This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2970417, IEEE

Transactions on Dependable and Secure Computing

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

A Formal Approach to Accountability in
Heterogeneous Systems-on-Chip

Rajshekar Kalayappan, Smruti R. Sarangi

Abstract—Systems-on-chip (SoCs) are increasingly being com-
posed of designs provided by different organizations. When such
an SoC miscomputes or performs below expectation in-field, it
is unclear which of the on-chip components caused the failure.
The customer would like to use SoCs that provide the property
of accountability, wherein the failure-causing component, and
consequently its designing organization, can be unambiguously
detected. Since it is a matter of trust, the various parties involved
desire formal guarantees regarding any accountability solution.
The solution must find the guilty component(s) in the event of a
chip failure. Additionally, the solution must not falsely implicate
any component that functioned correctly. This paper formally
describes the property of accountability, a formal methodology
of constructing an accountability solution, and a formal game-
theory based methodology to reason about and prove the viability
of a proposed solution. We explore the entire space of solutions,
and characterize the attack surface and methods to provide
accountability for each setting. We show non-intuitive results
in this paper where seemingly simple solutions actually provide
very powerful theoretical guarantees in terms of accountability.

Index Terms—systems-on-chip, accountability, in-field fault
localization, integration, game-theory, auditing

I. INTRODUCTION

Systems on Chip (SoCs) are rarely designed entirely by a
single organization. For example, many Qualcomm SoCs that
go into most of our smartphones use general purpose compute
cores designed by ARM. Companies such as Xilinx, Altera
and Microsemi have licensed security microprocessor designs
from Athena Group Inc [1]. Invia is another corporation that
provides designs in the security co-processor domain [2].
Synopsys offers cryptographic accelerator IPs [3], and Intel
too recognizes the fabless ASIC business and has thus started
the Intel Custom Foundry [4] program. This is now a common
practice in the semiconductor industry. Rather than having
large monolithic organizations that design every part of the
chip, the design effort is split across many organizations.
This allows each individual organization to focus on particular
aspects of the SoC, and develop world class expertise in that
area. We call such SoCs, composed of designs from various
organizations as heterogeneous SoCs.

An organization termed the System Integrator (SI) designs
an SoC based on the requirements of the customer. The SI
uses some component designs of its own, while it sources
others from organizations termed as third party intellectual

Rajshekar Kalayappan is with the Department of Computer Science and
Engineering, Indian Institute of Technology, Dharwad, India e-mail: ra-
jshekark @iitdh.ac.in

Smruti R. Sarangi is with the Department of Computer Science and
Engineering, Indian Institute of Technology, Delhi, India e-mail: sr-
sarangi @cse.iitd.ac.in

property vendors (3PIP vendors). The 3PIP vendors them-
selves commonly compose their designs using IPs from other
3PIP vendors [5]. For example, a JPEG encoder can use a DCT
circuit, which has been designed by somebody else. This JPEG
encoder can be a part of a large image processing chip. Thus,
an SoC has a fractal design — at each level, an entity which
we denote by the term ‘host’, composes a design using IPs
from other entities whom we call ‘guests’. A guest, in turn,
can be a host at a lower level. The final design, containing
designs from different organizations, is then fabricated. This
model of IP Reuse is highly advantageous — organizations
do not need to “re-invent the wheel”, and it also allows an
organization to focus on particular modules and achieve rapid
progress in their designs. As examples, the Athena and Invia
corporations have achieved expertise in the design of security
co-processors. This expertise then translates to benefits for the
entire semiconductor industry.

Despite the numerous advantages, there are a number of
problems that arise from this approach as well. Since the guest
is a different organization, the host (at each level) must be able
to trust it, and the quality of its designs before incorporating
them in its chip. Efforts are continuously being made to ease
the process of IP Qualification [6][7] — to be able to quantify
the quality of third party IP designs. This heterogeneous
approach also introduces a new class of bugs — bugs arising at
the interfaces between IPs from different organizations. These
typically arise due to unclear communication of requirements
from the host vendor to the guest vendor, and vice versa.
Gajski et al. [8] recognized this issue from the early days of IP
reuse, and researchers continue to develop new methodologies
to reduce the occurrence of such bugs [9][10]. Benign bugs
aside, the possibility of malicious bugs is also very real —
Hardware Trojans are increasingly being discussed by both
industry and academia. There are numerous real life examples
that have altered geo-political scenarios [11]. Researchers are
thus continually devising methods to detect the presence of
malicious circuitry in third party IPs [12][13].

Increasing complexities of chips, and aggressive time-to-
market deadlines, are reducing the time spent on Post-Si
validation. This increases the chances of a bug slipping to
the field. Now should a chip fail on field, who is to be held
accountable, and compensate the customer whose application
suffered? The chip is a result of the design efforts of multiple
organizations.

Another aspect of the problem comes about from economic
underpinnings. The different vendors are business organiza-
tions in a competitive market. Should an SoC malfunction on
field, a vendor — host or guest — who has contributed towards

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY DELHI. Downloaded on March 23,2020 at 09:15:37 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2970417, IEEE

Transactions on Dependable and Secure Computing

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

part of the design, does not want to be held responsible for the
malfunction. This will detrimentally effect her position in the
market. Therefore, it is rational for a vendor to shift blame for
her own shortcoming to someone else, should it be possible
to do so. Thus, the intended solution to this already complex
problem of debugging an SoC, should also have to account for
vendors potentially compromising the debug process to protect
their own interests.

All the mentioned issues with IP reuse can be captured
by the notion of accountability. Any party, be it a host or
a guest, must be accountable for any bugs found in its design.
This notion of accountability was introduced by Kalayappan
et al. [14]. Existing debug hardware falls short of providing
accountability because it does not account for the possibility
of the host or the guest components possibly compromising
the debug process to escape being held accountable. Existing
debug hardware assumes the sanctity of all logs — that they
are an accurate reflection of what transpired in the field.
However, a rational vendor (host or guest) will compromise
the debug process to escape being held responsible for a chip
malfunction, should it be possible to do so. This brings about
the need for a more sophisticated approach to debugging,
one where the sanctity of the logs can be guaranteed in the
presence of malicious on-chip components.

Kalayappan et al. [14] presented a practical implementation
of a solution that provided accountability in a heterogeneous
SoC, with minimal area, power and performance overheads.
The viability of the approach was also demonstrated using
bugs from the errata documents of real SoCs. The solution
makes use of embedded “meters” in the chip. These meters
are designed by Trusted Third Party vendors — vendors who are
trusted by all vendors (e.g., Trusted Computing Group [15],
SiidTech [16]). These meters help produce authentic logs of
events that transpire in the field. These logs may then be
analyzed should the chip malfunction, in order to determine
the responsible component.

With viable accountability solutions now practical, a formal
treatment of the design of an accountability solution is the
need of the hour. Like security, accountability too is a property
whose solutions require formal proofs to convince the parties
to adopt them. We must be able to provide guarantees that no
bug slips through uncaught. We must also be able to provide
guarantees that only the vendor with the faulty design is
held accountable. An innocent vendor must not be wrongly
implicated by our system. In this paper, we work towards
a formal definition of an accountable chip, and a formal
framework for designing and reasoning about the validity of an
accountability solution. We model the scenarios and solutions
as formal games and solve the games to comment on their
viability. Such a game-theory based approach for validation
is commonly adopted when dealing with notions of trust and
security in systems [17][18][19].

We first discuss in Section II some related work from
other domains of chip design that bear some similarities in
spirit with accountability. We then, in Section III, informally
introduce the reader to the accountability problem and the
general solution approach that we propose. We follow this
with a formal treatment of the property of accountability in

Section IV, and proceed to prove how accountability can
be achieved through audited logging of messages exchanged
across different domains on the chip in Section V. We present
multiple ways to achieve the required audited message log, and
compose a library of these auditing primitives in Section VI.
We then apply the different primitives to a range of scenarios
in Section VII, where a scenario is an (SoC model, attack
model) tuple. Each such application of a primitive is an
accountability solution. We present a formal game-theory
based approach to reason about an accountability solution.
This is important in matters involving trust (such as security
and accountability) because a formal reasoning methodology
is essential to instill confidence in the stakeholders to adopt
the solution. The formal approach not only helped us prove
that one of our proposed solutions works in all recognized
scenarios, it also helped us prove the viability of an interesting,
intuitively unfair, design. This valid design can achieve qual-
ified accountability with a significant reduction in overheads.

II. RELATED WORK
A. Reliability and Hardware Security

Research in the reliability and hardware security domains
also deals with identifying the occurrence of unsatisfactory
behavior in-field (please refer to [20] for a comprehensive
survey of techniques). Typical classes of solutions are based
on redundancy, invariant verification, and symptom detection.

In the case of redundancy based solutions, we assume
that the components suffer only benign faults. This allows
redundancy to be able to detect a naturally occurring phe-
nomenon such as a permanent fault or a transient single event
upset [21], [22]. Alternatively, we assume that the components
are sourced from different vendors (designers / fabricators).
This is applicable to security solutions [23], [24]. If it can
be assumed that the vendors will not collude, then such a
redundant arrangement helps detect a malfunction. In the case
of accountability however, neither are the malfunctions benign,
nor can anything be assumed regarding the vendors of the
different components.

In the case of invariant verification, and symptom detection,
the test units (popularly called Built-In Self Test units, or
BIST units) are typically designed by the host itself [25].
Adopting this approach to achieve accountability is unfair to
the guest vendors. The host may very well incriminate a guest
component for failures of its own. The aim of this work is to
create a framework that provides a solution to this problem.

B. Logging-based Bug Isolation Solutions

Many bugs escape pre-silicon and post-silicon validation
to reach the field [25]. Researchers have proposed employing
logging to record the functioning of the chip, and analyzing
the logs, either online or offline, to isolate the location of the
bug [26], [27].

Kalayappan et al. [28] present a scheme to log the interac-
tions between the host circuitry and third party accelerators.
They consider a scenario where the host and the accelerator
vendors do not trust each other, and some form of on-
chip, trusted third party auditing is required. The reliable

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY DELHI. Downloaded on March 23,2020 at 09:15:37 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2970417, IEEE

Transactions on Dependable and Secure Computing

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Chip
Input

Chip
Output

Cra el oS

{ [host O guest |

Fig. 1: An informal illustration of Accountability

logs thus collected can be used for a variety of purposes
including debugging, analyzing performance bottlenecks, and
investigating violations in security. The solution however is
for a very limited scenario, and unlike this paper, does not
investigate the space of all possible attack scenarios.

C. Malicious Contractors in Outsourced Computation

The problem at hand, when abstracted, is highly similar
to that of malicious contractors in the cloud domain [17].
Consider a cloud composed of different contractors who lease
out their compute resources in return for remuneration. A
user of this cloud submits a compute task to it. She is not
concerned about which contractor does the job, as long as the
job is done correctly. However, a contractor, in the interest
of maximizing profits, may maliciously “under-compute” and
return an approximate result. This scenario is very similar to
our problem — the cloud is analogous to the SoC, while the
malicious contractor is analogous to the third party IP.

The solution proposed by Kupcu [17] to counter this prob-
lem of malicious contractors is to have multiple contractors
redundantly compute the job and compare their results. The
assumption is that a majority of the contractors are honest.
However, having redundant implementations of a module on
chip is a massive burden on chip area. Therefore, we must
look at a different approach.

This domain of research proves results by formulating
scenarios as games — something we also do in this paper.

III. AN INFORMAL INTRODUCTION TO THE PROBLEM OF
ACCOUNTABILITY AND THE PROPOSED SOLUTION
APPROACH

Let us consider a simple illustrative example. As shown
in Figure 1, the chip consists of some circuitry designed by
the host, called the host circuitry, and a single third party IP,
known as the guest circuitry. Let us suppose that the chip
functions in the following way: the end-user submits an input
to the chip. This is received by the host. The host performs
some function F'4 on the input, and the result is R4. The
host gives R4 to the guest who performs some function Fp
on it, to produce Rp. The guest gives Rp to the host, who
performs some function F- on it, to produce R¢. This R¢ is
then returned to the user as the final result.

Now if the chip has malfunctioned, the proposal is to an-
alyze the intermediate results — the messages passed between
components belonging to different vendors — to identify the
responsible component. In this case, R4 and Rp have to be
analyzed — if R4 was correct, and Rp was incorrect, then the

guest is responsible. If this is not the case, then the host is
responsible.

The proposal is that R4 and Rp are logged by the host, and
made available for offline analysis when required. Now it is
possible that the host or the guest tampers with the logged R 4
or Rp thereby escaping responsibility. To counter this, trusted,
tamper-proof meters are embedded strategically that provide
certificates for the logs. The certificates certify the content
of the message passed between two components designed by
different vendors, as well as the time of transfer. It is the host’s
responsibility to store the certificates along with the logs. In
the event of the chip malfunctioning in the field, the stored
certified logs are analyzed offline to determine if it was the
host or the guest that was responsible.

The certificates are essentially cryptographic hashes of
the message contents and the time of transfer. The hashes
are produced using secret keys known only to the meters.
Therefore, neither the host nor the guest can tamper a log and
produce a fake certificate for it. Neither can they maliciously
delete a log of a transferred message (techniques such round-
based cryptosystems may be employed [14]), nor add to the
logs a message that was never transferred. How these meters
are placed, and how the authenticity of the logs are formally
guaranteed, form the contributions of this work.

For rigorous implementation details and practical consider-
ations, please see Section VIII and the work by Kalayappan
et al. [14].

IV. FORMALLY DEFINING ACCOUNTABILITY

We first describe some formalisms related to the notion
of accountability that were introduced by Kalayappan et
al. [14]. We present a more thorough treatment here as these
formalisms are required to describe our contributions.

A. Model of a Heterogeneous SoC

Figure 2(a) describes a generic model of a heterogeneous
SoC containing IPs from many different vendors. The conven-
tion followed is that components designed by the same vendor
are marked by the same color. As discussed in the introduction
(Section I), the design of a modern SoC has a fractal nature.
At each level, an entity named “host” composes a design using
some of its own IPs, and sourcing others from “guest” entities.
In Figure 2(a), at the topmost-level, the host is the blue entity,
while the yellow, orange, and gray entities are guests. If we
consider a lower level, component (d) has the orange entity
as the host and the red and dark gray entities as the guests.
At each level, let the host circuitry be denoted by H, and
the set of all guest circuitries be denoted by G. Note that
the host of the topmost level is the System Integrator (SI).
Also note that the guests cannot communicate with each other
directly. Any communication between two guests has to pass
through the host. Specifically, we focus on network-on-chip
(NoC) based SoCs in this work. The NoC, which is responsible
for providing the network interface to each component as well
as routing packets towards their destination, may be part of the
host circuitry or may be externally procured, that is, a guest.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY DELHI. Downloaded on March 23,2020 at 09:15:37 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2970417, IEEE

Transactions on Dependable and Secure Computing

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

(@ ©)
D‘ D‘
.‘ D‘
@ (G

e)‘

(a) Generic SoC Model

(b)

(b) Simplified Representative SoC Model
Fig. 2: Model of a 3PIP-containing SoC

In Figure 2, the NoC, depicted in gray (unlabeled routers), is
a guest.

When the host decides to incorporate a particular guest G,
it enters into an agreement regarding the conditions of its use
with the guest vendor. First, the nature of the inputs to the
guest, IpCondg, are decided upon. For example, in the case
of a JPEG accelerator, the possible dimensions of the input
image may be agreed upon by the SI and the guest vendor.
Second, the nature of the output of the guest, OpCondg, is
negotiated. This could be the actual result of a computation,
as is the case in, say, a cryptographic accelerator. It could
also be a property of the result. For example, in the case
of a compression accelerator, the desired compression ratio
may be agreed upon. Third, the quality of service (QoS)
— that is, the guest’s latency/throughput while performing a
job, QoSCondg — is agreed upon. Fourth, the quality of the
environment (QoE) in which the guest operates, QoECondg,
is agreed upon. QoE refers to the latency/throughput provided
by H for servicing resource requests (e.g., last-level cache
requests) made by G.

For the purpose of accountability, it is sufficient to consider
each level separately. For instance, let us suppose the chip
in Figure 2(a) malfunctioned in the field. Further, suppose
the first round of analysis at the topmost level, with blue
as host and yellow, orange, and gray as guests, held orange
(component (d)) accountable. The second round of analysis
focuses on component (d) — with orange as the host and red
and dark gray as the guests — and proceeds in the same fashion
as done for the first level, and could potentially hold orange,
dark gray, or red accountable. Since the analysis at each level
proceeds in the same fashion, it is sufficient to design an
accountability solution for a single level. The accountability
analysis for a fractal SoC also proceeds in a fractal fashion.

This leads us to consider a simplified representative model of
an SoC, as shown in Figure 2(b), for all further discussion in
this paper. Here, blue is the host, and yellow, orange and gray
are guests.

B. Trust Model

Any host or guest vendor (at any level): (i) may malfunction
because of benign design bugs, (ii) may malfunction because
of malicious Hardware Trojans, (iii) is rational, meaning, it
will protect its own interests and deflect the blame for its own
shortcomings to another vendor, should it be possible to do
SO.

A trusted third party (TTP) vendor is present, who is trusted
by all other host and guest vendors. The TTP provides light-
weight auditing meters (see Section VI) that the hosts and
guests embed in their designs. The meters contain crypto-
graphic circuitry [14] and associated embedded keys [29].
The meter designs are tamper-proof [30]. The foundries are
assumed to be trusted [31], [32].

Though our solutions assume only the TTPs to be trusted, a
more realistic scenario is to have the System Integrator — that
is, the host at the topmost level — as a trustworthy entity as
well. This allows the SI to function as the TTP, and to provide
meter designs to the other hosts and guests on the chip. Thus,
accountability at all the lower levels other than the topmost
level can be provided through the proposed solutions.

C. The Problem of Accountability

The user employs the SoC to perform tasks, denoted by
the set T. In performing a task ¢ € T, H carries out some
computations of its own, and can request the services of the
on-chip guests for others. We term requests made by the host
to the guests as jobs. The jobs corresponding to a task ¢ are
denoted by the set J;. Let the input provided to some guest
G as part of some job j € J; be Ip;, the output be Op;,
the quality of service provided be QQoS;, and the quality of
environment be Qok;.

Now it is possible that the result returned to the user is
erroneous. Let the function F'F(t) denote that the execution
of task ¢ faced a functional failure. It is also possible that task
t took too long to complete. Let the function T'F(t) denote
that the execution of task ¢ faced a timing failure. Both return
Boolean values.

Definition 1: An accountable heterogeneous SoC is
defined as one in which the cause of the error (functional
failure) or the delay (timing failure) can be unambiguously
attributed to the host and/or one or more of the guests.

We next define the rules governing the assignment of
responsibility for an error to either H or any G € G. Let
the function R(z) denote that module x was responsible for
the error, with = € {H, G}.

The function Xsat(j,x) is used to denote whether the
measurement of X, when module x performed job j, satisfied
the agreed upon conditions, with z € G, j € J;, and ¢
being the task whose execution requires analysis. For exam-
ple, QoSsat(j,G) denotes whether the measured QoS when

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY DELHI. Downloaded on March 23,2020 at 09:15:37 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2970417, IEEE

Transactions on Dependable and Secure Computing

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Low Level High Level
>
Logs Logs
Low Level High Level
Auditing Auditing

Fig. 3: A logging-based solution to achieve accountability

module G executed job j satisfied the agreed upon condition
QoSCondg.

Definition 2: The assignment of responsibility for an er-
roneous execution of a user’s task ¢ is done according to
Axioms 1, 2, 3, and 4.

Axiom 1: FF(t)A3j € J:(~OpSat(j, G)AIpSat(j,G)) —
R(G)

If the dispute is regarding an incorrect task result, and if
there is a guest G such that it received satisfactory inputs
but produced unsatisfactory outputs, then G must be held
responsible.

Axiom 2: FF(t)A\Vj € Ji(=IpSat(j, G)VOpSat(j,G)) —
R(H)

If the dispute is regarding an incorrect task result, and if
there is no guest GG such that it received satisfactory inputs
but produced unsatisfactory outputs, then H must be held
responsible.

Axiom 3: TF(t) N 35 €
QoESat(j,G)) — R(G)

If the dispute is regarding a task result taking too long to
be computed, and if there is a guest G such that it observed
satisfactory QoE but produced unsatisfactory QoS, then G
must be held responsible.

Axiom 4: TF(t) N Vj €
QoSSat(j,G)) — R(H)

If the dispute is regarding a task result taking too long to
be computed, and if there is no guest G such that it observed
satisfactory QoE but produced unsatisfactory QoS, then H
must be held responsible.

J:(=QoSSat(§,G) A

J:(=QoESat(j,G) V

V. ACCOUNTABILITY THROUGH LOGGING

Guided by the definition of accountability described in
Section IV, we propose to log the functioning of the different
components in-field. We will capture the Ip;, Op;, QoS;,
and QokL); for each job j performed by any guest component.
When the chip malfunctions, and the customer wishes to know
which on-chip component is responsible, the collected logs are
analyzed offline (note that collecting all logs may pose a large
performance and storage penalty. We address these concerns
in Section VIII).

The overview of the idea is given in Figure 3. We will now
discuss each component in detail.

A. High Level Logging

Definition 3: High Level Logging refers to the logging of
Ip;, Op;, QoS;, and QoE; for each job j executed by a guest
G, VG € G: (i) IpLog;: consists of all communication from
H to G, (ii) OpLog;: consists of all communication from

5

G to H, (iii) QoSLog;: recording of the QoS provided, (iv)
QoFE Log;: recording of the QoE provided. These four logs
constitute the high level logs.

The host places circuitry to log the high level logs at each
of its interfaces with guests, and its interface with the external
world. Existing design-for-debug (DfD) infrastructure such as
trace buffers, which are idle in-field, may be reused for this
purpose. Alternatively, dedicated logging structures may be
commissioned. The collected logs are periodically written off-
chip to disks owned by the customer, again, just as done in
post-silicon validation. The customer, when faced with a chip
malfunction, presents the logs for offline analysis.

B. High Level Auditing

As discussed in Section I, the various organizations — hosts,
guests, and the customer — do not necessarily trust each other.
Let us consider the worst case. If any entity can profit from
any misbehavior, it will misbehave. This defines the rationality
of each organization. If the host or the guest vendor can escape
being held responsible for a chip malfunction by performing
some sort of misbehavior, it will do so. If the customer can
force a chip malfunction and get compensated for it, it will
do so.

Our accountability solution must accurately determine if
there was a chip malfunction in-field, and also accurately
determine which of the on-chip components was responsible.
It must be able to counter any misbehavior attempts made by
these rational players.

The accurate provision of accountability rests on the accu-
racy of the collected logs. If any organization compromises
the logs, then the solution fails. We propose to employ an
on-chip auditing system that certifies the logs. The certificates
are stored along with the logs. Only those logs accompanied
by certificates are authentic, and are considered for the offline
analysis.

Definition 4: The high level auditing system provides four
certificates for each job j:

IpCert; certifying IpLog; = Ip;,
OpCert; certifying OpLog; = Op;,
QoSCert; certifying QoSLog; = QoS},
QoECert; certifying QoELog; = QoE;.

Theorem 1: A heterogeneous SoC is accountable if
and only if the four logs — IpLog;, OpLog;, QoSLog;, and
QoELog;, and the four certificates to authenticate the col-
lected logs — IpCert;, OpCert;, QoSCert;, and QoECert;,
are available, Vj € jobs performed by any guest G € G.
Proof: By Definition 2, Ip;, Op;, QoS;, and QoE;, for each
job j performed by any G € G, is necessary and sufficient
to find out the responsible on-chip component(s) and provide
accountability.

By Definition 4, the four certificates ensure that the four
logs collected by the host — IpLog;, OpLog;, QoS Log;, and
QoE Log; — correspond to what actually transpired during the
in-field execution, that is — Ip;, Op;, QoS;, and QoE;.

Thus, the four logs, accompanied by the four certificates,
are necessary and sufficient to provide accountability.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY DELHI. Downloaded on March 23,2020 at 09:15:37 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2970417, IEEE

Transactions on Dependable and Secure Computing

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

C. Low Level Logging

Practically collecting the four high level logs — Ip, Op,
QoS, and QoFE — with minimal overhead is difficult. We
propose to collect instead “low level logs”.

Definition 5: Low level logs capture each message com-
municated, between the host and a guest (recall that two
guests cannot directly communicate with each other). For each
message that is communicated, (i) the contents of the message,
(i1) the sender and receiver IDs, and (iii) the time of transfer,
are logged.

Now we prove how low level logs are sufficient to derive
the high level logs offline.

Lemma 1: IpLog;, for each job j performed by any guest

@, can be derived from low level logs.
Proof: This follows directly from Definition 3 that states that
IpLog; is the log of all communication from H to G as part
of job j. Aggregating the contents of all messages from H to
G therefore gives IpLog;.

Lemma 2: OpLogj;, for each job j performed by any guest
G, can be derived from low level logs.
Proof: This follows directly from Definition 3 that states that
OpLog; is the log of all communication from G to H as part
of job j. Aggregating the contents of all messages from G to
H therefore gives OpLog;.

Lemma 3: QoS Logj, for each job j performed by any guest
G, can be derived from low level logs.
Proof: This follows directly from Definition 3. The QoS
provided by G is determined by the time when it received
the job description, and the time when it provided the
result to H. The latency can therefore be derived from
the times of transfer of the job description message from
H to G, and the result message from G to H. If the
result of G is a stream of messages, the throughput can be
derived from the times of transfer of the constituent messages.

Lemma 4: QoE Log;, for each job j performed by any guest
G, can be derived from low level logs.
Proof: This follows directly from Definition 3. The QoE
provided to G is determined by the times when it made
a resource request, and the times when it received the
responses. The latency can therefore be derived from the
times of transfer of the resource request messages from
G to H, and the response messages from H to G. If the
input to G is a stream of messages, the throughput can be
derived from the times of transfer of the constituent messages.

Theorem 2: The high level logs can be derived offline by
aggregating low level logs.
Proof: The proof follows directly from Lemmas 1, 2, 3, and 4.

D. Low Level Auditing

Just like in the case of high level logs, the economical
realization of high level certificates is also difficult. Instead, we
propose to perform certification at the granularity of messages

6

transferred from the host to the guest, or vice versa. That is,
we wish to perform certification at the granularity of low level
logs. (Note that this is an abstraction necessary to discuss the
formal underpinings of providing accountability. Practically,
logging every exchanged message may prove intractable —
please see Section VIII for a discussion on practical consid-
erations).

Since the exact same certification has to be done for both
messages from the host to the guest, and vice versa, we can
view the problem as providing certification in an abstract
sender-receiver paradigm. The sender (receiver) can be either
the host (guest) or the guest (host). The requirements of such
a low level auditing system is formally defined in Section VI,
followed by an intuitive construction of a set of low level
auditing solution or primitives. Section VII then presents a
taxonomy of SoCs. For each SoC class, we apply the different
primitives to perform low level auditing. We also vary the
attack model that tries to sabotage the audit. The different
combinations result in systems that achieve high level auditing,
and consequently accountability, to different degrees.

VI. AUDITING MESSAGES IN A SENDER-RECEIVER
PARADIGM

A. The Problem

Consider two mutually distrusting nodes S and R connected
by a single link that is assumed to be non-faulty. .S (the sender)
performs some computation, and sends the result as a message
to R (the receiver). The message serves as an input to R,
who begins computing after receiving the message. Let us
consider a single message transmission. Let the sender send
message M SGg at time Tg. Let the receive get the message
MSGpR at time Tr. If the receiver did not get any message,
then MSGr = Tr = ¢, and if the sender did not send any
message, then M SGg = Ts = ¢.

The auditing system has to produce a certificate C, that
consists of (i) S¢, the certified sender, (ii) R¢, the certified
receiver, (iii) M SG¢, the certified message contents, and (iv)
Tc, the certified time of communication.

Definition 6: For the auditing system to be sound, it must
guarantee the following four properties:

1) Non-Repudiation: S0 = S AND Rc = R = The

actual sender and receiver are certified.

2) Integrity: MSGs = MSGr = MSGc = The
message was received and certified as sent.

3) Timeliness: |Ts — T¢| < 7 AND |Tg — T¢o| < 7,
where 7 is a predefined (small) positive constant = The
actual (within a small margin of error) time of transfer
is certified, and no undue delay is induced between the
sending and receipt.

4) Atomicity: Either ((MSGg = MSGr = MSG¢) #
o) N ((Ts =~ Tr = Tc) # ¢)) OR ((MSGs =
MSGr=MSGe = ¢) A (TS =Tr=T¢c = ¢)) The
message is either sent and received, and certified and
logged (and the corresponding times are approximately
the same) or not sent/received/certified and logged at all.

We derive these properties from non-repudiation research [33]
that essentially deals with providing certificates to the sender

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY DELHI. Downloaded on March 23,2020 at 09:15:37 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2970417, IEEE

Transactions on Dependable and Secure Computing

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

s HvH r s|E|==I-R

(a) TTP as a mail server (b) DuoMeter

s [m] R s [] =

(c) MonoMeter-S (c) MonoMeter-R

Fig. 4: Candidate solution: using a trusted third party (“M” in
the figures)

and receiver of a message that allow them to prove to an ad-
judicator that they sent and received the message respectively.

The rest of this section will focus on compiling a library
of primitives — solutions to the above defined problem. Sec-
tion VII will apply the different primitives to form the low
level auditing system in a heterogeneous SoC, and prove to
what degree the four high level certificates, and consequently
accountability, can be attained.

B. Solution 1: Trusted Third Party(TTP) providing a Mail
Service

Assume a meter node, M, that is trusted by all parties (see
Figure 4(a)). S sends the message MSG to M at time t,
requesting it to forward it to R. Aside from forwarding the
message, M produces a certificate C with So = 5, Re = R
(non-repudiation), M SG- = MSG (integrity), and T =t
(timeliness). C is essentially a cryptographic hash of (S¢, R¢,
MSGe, Te), made using a secret key known only to M, the
trusted third party. Thus, during an offline dispute, the TTP
organization can verify if the certificates are genuine.

Additionally, M produces C for every message that is sent
to it by .S, and also forwards the message to R. It does not
produce C for messages it did not receive. However, it is
possible that C (and the corresponding log) is discarded by
S or R while resolving a dispute offline. To counter this, we
propose to employ a cryptographic system whose state (crypto-
state) changes with every round, such as PRESENT [34].
In such systems, the cryptographic key changes in a certain
predefined way after each round of encryption. Consequently,
if the certificate of the k' message, C*, is discarded during
an offline dispute, this can be detected. It will not be possible
for any of the parties to read the (k + 1)** message or verify
C*+1 without processing CF.

It is difficult to employ this solution in SoCs where all
vendors distrust each other, because it requires M to have
direct (and reliable) links to both the sender and the receiver.
The TTP provides meter designs to the host and guest vendors
in the form of hard IPs. The latter embed the meters in their
designs, thereby, making it impossible for a meter to have
direct links to multiple parties.

C. Solution 2: Solution using Redundant Embedded Meters
“DuoMeter”

In the DuoMeter scheme, trusted third party (TTP) meters
are embedded at both S and R (see Figure 4(b)). S sends

the message M SGg intended for R to the TTP meter (Mg)
embedded in it at time Ts. Mg encrypts (S, R, MSGg,Ts)
using a secret key it shares with Mg, (receiver side trusted me-
ter), and sends the encrypted message to .S. Mg also produces
a certificate Cg, a hash of (S, R, MSGg,Ts) produced using
the same secret key. .S then sends the encrypted message to
R, who forwards it to Mp at time TR, claiming that it is a
message from S. The latter decrypts the message M SG g and
sends it to R, who consumes it. Mg also produces a certificate
Cg, a hash of (S, R, MSGRg,Tr).

Non-repudiation: When My decrypts the message, it verifies
that (i) the sender ID in the message matches the sender ID
claimed by R, and (ii) the receiver ID in the message matches
the ID of the node it is embedded in.

Integrity: The message sent from Mg to Mp (through S
and R) is accompanied by a checksum, which is essentially
Cg. If S or R tamper with the message after it is certified
by Mg, the verification of the checksum at Mp will fail.
However, it is not possible to identify whether .S or R or both
modified the message. This is similar to the last-link problem
encountered in accountability solutions for the Internet [35].
We term this attack as an irrational integrity attack. We use
the word “irrational” because S and R have no immediate gain
from performing such an attack [17]. S cannot hide a wrong
computation by it by modifying the message after the Cg was
produced because Cg was produced on the message given by
S to Mg. Similarly, modifying the message does not help R
evade a wrong computation. R has no way of knowing at the
time of communication (before it sends to Mp) whether the
input will cause it to compute wrongly since the message is
unreadable (encrypted). The only motivation for S and R to
perform such an attack is to bring down the performance of the
system as a whole through the penalties paid for recovering
from the attack.

Timeliness: Let Tog be the certified time of sending the
message, while T4 g be the actual time of sending. Similarly,
let T be the certified time of receiving the message, while
Tsr be the actual time of receiving. Now, a scenario where
(Tes < Tag) is advantageous to .S since this shortens the
certified duration of S’s computation. Similarly, a scenario
where (Tor > Tar) is advantageous to R since this shortens
the certified duration of R’s computation.

In the DuoMeter scheme, since S cannot modify the mes-
sage after it is certified by Mg, S is forced to complete
all its work before the Cg is produced. Since the message
is encrypted, it has to be decrypted by Mp before R can
use the message. Thus R is forced to begin its work only
after Cp is produced. Thus, neither S nor R can subvert the
timeliness property to their advantage. However, they may still
perform an irrational timeliness attack similar to the irrational
integrity attack. The only effect of this will be to bring down
the performance of the entire system. Now, since the message
received at My contains the time of sending Ts as well, My
can use this to check if any undue delay was induced by T,
i.e., if T —Ts > 7 (7 is a predefined constant). Thus, just like
the irrational integrity attack, an irrational timeliness attack
can be detected, but it is not possible to find out who had
inserted the delay (S or R).

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY DELHI. Downloaded on March 23,2020 at 09:15:37 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2970417, IEEE

Transactions on Dependable and Secure Computing

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Atomicity: It is possible that S or R drops the message after
the Cg is issued. This scenario can be detected by the round-
based crypto-system described in Section VI-B. All further
communication between S and R will fail if a message is
dropped. Thus, an irrational atomicity attack can be detected.
This attack is an irrational one as well — neither S nor R
serve to gain anything from doing this. And just like the other
two irrational attacks, the irrational atomicity attack can be
detected but it cannot be ascertained who the guilty party is.
An attack where both the log and message are discarded is also
countered through employing a round-based crypto-system as
described in Section VI-B.

Thus, the redundant metering solution is a sound auditing
system. The identities of the sender and the receiver, the
contents of the message, the time of sending and the time
of receiving can be accurately certified. Atomicity is also
guaranteed. All types of irrational attacks can be detected, but
the guilty party cannot be ascertained.

The two certificates Cg and Cp are in a sense redundant
since they certify the same features of the message transfer
(Ts = Tk, if timeliness is not violated). However, having the
certificates generated at both .S and R makes the storing of
the certificates along with the logs in SoCs easier.

1) Solution 3: Single Embedded Meter “MonoMeter”: In
this scheme, only a single embedded meter is employed. Let
us define MonoMeter-S, where the embedded meter is in the
sender S (Figure 4(c)). When S needs to send a message
MSGg to R, it sends it to the trusted meter M. Let the time
be Ts. M produces C by hashing (S, R, MSGgs,Ts). S then
sends the message to R.

MonoMeter-S is not a sound auditing system. C merely
certifies that M SGg was produced by S and ready to be
sent to R at Ts, and nothing more. The message may be
sent to a different recipient (violating non-repudiation), may
be modified (violating integrity), may be delayed (violating
timeliness), or may be dropped altogether (violating atomic-
ity).

In MonoMeter-R, the embedded meter is in the receiver R
(Figure 4(d)). When S needs to send a message MSGg, it
encrypts it using a secret key it shares with the trusted meter
embedded (M) in R. It computes a checksum as well. It
sends the encrypted message to R along with the checksum.
R sends these to M at Tg, which decrypts it to produce
MSGr, verifies the checksum and produces C by hashing
(S,R,MSGR,Tr). M then sends M SGR to R.

MonoMeter-R is not a sound auditing system. If the
integrity check (checksum verification) at M succeeds, C
merely certifies that M SGr was produced by S and ready to
be consumed by R at Tk (and not before), and nothing more.
The message may be delayed (violating timeliness), or may
be dropped altogether (violating atomicity). Non-repudiation is
guaranteed since if the sender or receiver identities are not as
claimed, the checksum verification, which is based on a secret
key shared between S and M (embedded in R), will fail. Note
that R cannot spoof messages or perform replay attacks if the
cryptosystem is a round-based one as proposed. Similarly, the
checksum verification also detects attacks on integrity.

E 3

(a) Basic Peer
Auditing

S -

(b) Constrained Peer
Auditing

Fig. 5: Candidate solution: Peer auditing schemes

Despite not providing a sound audit, we will see that
for certain attack models (see Sections VII-C2,VII-D2, and
VII-E1), a single embedded meter can be quite useful.

D. Solution 4: Peer Based Auditing

A TTP-less auditing solution is possible by following a peer
auditing approach. If an assumption can be made that no more
than k peers are malicious, then having 2k + 1 peers providing
certificates is sufficient for a sender (or receiver) to prove its
claim.

1) BasicPeer: Basic Peer Auditing: In the basic peer au-
diting scheme, the links between nodes are trustworthy. Fig-
ure 5(a) illustrates this case. In this example, the maximum
number of malicious intermediaries is assumed to be one. A
malicious intermediary is one who may conspire with S or
with R or be arbitrarily malicious.

S sends the message M SGg, intended for R, to 2k + 1
(=3 in this example) intermediaries. Each of the intermediaries
functions like the TTP meter in the mail server primitive
(Section VI-B). The intermediaries forward the message to
R as MSGpg , and also produce certificates. Under the k
maximum adversary assumption, a majority of the certifi-
cates attest that So = S, Rc = R (non-repudiation), and
MSGe = MSGgs = MSGR (integrity).

Regarding timeliness, during an offline dispute, S chooses
k + 1 certificates with the earliest T's. Among these, the
certificate with the latest T's is chosen. Similarly, R chooses
k+1 certificates with the latest T’r, and the earliest one among
these is chosen. Such a protocol guarantees timeliness. S can
be victimized by the k£ malicious intermediaries if the latter
issue certificates that say the T's was much later than what
it actually was (T¢s >> T45). But since the k + 1 benign
intermediaries provide benign certificates, S is unaffected by
any malice. On the other hand, S may choose to conspire
with the & malicious intermediaries to achieve a T much
earlier than what it actually was (Tos << Tag). But since
the protocol utilizes the latest T's among S’s produced k + 1
certificates, the £ malicious certificates are rendered harmless.
The timeliness guarantee of Tr can also be reasoned in a
similar vein.

Atomicity is also guaranteed as the majority of the inter-
mediaries are benign, and they always issue a certificate for
every message they receive, and forward every message they
certify. Hence, BasicPeer is a sound auditing scheme.

2) ConstrainedPeer: Constrained Peer Auditing: In 3PIP-
containing SoCs, the trustworthiness of the links cannot be
guaranteed. The links may be designed by S or R giving it
the upper hand. Figure 5(b) illustrates the scenario when S

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY DELHI. Downloaded on March 23,2020 at 09:15:37 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2970417, IEEE

Transactions on Dependable and Secure Computing

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

controls the links between entities. This situation is similar
to having an embedded meter in .S, that is, the MonoMeter-S
scenario (Section VI-C1), under the & maximum adversary
assumption. The trustworthy majority of the certificates
attest that the certified message was produced by S and
ready for sending to R at the certified time of sending,
and nothing more. Similarly, if the links are controlled
by R instead, then the situation is similar to having an
embedded meter in R, that is, the MonoMeter-R scenario
(Section VI-C1), under the £ maximum adversary assumption.

This brings us to the end of the discussion on alternatives to
auditing messages in a sender-receiver paradigm. Our library
of auditing primitives thus consists of: (1) TTP-as-a-mail-
server, (2) DuoMeter, (3) MonoMeter, (4) BasicPeer, (5)
ConstrainedPeer. Let us now use these primitives as low level
auditing systems in 3PIP containing SoCs.

VII. ACCOUNTABILITY IN 3PIP-CONTAINING SOCS

As discussed in Section IV, high-level logs are sufficient to
provide accountability in SoCs if the logs can be authenticated
by an auditing system. In this section, we will apply the low-
level auditing primitives compiled in Section VI to different
types of SoCs, vary the attack model of the auditing system’s
saboteur, and prove to what degree the high-level certificates
— IpCert, OpCert, QoSCert, and QoECert — can be
generated.

A. Preliminaries
Classification of 3PIP-containing SoCs

Figure 6 depicts our proposed classification. The first class
of SoCs are those with hosts trusted by the guests. The second
class of SoCs are those where the host is untrusted by the
guests, and the NoC is designed by the host. The third class of
SoCs are those where the NoC is designed by a trusted guest,
and the fourth class are those where the NoC is designed by
an untrusted guest. Guests (other than the trusted NoC vendor
in the third class) are untrusted by the host in all SoC classes.
We present a range of solutions for each class of SoCs — it is
up to the designers of the SoC to decide which solution is the
most apt with respect to the particular scenario and budget.

Taxonomy of Attacks on the Auditing System

A party may choose to sabotage the auditing system for
two reasons: (i) to evade from being implicated for its own
functional or timing error, or (ii) to implicate another party,
even though its own performance is satisfactory. We call the
second type of attacks ‘“business related irrational attacks”
(BRIAs), because the attacking party is doing so merely to
destroy the credibility of the other. A BRIA is not done to
evade being held responsible for one’s own mistake.

Implications of a Sound Audit

Theorem 3: Authentic high level logs of all jobs performed
by a given guest G can be obtained by capturing low level

logs at the interface between H and G, as well as ensuring a
sound audit.

Proof: Theorem 2 states that high level logs can be obtained
from low level logs.

Next, we prove the authenticity of the high level logs. For
each job j performed by G,

(i) the integrity, non-repudiation, and atomicity properties
are necessary and sufficient to certify the content of every
message exchanged by H and G for a job j done by the
latter, and hence to provide IpCert; and OpCert;,

(ii) the timeliness, non-repudiation, and atomicity properties
are necessary and sufficient to certify the times of transfer of
every message exchanged by H and G for a job j done by
the latter, and hence to provide QoSCert; and QoECert;.

Thus, authentic high level logs are obtained.

Theorem 4: If low level logs are collected at every on-chip
interface between mutually untrusting parties, and a sound low
level audit is ensured, then accountability can be provided.
Proof:

o By Definition 2, responsibility is assigned at the gran-
ularity of organizations. As explained in Section IV-A,
two guests cannot directly communicate with each other.
The communication must pass through the host. Thus, all
inter-organizational (in terms of design) boundaries on a
chip are host-guest interfaces. The host and all the guest
vendors do not trust each other (this is the worst case
— complete mistrust). Thus, every host-guest interface
involves two mutually untrusting parties.

o By Theorem 3, low level logs at an interface between
and a G, as well as a sound audit, ensures authentic high
level logs of all jobs performed by G.

o Low level logging, and a corresponding sound audit,
at every interface between mutually untrusting parties,
implies authentic high level logs of all jobs performed
by every guest.

o By Theorem 1, this is sufficient to provide accountability
in the SoC.

Figure 3 pictorially depicts the overview of the solution,
showing how low level logging at every host-guest interface,
accompanied by a sound low level audit, gives authentic high
level logs, and hence accountability.

We will now describe accountability solutions that vary in
three aspects: (i) the class of SoC, (ii) the low-level auditing
primitive applied, and (iii) the attack model.

B. Auditing in SoCs with Trusted Hosts

The first class of SoCs can be trivially audited as the
host itself is a trusted entity. An example is illustrated in
Figure 7(a). Note that the noc-vendor could be an untrusted
guest or the host itself. In this class, no two guests (mutually
untrusting parties) directly communicate with each other. All
communication must pass through the trusted host. Thus,
this is the “TTP as a mail server” primitive. The host can
record the content of all messages to a guest (IpLog = Ip)
and from a guest (OpLog = Op). It can record the times
a job was issued to a guest and the time the result was

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY DELHI. Downloaded on March 23,2020 at 09:15:37 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2970417, IEEE

Transactions on Dependable and Secure Computing

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

10

SOC

Host is Trusted

SoC
Classification

Host is Untrusted

/ NOC Designed by Host

NOC Designed by Guest

Guest NOC is Trusted Untrusted
Embedded Embedded Embedded Using other = Embedded No Embedded No
S | metersinhost meterin meter in guests as meters in embedded meters embedded
SE and guests host only guests only peer auditors guests meters in meters
5 & guests
o
03 In In In Multiple
O NlIs, guests host guests NoCs as
t nly only peer,auditors
S 1) Can guarantee all 4: 1) Can guarantee all 4: 1) Can guarantee QoECert 1) Can guarantee only
=R QoSCert, QoECert, QoSCert, QoECert, unconditionally QoSCert
5 E IpCert, OpCert IpCert, OpCert 2) Can guarantee QoSCert, 2) Cannot detect
g 5 |2) Irrational attacks not 2) Can detect irrational IpCert, OpCert under irrational attacks
S 2| possible attacks assumption that BRIAs ;=3 Trmmmnesmnesonenne oy |
£ 3) Cannot ascertain the will not occur i % subject to majority of the |
§ inducer of the irrational 3) Cannot detect irrational; Peers being benign; :
attack attacks '5% guest and NOC audited as

Fig. 6: Classification

[Trusted Vendor
B Untrusted Host

O O
a
0 O
a a

(a) Trusted Host

% Untrusted
Guests

b) Host NoC; Untrusted

| |

Qs

-\

AN
a

(c) Guest NoC; Trusted (d) Guest NoC; Untrusted

Single NoC

Fig. 7: Examples of Different SoC Classes

Multiple NoCs

returned (QoSLog = QoS5). For every resource request by the
guest, the host can record the times of request and response
(QoE Log QoF). Thus, accountability is provided, by
Theorem 1.

C. Auditing in SoCs with the NoC Designed by an Untrusted
Host

We deal with the class of SoCs with an untrusted host-
designed NoC in this section. Figure 7(b) depicts an example.
Three solutions are possible, with different constraints and
benefits. We explain the solutions in great detail, as the
intuitions gained here are useful in understanding the solutions
for other classes of SoCs.

1) Redundant Metering: Embedded Meters at Both the Host
and the Guests: The DuoMeter primitive is employed at every
H-G interface, VG € G, as shown in Figure 8. Meters
are embedded in both H and G. The DuoMeter primitive
provides a sound audit, as discussed in Section VI-C. Thus,
by Theorem 4, accountability is provided.

(e) Guest NoC; Untrusted;

one entity

of 3PIP-containing SoCs and auditing solutions for each class

Fig. 8: Redundant Metering in SoCs

Game-Theoretic Reasoning about an Auditing Solution

Auditing solutions can be represented as games, and solving
these games can help us reason about the solutions. The
game-theoretic approach essentially helps us prove whether the
application of an auditing primitive provides a sound audit.
Though we have already proven that DuoMeter provides a
sound audit, we employ the game-theoretic approach here to
elucidate the latter’s functioning. This discussion will aid the
proving of more complex scenarios. We will limit our game-
theoretic discussion to violations of the timeliness property,
where delays are introduced. Extending the reasoning to other
misbehaviors is straightforward.

The auditing solution certifies communication between two
mutually untrusting parties — the host and the guest. These are
the two players of the game. The two players may choose to
either induce a delay (D), or not induce a delay (/N D). These
are the two strategies that the players may adopt. Thus, with
two players, each with two strategy options, there are four
possible outcomes. For each outcome, each player receives a
certain pay-off (derives a certain advantage).

The pay-off captures the real world implications: (i) if it can
be proven that a host has provided bad QoF, then it must be
penalized. This is captured by a penalty of «. The guest is not
penalized, as it has not committed any fault. (ii) Similarly, if it
can be proven that a host has provided the expected QoFE, but
the guest has provided a poor QoS, then the guest is penalized
by /. The host is not penalized. (iii) If any party — host or
guest — invests in delay-inducing circuitry, this has an adverse

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY DELHI. Downloaded on March 23,2020 at 09:15:37 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2970417, IEEE

Transactions on Dependable and Secure Computing

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

" : Who can misbehave :
1% : What does the misbehavior affect;

"H | Host Host and/or Guest | Guest
#| QoE Neither QOE nor QoS QoS
(a) Redundant metering
- Guest

K | Host Host and/or Guest
| QoE QoS

(b) Single meter at the host

X Host and/or Guest
QoE

(c) Single meter at the guest

Guest
QoS

o
%
e

Fig. 9: Effect of misbehavior in the different schemes

effect on its design. It reduces the area budget, increases the
design cost, and increases the power rating. This effect on the
vendor is captured by a penalty of . Table I summarizes the
rules that govern the payoffs for the host and the guest.

A player seeks to play that strategy that maximizes her
own pay-off. An acceptable auditing solution is one where
all players get the maximum pay-off by playing a strategy
of not delay (N D). This would ensure that no undue delays
affect the SoC, and every message exchange, both sending
and receiving, is timestamped accurately. In other words, the
timeliness property is ensured.

Each auditing solution in our formulation is represented by
four games, which correspond to the ideal QoS and QoE being
good or bad (good QoS refers to QoS satisfying QoSCond,
bad QoS otherwise). If it can be proven that the dominating
strategy, for both the players, in all four games, is to not
induce a delay (N D), then the given auditing solution provides
the timeliness property. If, similarly, the other properties can
be proven, then a sound audit can be provided. As already
proven in Theorem 4, a sound audit implies accountability.

We discuss the games for only a representative set of
the proposed auditing solutions, owing to space constraints.
It is possible to extend the reasoning to other solutions as well.

TABLE I: Payoff rules

11

The figure also depicts, for each communication path, who
might induce a delay, and what the delay affects. In the path
between H and My, only H may induce a delay. It will
not do so however because such a delay worsens the QoE,
and is therefore detrimental to H itself. Similarly, only G can
induce a delay in the path between itself and Mg, and such
a delay worsens the QoS. This is detrimental to G itself. The
region between the two meters is interesting because any delay
induced here can be detected by the meters, but the identity
of the inducer cannot be ascertained. In such a scenario, since
the chip’s overall functionality suffers a delay, both the host
and the guest suffer a penalty. Aside from these penalties, an
additional penalty is levied if an entity has invested in delay-
inducing circuitry — this models the strain on its area and
power budgets. The payoff matrices for the host and the guest
for all the four games are given in Table II.

Let us look at the first game: “good QoE - good QoS”.
Regardless of what G chooses to do, H gets a maximum pay-
off by playing a strategy of N D. This is termed as a “strongly
dominating strategy”, in game-theory parlance. Similarly, G
has a strongly dominating strategy of N D. Thus, as far as the
first game is concerned, DuoMeter is an acceptable auditing
solution. Likewise, the other three games also have a strongly
dominating strategy of ND for both H and G. Thus, since
H and G stand to suffer if they induce a delay, the timeliness
property is provided by the DuoMeter strategy.

Similar games can be constructed to prove the other prop-
erties as well. Since a sound audit can be provided, account-
ability can be provided (Theorem 4).

2) Single Meter Embedded at the Host: Let us consider
having a single embedded meter My at H. When H sends
a job description to GG, or responds to a resource request, the
embedded meter is at the sender’s side — the MonoMeter-S
scheme. When G sends a job result to H, or makes a resource
request, the embedded meter is at the receiver’s side — the
MonoMeter-R scheme. As explained in Section VI-C1, the
integrity guarantee cannot be provided with a single embedded
meter, since the certification is done only on one end. Thus,
IpCert and OpCert cannot be unconditionally guaranteed. The
time at which G started working on the job, and the time
at which the job result was ready, cannot be audited fairly
since the meter is embedded at H. Therefore, QoSCert cannot
be unconditionally guaranteed. However, the time at which
H started working on the resource request, and the time at
which the resource response was ready, can be reliably audited.
Therefore, QoECert can be guaranteed.

Though the single meter scheme seems deficient, we believe
that it too is a useful design point in the space of auditing
solutions. To understand this, we need to look closer at why
the parties may misbehave (see Figure 9(b)). In the path

Default: 0 for both Host and Guest

Bad QoE: —« for Host

Bad QoS, when the QoE is good: —f for Guest

Penalty for spending on delay circuitry: —~ for delaying entity

between H and My, only H may misbehave. It will not do
so because this would make its own computation wrong or
delayed. In the path between My and G, both H and G may

where o, [3, «y are positive numbers

misbehave. Since the meter is at the host, it has the upper

Figure 9(a) depicts the different communication paths (thick
black arrows) that occur under the redundant metering scheme.

hand. If H or G modifies or drops a message, it is construed
as a miscomputation on G’s part. If H or GG delays a message,
the measured QoS is worsened. Thus, G has no incentive to
misbehave.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY DELHI. Downloaded on March 23,2020 at 09:15:37 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2970417, IEEE

Transactions on Dependable and Secure Computing

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

12

TABLE II: Payoff matrix for the game “Redundant metering”

Good QoS Bad QoS
g Guest Guest
o2 ND D - ND D
'§ é ND 0,0 0,—v é ND 0,—f3 0,—8 — v
O D —7.0 —.=7 D —7.—B —.=B—="
i Guest Guest
&l ND D - ND D
3 :o ND —a,0 —a,— é ND —a,0 —a,—
M D —a — 7,0 —a — v,—Y D —a— 7,0 —a — v,—

Now why would H modify, drop or delay messages in the
channel between My and G? Firstly, it may choose to do
so if this act allows it to deflect blame for its own wrong
or slow functioning to G. By Axioms 1 and 3, G can be
held responsible only if Op does not satisfy OpCondg and
Ip satisfies IpCondg, or QoS does not satisfy QoSCondg
and QoF satisfies QoECondg. For messages the host sends,
the content and the time at which the message was ready,
are reliably audited (MonoMeter-S scheme). Modifying or
delaying sent messages after auditing does not improve IpLog
or QoELog. It merely worsens OpLog or QoS Log. This is
not beneficial to H. For messages H receives, modifying them
implies message corruption as the contents of the message are
encrypted. Here again, modifying or delaying packets does
not improve IpLog or QoFE Log, and so carries no benefit
to H. The second scenario when H may choose to modify,
drop or delay messages is when it is performing its functions
correctly. The host has nothing to gain by performing such an
attack. This is a business related irrational attack (BRIA), as
defined in Section VII-A, where the host just wants to damage
the guest vendor’s credibility. We believe that such attacks are
not very reasonable since apart from giving no immediate gain
to H, the performance of the host network and the system
performance as a whole are brought down.

Thus, under this assumption that BRIAs will not occur,
having a single meter embedded at the host provides
trustworthy IpCert, OpCert and QoSCert as well, in addition
to QoECert. Thus, by Theorem 1, accountability is provided.

Game-Theoretic Reasoning

The above arguments can be formally analyzed through a
game-theoretic formulation. Figure 9(b) shows two regions of
operation when the meter is embedded in H. The first region
is where H is working. Here, only H may induce a delay,
but it will not do it because this makes the QoE worse. The
second region is more interesting and will form the focus of
the game. Here, the guest is working and the two parties are
communicating. Here, both H and G may induce delays. A
delay makes the measured QoS worse (since the meter is on
the host’s side, the communication gets counted towards QoS
as well). The payoff rules are again as given in Table L.

The game matrices for this scenario are given in Table III.
In all the four games, the dominating strategy for both the host
and the guest is not delay (N D). Either party inducing a delay
adversely effects both parties (with the guest suffering more
in many cases). Thus, single metering at the host provides
the timeliness property. Similar games can be constructed to

reason about the other properties as well. Thus, a sound
audit can be provided, and consequently accountability can
be provided, by Theorem 4.

Thus, the seemingly non-intuitive solution of having a single
meter at each interface, provides accountability. Though the
solution, at first sight, appears to unfairly favor the host, the
formal analysis conclusively proves that this is indeed a valid
accountability solution. The implications of this are large. The
amount of chip area spent on meters directly comes down
by half. We can expect a similar reduction in the power
consumption as well. This can be a great enabler in adopting
the solution.

We can also see how BRIA is captured in this framework.
In the “good QoE - good QoS” game, H may induce a delay
and make it appear that G provided bad QoS. G thus incurs a
penalty of 5. However, H itself incurs a penalty of ~ for
investing in delay circuitry. Thus, rational behavior of H,
which requires that it maximizes its own pay-off, leads to it
not attempting such an attack.

The strength of the two auditing solutions: redundant me-
tering and single meter at the host, must also be noted. The
relative values of «, (3, 7, and § do not matter. As long as the
four are positive values, both these solutions provide a sound
audit.

3) Single Meter Embedded at the Guest: Having a single
meter M embedded at G is another option. When H sends
a job to G, the latter can begin working on the job only after
it gets the message audited at M. Thus, the job description
and the time at which G starts working on the job are reliably
audited. Once the guest has finished the job, it gets the results
audited at Mq. Thus, the results and the time of completion
of the job are reliably audited. Since the start and end times of
the job execution are reliably audited, QoSCert can be reliably
provided.

The same cannot be said for the other three certificates.
Consider the case when QoS does not satisfy QoSCondg and
QoF satisfies QoECondg. This scenario warrants G being
held responsible (Axiom 3). However, since the meter is em-
bedded at G, it may induce delays that result in the QoF Log
not satisfying QoECondg (see Figure 9(c)). This allows the
guest to escape punitive action for underperforming. Since a
party (G) stands to directly benefit from misbehaving, this
auditing solution cannot provide a sound audit (Definition 6),
and consequently accountability (Theorem 4). The same line
of reasoning can be applied for G modifying or dropping
messages as well.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY DELHI. Downloaded on March 23,2020 at 09:15:37 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2970417, IEEE

Transactions on Dependable and Secure Computing

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

13

TABLE III: Payoff matrix for the game “single meter at the host”

Good QoS Bad QoS
g Guest Guest
o2 ND D . ND D
3 é ND 0,0 0,—8 — v é ND 0, —f 0,—8 — v
3 D [7B [—7F—7 D [7B [—7B-~
m Guest Guest
S ND D - ND D
3 é ND —a,0 —a,— é ND —a,0 —a,—
M D —a — 7,0 —a — v,—Y D —a— 7,0 —a — v,—

TABLE IV: Payoff matrix for the game “Single meter at the guest”

Good QoS Bad QoS
) Guest Guest
o ND D - ND D
2| [ND 0,0 —a,— g [ND 0,—f —a,—
3 “| b —a—70] —a-3%—~]| D —a—70 [—a—9,—
m Guest Guest
Sl ND D ~ ND D
2 é [ND —a,0 —o,—7 & [ND —a,0 —a, —7y
2" D[a0 a-77]"| D [~a—70] a7
Game-Theoretic Reasoning i TTP meter
. . il Untrusted Host !
The g.ame—theoretl.c formulation helps us tg formally reason "I Untrusted Guests |
about this §cheme. F1gur§ 9(c) shows two regions of opgratlon. (a) Base Scenario
The first is where H is working and the two entities are
communicating. Here, both H and G may induce delays. The E H
delay makes the measured QoE worse (since the meter is L L
on the guest side, the corpmunlcatlon gets c.ounted towards a s (c) Meters at Host Only
QoE as well). The game will focus on this region. The second
.. . . . (b) Meters at Host, Guests
region is where G is working. Here, only the guest may induce and Nis

a delay, but it will not do so because it makes the QoS worse.
The payoff rules are summarized in Table 1.

The game matrices for this scenario are given in Table IV.
The dominant strategy for H, in all the four games, is not
delay (N D). If the host plays N D, then the guest maximizes
its payoff by playing not delay (ND) in games 1, 3 and 4
— “good QoE - good QoS”, “bad QoE - good QoS”, “bad
QoE - bad QoS”. In game 2 — “good QOE - bad QoS” —
however, the guest’s choice of strategy depends on the relative
values of the penalties for poor QoE () and spending on delay
circuitry (). If 5 > ~, that is, if the gain through avoiding the
penalty for bad QoS outweighs the loss of investing in delay
circuitry, then the guest maximizes its payoff by playing delay
(D). Since an entity (G) benefits from maliciously delaying
under a particular scenario, single metering at the guest cannot
provide the timeliness property, and consequently, a sound
audit (Definition 6).

4) No Embedded Meters: The ConstrainedPeer primitive
can be used in this scenario. The constrained solution needs
to be employed as the host controls all the links. The inter-
mediaries that provide certification are the other guests in the
SoC. If the assumption can be made that a maximum of k
guests can be malicious, then all communication between the
host and the guest is routed through at least 2k + 1 other
guests. These 2k + 1 guests provide the certificates. It was
reasoned in Section VI-D2 that ConstrainedPeer achieves what
MonoMeter does, under the k-maximum adversary assump-
tion. Only the host has direct access to the certifying entities,
that is, the other guests. Thus, this can be analyzed as a single
embedded meter scheme, with the meter embedded at the host

(d) Meters at Guests Only

He Se e

(e) Meters at NiIs Only

Fig. 10: Auditing solutions for SoCs with untrusted guest-NoC

(see Section VII-C2). Consequently, accountability is provided
under the assumption that BRIAs will not occur.

D. Auditing in SoCs with a Guest-NoC Trusted by the Host
and All Other Guests

An example is illustrated in Figure 7(c). Two solutions are
possible.

1) Embedded Meters in the Guests: The DuoMeter primi-
tive can be achieved at every interface between two mutually
distrusting parties by embedding TTP meters in the guest
components. DuoMeter provides a sound audit, and so
accountability can be provided.

2) No Embedded Meters in the Guests: This scenario is
similar to having a single meter embedded in the host, that
is the MonoMeter primitive, as discussed in Section VII-C2.
Thus, accountability can be provided, under the assumption
that BRIAs will not occur.

E. Auditing in SoCs with a Guest-NoC Untrusted by the Host
and All Other Guests

1) Embedded Meters in the Host, Guests and Network
Interfaces: Figure 10(a) shows an example of an SoC with

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY DELHI. Downloaded on March 23,2020 at 09:15:37 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2970417, IEEE

Transactions on Dependable and Secure Computing

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

an untrusted guest-NoC. Any communication between the
mutually untrusting host and guest involves a third untrusted
party — the NoC. A multitude of auditing schemes are possible
— a few important designs will be discussed here.

One solution is to employ the DuoMeter primitive at every
interface between untrusting parties. Figure 10(b) depicts
the example SoC under this scheme. Accountability, of all
components including the guest NoC, is provided.

Another solution is to embed meters in host cores only, as
shown in Figure 10(c), with a symmetric key cryptosystem set
up between the embedded meter and the guest. This resembles
the scenario described in Section VII-C2, with the NoC’s
working also counting towards the guest’s audit. Both the guest
and the NoC are penalized for any miscomputation, under-
performance or malice on the part of either the guest or the
NoC. Thus, under the assumption that BRIAs will not occur,
accountability is provided, with the NoC and the guest being
audited as a single entity.

Having meters embedded only in the guests, as shown
in Figure 10(d), can provide only a reliable QoSCert. The
situation is similar to that described in Section VII-C3. Em-
bedding meters only in the network interfaces, as shown in
Figure 10(e), does not achieve any facet of auditing. Neither
the host’s working nor the guest’s working can be reliably
audited. The NoC’s working cannot be audited either.

2) No Embedded Meters: Without embedded meters, no
auditing of any degree is possible unless multiple NoCs
are available, each provided by a different vendor (see
Figure 7(e)). The ConstrainedPeer primitive may then be
applied. The assumption now is that at most k& malicious
NoCs are present. Now messages are sent over 2k + 1 NoCs
such that the minimum of k + 1 benign NoCs provide the
certificates. Since the host has direct access to the NoCs, this
scheme is similar to the scenario discussed in Section VII-D2,
under the k-maximum adversary assumption. Accountability
is provided under the assumption that BRIAs will not occur.

Figure 6 summarizes the auditing solution space. For each
type of SoC, multiple solutions are possible, that achieve
auditing to different degrees, and entail different costs.

VIII. PRACTICAL CONSIDERATIONS

The focus of this paper is to propose a formal approach
to construct an accountability solution and to reason about
its viability. However, from a practical standpoint, it is also
important that the accountability solution be efficiently imple-
mented — in terms of performance, power, and area. Such a
practical implementation has been discussed by Kalayappan
et al. [14], whose solution falls in the DuoMeter category,
that was discussed in Section VII-C1. The paper [14] also
demonstrates the feasibility of their approach using example
bugs from the published errata documents of some popular
commercial SoCs.

Auditing
Lightweight cryptographic modules are used in the design of
the TTP meters. This ensures that the overhead of the auditing

14
Data Bus X X]
1 1 :
A Al Al @
~ [}
IP-A IP-B IP-C c g £
Debug X x X : F o
Configuration Bus_ | } i i 9 %
-t [E H
Debug Bus
SoC Boundary

Fig. 11: Design for Debug Architecture in SoCs

infrastructure is minimal: 0.49% in terms of performance,
0.194% in terms of area, and 0.99uW in terms of power.

Logging

Overview of Design-for-Debug Architectures: For logging,
already existent design-for-debug (DfD) structures [36][37]
may be re-purposed. Figure 11 illustrates the DfD architecture
of an SoC. The DfD architecture primarily serves to increase
visibility into the inner workings of the chip during the stage
of post-silicon validation, that is, the validation of the chip
before it is commissioned. When the chip under test does not
behave as per the specifications, the test engineers are expected
to localize the source of the error. This is extremely hard to do
given only the external input and output pins of a chip — this is
known as the “limited observability problem” [38]. The DfD
hardware serves to give the test engineer access to the interior
signals of the chip, thus enabling the tracing of the source of
the bug. This is analogous to inserting print statements within a
software program while debugging it. The debug configuration
bus is used to configure which inner signals in the chip are to
be captured, and under what conditions. The captured signals,
called the debug trace, is sent off-chip via the trace port.
The test engineers study this trace to root-cause the chip’s
erroneous behavior.

In certain scenarios, the volume of the trace generated may
be too large resulting in slowing down of the chip. This
slows down the validation activity. To overcome this, the
DfD architecture typically provides various techniques [38] to
reduce the trace volume such as spatial summarization [39],
temporal summarization, and fingerprinting, to name a few.
The choice of technique is context-dependent — the nature of
the module under observation and that of the bug being studied
determine the choice. Vermeulen et al. [26] have demonstrated
that such additional logic results in a mere 0.2% overhead in
terms of area.

Re-purposing the DfD Architecture for Accountability: Af-
ter the chip is commissioned, the DfD hardware is traditionally
unused. We propose to re-purpose this hardware to collect the
logs required for accountability. For every message transferred
between the host and the guest, a duly summarized (using one
of the aforementioned summarization techniques) message is
saved via the trace port, along with the certificate provided by
the TTP meter. In case of the top-level host, that is, the System
Integrator, the logs are stored in an off-chip disk. At all other
levels, the logs are handed over to the host at the immediate

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY DELHI. Downloaded on March 23,2020 at 09:15:37 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2970417, IEEE

Transactions on Dependable and Secure Computing

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

higher level. In case of a dispute in the field, the trusted third
party arbitrates it using the stored certified logs. The logs are
analyzed to localize the root cause of the chip’s erroneous
behavior to one particular on-chip module. The corresponding
vendor is then held accountable. Note that the cryptographic
measures set in place prevent the tampering of logs, as well
as the spurious addition or deletion logs.

Re-purposing of DfD hardware for other purposes after
commissioning is a popular area of research [40]. Particu-
larly, researchers are actively proposing the use of vestigial
DfD hardware to implement security policies in the face of
untrusted third party IPs [41].

IX. CONCLUSION

This work presents a thorough formal treatment of the
notion of accountability and the space of accountability so-
lutions. Based on the principle that authentic low level logs
can achieve accountability [14], we first proposed an array of
low level auditing primitives. We then proposed a classification
of modern SoCs that demand different approaches to account-
ability, and may be susceptible to different attack models. We
presented an exhaustive comparison of the effects of applying
the different primitives to the different SoC models, under the
threat of different attack models. We also proposed a formal
game-theoretic methodology to reason about an accountability
solution. A formal proof of a solution is essential to convince
the concerned parties to adopt it. The formal approach helped
us to prove the viability of the most generic solution that
makes no assumptions regarding the SoC or the attack model.
The formal approach also helped prove the viability of another
solution, one that is quite non-intuitive (single meter at host),
and highly efficient.

REFERENCES

[1] “The athena group,” http://www.athena-group.com/.

[2] “Invia,” https://www.invia.fr/.

[3] “Synopsys symmetric cryptographic engines,”
synopsys.com/designware-ip/security-ip/cryptography-ip/
symmetric-cryptographic-engines.html.

[4] “Intel custom foundry,” https://www.intel.com/content/www/us/en/
foundry/overview.html.

[5] J. Villasenor and M. Tehranipoor, “Chop shop electronics,” IEEE Spec-
trum, vol. 50, no. 10, pp. 41-45, 2013.

[6] A. Vorg, M. Radetzki, and W. Rosenstiel, “Measurement of ip qualifi-
cation costs and benefits,” in DATE, 2004.

[71 L. Wang and H. Luo, “Automated ip quality qualification for efficient
system-on-chip design,” in ICEPT-HDP, 2012.

[8] D. D. Gajski, A. C.-H. Wu, V. Chaiyakul, S. Mori, T. Nukiyama,
and P. Bricaud, “Embedded tutorial: essential issues for ip reuse,” in
ASPDAC, 2000.

[9] D. Karlsson, P. Eles, and Z. Peng, “Formal verification of component-

based designs,” Design Automation for Embedded Systems, 2007.

H. Bouaziz, S. Chouali, A. Hammad, and H. Mountassir, “Sysml blocks

adaptation,” in Formal Methods and Software Engineering, 2015.

S. Adee, “The hunt for the kill switch,” iEEE SpEctrum, 2008.

X. Zhang and M. Tehranipoor, “Case study: Detecting hardware trojans

in third-party digital ip cores,” in HOST, 2011.

K. Xiao, D. Forte, Y. Jin, R. Karri, S. Bhunia, and M. Tehranipoor,

“Hardware trojans: Lessons learned after one decade of research,” ACM

TODAES, 2016.

R. Kalayappan and S. R. Sarangi, “Providing accountability in hetero-

geneous systems-on-chip,” ACM Transactions on Embedded Computing

Systems (TECS), vol. 17, no. 5, p. 83, 2018.

“Trusted computing group.” [Online].

trustedcomputinggroup.org/

https://www.

[10]

(11]
[12]

[13]
[14]
Available:

[15] https://

[16]

(17]
[18]
[19]
[20]

[21]

[22]

(23]

[24]
[25]
[26]
[27]
(28]

[29]

(30]

[31]

(32]

[33]

[34]

(35]
[36]
[37]
[38]

(39]

[40]

[41]

15
“Siidtech rolls out silicon fingerprinting for chip
tracing, fraud fighting,” https://www.eetimes.com/

siidtech-rolls-out-silicon- fingerprinting- for- chip- tracing-fraud- fighting/
#.

A. Kupcu, “Incentivized outsourced computation resistant to malicious
contractors,” IEEE TDSC, 2017.

J. Graf, “Trust games: How game theory can guide the development of
hardware trojan detection methods,” in HOST, 2016.

S. Roy, C. Ellis, S. Shiva, D. Dasgupta, V. Shandilya, and Q. Wu, “A
survey of game theory as applied to network security,” in HICSS, 2010.
R. Kalayappan and S. R. Sarangi, “A survey of checker architectures,”
ACM CSUR, 2013.

L. Spainhower and T. A. Gregg, “Ibm s/390 parallel enterprise server
g5 fault tolerance: A historical perspective,” IBM Journal of Research
and Development, 1999.

T. M. Austin, “Diva: A reliable substrate for deep submicron microar-
chitecture design,” in MICRO, 1999.

C. Liu, J. Rajendran, C. Yang, and R. Karri, “Shielding heterogeneous
mpsocs from untrustworthy 3pips through security-driven task schedul-
ing,” IEEE TETC, 2014.

J. Rajendran, H. Zhang, O. Sinanoglu, and R. Karri, “High-level
synthesis for security and trust,” in JOLTS, 2013.

M. Abramovici and P. Bradley, “Integrated circuit security: New threats
and solutions,” in CSIIRW, 2009.

K. Goossens, B. Vermeulen, R. Van Steeden, and M. Bennebroek,
“Transaction-based communication-centric debug,” in NOCS, 2007.

B. Vermeulen, “Functional debug techniques for embedded systems,”
IEEE Design & Test of Computers, 2008.

R. Kalayappan and S. R. Sarangi, “Secx: A framework for collecting
runtime statistics for socs with multiple accelerators,” in ISVLSI, 2015.
G. E. Suh and S. Devadas, “Physical unclonable functions for device
authentication and secret key generation,” in 2007 44th ACM/IEEE
Design Automation Conference. IEEE, 2007, pp. 9-14.

S. Amir, B. Shakya, D. Forte, M. Tehranipoor, and S. Bhunia, “Compara-
tive analysis of hardware obfuscation for ip protection,” in Proceedings
of the on Great Lakes Symposium on VLSI 2017. ACM, 2017, pp.
363-368.

Y. Liu, C. Bao, Y. Xie, and A. Srivastava, “Introducing tfue: The trusted
foundry and untrusted employee model in ic supply chain security,” in
2017 IEEE International Symposium on Circuits and Systems (ISCAS).
IEEE, 2017, pp. 1-4.

K. Vaidyanathan, B. P. Das, E. Sumbul, R. Liu, and L. Pileggi,
“Building trusted ics using split fabrication,” in 2014 IEEE international
symposium on hardware-oriented security and trust (HOST). 1EEE,
2014, pp. 1-6.

S. Kremer, O. Markowitch, and J. Zhou, “An intensive survey of fair
non-repudiation protocols,” Computer communications, 2002.

A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J.
Robshaw, Y. Seurin, and C. Vikkelsoe, “Present: An ultra-lightweight
block cipher,” in CHES, 2007.

K. Argyraki, P. Maniatis, O. Irzak, S. Ashish, and S. Shenker, “Loss
and delay accountability for the internet,” in ICNP, 2007.

P. Jayaraman and R. Parthasarathi, “A survey on post-silicon functional
validation for multicore architectures,” ACM CSUR, 2017.

N. Stollon, On-chip instrumentation: design and debug for systems on
chip. Springer Science & Business Media, 2010.

F. F. Prabhat Mishra, Post-Silicon Validation and Debug, 1st ed.
Springer International Publishing, 7 2019.

S. Chandran, P. R. Panda, S. R. Sarangi, A. Bhattacharyya, D. Chauhan,
and S. Kumar, “Managing trace summaries to minimize stalls during
postsilicon validation,” IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems, vol. 25, no. 6, pp. 1881-1894, 2017.

N. lJindal, S. Chandran, P. R. Panda, S. Prasad, A. Mitra,
K. Singhal, S. Gupta, and S. Tuli, “Dhoom: Reusing design-for-
debug hardware for online monitoring,” in Proceedings of the 56th
Annual Design Automation Conference 2019, ser. DAC ’19. New
York, NY, USA: ACM, 2019, pp. 99:1-99:6. [Online]. Available:
http://doi.acm.org/10.1145/3316781.3317799

A. Basak, S. Bhunia, and S. Ray, “Exploiting design-for-debug for
flexible soc security architecture,” in Proceedings of the 53rd Annual
Design Automation Conference. ACM, 2016, p. 167.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY DELHI. Downloaded on March 23,2020 at 09:15:37 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2970417, IEEE
Transactions on Dependable and Secure Computing

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

Rajshekar Kalayappan is an Assistant Professor
in the Department of Computer Science and En-
gineering, IIT Dharwad, India. He graduated with
a Masters and Ph.D degree in Computer Science
from IIT Delhi in 2012 and 2017 respectively. He
has a Bachelors degree in Information Science from
Visveswaraya Technological University, Belgaum.
His research interests include computer architecture,
fault-tolerant systems, and hardware security.

Smruti R. Sarangi is an Associate Professor in the
Department of Computer Science and Engineering,
IIT Delhi, India. He has spent four years in industry
working in IBM India Research Labs, and Synopsys.
He graduated with a M.S and Ph.D in computer ar-
chitecture from the University of Illinois at Urbana-
Champaign in 2007, and a B.Tech in computer
science from IIT Kharagpur, India, in 2002. He
works in the areas of computer architecture, parallel
and distributed systems. Prof. Sarangi is a member
of the IEEE and ACM.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY DELHI. Downloaded on March 23,2020 at 09:15:37 UTC from IEEE Xplore. Restrictions apply.

