorithm ? It is
usually done using less formal means although one can claim that a program itself describes an
algorithm. There are many messy details that are usually left out in describing an algorithm.

1.6 Goodness of a program

Usually one argues at the level of the algorithm regarding use of resources like execution time
and memory consumption. Scaling is often used to avoid absolute measurements in terms of a
specific computer.

How many elementary operations do we do to multiply two 100 digit numbers ? How much
paper do we consume ?

2 Counting and comparing infinite sets

Some of the most innovative proofs in mathematics are based on counting arguments. These
involve infinite sets (finite sets are not interesting in this context). One of the most basic
questions that come up in this context are

2

Are there more real numbers than integers ?

The intuitive answer is yes based upon an equally intuitive reasoning that between any two
integers there are an infinite number of real numbers. But is this a sound basis for comparing
two sets, namely Z and R ? By the same argument, that there are more rational numbers than
integers. How about an even simpler question about the number of even integers and integers ?
For the last question, you may say that since even integers is a proper subset of Z, clearly ...

Unfortunately, the intuitive arguments are not adequate when we are looking at infinite sets.
Without being too formal, we use the following test when we compare two infinite sets A and
B -

Two sets A and B are equinumerous iff we can find a 1-1 mapping
between elements of A and B
The map f(i) = 2i is a 1-1 mapping from integers to even integers and hence they are

equinumerous. With somewhat more effort we can define a 1-1 mapping between Z × Z and Z

in the following way.
Consider an infinite two dimensional table T = Z×Z where the i, j-th entry is the tuple ((i, j).
We can imagine scanning the table along the successive diagonals (top right to bottom left) -
thereby getting the sequence (1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1) Notice that we are listing
out the numbers in a way such that the sum of i + j of the tuples i, j are 2, 3, 4, Therefore,
you can predict the kth tuple of this sequence as also the k corresponding to a tuple (i, j). In
other words with a little thought you can define a 1-1 mapping between the sequence of integers
and the tuples, thereby establishing that these sets are equinumerous.

Since the number of rational numbers are no more than the number of elements in Z × Z

(each rational may have many representations like 1/2 = 2/4 = 3/6 etc.) and certainly no less
than the number of integers, they are actually equinumerous.

Can we do the same for reals and integers ? It turns out that one can argue formally (using
Cantor’s diagonalization method) that no such mapping exists and hence the number of reals
(far) exceed the number of integers. A very celebrated result due to Bertrand Russel is that the
power set of a set and the set are not equinumerous (clearly so for finite sets and perhaps less
clear for infinite sets).

2.1 Relevance to programming and computers

Why are we discussing seemingly (nay interesting) abstract result of set theory ? It should
be clear that we can represent only integers inside the computer, viz. by a finite sequence of
symbols. In many cases, the input to a program is an unspecified number of integers, say, we
want to sort a sequence of arbitrary integers. This input is a subset of Z

k = Z×Z× . . . k timesZ.
where k is an arbitrary integer.

We can extend the previous arguments to show that Z
k is equinumerous with Z and therefore

we can justify writing programs where the input is an arbitrary (not prespecified) set of integers.

3

3 Types and representation in a programming language

The most basic type of elements that must be handled in any programming language is a sequence
of alpha-numeric characters called a string. This is what we write - however depending on the
context a string can be interpreted as an integer, floating point or actually a string itself.

3.1 Integer Types

Given a string nknk−1 . . . n2n1n0, the integer in base b (0 ≤ ni < b), is the number
∑k

i=0 nib
i.

Whereas we are used to base b = 10, the internal hardware representation within a computer
is base 2. The number of symbols in base 2 are 0 and 1 which corresponds to two states (high
and low) in the electronic circuits which is called a bit. A sequence of eight bits is a byte. The
number of distinct states of k bits is 2k and hence it can be used to represent 2k integers. A
computer has a fixed number of bits to represent an integer which is called a word - this may
differ from one computer to another. Usually the word length is a power of 2. If the computation
involves numbers larger than the maximum representable integer then it leads to an error called
overflow.

In summary the integer type in any computer represents a finite set of consecutive integers
from the (infinite) set of integers.

Exercise 1 For any base b, and an integer b, show that the string representation is unique.

Exercise 2 How would you represent both positive and negative integers ?

Exercise 3 The maximum positive integer in ocaml is represented by max int. Write a OCAML
program that computes the square of the value of max int.

3.2 The floating point numbers

The floating point numbers have two attributes - mantissa and the exponent. Both are binary
representations where the mantissa mkmk−1 . . .m0 represents 0.mkmk−1 . . .m0 in binary where
mk 6= 0 (which makes te representation unique). If E is the exponent then the number repre-
sented is 0.mkmk−1 . . .m0 × 2E. The reader can verify that it allows us to represent very large
numbers compared to integers if we use one word to represent a mantissa as well as an exponent.

Example
Suppose the word length is 32 bits. Then the largest integer is approximately 232.
The largest floating point is 0.111111 . . .× 2232

which is much larger.

However, the total number of representable floating points is less than 232+32 which is again
finite (compared to the real numbers in the same range). Therefore there are many (infinite)
number of reals that we cannot represent in the same range. At best we can approximate a real
number by a floating point and this is a non-trivial problem when we are computing with real
numbers.

Exercise 4 How are the floating points distributed in the range of the real of the real numbers
?

4

3.3 A note on OCAML integers

The OCAML integers are represented modulo 2w bits where w is the word size. Therefore there
is no overflow in integer arithmetic - however there will be errors if the numbers exceed max int
that the programmer has to be aware of. In modulo m arithmetic −k, 1 ≤ k ≤ m−1 is the same
as m−k. Therefore 0 has only one representation since 0 = -0. As integers can be both negative
and positive, the numbers with the MSB (Most significant bit as 1) are interpreted as negative
number. For m = 2w, we represent the negative numbers − − x, with 1 ≤ x ≤ 2w−1 as 2w − x

and one can verify that the MSB is 1 1. The positive numbers represented are 1 . . . 2w−1 − 1
(and 0). This is often referred to as 2’s complement representation. By representing negative
numbers, we can actually only add numbers to implement subtraction.

Example
Suppose the word length is 32 bits2. Then −231 = (232−231) mod 232 = 231. On the
other hand +231 cannot be represented in 32 bits as MSB is 1. So we can represent
one more negative number compared to the positive numbers (0 is neutral).

In the modulo world there cannot be any overflows due to any operation but the final answer
may not be what we are interested in. For example, when w = 3, if we add 101 (−3 in 2’s
complement) and 110 (−2), then the answer is 011 (3 mod 8) whereas we would have liked −5.
But −5 does not not have a representation in 3 bits - we need to go to 4 bits (1011) for that.
More precisely, −5 and 3 are indistinguishable modulo 8 or that this the case of an overflow. So
we need to safeguard against this since OCAML doesn’t give an any overflow signal. Note that
it is not simply a carry out of the MSB, since adding 111 (−1) and 110 (−2) also produces a
carry but the answer 101 (−3) is correct since −3 can be represented using 2’s complement in
3 bits. Therefore as a programmer, we need to devise ways to detect overflow.

Exercise 5 Convince yourself that for any integers x and y

(i) x mod m + y mod m = (x + y) mod m.
(ii) If m = 2w, then the t ≤ w least significant binary digits of x mod m are the least t binary
digit representation of x.
Thereby conclude that whenever x + y does not go out of range, we obtain the correct answer
irrespective of the ”signed” interpretation of x and y.
(iii) Write your own function myadd that adds two integers when there is no overflow and
signals overflow otherwise.

4 Strenghtening Induction assertions

To prove that ifib (0,1,1,n) returns Fibn for n ≥ 2, one is tempted to prove it by induction
on n. Although base case (n = 2) is easy, carrying out the inductive step is difficult without
making any assertions for the other parameters. Therefore we must strengthen the induction

1This is very useful at the hardware level to detect if an integer is negative
2In Ocaml, one of the bits is a tag bit for special purpose - so effectively you have 31 bits.

5

hypothesis to assert about the remaining parameters also. One such asserion can be

Claim 1 For all n ≥ 2, ifib(0,1,1,n) calls ifib(Fib i-1, Fib i, i,n) for 2 ≤ i ≤ n.

Proof: If the claim is true (for all n) then, ifib(0,1,1,n) will call ifib(Fib n-1,Fib n, n,n)

which will return Fibn and we are done. We shall prove it by induction on i.
Base case: For all n ≥ 2, ifib(0,1,1,n) calls ifib(1,1,2,n). Since Fib1 = 0 and Fib2 = 1,
we are done3.
Inductive Step: Suppose the assertion is true for all 2 ≤ i < n, i.e. (for all n ≥ 2), for all 2 ≤ i <

n, ifib(0,1,1,n) calls ifib(Fib i-1 ,Fib i,i,n). Since ifib(Fib n-1 ,Fib n-2 ,n-1,n)

calls ifib (Fib n-1 , Fib n-1 + Fib n-2, n ,n), the inductive step is complete. Note that
in the inductive proof, we always argued ”For all n ≥ 2” - this is crucial for the eventual goal
of computing Fibn for all n ≥ 2. 2

4.1 Two kinds of induction proofs

Inductive proofs are typically used to prove a property (predicate) for all non-negative integers.

For example, to prove that the sum of the first n integers is n·(n+1)
2

, we can have P (i) represent the

predicate that
∑j=i

j=1 j = i·(i+1)
2

for any integer i ≥ 0. The Principle of Mathematical Induction
(PMI) states that

P (0) ∧ ∀k[P (k) ⇒ P (k + 1)] ⇒ ∀nP (n)

A variation of the PMI, called Principle of Complete Induction (PCI) states the following

P (0) ∧ ∀k[P (0) ∧ P (1) . . . P (k) ⇒ P (k + 1)] ⇒ ∀nP (n)

Often this variation is more useful, especially in situations that involve structural induction where
a bigger structure is decomposed in terms of smaller structures but not necessarily having size
exactly less than one (as the PMI requires).

Before we proceed to use it, let us convince ourselves that the two avatars are essentially
equivalent, namely, that if we believe one, the other follows by logical inference. For this, it
should be clear that PCI implies PMI (Why ?). Let us try to prove the converse, viz., PMI
implies PCI.

Given an arbitrary predicate P (i) that we are trying to prove, let us define another predicate
P ′(i) as ∀k, k ≤ i, P (k). So P ′(i) is a predicate that holds if P (i) holds for all k ≤ i. Clearly

[∀nP (n)] ⇔ [∀n, P ′(n)]

although P (i) and P ′(i) are not equivalent. From PMI, we know that

P ′(0) ∧ ∀k[P ′(k) ⇒ P ′(k + 1)] ⇒ ∀nP ′(n) ⇒ [∀nP (n)] (1)

3We have the index starting from 0, i.e. F0 = 0 F1 = 1 and so on

6

where the last implication follows from the previous observation. From the definition of P ′(i),
the antecedent ∀k[P ′(k) ⇒ P ′(k + 1)] can be rewritten as

∀k[P (0) ∧ P (1) . . . P (k) ⇒ P (0) ∧ P (1) . . . P (k) ∧ P (k + 1)]

Since P (i) ⇒ P (i), the above is equivalent to ∀k[P (0) ∧ P (1) . . . P (k) ⇒ P (k + 1)] and since
P ′(0) ⇔ P (0), equation 1 can be rewritten as

P (0) ∧ ∀k[P (0) ∧ P (1) . . . P (k) ⇒ P (k + 1)] ⇒ [∀nP (n)]

which is precisely the statement for PCI.

5 Efficiency of programs

The running times of different programs (corresponding to the same problem) may vary signifi-
cantly depending on the underlying algorithm. Of course, the same program will take different
time to execute depending on the computer where it is running. So rather than comparing the
real-time of execution, we will try to compare the number of instructions that are executed by
the different programs. Here again we assume that each instruction takes unit time. 4

The number of instructions executed will depend on the input or more precisely the input-
size. The larger the input, the more the number of instructions executed. For example, for
computing Fibonacci numbers, more instructions are executed to compute the 50th Fibonacci
number than the 10th Fibonacci number. In fact, we would like to express the number of
instructions to compute the k-th Fibonacci number as a function of k. So, the efficiency of
a program can be expressed in terms of a function that represents the number of instructions
executed in terms of the input-size.
This function is often referred to as time complexity

5.1 How to compare functions

If we have two programs have time complexities 3n + 6 and 2n2 + 8 respectively then it is
clear that we will prefer the first program. Here n is the input size. Suppose they have time
complexities 9n + 20 and n2 + 1, then the choice may not be clear since the second program is
superior initially but for larger n then the first program is better. In such situations, we will
choose the program that asymptotically (eventually) becomes better. That is for some no, for
all n ≥ no the program executes fewer instructions than others.

Therefore, it is meaningful only to look at the leading term (with the largest exponent) and
we also ignore the multiplicative constants. In other words 3n2 + 6n + 8 will be approximated
by n2 - the notation used is O(n2) (read big-O of n2).

4This is somewhat of an oversimplification as multiplication takes longer than addition - but still serves our
purpose to get estimates of the running times

7

5.2 Efficiency of recursive functions

Since induction forms the basis of recursive functions, we express the number of instructions as a
inductive relation often called recurrence relations. We then find solutions (which are functions)
that satisfy this relation (analogous to finding roots of simple equations). Finding solutions to
recurrence relations is often a very difficult exercise.

Consider the Fibonacci program based on the recursive definition. The number of instruc-
tions for Fib(n) is the the summation of the number of instructions for Fib(n-1) and Fib(n-2)
plus three more instructions (corresponding to two conditionals and one addition). Therefore
we can express the recurrence relation for T (n) = number of instructions for computing Fib(n)
as

T (n) = T (n − 1) + T (n − 2) + 3

What function of n will satisfy this relation ?
Can you get an upper-bound based on Exercise 15 of the ocaml handout ?

However the other recursive version (fibnew preceding section 5.2 of the ocaml notes) has a
simpler structure since the function makes exactly one recursive call with i incremented by 1.
Therefore we can express T (i, n) = T (i+1, n)+3 and T (n, n) = 1 which yields T (i, n) = 3(n−i)
and in particular T (3, n) = 3(n − 3) since the initial recursive call is with i = 3.

6 Functions in Caml and λ calculus

Lambda calculus (or λ-calculus as is popularly known) is perhaps one of the earliest formal
programming languages. In spite of its seemingly limited forms it manages to match (in some
sense define) our notion of mechanical computation. With minimal syntax (that is defined)
below it can be used to represent all known programming constructs and virtually does away
with all semantics that often creates ambiguity in implementing programming languages. Yet,
because of the extreme cumbersome nature of writing programs, its application is primarily
limited to proving theorems rather than writing software.

In its purest form λ-calculus , uses only two constructs - abstraction and application. The
former is to define (new) functions and the latter is to actually apply a function to given
parameters. A typical λexpression takes the form λx.fx which is to be interpreted as a one
parameter5 function f that can be reduced by applying it to an actual parameter. The parameter
x is a formal parameter. The variable x is bound within the scope. A variable that is not bound is
called free. For example, in λy.λz.xz(yz), x is free whereas z, y are bound. In this brief overview
we are avoiding rigorous definitions that are used to identify free and bound variables. Note that
valid λ expressions are written using the alphabet λ, ., (,) in addition to the parameter names.
Without parentheses, the symbols associate from left, i.e., abc is the same as ((ab)c).

The result of applying an abstract (λx.M) to an argument N is to ”substitute” N for all
free occurences of x in M . Moreover we must ensure that the free variables of N are not bound

5there is a natural extension of this notation to multiple parameter, viz., λxy.fxy

8

in M . So in case of conflicts, we must ”rename” these variables. We are again avoiding formal
definitions.

Pure λ-calculus doesn’t support any (predefined) functions or constants but these can be
defined as λ-terms λ-calculus .

For example, constants can be defined as follows (which are also called Church numerals).
The integers 0 and 3 are represented as

λf(λx.x) and λf(λx.f(f(fx)))

Imagine how messy it is to represent 1000 (essentially a unary representation that applies f

1000 times). Very often, we use shorthand like fk to denote f(f(f . . . ktimes, i.e., the i-th
composition of f with itself; but this is not part of the standard vocabulary of λ-calculus . The
addition function can be represented as

λxy.(λfz.xf(yfz))

However, if you have followed the intuition behind the Church’s numerals, viz., that integer n

corresponds to n fold composition of f (zero corresponds to just the parameter), then you can
easily verify by induction that the addition of m and n correspond to fm(fn(x) that is fm+n(x).

Following a similar line of arguement try to prove that the multiplication function can be
represented as

λmn.λf(m(nf))

The boolean constants true and false are represented as

λx.(λyx) and λx.(λyy)

The standard conditional construct like if-then-else can be thought of as a function with three
parameters - a condition (which is boolean), a ”then” part and an ”else” part. The following
expression can be used to represent it.

λcond(λthen(λelse((cond then)else)))

As an example when we apply it to the parameters true, this that, we obtain

λcond(λthen(λelse((cond then)else)))λx.(λyx) this that

= (λthen(λelse((true then)else))) this that

= (λthen(λelse((λx.(λyx)then)else))) this that

= (λthen(λelse(((λy then))else))) this that

= (λthen(λelse(then))) this that

= (λelse(this)) that

= this

9

This should convince you somewhat that it is possible to build complex instructions using
λ-calculus although it does become messy and hence not used widely. A careful reader may have
already noticed the similarity between λ expressions and function definition in Ocaml. More
specifically λx.f is written as function x -> f in Ocaml and the reader can try out the above
examples.

Exercise 6 Verify the following λ terms for the boolean functions

1. and = λp(λq((p q)false))

2. or = λp(λq((p true)q))

3. not = λp((p false)true)

6.1 An Ocaml example

A very common problem is to write a function that composes two given function f and g

(assuming that f(g) is well defined). Since the λ expressions are isomorphic to the Ocaml
functions, let us write out a lambda expression for composition. The λ expressions for f and
g are λx.fx and λx.gx respectively. Their composition can be defined as another λ expression
of the form λx.f(gx) 6 The input to the composition function are two λ-expressions (functions)
and the output is also a λ-expression.

Consider the following λ expression

λaλb.λxa(bx)

If we apply it to a = λx.fx and b = λy.gy (we have used y for clarity - it is not really necessary),
then we obtain the following sequence of reductions

λaλb.λxa(bx) λx.fx λy.gy

⇒ λxλx.fx(λy.gy x)

⇒ λxλx.fx(g x)

⇒ λxf(g x)

which is what we wanted as the output. The equivalent Ocaml program is

let comp a b = function x -> a (b x) ;;

val comp : (’a -> ’b) -> (’c -> ’a) -> ’c -> ’b = <fun>

Let us verify by trying out

6The parenthesis is necessary in this case, otherwise it will be treated as λx.(fg)x.

10

comp (function x -> x*x*x) (function x -> x*x) ;; (* composing the square

and the cube functions *)

- : int -> int = <fun>

comp (function x -> x*x*x) (function x -> x*x) 2 ;; (* applying the

the previous composition to compute 2^6 *)

- : int = 64

Can you reason out the type of comp returned by Ocaml ?
One way to reason will be - suppose the final answer is in domain γ, i.e., f(gx) is of type γ.
Let gx be of type β, then f must be of type β → γ. If x is of type α, then g must be of type
α → β. So the output of comp is an expression of type α → γ. The input is the type of f which
is β → γ. So we can write the type as

(β → γ) → (α → β) → (α → γ)

Verify using α = ′c, β = ′a, γ = ′b.

6.2 Versatility of functional inputs

Many function/programs require functions/programs as inputs by definition. Some of the most
common examples are Computing derivative of a function, finding roots of a function (say, by
the bisection method), composition of functions (that we discussed in the previous section)
among others. In addition, there are many situations where we can use the power of abstraction
to make the programs more versatile. That is, depending on the application, it can adapt by
using a specific function. Consider the following example of an n-fold (n is an arbitrary integer)
composition of an arbitrary function with itself, namely f (n) = f(f(..n times. In Ocaml, we can
write such a function easily as follows

let rec selfcomp f n = if n = 0 then (function x -> x) else

function x -> f (selfcomp f (n-1) x) ;;

val selfcomp : (’a -> ’a) -> int -> ’a -> ’a = <fun>

One useful application of this function could be generating a sequence, where the n-th term
of the sequence can be obtained by applying an appropriate function to the first term. For
example, consider an arithmetic progression

1, 4, 7, 10 . . .1 + 3(i − 1)

We can generate the n-th term by using the function function x -> x + 3. Therefore for
n = 10, we get

selfcomp (function x -> x+3) 9 1 ;; (* for the n-th term, we compose n-1

times*)

- : int = 28

11

For the geometric series
2, 6, 18, 54 . . .2 · 3i−1

we have

selfcomp (function x -> x*3) 4 2 ;; (* the 5th term of the sequence *)

- : int = 162

Try the same for a harmonic sequence (the reciprocal of the terms form an arithmetic progres-
sion). We can try to even generate the Fibonacci sequence with a more sophisticated function.

selfcomp (function (x,y) -> (x+y , x)) 4 (1,0) ;;

- : int * int = (5, 3)

Here the function is applied to two parameters which are similar to the i-th and the i − 1-st
terms of the Fibonacci sequence.

Here is another way of writing the n-fold composition. Verify its correctness. The function
comp is the familiar composition function. Is it more efficient ?

let rec fastselfcomp f n = if n =0 then (function x -> x) else

if (n mod 2 = 0) then

comp (fastselfcomp f (n/2)) (fastselfcomp f (n/2))

else comp f (fastselfcomp f (n-1)) ;;

Exercise 7 How would you use the selfcomp to compute
(i) A harmonic sequence ?
(ii) The sum of the first n terms of a geometric sequence ?

Using lambda expressions we can also easily move back and forth between multi-parameter
function to single parameter function, also called curry and vice versa. In Ocaml, we can write
a higher-order function that converts a 2 parameter function as follows.

let curry f = function x -> function y -> f(x,y) ;;

val curry : (’a * ’b -> ’c) -> ’a -> ’b -> ’c = <fun>

let mysum (a,b) = a + b ;;

val mysum : int * int -> int = <fun>

let mysum1 = curry mysum ;;

val mysum1 : int -> int -> int = <fun>

mysum 2 ;;

This expression has type int but is here used with type int * int

mysum1 2 ;;

- : int -> int = <fun>

12

