
Software Transactional Memory Friendly Slot
Schedulers

No Author Given

No Institute Given

Abstract. In this paper, we discuss the design space of highly concur-
rent linearizable data structures for slot scheduling. We observe that it is
not possible to have high fairness across threads, and maximize through-
put of the entire system simultaneously. Lock free algorithms are very
fast, yet very unfair, and wait free algorithms follow the reverse trend. We
thus propose a class of algorithms using software transactional memory
(STM) that are in the middle of the spectrum. They equitably balance
fairness and throughput, and are much simpler to design and verify.
Keywords software transactional memory (STM), transactions, wait-
free, lock-free, schedulers, slot scheduling

1 Introduction

Multicore and manycore processors are increasingly replacing ASICs in large
scale enterprise level systems. For example, multicore processors are beginning
to be extensively used in high throughput networking systems [9], high volume
storage systems [10], and for implementing fast software base switches in the
Telecom industry. An integral component in all of these systems is the scheduler,
whose role is to accept requests from multiple producers, and dispatch them to
multiple consumers with respect to a given optimality criteria. For example, a
scheduler in a wireless networking application accepts requests from different
ingress links, schedules them, and dispatches them along different egress links.
To support these novel applications of multicore processors, it is necessary to
implement fast schedulers that have high throughput, and can simultaneously
schedule requests for a large number of tasks.

In this paper, we consider an important subset of schedulers namely slot
schedulers [1] that discretize time into fixed-length timeslices called slots. A slot
is either completely occupied by a task, or it is empty. We design a parallel sched-
uler data structure in this paper that can form the core logic of slot schedulers.
It can schedule requests for 64 threads in parallel.

In this paper, we first discuss the design space of slot scheduling algorithms,
and classify them on the basis of three attributes – throughput, fairness, and
complexity. The number of requests scheduled per second is the throughput, and
the ratio of the average number of requests scheduled per thread and the maxi-
mum number of requests scheduled per thread is referred to as fairness. We show
that lock free algorithms are fast, yet are not very fair, whereas, wait free algo-
rithms have a high degree of fairness, yet are slow. Both of these algorithms are



fairly complicated are at least an order of magnitude faster than the algorithms
with locks (conclusion similar to Sarangi and Aggarwal [4]).

The main contribution of this paper is to propose parallel scheduling algo-
rithms using software transactional memory(STM). These algorithms are simpler
than the corresponding non-blocking versions, provide strong consistency guar-
antees (linearizability), and equally balance fairness and throughput. Moreover,
we demonstrate that creating high performance parallel data structures using
transactional memory is non trivial. There is a trade-off between the size of a
transaction, time, and fairness.

2 Background

2.1 Basics of Slot Scheduling

Fig. 1. The Ousterhout matrix for scheduling

Figure 1 shows an Ousterhout matrix that is typically used for slot schedul-
ing. Here, the columns represents time (in slots) and the rows represents re-
sources (core, disk, network link), where we assume that resources are homoge-
neous. Each cell(slot) can either be free or busy. We consider one of the generic
versions of the parallel slot scheduling problem, where we have M rows (see [4])
(each row corresponding to a resource), and we wish to schedule a request that
occupies N consecutive slots (1 in each column) starting from a given slot num-
ber. We can model multiple types of resources by considering multiple instances
of this problem (one for each type of resource). Furthermore, it is possible to
consider dependencies between tasks by annotating each cell with the task id,
and ensuring that a task is scheduled after all of its predecessors are scheduled.
In this paper, we just focus on solving the kernel of the scheduling problem,
which is to place N requests as early as possible.

2.2 Parallel Programming Paradigms

Traditionally, parallel programming is done with the help of locks, which are slow
in practice because tasks that might be holding the locks might get swapped out,
and sometimes we are overly conservative in placing locks. Hence, researchers
are increasingly considering non-blocking algorithms that do not use locks.



Non-blocking lock free algorithms ensure that at any point of time, at least
one thread is making forward progress. They thus guarantee forward progress
of the entire system as a whole. However, lock free algorithms do not guarantee
fairness across threads, and it is possible to have starvation. In comparison, non-
blocking wait free algorithms explicitly guarantee fairness across threads. They
ensure that every thread completes its request in less than n internal steps.
Faster threads help slower threads to complete their requests. This is known as
external helping. This strategy ensures that no thread waits indefinitely. Wait
free algorithms are typically slower than their lock free counterparts, and are
much more complicated. Linearizability is a commonly used correctness criteria
for such concurrent parallel data structures. An operation is linearizable if it
appears to execute in an infinitesimally small instant of time (details given in [8]).

2.3 Software Transactional Memory (STM)

Transactional memory [11] is a programming abstraction that treats a block
of code as an atomic unit akin to a database transaction. It obeys the ACID
properties similar to database transactions. We use the DEUCE STM framework
developed by Korland, Shavit, and Felber [3], which is a complete, compiler
independent, STM framework in Java. DEUCE does not need to modify the JVM,
nor does it require any language extensions, or additional APIs.

Deuce implements atomic blocks at the granularity of methods. The meth-
ods that should execute as transactions are annotated by adding the @Atomic
keyword. The applications layer consists of user’s classes with annotated atomic
functions. Next comes the DEUCE runtime layer, which detects atomic methods,
and implements an STM framework to execute these methods as transactions.
By default, it allows disjoint access parallelism, which means that transactions
that access disjoint sets of data can execute in parallel.

2.4 Related Work – Slot Scheduling

Scheduling is a classic problem. Most variants of scheduling that consider depen-
dencies between tasks, assume multiple nodes, and try to minimize the make-
span, have been proven to be NP hard. However, most parallel schedulers simply
look at simple earliest possible scheduling, and their main aim is to minimize the
time that it takes to schedule a request.

Aggarwal and Sarangi [4] have recently proposed lock-free and wait-free im-
plementations of slot schedulers. Figure 2 shows the sequence of steps in a suc-
cessful iteration of the lock free algorithm. We first try to temporarily reserve
slots by marking them. If we can successfully mark all the slots that we re-
quire, then we proceed to permanently reserve them. It is possible that multiple
threads may try to reserve the same slot. If two threads contend for a slot, then
one of the threads needs to back out. This can happen in two ways - either
it can cancel itself and start anew, or it can decide to help the high priority
thread. Helping another thread in this manner is know as – internal helping.



Fig. 2. FSM of Slot Scheduling Algorithm

The authors propose to first try canceling one of the threads, and then resort to
internal helping.

Their algorithm broadly consists of three stages.

1. The request is created in the INIT state. The thread subsequently tries to
temporarily reserve the first available slot. After doing so, the request moves
to the MARKED state.

2. In the MARKED state of the request, a thread marks the rest of the slots
specified in the request. Once the required number of slots are marked, the
request progresses to the RESERVE state.

3. In the RESERVE state, the marked slots are finally permanently booked by
the thread. After this, the request moves to the SUCCESS state where the list
of slots allotted is returned

For the wait-free implementations, threads need to help each other at the
highest level (external helping). Before proceeding with its own request, a thread
needs to help all the threads that have been waiting for a longer time, or alter-
natively have a higher priority. The presence of multiple helpers significantly
complicates the algorithm and it becomes necessary to ensure that the state of
a request is not polluted. The authors of [4] propose several data structures to
handles these issues. The goal of our work is to develop parallel slot scheduler
algorithms with STMs that solve the same problem proposed by Aggarwal and
Sarangi [4], and are linearizable.

3 Parallel Slot Scheduling using STMs

3.1 Data Structures

We use a 2-dimensional array called SCHEDULEMAP similar to the Ousterhout
matrix. This array is used to maintain the status of all the slots. The inputs to the



slotSchedule operation are threadId, number of slots to be reserved (numSlots)
and the starting time slot(startSlot) from which the thread wishes to book the
slots. The slotSchedule operation returns the list of slots allotted to the thread.
The state of a cell in the SCHEDULEMAP array can take three values: VACANT ,
MARKED and RESERVED . VACANT means that the slot is free and a request can
be scheduled for this slot. MARKED means that the cell is temporarily reserved,
and RESERVED means that the slot is permanently reserved. As a request gets
scheduled for a slot, the state of the slot in the SCHEDULEMAP array changes
from VACANT to MARKED and eventually it becomes RESERVED . This is shown in
Figure 4. However, in one of our algorithms, the state of the slot directly changes
from VACANT to RESERVED . Whenever a thread places a new request to reserve
the slots, an instance of the REQUEST class gets populated (see Figure 3). The
state field maintains the state of the request, number of slots already marked
(slotCount) and index of the last marked slot in the SCHEDULEMAP array as
shown in Figure 4. The RECORD array stores the slots reserved by the thread.

class Request{

long state,

int [][] record,

int startSlot,

int numSlots

};

Fig. 3. The REQUEST

class

state row colnum

number of slots
booked

index <row,col>
of the last booked slot

VACANT

MARKED RESERVED

request.state slot.state

Fig. 4. request.state and slot.state

3.2 The SimpleScan Algorithm

A thread needs to book numSlots slots in adjacent columns. There are various
ways in which we can solve this problem using an STM framework. First and the
simplest of all the methods is shown in Algorithm 1, which we call SimpleScan.
Suppose thread ti places a request to book n slots starting from time slot x. ti first
scans the SCHEDULEMAP array to find n consecutive VACANT slots starting from
slot x (Line 3). When a slot is found to be VACANT , ti stores its index in a local
array RECORD (Line 5). Once the required number of slots are found, ti books
these slots by changing the state of the slot from VACANT to RESERVED (Line 11).
This method is annotated with the keyword, @Atomic (Line 1) indicating that all
the instructions in this method are enveloped in one transaction and are executed
atomically. The STM system monitors the transactions of the threads and if two
or more threads concurrently access the SCHEDULEMAP array at the same index,
it handles the conflict by allowing one thread to commit its transaction and
abort/restart the other transaction(s) involved in the conflict.



Algorithm 1 SlotSchedule- SimpleScan

1: @Atomic
2: function slotSchedule (tid, slot,numSlots)
3: for i ∈ [slot, SCHEDULEMAP .length] ∧ (slotCount < numSlots) do
4: if ∃ j, SCHEDULEMAP [i][j] = VACANT then
5: record[index++] ← j , slotCount++
6: else
7: reset slotCount and record, start searching again
8: end if
9: end for

10: if slotCount = numSlots then
11: /* reserve the slot by setting the threadId in SCHEDULEMAP array */
12: return record;
13: else
14: return FAIL ;
15: end if
16: end function

end

3.3 The SoftV isible Algorithm

The main issue with the SimpleScan algorithm is that it creates one large trans-
action for processing the entire request. Since processing transactions frequently
requires O(n2) operations, and the chance of conflicts is high with larger trans-
actions, we wish to design an algorithm that breaks the schedule operation into
several mini-transactions. Instead of keeping track of VACANT slots in a local
structure, a thread saves some temporary information in cells of the SCHED-

ULEMAP array and this is made visible to concurrent threads when the transac-
tion commits. The purpose of doing this is to notify other transactions of the
state of the SCHEDULEMAP array so that other threads can reserve their slots
accordingly.

Algorithm 2, shows the SoftV isible algorithm that divides the schedule op-
eration into 5 steps. At the outset, a thread starts a transaction (Line 7) by
calling the method findF irstSlot in which it tries to find the earliest possible
VACANT slot available at or after the requested starting slot (startSlot). We start
out by invoking the markSlot (Line 25) method that marks a VACANT slot, and
changes its state to MARKED . Concomitantly, the request moves to the (MARKED

, slotCount) state. After successfully finding the first slot, the markRestSlots
method is called (Line 9) to mark the rest of the required slots. This method
tries to mark (numSlots − 1) slots in the SCHEDULEMAP array, where the slots
are in adjacent columns.

Once numSlots slots are marked, a thread enters the RESERVE state. In this
state the marked slots are reserved by changing their state from MARKED to
RESERVED (Line 60), as shown in method reserveAllSlots. The state of the



request changes from RESERVE to SUCCESS indicating that the request is success-
fully scheduled. Subsequently, the slotSchedule operation returns the list of the
allotted slots (in the RECORD array (Line 15).

markSlot(): This method is invoked to change the state of a slot from VACANT

to MARKED in a given column of the SCHEDULEMAP array. This method accepts
two parameters- the request and the column id. It returns the booked slot (if
possible), and the status, which can be – SOFTRETRY , HARDRETRY , TRUE or
FALSE . SOFTRETRY means that all the slots in the column are in the MARKED

state. In this case, we wait for the slots to turn into either VACANT or RESERVED

(Line 24 and Line 40). HARDRETRY means that all the slots in a column are
already in the RESERVED state. TRUE indicates that a slot is successfully marked,
and FALSE indicates that the request cannot be scheduled because we reach the
end of the SCHEDULEMAP array (thus transition to the FAIL state (Line 29)).

If the markSlot returns HARDRETRY , then it is clear that no slot in the
specified column can be booked. If we are still looking to book our first slot,
then we can start from the next column. However, if we have already booked
some slots, then we need to cancel the request by moving to the CANCEL state
(Line 45). We need to convert the state of all the MARKED slots to VACANT and
clear the RECORD array.

All these methods, which are executed as transactions run in a loop (Line 2)
until the state of the request becomes either SUCCESS or FAIL . SUCCESS state
means that required number of slots are reserved by a thread and FAIL state
means that the thread is not able to schedule its request. Breaking the schedule
operation in this format makes the changes done at cell level in SCHEDULEMAP

array immediately visible. This is shown with help of a flowchart in Figure 5.

Algorithm 2 SlotSchedule-SoftVisible

1: function slotSchedule (request)
2: while TRUE do
3: state ← request.getState()
4: switch (state)
5: /* a request is created in the START state */
6: case START :
7: findFirstSlot(request) /* find the first slot (if possible) */
8: case MARKED :
9: markRestSlots(request) /* mark slots in the SCHEDULEMAP array */

10: case RESERVE :
11: reserveAllSlots(request) /* reserve the marked slots */
12: case CANCEL :
13: cancelSlots(request) /* clear the marked slots */
14: case SUCCESS :
15: return request.record /* return the reservation path array */
16: end switch
17: return FAIL

18: end while
19: end function
20:



21: @Atomic
22: function findFirstSlot(request)
23: startSlot ← request.getStartSlot() , status ← SOFTRETRY

24: while status ∈ (SOFTRETRY , HARDRETRY ) do
25: (status, row, col) ← markSlot(request,startSlot.col) /* index of the slot */
26: (status = HARDRETRY ) ? startSlot++ : startSlot)
27: end while
28: if status = FALSE then
29: newState ← FAIL /* unable to fulfill the request */
30: else if status = TRUE then
31: /* save the slot in the record array and move to next state */
32: newState ← (MARKED , 1, row, col)
33: end if
34: request.state ← newState /* change the state of the request */
35: end function
36:
37: @Atomic
38: function markRestSlots(request)
39: (row, col) ← state.getLastSlot(), status ← SOFTRETRY

40: while status = SOFTRETRY do
41: (status, row, col) ← markSlot(request, col+1)
42: end while
43: if status = HARDRETRY then
44: newCol ← col +1
45: newState ← (CANCEL , 0, 0, newCol) /* could not find VACANT slot */
46: else if status = TRUE then
47: /* save the slot allotted in the record array */
48: if numSlots = slotNum then
49: newState ← RESERVE /* all the slots are marked */
50: else
51: newState ← (MARKED , slotNum+1, row, col+1) /* some slots are left

to be marked */
52: end if
53: end if
54: request.state ← newState /* set the new request state */
55: end function
56:
57: @Atomic
58: function reserveAllSlots(request)
59: for slot ∈ request.record do
60: slot.state ← RESERVED

61: end for
62: request.state ← SUCCESS

63: end function
64:
65: @Atomic
66: function cancelSlots(request)
67: (row, col) ← state.getLastSlot()
68: undo (request) /* Clear record and SCHEDULEMAP array */
69: newState ← (START ,0,0,col+1) /* set the request state as START */



70: end function

end

3.4 The SoftV isibleMerge Algorithm

Another way of implementing the SoftV isible algorithm is to merge the RESERVE

and CANCEL stages into one RESERVE stage. Thus, instead of having four to five
transactions/stages per slotSchedule operation there can be three stages, as
shown in Figure 5. This strategy performs slightly better (see Section 4) on our
test system.

Fig. 5. Flowchart of the SoftV isible and SoftV isibleMerge algorithms

Proof: We can prove that irrespective of the STM model, all three of our al-
gorithms obey sequential semantics (their execution matches that of a single
thread), and are linearizable. The main idea of the proof is that we start search-
ing for a new set of slots only when we encounter a column that has all of its
entries in the RESERVED state. This ensures that we do not take decisions based
on the temporary state of unfinished requests. Secondly, once a request has fin-
ished, its state in the SCHEDULEMAP array cannot be overwritten. We can use
these two observations to prove linearizability. Due to lack of space, we request
the interested reader to kindly look at a technical report posted anonymously
at [12].

4 Evaluation

4.1 Experimental Setup

The performance of the proposed scheme was evaluated on a hyper-threaded
four socket, 64 bit, Dell PowerEdge R820 server. It has four eight core 2.20GHz



Intel(R) Xeon(R) cpus, 16 MB L2 cache, and 64 GB main memory. It runs
on Ubuntu Linux 12.10 using the generic 3.5.0-17 kernel. All our algorithms
are written in Java 6 using Sun OpenJDK 1.6.0 27. We use the DEUCE STM
framework.

We use a synthetic distribution to evaluate the performance of our slot
scheduling algorithms (similar to [5, 4]). The assumption is that the request
inter-arrival time is normally distributed. We use the Box-Muller transform
(mean = 10, variance = 5*threadid) to generate normal variates, and run the
experiment till the fastest thread completes κ requests. We define two quanti-
ties – mean time per request (time) and fairness (frn). The fairness is defined
as the total number of requests completed by all the threads divided by the
theoretically maximum number of requests that could have been completed.
frn = tot requests/(κ ×NUMTHREADS). If the value of our fairness metric is
equal to 1, then all the threads complete the same number of requests. The lower
is the fairness, more is the discrepancy in performance across threads.

We set κ = 10, 000, and vary the number of threads from 1 to 64. We re-
peat each experiment ten times to reduce the variance in the results and re-
port the mean values. We compare all our algorithms SimpleScan(SimScan),
SoftVisible(SofV is) and SoftVisibleMerge(SofV isMer) with wait-free(WF ) and
lock-free(LF ) algorithms as presented in [4]. We have not included locked ver-
sion for slot scheduling algorithm as it is an order of magnitude slower than the
rest.

Fig. 6. Time Fig. 7. fairness

4.2 Performance of the Algorithm

Figures 6 and 7 show the results for numslots = 3. We observe that the WF im-
plementation is 5-10 times slower (1170 µs for 64 threads) than others. In terms
of time taken per request, SimScan is as fast as LF . Both the algorithms take
around 90-110 µs for 64 threads. SofV is and SofV isMer lie in the middle of the
spectrum with SofV isMer being faster by 20%. They are 2-3 times slower than
SimScan or LF , and are 3-4 times faster than WF . The reason for this trend is
that WF and STM based algorithms have a fair amount of overhead. This slows
them down as compared to LF . Among the STM algorithms, SimScan has the
least amount of overhead because we have a single transaction, whereas SofV is



and SofV isMer create 3-5 transactions. However, SofV is/SofV isMer also
have a lesser number of aborts per commit (Figure 8). Because of their smaller
transaction size, chances of conflicts among the transactions reduce. The relative
reduction in aborts does not offset the overheads of creating additional transac-
tions, and thus STM algorithms with a larger number of transactions are slower
in practice.

The fairness results shown in Figures 7 and 9 show a reverse trend. WF is
the most fair algorithm (frn > 90%). LF and SimScan are the most unfair
algorithms because they follow a “winner take all” strategy. Their fairness val-
ues decrease from 92% for 2 threads till 50% for a system of 50 threads. Beyond
50 threads, SimScan is better than LF by 5-20%. In comparison, SofV is and
SofV isMer start outperforming SimScan and LF in terms of fairness, and
their frn values jump to 60-65% beyond 50 threads. This is because these al-
gorithms create multiple transactions, and it becomes easier for all the threads
to make some incremental progress. We have observed that as the granularity of
transactions gets finer, the fairness across threads increases.

Fig. 8. Ratio of aborts to commits
Fig. 9. Fairness (STM based algo-
rithms only)

Fig. 10. Time (with jitter) Fig. 11. Fairness (with jitter)

Subsequently, we performed experiments to evaluate the performance of our
algorithms with some degree of jitter by running another copy of the same exper-
iment in parallel (with 5 threads). Figure 10 shows the time taken per request.
In this case, we see that all the algorithms become slower by a factor of 2-3, and



the trends remain the same. The fairness values for all the algorithms also dip;
however, the least amount of degradation is shown by SofV is and SofV isMer.
The fairness value for WF dips by 22% for 64 threads, whereas their fairness
value dips by only 14%. We also tried adding the helping feature in STM based
implementations. There was no performance benefit as the read-write set for the
various helpers overlap and this led to more aborts.

5 Conclusion

We demonstrated that there is a trade off between throughput and fairness.
In a concurrent system, if each thread is suppose to do a pre-specified amount
of work, then we aim to achieve high fairness across the threads. But if the
aim is to complete as much of work as possible, then it is desirable to have
high throughput. Experiments demonstrate that lockfree slot schedulers provide
high throughput, whereas waitfree slot schedulers have very high fairness. STM
friendly Slot Schedulers represent an equitable trade-off between fairness and
throughput. The SimpleScan algorithm is as fast as lock-free. Moreover, all the
STM based algorithms have much simpler designs and are thus less error prone.
Hence, it is easier to reason about their correctness.

References

[1] Brandon Hall: Slot Scheduling: General Purpose Multiprocessor Scheduling for Het-
erogeneous Workloads, Ph.D Thesis, University of Texas, Austin, 2005

[2] J. K. Ousterhout: Scheduling Techniques for Concurrent Systems, in International
Conference on Distributed Computing Systems, 1982

[3] G. Korland, N. Shavit, and P. Felber. : Non invasive concurrency with Java STM.
in MultiProg 2010

[4] Pooja Aggarwal and S.R Sarangi: Lock-free and Wait-free Slot Scheduling Algo-
rithms. in IPDPS 2013

[5] Sarah Sellke and Ness B. Shroff and Saurabh Bagchi and Chih-Chun Wang: Timing
Channel Capacity for Uniform and Gaussian Servers. in Allerton Conference, 2006

[6] M. Herlihy and E. Moss: Transactional memory: Architectural support for lock-free
data structures, in ISCA 1993

[7] M. Herlihy, V. Luchangco, and M. Moir. A flexible framework for implementing
software transactional memory. In OOPSLA, 2006

[8] Herlihy, Maurice P. and Wing, Jeannette M.: Linearizability: A Correctness Con-
dition for Concurrent Objects. ACM Trans. Program. Lang. Syst. Volume 12, pages
463-492.

[9] Jia-Ming Liang and Jen-Jee Chen and Ho-Cheng Wu and Yu-Chee Tseng: Simple
and Regular Mini-Slot Scheduling for IEEE 802.16d Grid-based Mesh Networks, in
Vehicular Technology Conference, 2010

[10] Q. Zhu, Z. Chen and L. Tan, Y. Zhou and K. Keeton and J. Wilkes. Hibernator:
Helping disk arrays sleep through the winter, in SOSP 2005

[11] N. Shavit and D. Touitou. Software transactional memory. Distributed Comput-
ing, Special Issue(10):99116, 1997.

[12] Anonymous: Proof of Linearizability of STM Algorithms, posted at
https://sites.google.com/site/slotstmproof/home/proof.pdf



6 Proofs

Lemma 1. The Deuce STM system implements linearizable transactions.

Proof. Linearizability means that the method appears to execute instantaneously.
This means that at a certain point between the invocation, and the final ter-
mination of a transaction, there is a point, at which it appears to execute in-
stantaneously. This point is known as the point of linearizability. Linearizability
has been proved to be equivalent to the case of a sequential execution, where
the sequential order is consistent with the real time order [8]. In the case of
the Deuce STM system, the execution of transactions that mutually conflict
with each other is equivalent to a sequential execution. We are not concerned
about non-conflicting transactions because there is no way to detect a violation
of the sequential order of executions. Secondly, before a transaction finishes, the
Deuce STM system ensures that its write set is committed, and is made visible
to the transactions that start after it in real time order. In this sense the or-
der of committing a transaction is equivalent to its real time order. This means
that if transaction A begins after transaction B finishes, B is guaranteed to
see the writes performed by A. The Deuce STM system, ensure this semantics.
Since both the conditions of linearizability – equivalent sequential execution, and
adherence to a real time order are satisfied by the native Deuce STM system
– we can conclude that the execution of transactions in Deuce is linearizable.
Furthermore, the point of linearizability is at which the transaction commits.

Lemma 2. The SimpleScan algorithm is linearizable.

Proof. The entire SimpleScan algorithm is encapsulated in one transaction.
According to Lemma 1, transactions in Deuce are linearizable. Consequently,
the SimpleScan method is also linearizable.

Theorem 1. The SoftV isible and SoftV isibleMerge algorithms are lineariz-
able.

Proof. Let us try to prove that the point of linearizability for a thread, ti, is
when the state of the request is changed to RESERVE (In Algorithm 2 line 49),
or when the request fails to reserve any slots (i.e the state of the request is
changed to FAIL (line 29)). When the status of the request becomes RESERVE ,
it means that ti has successfully marked the required number of slots (Line 48)
and now the request can finally reserve the marked slots.

Now, after the state of the request has turned to RESERVE , the thread needs to
create a new transaction to change the status of the MARKED slots to RESERVED .
It is possible that this transaction gets aborted multiple times. We need to ensure
that the slots which thread ti has already set as MARKED are not overwritten
by other threads since they are visible to all the concurrent threads. In our
implementation, a thread tries to modify only the VACANT slots (in method
markSlot()) or the slots marked by itself (in method reserveAllSlots()). This
ensures that in our implementation no thread overwrites the slots marked or



reserved by some other thread. Irrespective of the fact that the transaction can
abort, it will eventually (disregarding starvation) be able to reserve the slots it
has marked earlier. We can thus conclude that when the state of a request is
set to RESERVE , the list of slots marked by the thread is fixed and these slots
will eventually transition to the RESERVED state. If a request is failing, then this
outcome is independent of other threads, since the request has reached the end
of the SCHEDULEMAP array.

Likewise, we need to prove that before the point of linearizability, no events
visible to other threads causes them to make permanent changes. Note that
before this point, other threads can view the intermediate state of the slots
(i.e MARKED ) as the slotSchedule operation is divided into mini-transactions.
Seeing this state of the slots, other threads will wait for the state to turn into
either VACANT or RESERVED (as can be seen in method findF irstSlot() and
markRestSlots() at Lines 24 and 40 respectively).

The idea here is that, we start searching for a new set of slots only when
we encounter a column that has all of its entries in the RESERVED state (func-
tions findFirstSlot() and markRestSlots()). In the case of marking the first
slot, the index startSlot is incremented only when the function markSlot re-
turns HARDRETRY (Line 26), indicating all the entries in column startSlot are
in the RESERVED state. Whereas, we enter the CANCEL state if markSlot returns
HARDRETRY while marking rest of the slot (Line 45). This means that the threads
that have made the entries in a column as RESERVED can alter the behavior of
other threads. This ensures that we do not take decisions based on the tempo-
rary state of unfinished requests but only on the basis of those threads that have
already passed their point of linearizability We can thus conclude that before a
thread is linearized, it cannot force other threads to alter its behavior.

We have thus proved that before the point of linearizability, it is not possible
for a thread to make its changes permanent, and after the point of linearizability
its changes are permanent. Secondly, we have also proved that before a thread
reaches its point of linearizability, other thread do not consider its changes as
permanent. These three results ensure that the point of linearizability is the point
at which a thread makes its changes permanent, and henceforth, the changes are
visible to all the threads. Thus, we have a linearizable implementation.

Now, let us prove that every request executes correctly in the sense that it
obeys sequential semantics.

Lemma 3. Every request books only numSlots entries in consecutive columns.
One slot per each column.

Proof. Since our algorithms are linearizable (Theorem 1), the parallel execu-
tion history is equivalent to a sequential history. We need to prove that in this
sequential history, for a request, r, exactly numSlots entries are allocated in
consecutive columns with one entry per column.

First, we need to ensure that whenever a transaction aborts and restarts, it
should start afresh. All the changes made by it in the SCHEDULEMAP array should
be undone. The STM system ensures that the changes made by a transaction that



commits are eventually reflected in the system. This ensures that even though
there can be multiple transactions reserving the slots for a thread, eventually only
one of them will commit. And, in each transaction, only one slot is reserved by a
thread in one column. As a slot gets reserved in a column of the SCHEDULEMAP

array, we increment the index to point to the next column. We continue doing
this till numSlots slots are reserved.


