
SnapStore: A Snapshot Storage System for Serverless Systems
Abhisek Panda

Department of Computer Science and Engineering

Indian Institute of Technology Delhi

New Delhi, India

abhisek.panda@cse.iitd.ac.in

Smruti R. Sarangi

Department of Computer Science and Engineering

Indian Institute of Technology Delhi

New Delhi, India

srsarangi@cse.iitd.ac.in

ABSTRACT
Serverless computing is getting increasingly popular because of its

fine-grained billing model and autoscaling features. To speed up the

process of functions’ sandbox creation, cloud providers typically

utilize snapshot and restore-based mechanisms for pre-warmed

snapshots. This effectively trades off the startup latency with the

storage requirements and the overhead of creating/restoring these

snapshots. Hence, there is a need to compress the snapshots by

identifying identical data chunks across snapshots and then design

methods to quickly deduplicate snapshots and retrieve them. We

propose SnapStore – a novel method of finding such duplicates.
As opposed to conventional work that relies on better hashing

methods, we use the natural structure of the program’s memory

map to reduce wasted work during deduplication. Furthermore, we

sequentialize and minimize disk accesses as much as possible while

retrieving a snapshot into a RAM-based cache. Both of these opti-

mizations, yield a reasonably large speedup in the deduplication

process as compared to the state-of-the-art (≈ 46% in the snapshot

deduplication time and ≈ 82.6% in the retrieval time on HDDs).

Upon integration with FaaSnap (a state-of-the-art serverless plat-

form), SnapStore improves the end-to-end latency of serverless

functions by 25.9% along with 2.4× storage space reduction over

vanilla FaaSnap on HDDs. With SSDs, our deduplication time and

retrieval time reduce by 36.2% and 75.8%, respectively, with almost

no degradation in the end-to-end latency.

CCS CONCEPTS
• Computer systems organization→ Cloud computing; • In-
formation systems→Deduplication; •General and reference
→ Performance; • Software and its engineering→ Virtual mem-
ory.

KEYWORDS
Serverless computing, Function-as-a-Service, Deduplication, Snap-

shot storage systems

ACM Reference Format:
Abhisek Panda and Smruti R. Sarangi. 2023. SnapStore: A Snapshot Storage

System for Serverless Systems. In 24th International Middleware Conference
(Middleware ’23), December 11–15, 2023, Bologna, Italy. ACM, New York, NY,

USA, 14 pages. https://doi.org/10.1145/3590140.3629120

Middleware ’23, December 11–15, 2023, Bologna, Italy
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution. The definitive Version of Record was published in 24th International
Middleware Conference (Middleware ’23), December 11–15, 2023, Bologna, Italy, https:
//doi.org/10.1145/3590140.3629120.

1 INTRODUCTION
Serverless computing is emerging as a popular cloud computing

paradigm [20, 22]. Over the last few years, several prominent cloud

providers including Amazon [29], Google [9], IBM [10], and Mi-

crosoft [4] have adopted this paradigm due to its superior billing

model and auto-scaling features. A serverless platform primarily

comprises two services: Function-as-a-Service (FaaS) and Backend-

as-a-Service (BaaS) [13]. In FaaS, a user provides a platform with a

series of functions that represent different parts of a larger task. On

the other hand, BaaS replaces server-side components such as file

storage, authentication, and databases with off-the-shelf services.

The platform deploys a set of sandboxes across distributed nodes to

execute each of these functions based on the functions’ arrival rates

thereby providing autoscaling features. Moreover, the platform im-

poses a pay-as-you-go billing model by charging a user for the

duration its functions are being executed. Due to these features, a

large number of applications from the domains of machine learning,

data analytics, and IoT are adopting this paradigm [11, 25].

In FaaS, platforms create a sandbox environment in order to

execute a function. Therefore, the cost of sandbox creation is on

the critical path [3, 12, 20, 42, 43, 47]. Prior studies have shown

that approximately 50% of serverless functions execute in less than

one second [41]. Therefore, the cost of creating a sandbox has a

significant impact on the latency of a function (referred to as cold
start). Prior work proposed the following techniques to mitigate the

deleterious effects of cold starts: reusing a sandbox [26, 46], sharing

a sandbox [2], utilizing lightweight sandbox mechanisms [1] and

restoring from a sandbox’s stored snapshot [3, 12, 42, 47].

It is widely believed that restoring a sandbox from its snapshot is

an effective cold start mitigation technique [3, 42]. In this technique,

platforms serve future requests of a function by restoring a sandbox

from its snapshot. As a result, they eliminate the cost of library

loading and runtime initialization [12, 47]. If a platform deploys

hundreds of serverless functions on a host and uses this method,

then it can lead to large storage requirements [3, 42]. Therefore,

prior work proposed storing function snapshots on a remote storage

service [47]. However, the cost of fetching a function snapshot from

a remote storage service depends on the function snapshot’s size

and network bandwidth, thereby limiting the benefits of snapshot

and restore-based mechanisms.

In the context of cloud data, prior work [8, 15, 23, 35] has utilized

deduplication mechanisms to minimize storage requirements. Typi-

cally, a deduplication mechanism consists of two stages: duplicate

elimination and retrieval [30, 51]. In the duplicate elimination stage,

we eliminate redundant data chunks from files. In the retrieval

stage, we reassemble a file from its constituent data chunks. Our

proposed scheme SnapStore utilizes a deduplication mechanism to

store a large number of function snapshots on a machine, thereby

https://doi.org/10.1145/3590140.3629120
https://doi.org/10.1145/3590140.3629120
https://doi.org/10.1145/3590140.3629120

Middleware ’23, December 11–15, 2023, Bologna, Italy Abhisek Panda and Smruti R. Sarangi

minimizing the number of remote storage accesses. Given that a

serverless platform executes hundreds of functions on a machine,

adding a deduplication mechanism might lead to high CPU utiliza-

tion [1, 38]. Therefore, our primary constraint is that the duplicate

elimination stage must be lightweight and also off the critical path.

Before restoring the sandbox of a function, platforms must quickly

reassemble its snapshot, which is on the critical path.

This is an established problem and there are many solutions

for fast deduplication and retrieval of snapshots. The solutions in

prior work [21, 30, 40, 51] revolve around breaking a snapshot file

into fixed or variable sized chunks, identifying duplicates based on

hashing and storing as few unique chunks as possible. There is a

high degree of redundancy across snapshots because they share

similar kernel modules, software packages, libraries and sometimes

initialization files. Also, the account statistics of Amazon Lambda

show that 53% of users utilize Node.js and 36% utilize Python [39].

Hence, the problem essentially boils down to efficiently managing

a dictionary of chunks and appropriately storing the chunks on

disk. Prior solutions propose fairly generic mechanisms and the

area of efficiently managing such dictionaries during the dedupli-

cation/retrieval process is fairly mature.

We adopt a paradigmatically different approach in this paper.

Our key observation is that the deduplication process is not equally

productive for all the memory regions of a process (whose snapshot

is captured). There are regions such as the read-only pages, memory-

mapped pages (with read permission), and pages that are not a part

of the main runtime process, which have a high degree of overlap

with other snapshots. Whereas, pages that are written to by the

runtime process have very little degree of overlap. There is thus no

need to waste time and space in checking for duplicates in these

regions. If we focus on the regions that are expected to be more

productive we can use smaller hash tables and also organize the

chunks in a more effective manner for the entire snapshot. Before a

function’s execution, we reassemble its snapshot on a RAM-based

cache (implemented using RAMFS) by retrieving unique chunks

from the disk or previously reassembled snapshots. For each chunk,

we fill all the snapshot’s memory locations that store the chunk.

This approach ensures that our disk accesses are minimal and nearly

sequential, which is very beneficial. Note that SnapStore divides

the operations efficiently so that multiple threads can handle each

task concurrently and atomically (crash consistent).

To summarize, our contributions are as follows:

(1) We perform a comprehensive study of a function’s snapshot

to identify suitable memory regions for deduplication.

(2) We design SnapStore, which performs selective deduplica-

tion of a snapshot – different memory regions are treated

differently. This reduces useless work and gives us perfor-

mance benefits.

(3) Specifically, we improve the deduplication time by at least

46% compared to other state-of-the-art approaches on HDDs

while limiting the degradation in the deduplication ratio by

10%.

(4) We improve the retrieval time by at least 82.6% compared

to other state-of-the-art approaches on HDDs by ensuring

minimal and sequential disk accesses.

(5) We improve the end-to-end latency of serverless functions

by 25.9% over FaaSnap (a state-of-the-art serverless solu-

tion) along with achieving a 2.4× storage space reduction on

HDDs.

(6) We get a benefit on SSDs because of better prefetching (36.2%

and 75.8% reduction in dedup and retrieval times, respec-

tively).

The rest of the paper is organized as follows. We discuss the

relevant background for the paper in Section 2. Subsequently, we

perform a comprehensive analysis of a function snapshot in Sec-

tion 3. This is followed by the design of SnapStore in Section 4.

Section 5 evaluates the effectiveness and robustness of SnapStore.

We discuss the related work in Section 6, and finally, we conclude

in Section 7.

2 BACKGROUND
2.1 Serverless Computing
The serverless computing paradigm reduces operational complexity

and provides a fine-grained billing scheme. In FaaS, a user decom-

poses an application into pieces of code snippets (functions) and
provides them to a serverless platform along with the order of ex-

ecution. Upon receiving a request from an external entity (a user

or an event), the platform spawns an ephemeral sandbox contain-

ing the corresponding function and starts to execute the function

within the sandbox. Typically, spawning a sandbox involves boot-

ing the sandbox and loading its memory state, code and libraries.

Due to security concerns, sandboxes cannot communicate among

themselves; thus, they utilize a remote storage engine for data com-

munication. Now, at execution completion, the provider typically

destroys the sandbox in unoptimized implementations. For each

request, the spawning of an ephemeral sandbox is on the critical

path (referred to as cold start) – this is a performance overhead.

To mitigate the cold start problem, existing frameworks employ

the following techniques: light-weight sandbox mechanisms [1],

warm containers [26, 46] and better snapshot-restore techniques [3,

12, 47]. Warm containers keep sandboxes in the system for a speci-

fied period of time rather than destroying them at execution com-

pletion. However, this causes the system to waste resources. In

contrast, snapshot-restore mechanisms take a snapshot of a sand-

box after the OS, runtime and libraries have been initialized. They

then restore a function sandbox from the snapshot, thus omitting

the startup step [3, 12]. Commercial serverless platforms such as

Amazon Lambda use this mechanism to mitigate the cold start

problem [5]. Amazon isolates function execution on a host machine

using Firecracker microVMs.

In this paper, we use Amazon Lambda’s Firecracker to manage

our microVMs [1, 3, 47]. Let us discuss its design.

2.2 Firecracker
Firecracker is a virtual machine manager (VMM) that uses KVM

to supervise the execution of a guest operating system on the host

machine [1]. It spawns and manages the virtual CPUs assigned to

the guest as threads. It allocates a memory region for the guest

by invoking the mmap system call. The data communication be-

tween the guest and the host takes place through a ring buffer

(virtqueue) [17]. To take a snapshot of the guest in the pause state,

SnapStore: A Snapshot Storage System for Serverless Systems Middleware ’23, December 11–15, 2023, Bologna, Italy

Firecracker creates the following files: the microVM state file and

the memory file. The size of the microVM state file is about 15 KB

because it stores the VM metadata, the vCPU state, the memory

state, the device state and the KVM state. The memory file, on the

other hand, has the same size as the VM because it stores the con-

tents of the memory area of the microVM. As a result, the memory

file contributes to the storage overhead of a snapshot.

2.2.1 Memory Manager. By using the mmap system call, the fire-

cracker VMM creates a memory region for a microVMwith the spec-

ified length, memory protection and flags. The memory region is

then registered with KVM along with the KVM_MEM_LOG_DIRTY-
_PAGES flag using the ioctl system call. The aforementioned flag

instructs KVM to keep track of writes to the memory region [24]. To

record writes to the memory region, Firecracker creates an atomic

bitmap at the page level (referred to as dirty_bitmap). On the com-

pletion of an event in the virtqueue, the bitmap indexes for the

appropriate memory pages are set (referred to as dirty memory

pages in this paper). Memory pages with an unset bitmap index, on

the other hand, are considered non-dirty memory pages. Non-dirty

memory pages are often zero pages (pages filled with zeros). If the

memory snapshot file contains a large number of non-dirty mem-

ory pages, storage space is effectively wasted. This gives us an idea:

a bespoke data structure to efficiently store the contents of
a microVM’s memory space.

2.3 Deduplication
To improve the storage space utilization of a system, current stor-

age systems employ chunk-based deduplication mechanisms (see

Figure 1). These storage systems have two stages: duplicate elimina-

tion and retrieval. In the duplicate elimination stage, we eliminate

redundant data chunks from a set of files and only store unique

data chunks in fixed-size blocks on the disk (referred to as dblocks).
During the retrieval stage, we restore a deduplicated file from its

constituent data chunks present on the disk.

Input file

Chunk phase

Fingerprint
cache

Hash phase

Dedup phase

1

2

3 Fingerprint
index table

Dblock
store

4

Restore
cache

Backup
phase

Recipe
5

6

7

#

Figure 1: The high-level design of a traditional deduplica-
tion system.

Specifically, the duplicate elimination stage consists of four

phases: 1○ the chunk phase, 2○ the hash phase, 3○ the dedup phase,

and 4○ the backup phase (see Figure 1). During the chunk phase,
chunk creation algorithms such as Rabin-based CDC [34], TTTD

chunking [14], fixed-size or FastCDC [49] divide a file into chunks

Table 1: Workloads used in this paper (adapted from Func-
tionBench [25]). Note: The memory column denotes the size
of the microVM allocated to a function.

Workloads Description Memory
chameleon Renders an HTML table. 128MB

helloworld Prints "Hello world" 128MB

image_rotate Rotates an image by 90 degrees. 128MB

json_serdes Performs serialization and deserialization

of a JSON file.

128MB

pyaes Performs AES block-cipher encryption. 128MB

face_detection Annotate faces in a given video using the

Haar feature-based cascade classifier. [37]

256MB

matmul_fb Performs matrix multiplication. 256MB

video_processing Performs grayscale conversion of a given

video.

256MB

lr_serving Predicts the target value for a given data

record.

512MB

lr_training Trains a linear regression model based on

a provided dataset.

512MB

that either have a fixed or variable size. The subsequent hash phase
employs a strong hash function such as SHA-1 to compute the hash

of each chunk (referred to as the fingerprint) [30, 51]. The dedup
phase then identifies duplicate data within a file by comparing the

fingerprints to entries already stored in a fingerprint index table. A

fingerprint index table is a hash table with the chunk’s fingerprint

as the key and the 4-byte dblock id (d_id) as the value.

However, as the data size increases, so does the size of the fin-

gerprint index table. Thus, a need arises to store a part of it on

disk and the actively used part in an in-memory fingerprint cache.

Finally, the backup phase concludes the duplicate elimination stage

by storing the unique data chunks on the disk in fixed-size blocks,

typically 4 MB. For data recovery, the backup phase generates a

recipe of a file that contains a list of entries corresponding to data

chunks of the file.

To retrieve the file from a recipe, we need to iterate through

the recipe’s entries (see 5○ in Figure 1). We then use the dblock’s

id in the recipe to locate the dblock that contains the chunk’s

data. Then, we restore the desired data by accessing the dblock

(see 6○ in Figure 1). This process may entail frequent disk ac-

cesses [23, 35]. To mitigate this overhead, existing mechanisms em-

ploy the following techniques: caching or rewriting. In the caching

technique [30], we maintain a restore cache, which contains the

recently accessed chunk’s fingerprint and chunk’s data. On the

other hand, the rewriting technique creates redundant copies of

chunks in different dblocks for faster access [31, 36]. Finally, the

system retrieves the file by piecing together its chunks (see 7○ in

Figure 1).

3 CHARACTERIZATION OF A FUNCTION
SNAPSHOT

3.1 Evaluation Methodology
We evaluate a serverless platform on a server-based system and

study the characteristics of functions’ snapshots. The platform can

support functions whose memory footprint ranges between 128 MB

and 10,240 MB [28]. The workloads comprise popular real-world

serverless functions taken from the FunctionBench [25] suite, which

are summarized in Table 1. The system configuration is shown in

Middleware ’23, December 11–15, 2023, Bologna, Italy Abhisek Panda and Smruti R. Sarangi

Table 2: System configuration

Hardware settings
Processor Intel Xeon 6226R CPU, 2.90 GHz

CPUs 1 Socket, 16 cores DRAM 256 GB

HDD Seagate 2TB SATA-3 HDD, 7200RPM

SSD Samsung 860 EVO 500GB SATA-3 SSD

NVMe Dell M.2 2230, PCIe Gen 3 NVMe (256 GB)

NAS Server HPE StoreEasy 1660, ping-time-to-server=0.4 msec

Software settings
Guest Linux kernel 5.15 GCC version 7.5

Python 3.10 Firecracker version 1.0.0

Table 2. We store a function snapshot in local storage (similar to

Reap [47]). All our experiments deploy one Firecracker [1] microVM

instance with two vCPUs and corresponding memory to run a func-

tion (see Table 1). Note: The memory size of the microVM allocated
to a function is defined as per its input size.

Typically, a function snapshot consists of two files: the microVM

state file and the memory file (discussed in Section 2.2). Since the

snapshot is taken prior to the execution of a function, we analyze

the characteristics of non-dirtymemory pages stored in thememory

file (discussed in Section 3.2) – zeroed pages that are not touched

by the OS or other runtime initialization routines.

ch
am

el
eo

n

he
llo

wor
ld

im
ag

e_
ro

ta
te

jso
n_

se
rd

es

py
ae

s

fa
ce

_d
et

ec
tio

n

m
at

m
ul

_f
b

vi
de

o_
pr

oc
es

sin
g

lr_
se

rv
in

g

lr_
tra

in
in

g

Av
er

ag
e

0

20

40

60

N
o
n
-d

ir
ty

 p
a
g

e
o
cc

u
p

a
n
cy

 (
%

)

Figure 2: The occupancy of non-dirty memory pages in the
memory file of a function snapshot. Note: A snapshot con-
tains significant amount of non-dirty memory pages that
leads to storage wastage.

3.2 Analyzing Non-dirty Memory Pages
To analyze the occupancy of non-dirty memory pages, we traverse

the dirty_bitmap to find the memory areas of the microVM that con-

tain dirty memory pages (discussed in Section 2.2). Subsequently,

we record memory areas as an array of tuples with the values

⟨𝑜 𝑓 𝑓 𝑠𝑒𝑡, 𝑙𝑒𝑛⟩, where offset denotes the starting location of a mem-

ory area from the beginning of the memory file and len represents

the size of the area – this is on the lines of classical run-length en-

coding. In Figure 2, we show that 55.6% of the memory file contains

non-dirty memory pages, on an average. For a memory-intensive

application, the percentage of non-dirty memory pages can be up to

69.4% of the memory file (see Figure 2). This is because the snapshot

is taken prior to the function’s execution, so the data that will be

touched by the main runtime process (one that will execute the

function) is not a part of the memory file yet. This motivates us to

treat and store the memory snapshot file as a sparse file [18].

(1) The occupancy of non-dirty memory pages of a function

snapshot is 55.6% of the memory file.

(2) For a memory-intensive application, the percentage of

non-dirty memory pages can be up to 69.4% of the mem-

ory file.

3.3 Analyzing Dirty Memory Pages
In a serverless computing paradigm, a microVM provides an iso-

lated environment to execute a function. To analyze the amount of

memory occupied by a function, we split the dirty memory pages

into two regions: runtime (RT) and non-runtime (NRT). The run-

time memory region includes the memory pages that belong to

the function, whereas the non-runtime memory region includes

the memory pages of other processes except the function. Before

performing the analysis, we drop the non-dirty memory pages of

the function’s memory file (referred to as the compressed function
snapshot in this paper).

To find the runtime memory regions, we read the maps and
pagemap files of the runtime process present in the proc filesys-
tem. In Figure 3a, we show that RT occupies 48.4% of the com-

pressed memory snapshot file, whereas NRT occupies the remain-

ing space, respectively. In the case of lr_serving, face_detection,

video_processing, and lr_training functions, the size of RT is larger

than NRT because they utilize vision and machine learning Python

packages. Let us now analyze the runtime memory pages.

We can divide runtime memory regions into two categories:

file-backed (𝐹𝐵) and anonymous (𝐴𝑁𝑂𝑁). 𝐹𝐵 refers to memory

mapped pages that are part of a file, while the remaining pages

(stack/heap/data/bss) are 𝐴𝑁𝑂𝑁 . We further divide each category

𝑋 based on permission: 𝑅 − 𝑋 and𝑊 − 𝑋 . For instance,𝑊 − 𝑋

represents the memory-mapped pages of category 𝑋 for which the

runtime process has write permission. In Figure 3b, we show that

65.5% of runtimememory pages contain 𝐹𝐵 pages and 34.5% contain

𝐴𝑁𝑂𝑁 pages. Memory mapped pages with write permission (𝑊 −
𝐴𝑁𝑂𝑁 and𝑊 − 𝐹𝐵) are present in 55.6% of the runtime memory

regions.

(1) The occupancy of non-runtime memory regions in a

function snapshot is 51.6% of the compressed memory

snapshot file.

(2) The memory-mapped pages for which a runtime process

has write permission occupy about 26.9% of the com-

pressed memory snapshot file.

3.4 Analyzing Duplicate Memory Pages
In this section, we discuss the scope of data deduplication mecha-

nisms by finding the amount of duplicate data between two com-

pressed function snapshots: the data redundancy of a function

snapshot file B with respect to a function snapshot file A is the

percentage of duplicate data present in B. For fine grained analysis,
we find data redundancy for the runtime and non-runtime memory

regions separately.

SnapStore: A Snapshot Storage System for Serverless Systems Middleware ’23, December 11–15, 2023, Bologna, Italy

ch
am

el
eo

n

he
llo

wor
ld

im
ag

e_
ro

ta
te

jso
n_

se
rd

es

py
ae

s

fa
ce

_d
et

ec
tio

n

m
at

m
ul

_f
b

id
eo

_p
ro

ce
ss

in
g

lr_
se

rv
in

g

lr_
tra

in
in

g

Av
er

ag
e

v

0

20

40

60

80

100

D
ir

ty
 p

a
g

e
o
cc

u
p

a
n
cy

 (
%

)
RT NRT

(a) The occupancy of the runtime and non-runtime memory
pages in compressed function snapshots.

ch
am

el
eo

n

he
llo

wor
ld

im
ag

e_
ro

ta
te

jso
n_

se
rd

es

py
ae

s

fa
ce

_d
et

ec
tio

n

m
at

m
ul

_f
b

vi
de

o_
pr

oc
es

sin
g

lr_
se

rv
in

g

lr_
tra

in
in

g

Av
er

ag
e

0

20

40

60

R
u
n
ti

m
e
 p

a
g
e

o
cc

u
p

a
n
cy

 (
%

)

R-FB W-FB R-ANON W-ANON

(b) The occupancy of file-backed and anonymous memory
mapped pages in the runtime memory pages of a function.

Figure 3: Breakup of the dirty-memory pages in the memory snapshot file of a function.

chameleon

helloworld

image_rotate

json_serdes

pyaes

face_detection

matmul_fb

video_processing

lr_serving

64 128 256 512 1024 2048
Chunk size (B)

60

65

70

75

D
a
ta

 r
e
d

u
n
d

a
n
cy

 (
%

)

(a) Data redundancy (NRT)

64 128 256 512 1024 2048
Chunk size (B)

60

65

70

75

80

85

90

95

D
a
ta

 r
e
d

u
n
d

a
n
cy

 (
%

)

(b) Data redundancy (RX_MAP)

64 128 256 512 1024 2048
Chunk size (B)

5

10

15

20

25

D
a
ta

 r
e
d

u
n
d

a
n
cy

 (
%

)

(c) Data redundancy (W_MAP)

64 128 256 512 1024 2048
Chunk size (B)

0.10

1.00

In
d
e
x
 t

a
b
le

 e
n
tr

ie
s

(M
)

(l
o
g
 s

ca
le

)

(d) Index table size (NRT)

64 128 256 512 1024 2048
Chunk size (B)

0.100

In
d
e
x
 t

a
b
le

 e
n
tr

ie
s

(M
)

(l
o
g
 s

ca
le

)

(e) Index table size (RX_MAP)

64 128 256 512 1024 2048
Chunk size (B)

0.10

1.00

In
d
e
x
 t

a
b
le

 e
n
tr

ie
s

(M
)

(l
o
g
 s

ca
le

)

(f) Index table size (W_MAP)

Figure 4: The data redundancy and total number of entries in the fingerprint table of the following regions of a serverless
function: NRT, RX_MAP, and W_MAP with respect to the lr_training function by using the fixed-sized chunk algorithm and
varying the chunk size from 64 bytes to 2048 bytes.Note: The NRT andRX_MAPmemory regions showhighmemory redundancy,
while W_MAP shows low memory redundancy.

In the case of runtime memory regions, we further divide the

memory pages based on the access permissions into two categories:

RX_MAP and W_MAP. Memory-mapped pages with write permis-

sion are highly unlikely to be duplicated across different serverless

functions. W_MAP corresponds to these memory-mapped pages,

while RX_MAP contains the remaining pages. RX_MAPmainly con-

tains the shared anonymous pages and file pages. Let us estimate

the data redundancy between two compressed function snapshots

with respect to the following memory regions: NRT, RX_MAP and

W_MAP.

After extracting the memory pages corresponding to a memory

region, we split the pages into fixed chunks, whose sizes range

from 64 bytes to 2048 bytes [19, 21]. For ease of analysis, we then

estimate the data redundancy of a snapshot with respect to the

lr_training function (representative) snapshot using the deduplica-

tion mechanism (described in Section 2.3). In Figure 4, we show that

Middleware ’23, December 11–15, 2023, Bologna, Italy Abhisek Panda and Smruti R. Sarangi

Function Snapshot

NRT Region RX_MAP Region W_MAP Region

Preprocess1

Chunk phase2 Chunk phase2

#

Hash phase3 Hash phase3

#

Recipe

Dedup phase4 Dedup phase4

W_MAP
dblock store

RX_MAP
dblock store

 NRT
dblock store

NRT fingerprint
index table

RX_MAP
fingerprint index

table

NRT fingerprint
cache

RX_MAP
fingerprint cache

NRT restore
cache

RX_MAP
restore cache

Backup phase5

Backup phase5

Backup phase5

8

7 Read the recipe Generate the file's recipe6

Figure 5: The high-level design of SnapStore.

the data redundancy between the NRT memory regions can range

between 56.7% and 77.5% depending on the chunk size. Similarly,

the memory redundancy between the RX_MAP memory regions

ranges from 94.6% to 57.4%. However, the memory redundancy

between the W_MAP regions is up to 25.2%, which is lower when

compared to the other memory regions. Therefore, we can conclude

that the non-runtime (NRT) and RX_MAP memory regions show

high memory redundancy because they store the shared anony-

mous pages, file pages, and data of other processes that are common

across functions with the same runtime environment and host op-

erating system. In Figure 4b, the overlap of the video_processing

and face_detection workloads is about 60% because they utilize the

OpenCV [7] Python library, which is not a part of the lr_training

workload.

To estimate the storage overhead of the fingerprint table dur-

ing deduplication, we measure the total number of entries in the

table. In Figure 4, we show that by decreasing the chunk size, the

data redundancy increases but the total number of entries in the

fingerprint table also increases by up to 27×. Therefore, the choice
of the chunk size in a deduplication scheme is non-trivial
because of its memory region dependence and the fact that
the fingerprint table can become quite large.

(1) In the case of runtime memory pages with write permis-

sion, there is minimal data redundancy. The rest of the

regions have varying levels of redundancy.

(2) To achieve high data redundancy with low storage over-

head, the selection of the chunk size is memory region

dependent and is quite challenging.

4 DESIGN
In this section, we shall discuss the design of SnapStore, a snap-

shot storage system that employs a deduplication mechanism to

facilitate the storage of a large number of function snapshots. A

FaaS platform stores function snapshots on disk. SnapStore reads

these snapshots and removes any redundant data. Subsequently, it

stores the unique data on the disk in fixed-size blocks (referred to as

dblocks) that are common to all function snapshots and generates

a recipe for each snapshot. When a serverless platform requests

a function’s snapshot, it reassembles the function snapshot on a

RAM-based cache (implemented using RAMFS) by reading the

recipe and dblocks either from the disk or the RAM-based cache

(previously reassembled snapshots). A serverless platform then uses

the reassembled snapshot to spawn a sandbox.

4.1 Design Principles
Serverless computing platforms deploy hundreds of sandboxes on a

single server to serve requests for different serverless functions [1].

However, the CPU and memory resources of a server are fixed

and often prove to be on the lower side – this results in high re-

source contention [38]. Furthermore, platforms employ snapshot

and restore-based mechanisms to mitigate the cold start latency,

where snapshot creation is not on the critical path but the restore

is. By introducing a deduplication mechanism along with snapshot

creation, the degree of resource contention on platforms sadly in-

creases even further because of higher CPU involvement. Therefore,

the proposed deduplication mechanism must have a lower dupli-

cate elimination time and snapshot retrieval time. To improve the

aforementioned aspects, we propose a deduplication scheme that

exploits the memory region information (mapping between a mem-

ory page and its memory region) of a function snapshot. Our idea

works because we demonstrated that the degree of data redundancy

is memory region-dependent (as discussed in Section 3.4).

4.2 High-level System Design
In Figure 5, we show the design overview of SnapStore. Before cre-

ating a snapshot of a microVM, we execute a code snippet that cap-

tures information about the microVM’s dirty memory regions. On

snapshot creation, we remove non-dirty memory pages from a func-

tion’s snapshot. This is because storing non-dirty memory pages

leads to storage space wastage. Subsequently, we divide a function

snapshot into threememory regions: NRT (non-runtimememory re-

gions), RX_MAP (function’s memory mapped pages without write

permission) and W_MAP (function’s memory mapped pages with

write permission) by using the memory region information of a

function snapshot (see Section 4.4 and also see 1○ in Figure 5). We

SnapStore: A Snapshot Storage System for Serverless Systems Middleware ’23, December 11–15, 2023, Bologna, Italy

then consider the NRT and RX_MAP memory regions as candidates

for deduplication. Subsequently, we employ the fixed-size chunk-

ing algorithm to divide the memory regions into fixed-size chunks

with a suitable chunk size depending on its memory region (2○). To

identify duplicate data exclusive to a memory region category, we

compute the hash of the chunk’s data and compare it with previ-

ous hashes stored in the in-memory fingerprint cache and on-disk

index table (stores the full fingerprint table) corresponding to each

memory region (3○ and 4○). Consequently, the cost of duplicate

identification decreases significantly.

SnapStore stores the unique data chunks corresponding to a

memory region of a function snapshot in separate dblocks (see

5○ in Figure 5). In comparison to traditional deduplication mecha-

nisms, we have three types of dblocks: NRT, RX_MAP and W_MAP.

NRT and RX_MAP dblocks store the unique data chunks of their

respective memory regions. In contrast, W_MAP dblocks store the

original data chunks that correspond to the W_MAP memory re-

gion (discussed in Section 3.4). As a consequence, the data chunks

of the memory regions exhibit a degree of spatial locality (within a

memory region). For data retrieval, the system generates a recipe

of the file (see 6○).

During the retrieval stage, SnapStore reconstructs a function

snapshot on a RAM-based cache by reading the unique data chunks

from the disk, or previously restored function snapshots present in

the cache. During reconstruction, SnapStore fills the unique data

chunks memory region-wise instead of going by the order of entries

in the recipe (conventional method) (see 7○ and 8○ in Figure 5).

This is because dblocks store the unique data chunks of a memory

region and this method has an inherent amount of spatial locality.

As a result, SnapStore ensures minimal and near-sequential disk

accesses, thereby enhancing the performance of the retrieval stage,

and enabling more efficient prefetching.

4.3 Data Structures
Table 3 lists the data structures utilized by SnapStore. After dividing

a function snapshot into chunks, SnapStore stores every chunk of

a function snapshot using the struct data type. The members of the

chunk’s struct are the size of the chunk, duplicate flag, dblock ID,

chunk type, position (location of the chunk in a function snapshot),

20-byte fingerprint and chunk data. The chunk_type attribute only

stores three values: 0, 1, and 2, which represent the NRT, RX_MAP

and W_MAP memory regions, respectively. The size of the position

member is 8 bytes because themaximumpossible size of a function’s

snapshot is 10GB [28]. To identify duplicates, SnapStore uses per-

memory region fingerprint caches and index tables that are common

across all the function snapshots.

After removing duplicate chunks, SnapStore stores unique data

chunks in a per-memory region dblock_store, which is a linked list

of dblocks. Each dblock is typically 4 MB in size and contains the

𝑑_𝑡𝑦𝑝𝑒 attribute to indicate the type of constituent chunks. We split

a dblock into two regions: meta and data. The meta region stores

the metadata of the constituent chunks, while the data region stores

the chunk’s data. The dblock_data member of a dblock’s metadata

stores the dblock_offset value for each chunk, which represents the

offset from the beginning of the data region at which the chunk’s

data is stored. The following attributes determine the size of the

Table 3: List of data structures used by SnapStore

Entity Data type Description
chunk struct Members: 4-byte c_size, 1-byte duplicate_flag, 4-

byte d_id, 1-byte c_type, 8-byte position; char

fp[20]; unsigned char *data;

fingerprint
cache

Linked list Element: ⟨ 20-byte chunk’s fingerprint, 4-byte

dblock_id ⟩
index table Hash table Key: 20-byte chunk’s fingerprint, Value: 4-byte

dblock_id

dblock_data Hash table Key: 20-byte chunk’s fingerprint, Value: 4-byte

dblock_offset

dblock struct Members: 4-byte d_id, 1-byte d_type, HashTable

dblock_data, unsigned char *data

dblock_store Linked list Element: Dblock

restore_cache Linked list Element: ⟨ 4-byte dblock_id, 4MB dblock ⟩
recipe entry struct a 4-byte dblock_id, 1-byte chunk_type, 20-byte

fingerprint, 8-byte location

recipe Linked list Element: recipe entry

meta region: the size of the dblock_data map to store 𝑛 chunks,

the d_id and the d_type, where the size of the data region is 𝑛 ×
chunk size. Note that the value of 𝑛 should be chosen such that

the combined size of the meta region and data region is as close as

possible to 4 MB (yet less than it, this is the dblock size). A dblock

is said to be full when it cannot accommodate any more chunks.

For retrieval, SnapStore creates a recipe file for each function

snapshot, which stores the information required to reassemble

the data chunks. To minimize disk accesses while reassembling

a function snapshot, SnapStore uses per-memory region restore

caches that store the data of recently accessed dblocks (during the

retrieval process).

4.4 Preprocess Function Snapshot
A serverless platform typically takes a snapshot of the microVM

after the function’s initialization. SnapStore creates a custom func-

tion that first runs the serverless function, and then invokes a

custom code snippet before creating the snapshot. The code snip-

pet captures the following information: status (dirty or non-dirty)

and type (NRT, RX_MAP, and W_MAP) of a memory page. To

identify the status, we keep track of the dirty pages by using the

KVM_MEM_LOG_DIRTY_PAGES flag while registering the mi-

croVM memory with KVM. To identify the type, we parse the

pagemap file of the runtime process in the proc filesystem. Subse-

quently, we extract the permissions of the runtime memory pages

by parsing the runtime process’s maps file in the proc filesystem.

We utilize this information by creating the reg_info data structure
that stores the mapping between a memory region and its type.

As demonstrated earlier in Section 3.2, storing non-dirty memory

pages leads to space wastage; we store the function snapshot as a

sparse file (linked list like structure for dirty memory regions) by

eliminating non-dirty memory pages (discussed in Section 3.2).

4.5 Region-based Backup
In Algorithm 1, we show the steps taken by SnapStore to store a

snapshot of a function on a disk. Note that we present a single-

threaded view of our multi-threaded implementation, which uses a

lock-synchronized queue for inter-thread communication. The lock-

synchronized queue guarantees the sequential processing of chunks.

Middleware ’23, December 11–15, 2023, Bologna, Italy Abhisek Panda and Smruti R. Sarangi

In addition, the operations are atomic to ensure crash consistency.

Let us elaborate.

Algorithm 1 Deduplication algorithm

1: procedure create_snapshot(𝑓 𝑖𝑙𝑒 , reg_info)
2: Create a recipe file 𝑟

3: 𝑐ℎ𝑢𝑛𝑘𝑠 ← region_chunk(𝑓 𝑖𝑙𝑒 , 𝑟𝑒𝑔_𝑖𝑛𝑓 𝑜)

4: for all 𝑐 ∈ 𝑐ℎ𝑢𝑛𝑘𝑠 do
5: 𝑐 .fp← SHA-1(𝑐 .data, 𝑐 .len)

6: if 𝑐 ∈W_MAP then
7: save_chunk(𝑐)

8: 𝑟𝑒 ← gen_recipe_entry(𝑐) ⊲ Generate recipe entry
for a chunk

9: 𝑟 .insert(𝑟𝑒)

10: continue
11: end if
12: 𝑢𝑛𝑖𝑞𝑢𝑒 ← identify_duplicate(𝑐)

13: if 𝑢𝑛𝑖𝑞𝑢𝑒 ≠ 𝑁𝑈𝐿𝐿 then
14: 𝑐 .d_id← 𝑢𝑛𝑖𝑞𝑢𝑒

15: else
16: save_chunk(𝑐)

17: end if
18: Update region-specific data structures.

19: 𝑟𝑒 ← gen_recipe_entry(𝑐)

20: 𝑟 .insert(𝑟𝑒)

21: end for
22: Store necessary data structures and 𝑟 on the disk

23: end procedure

Using reg_info, we first split a snapshot of a function into mem-

ory regions. Subsequently, we divide the memory regions into

𝑘-byte chunks using the fixed-size chunking algorithm (see Line 3).

This is because the computational cost of the fixed-size chunking

algorithm is lower than that of variable-sized chunking algorithms.

Recall that the chunk size of a memory region significantly impacts

the data redundancy metric and the fingerprint/index table size

(see Section 3.4). Therefore, we select different values of the chunk

size for different memory regions. In the case of NRT, we chose the

64-byte chunk size because it provides higher data redundancy (see

Figure 4), even though the index table size is large. To compensate

for the costly index table size, we chose the 4096-byte chunk size

for RX_MAP because the reduction in the chunk size has a negli-

gible impact on data redundancy. We then compute the chunk’s

fingerprint using the SHA-1 hashing algorithm to identify duplicate

data chunks (see Line 5).

SnapStore utilizes a region-based deduplication scheme, in which

we find unique data chunks exclusive to a particular type of memory

region. Therefore, we maintain a per-memory region fingerprint

cache, index table, dblocks, and dblock store. We do not consider

the W_MAP memory region for deduplication because the proba-

bility of overlaps is small; hence, it is stored directly in the dblocks

(see Line 7). To identify duplicates within the NRT and RX_MAP

memory regions, we first perform a lookup operation on the region-

specific fingerprint cache, and if that operation fails, we perform

the same on the region-specific index table (see Line 12). In case

there is a hit, we set the 𝑑_𝑖𝑑 member to the value provided by the

index table or cache. Otherwise, we store the data chunk in the

region’s dblock (see Line 16). Subsequently, we add the unique data

chunk to the fingerprint cache and index table (see Line 18). If the

dblock is full, then we add it to the respective dblock store. We cre-

ate a recipe entry for every data chunk that contains the necessary

information to fetch its data from the dblock store (see Line 19).

Finally, we construct a recipe file for a function snapshot by adding

recipe entries (see Line 20). We store the ⟨ dblock store, recipe ⟩
on disk – this will be utilized by the retrieval stage to reassemble

the snapshot of a function (see Line 22). Note that the deduplica-

tion mechanism is immune to address space layout randomization

(ASLR). This is because, any snapshot creation always captures the

current address layout. The same layout can be seamlessly restored

later on (the MicroVM ensures that all starting address pointers are

correctly set).

Algorithm 2 Retrieval algorithm

1: procedure retrieve_snapshot(𝑟𝑒𝑐𝑖𝑝𝑒 r)
2: for all 𝑟𝑒 ∈ 𝑟 do
3: 𝑐 ← build_chunk(re)

4: if 𝑐 ∈W_MAP then
5: 𝑐 .data← read_data(𝑐 .d_id, NULL)

6: write_data(𝑐)

7: continue
8: end if
9: buff← get_region_buff(𝑐 .c_type) ⊲ Get region specific

read buffer
10: cache← get_restore_cache(𝑐 .c_type) ⊲ Get region

specific restore cache
11: buff.insert(𝑐)

12: if full(buff) then
13: Sort buff by the d_id attribute

14: for all 𝑐 ′ ∈ buff do
15: 𝑐 ′.data← read_data(𝑐 ′.d_id, cache)
16: write_data(𝑐 ′)
17: end for
18: end if
19: end for
20: end procedure

4.6 Region-based Retrieval
In Algorithm 2, we show the steps taken by SnapStore to retrieve a

function snapshot from the disk (single-threaded view). In ourmulti-

threaded implementation, three threads perform the following tasks:

1○ reads the recipe entries, 2○ reads the data from the dblocks,

and 3○ writes the data into the function’s snapshot file located

in the RAM-based cache. The retrieval stage first reads the recipe

entries from the recipe file. For each recipe entry, it creates a chunk

structure (see Line 3). Subsequently, it loads the chunk’s data by

reading the dblock from the dblock store, whose id and type are

equal to the chunk’s 𝑑_𝑖𝑑 and 𝑐_𝑡𝑦𝑝𝑒 members. The chunk’s data

is then written into the cache to reassemble the function snapshot

file. Note that we need to perform disk read operations for every

chunk – this results in a performance bottleneck.

SnapStore: A Snapshot Storage System for Serverless Systems Middleware ’23, December 11–15, 2023, Bologna, Italy

10

20

30

40

D
e
d

u
p

lic
a
ti

o
n

ti
m

e
 (

s)
he

llo
w
or

ld
py

ae
s

js
on

_s
er

de
s

ch
am

el
eo

n

im
ag

e_
ro

ta
te

m
at

m
ul

_f
b

fa
ce

_d
et

ec
tio

n

vi
de

o_
pr

oc
es

si
ng

lr_
tr
ai

ni
ng

lr_
se

rv
in

g

HiDeStore MeGA Snapstore

(a) Deduplication time on HDDs

HiDeStore MeGA Snapstore

10

20

30

40

B
a
ck

u
p
 t

im
e
 (

s)
he

llo
w
or

ld
py

ae
s

js
on

_s
er

de
s

ch
am

el
eo

n

im
ag

e_
ro

ta
te

m
at

m
ul

_f
b

fa
ce

_d
et

ec
tio

n

vi
de

o_
pr

oc
es

si
ng

lr_
tr
ai

ni
ng

lr_
se

rv
in

g

(b) Deduplication time on SSDs

4

6

8

10

D
e
d

u
p
lic

a
ti

o
n
 r

a
ti

o
he

llo
w
or

ld
py

ae
s

js
on

_s
er

de
s

ch
am

el
eo

n

im
ag

e_
ro

ta
te

m
at

m
ul

_f
b

fa
ce

_d
et

ec
tio

n

vi
de

o_
pr

oc
es

si
ng

lr_
tr
ai

ni
ng

lr_
se

rv
in

g

HiDeStore MeGA Snapstore

(c) Deduplication ratio

Figure 6: The deduplication performance of SnapStore where function snapshots are stored in Config-1. Note: SnapStore im-
proves the deduplication time by 50% on HDDs and 30.8% on SSDs, while limiting the deduplication ratio by 21.6%.

To achieve near-sequential disk read operations, we must read

data chunks in an increasing order of𝑑_𝑖𝑑 and𝑑_𝑡𝑦𝑝𝑒 . If we attempt

to rearrange the recipes in either the retrieval stage or backup stage,

then a recipe with a very large number of chunks may still prove to

be a bottleneck. Recall that W_MAP dblocks store the original data,

whereas NRT and RX_MAP dblocks store unique data chunks. To

ensure a sequential disk access pattern, if we encounter a W_MAP

type chunk, then we immediately restore (see Line 5-6). Otherwise,

we push the chunk to its corresponding memory region’s read

buffer, whose size is set to the dblock size (see Line 11). If the read

buffer is full, we sort the entries of the segment in increasing order

of 𝑑_𝑖𝑑 followed by reading them (see Line 13-15). Furthermore,

SnapStore uses memory region-specific restore caches to store

recently accessed dblocks (see Line 15). Finally, the data chunks are

written into the cache (see Line 6,16).

Optimization: To further speedup the retrieval process, we utilize

the previously retrieved snapshots on the cache to minimize the

number of disk read operations. If a unique data chunk exists in the

cache, then we read the chunk directly from the cache rather than

the disk. To support this optimization, we need to make a separate

recipe file for a function for entries stored in the RAM-based cache.

5 EVALUATION
In this section, we discuss the efficacy of SnapStore for storing

and retrieving snapshots. We evaluate SnapStore by comparing its

deduplication, and retrieval performance against two state-of-the-

art schemes: HiDeStore [30] and MeGA [51]. To demonstrate the

end-to-end performance, we measure the end-to-end latency of a

serverless function when SnapStore is integrated with the FaaSnap

serverless platform [3]. Note that whenever we use any comparative

term like increases, decreases or reduces, it means that the reported

value is being compared with the best value produced by any one

of these two state-of-the-art schemes (MeGA or HiDeStore).

5.1 Experimental Setup
Our evaluation setup has already been described in Table 2 (in Sec-

tion 3). The per-region restore and fingerprint caches contain 1024

and 4096 entries (similar to HiDeStore [30]), respectively. We use

the least recently used (LRU) replacement policy for managing the

caches. Prior work evaluated the effectiveness of their schemes by

storing and retrieving datasets containing different backup versions

of an application [30, 51]. This is because the deduplication and re-

trieval performance of a scheme depend on the order of backup files.

However, to the best of our knowledge, no such backup datasets

exist for serverless computing. For a level-playing field, we select

the function snapshots in increasing order of their dirty memory

size as our backup dataset (similar to QuickDedup [40]). This is

the closest that we can get to the setups in which our competing

designs were originally evaluated in. Let us call this Config-1. Later
on, to show the robustness of our proposal, we shall evaluate Snap-

Store on 70 randomly generated function snapshot sequences (this

is enough to achieve a steady state). Let us call this Config-2.
For a given sequence of microVM snapshots, we shall store in

the given order and then retrieve in the reverse order – this is the

standard evaluation methodology, which has also been followed

by our competing proposals. We use a 64-byte chunk size and the

fixed-size chunking algorithm for both the approaches. To properly

capture the disk overhead, we clear the page, dentry, and inode

caches prior to deduplication.

5.2 Deduplication Performance
SnapStore performs snapshot pre-processing before deduplication,

which can take between 20 and 110 milliseconds (off the critical

path). Tomeasure the deduplication performance, we use the follow-

ing metrics: the deduplication time and deduplication ratio. Given

a file, the deduplication time captures the time taken to remove

duplicate data chunks and store the unique data chunks on the disk.

The deduplication ratio is the ratio of the size of the original data

to the size of the deduplicated data. The higher it is, the better it is

(≥ 1).

Let us first consider Config-1. In Figure 6, we show that Snap-

Store reduces the deduplication time of a function snapshot by 50%

on HDDs and 30.8% on SSDs, on average, when compared to the

state-of-the-art approaches, respectively. This is because it omits

the memory region with the least probability of overlap during

deduplication, i.e., W_MAP. Furthermore, the chunk size for each

memory region is chosen wisely. As a result, the number of hash

comparisons and computations was reduced by an average of 79.4%,

compared to other approaches. MeGA rearranges the unique data

chunks of a function snapshot post backup to improve the physical

proximity of the latest version in its data containers (dblocks in

our design). Whereas, HiDeStore updates its index table so that

Middleware ’23, December 11–15, 2023, Bologna, Italy Abhisek Panda and Smruti R. Sarangi

1.00

10.00

N
o
rm

a
liz

e
d
 l
a
te

n
cy

(l
o
g
 s

ca
le

)

HiDeStore MeGA SnapStore

Fa
a
S
n
a
p

he
llo

w
or

ld
py

ae
s

js
on

_s
er

de
s

ch
am

el
eo

n

im
ag

e_
ro

ta
te

m
at

m
ul

_f
b

fa
ce

_d
et

ec
tio

n

vi
de

o_
pr

oc
es

si
ng

lr_
tr
ai

ni
ng

lr_
se

rv
in

g
Av

er
ag

e

(a) End-to-end latency on HDDs (normalized to vanilla FaaSnap)

1.0

10.0

he
llo

w
or

ld
py

ae
s

js
on

_s
er

de
s

ch
am

el
eo

n

im
ag

e_
ro

ta
te

m
at

m
ul

_f
b

fa
ce

_d
et

ec
tio

n

vi
de

o_
pr

oc
es

si
ng

lr_
tr
ai

ni
ng

lr_
se

rv
in

g
Av

er
ag

e

N
o
rm

a
liz

e
d
 l
a
te

n
cy

(l
o
g
 s

ca
le

)

HiDeStore MeGA SnapStore

Fa
a
S
n
a
p

(b) End-to-end latency on SSDs (normalized to vanilla FaaSnap)

Figure 7: The end-to-end performance of FaaSnap along with SnapStore, MeGA and HiDeStore, where function snapshots are
retrieved as per Config-1 (normalized to that without deduplication). Note: FaaSnap + SnapStore improves the latency by 25.9%
over FaaSnap on HDDs, while it degrades by a mere 0.6% on SSDs, on average.

it only contains fingerprints of unique data chunks correspond-

ing to the latest version. As a result, these schemes exhibit a high

deduplication time as compared to SnapStore.

SnapStore reduces the deduplication ratio by an average of 21.6%

compared to the state-of-the-art approaches (see Figure 6c). This

is because SnapStore does not consider the W_MAP memory re-

gion for deduplication. The deduplication ratio is the highest for

MeGA because it further eliminates similarities between the unique

data chunks along with duplicate data chunks by using base-delta

compression.

Now, let us consider Config-2. To study the effect of the order

of function snapshots on the deduplication performance, we per-

form deduplication on 70 randomly chosen sequences of function

snapshots. The average improvement in the deduplication time is

46% on HDDs, 36.2% on SSDs, 42.7% on NVMe, and ≈ 60% on a

NAS server as compared to the nearest competitor (mostly MeGA).

The standard deviation of the improvement ratio for all the storage

technologies is limited to 3.3%. With SnapStore the average degra-

dation of the deduplication ratio (with respect to the best performer,

MeGA) is 10% (standard deviation ≈ 3.6%).

5.3 End-to-End Performance
To study the end-to-end performance, we integrate SnapStore and

the other two approaches with the FaaSnap serverless platform.

To measure the end-to-end latency, we execute a function from a

deduplicated snapshot, and add the retrieval time of the function

snapshot to the function’s execution latency. In Figure 7, we show

that SnapStore improves the mean end-to-end latency by 25.9% on

HDDs, while degrading the latency by 0.6% on SSDswhen compared

to FaaSnap. In the case of HDDs, we read 2.4× less data from the

storage device and reassemble the snapshot in-memory, which leads

to the speedup. On the other hand, the lazy loading of pages from

the SSD disk is faster. Therefore, FaaSnap performs marginally

better. Moreover, we observe similar results when SnapStore is

integrated with other serverless platforms such as vHive [47].

The retrieval time for the other two state-of-the-art approaches

increases by 4.2× on HDDs, and 4.3× on SSDs when compared to

SnapStore, respectively. This is because SnapStore reassembles the

deduplicated function snapshot in the RAM-based cache instead

of the storage device. Furthermore, SnapStore retrieves unique

data chunks from the cache subject to availability, which reduces

the number of dblock accesses by 65.5% compared to retrieving

chunks exclusively from the storage device. If we reassemble the

snapshot on the storage device instead of the cache, the retrieval

time decreases by 30% with HDDs and about 3% with SSDs and

NVMes.

In Config-2, we get similar results: the average improvement

in the retrieval time is 82.6% on HDDs, 75.8% on SSDs, 82.54% on

NVMes, and 80% on NAS servers, with a standard deviation of up

to 1.76%. In the case of deploying the vanilla serverless platform

on ZFS, ZFS takes 1.75× more memory and has a 1.18× higher end-

to-end latency to execute a function as compared to SnapStore on

HDDs, respectively. SnapStore consumes 280 MB of memory for

the deduplication operations, on average.

5.4 Limit Study with Different Runtime
Environments

Next, we did a limit study to investigate the efficacy of SnapStore

across a set of different runtime environments – each subset of envi-

ronments had a similar software setup (the version numbers of the

frameworks were slightly different). We stored function snapshots

of a simple “Hello World” function written using 12 different run-

time environments that are supported by Amazon Lambda [27] on

HDDs. They are listed in Table 4 – there are minor variations in the

version numbers of the same runtime frameworks (for each individ-

ual subset). The memory size of the function is set to the minimum

possible size, which is 128MB regardless of its runtime environment.

In Figure 8a, we show that the deduplication time of a function

snapshot improves by at least 51% because of the memory-region

aware deduplication scheme (as compared to MeGA). Moreover, the

SnapStore: A Snapshot Storage System for Serverless Systems Middleware ’23, December 11–15, 2023, Bologna, Italy

no
de

_v
14

no
de

_v
16

no
de

_v
18

py
th

on
_v

3.
7

py
th

on
_v

3.
8

py
th

on
_v

3.
9

ja
va

_v
8

ja
va

_v
11

do
tn

et
_v

5
do

tn
et

_v
6

go
_v

1.
19

ru
by

_v
2.

7

HiDeStore MeGA Snapstore

5

10

15

20

25

D
e
d
u
p
lic

a
ti

o
n

ti
m

e
 (

s)

(a) Deduplication time

2

4

6

8

10

D
e
d
u
p
lic

a
ti

o
n
 r

a
ti

o
no

de
_v

14
no

de
_v

16
no

de
_v

18

py
th

on
_v

3.
7

py
th

on
_v

3.
8

py
th

on
_v

3.
9

ja
va

_v
8

ja
va

_v
11

do
tn

et
_v

5
do

tn
et

_v
6

go
_v

1.
19

ru
by

_v
2.

7

HiDeStore MeGA Snapstore

(b) Deduplication ratio

Figure 8: The deduplication performance of SnapStore when storing function snapshots of different runtime environments
in Config-1. Note: SnapStore improves the deduplication time of a function snapshot by 51%, while limiting the deduplication
ratio by 11.9%.

0.0

2.5

5.0

7.5

10.0

12.5

15.0

R
e
tr

ie
v
a
l
ti

m
e
 (

s)

HiDeStore MeGA Snapstore

no
de

_v
14

no
de

_v
16

no
de

_v
18

py
th

on
_v

3.
7

py
th

on
_v

3.
8

py
th

on
_v

3.
9

ja
va

_v
8

ja
va

_v
11

do
tn

et
_v

5
do

tn
et

_v
6

go
_v

1.
19

ru
by

_v
2.

7

Figure 9: The retrieval performance of SnapStore when stor-
ing function snapshots of different runtimes in Config-1.
Note: SnapStore improves the retrieval time of a function
snapshot by 88.71%.

number of hash computations and comparison operations reduces

by 63.8%. The deduplication ratio decreases by 11.9%, because we

omit the W_MAP memory region in the deduplication process (see

Figure 8b). The retrieval time of a function snapshot improves by

88.71% (see Figure 9).

In a subset (like all Python or all dot-net), we see an improvement

in the dedup ratio, with version changes, mainly because we can

reuse the dblocks stored by previous versions. The ratios are also

almost the same for all frameworks and we are much better in terms

of snapshot/retrieval time. Java-based frameworks are the only

exception because there are significant changes across versions [45].

We observe that the deduplication ratio of the Ruby runtime is the

highest. This is because 10% of the function’s snapshot is occupied

by the runtime process. Let us explain the spikes. An example is the

addition of Python 3.7. We see a spike here because the number of

Table 4: List of runtime environments (adapted from Ama-
zon [27]). Note: The size of the microVM allocated for all the
runtime environments is 128MB.

Runtime Version Runtime Version Runtime Version
Node.js v14 Node.js v16 Node.js v18

Python v3.7 Python v3.8 Python v3.9

Java v8 Java v11 .NET v5

.NET v6 go v1.19 ruby v2.7

dirty-memory pages is reduced by 37% as compared to that in Node

18. To understand the benefits of reading unique data chunks from

the cache instead of the disk, we retrieve node_v16 from the HDD,

when node_v14was present in the cache.We observe a performance

benefit of 49.8% (as compared to retrieving the entire snapshot from

the HDD).

6 RELATEDWORK
6.1 Deduplication in Cloud Environments:

Overall Operation
To improve space utilization in large cloud computing setups, prior

work [19, 21, 40, 50] has proposed using deduplication techniques to

eliminate redundancy across backup cloud data, VMIs (VM images)

and containers. There exist file systems such as Opendedup and

ZFS, that support inline deduplication (eliminating redundancies as

it is written into the disk). However, these file systems have high

memory requirements [40]. In the case of VMIs, prior work [19, 21]

divided a VMI into chunks using fixed-size chunking, and then

they eliminated redundancy by using the chunk’s hash. However,

these techniques entail the cost of additional hash calculations and

comparisons. Quickdedup [40] proposed a duplicate detection algo-

rithm that splits data chunks into buckets by comparing randomly

Middleware ’23, December 11–15, 2023, Bologna, Italy Abhisek Panda and Smruti R. Sarangi

chosen bytes from the data chunks. Subsequently, they perform

hashing to identify duplicate chunks in a bucket.

In the case of cloud data, prior work [30, 51] has used either a

chunk-level approach or an even finer-grained approach. In the

fine-grained approach, in addition to eliminating duplicate chunks,

any similarities between the unique chunks are identified and base-

delta compression is used to compress the chunk data. Here, the

overheads are high.

6.2 Specific Schemes
6.2.1 Duplicate Identification Schemes. Sparse Indexing [33] re-

lies on a sampling technique to determine which fingerprints need

to be cached. Extreme Binning [6], on the other hand, minimizes

fingerprint cache lookup operations by employing a novel file sim-

ilarity technique. If a match is found, the remaining fingerprints

are retrieved from the disk, and the data chunks are compared.

Silo [48] utilizes both the order of chunks and the similarity to

expedite the removal of duplicate data. iDedup [44] uses locality

in the disk access patterns to minimize disk I/Os and seeks during

inline deduplication, thereby reducing the deduplication cost. How-

ever, for deduplication it requires a dedicated in-memory cache to

store metadata information and a fingerprint table (250 MB to 1 GB)

– this leads to a much larger memory overhead vis-a-vis SnapStore

(we need 280 MB on an average). The focus of this whole line of

work is not on minimizing the retrieval time but on reducing the

deduplication cost. We on the other hand focus a lot on minimizing

the retrieval time, because it is on the critical path.

HiDestore [30] relies on the simple insight that a given chunk is

the most similar to its immediately previous version. Therefore, the

fingerprints of the current version are compared with the finger-

prints of the previous version, thus minimizing the overheads. On

the other hand, MeGA [51] removes the similarity between unique

chunks (using base-delta compression), only if the base chunk is

contained within a dblock that stores more than a specified number

of unique base chunks. The idea is to reuse such dblocks frequently.

These approaches compete with our method, where we use a

different method of deduplication based on memory regions. We

have compared them with our design in Section 5.

6.2.2 File Restoration Schemes. Prior work used a restore cache and
sometimes chunk rewriting techniques to minimize file restoration

costs (discussed in Section 2.3). This is because the unique data

chunks of a backup stream are scattered across dblocks (referred to

as chunk fragmentation). We can have two types of restore caches:

chunk-level [31] and dblock-level [16, 36]. A chunk-level cache

stores the most recently accessed chunk’s data in memory. A dblock-

level cache, in contrast, stores the most recently accessed dblock’s

data in memory.

Nam et al. [35] estimated the degree of chunk fragmentation

using the following attributes: the optimal number of dblocks re-

quired to store a file and the actual number of dblocks utilized to

store it. If the metric is below a specified threshold, duplicate data

chunks are rewritten to a new dblock. To avoid creating sparsely

populated dblocks, Kaczmarczyk et al. [23] rewrite a segment of a

file in a new dblock if the overlap between the unique data chunks

of a segment and other chunks in the dblock is low. Fu et al. [15]

proposed the HAR algorithm, which utilizes historical information

to identify sparse dblocks – they are fit candidates for rewriting.

Capping [32] techniques, on the other hand, rank dblocks according

to the number of unique data chunks of a file they contain. Subse-

quently, it rewrites the unique data chunks if they are not part of

the top 𝑘 dblocks.

HiDeStore [30] and MeGA [51] focus on the layout of dblocks.

The former maintains two types of dblocks: archival and active. Ac-

tive dblocks store the chunk data of the latest version, and archival

dblocks store data for previous versions. MeGA [51] maintains

a base-delta compression friendly data layout, ensuring that the

unique base data chunks and delta values of the latest version are

stored contiguously, preferably in the same dblock.

In SnapStore, there is no need to do rewriting because we ensure

near-sequential disk reads owing to our unique data layout (memory

region-wise). Furthermore, our scheme is not for backup data and

thus all the work on optimizing storage for different versions is not

relevant for us.

7 CONCLUSION
This paper shows that our proposed paradigm, which is to attack

the problem by treating different memory regions differently can

provide good solutions. Our deduplication time and retrieval time

gains of nearly 46% and 82.6%, respectively on HDDs, over the state-

of-the-art are quite significant and also very relevant in the context

of serverless applications. There is, of course, a small decrease in

the deduplication ratio (≈ 10%); however, we would like to claim

that the performance gains overshadow this. Upon integration with

FaaSnap, SnapStore improves the end-to-end latency of functions by

25.9%, while minimizing store space by 2.4× on HDDs. We believe

that in the future, it will be possible to write dedicated compilers and

libraries that will be able to nicely split code and data into different

pre-specified regions and then dedicated hardware or software

modules could exclusively focus on those regions that are expected

to have a high probability of overlaps with similar regions in other

snapshots. This region-based paradigm for serverless processes can

perhaps also be used to enhance their security and provide different

degrees of persistence.

ACKNOWLEDGMENTS
This work has been supported by the Prime Minister’s Research

Fellows (PMRF) scheme.

REFERENCES
[1] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony Liguori, Rolf

Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020. Firecracker: Lightweight

Virtualization for Serverless Applications. In 17th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 20). USENIX Association, Santa

Clara, CA, 419–434. https://www.usenix.org/conference/nsdi20/presentation/

agache

[2] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus Satzke,

Andre Beck, Paarijaat Aditya, and Volker Hilt. 2018. SAND: Towards High-

Performance Serverless Computing. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18). USENIX Association, Boston, MA, 923–935. https://www.

usenix.org/conference/atc18/presentation/akkus

[3] Lixiang Ao, George Porter, and Geoffrey M. Voelker. 2022. FaaSnap: FaaS Made

Fast Using Snapshot-Based VMs. In Proceedings of the Seventeenth European
Conference on Computer Systems (Rennes, France) (EuroSys ’22). Association for

Computing Machinery, New York, NY, USA, 730–746. https://doi.org/10.1145/

3492321.3524270

[4] Microsoft Azure. 2023. Azure Functions – Serverless Functions in Computing. Re-

trieved May 25, 2023 from https://azure.microsoft.com/en-us/products/functions

https://www.usenix.org/conference/nsdi20/presentation/agache
https://www.usenix.org/conference/nsdi20/presentation/agache
https://www.usenix.org/conference/atc18/presentation/akkus
https://www.usenix.org/conference/atc18/presentation/akkus
https://doi.org/10.1145/3492321.3524270
https://doi.org/10.1145/3492321.3524270
https://azure.microsoft.com/en-us/products/functions

SnapStore: A Snapshot Storage System for Serverless Systems Middleware ’23, December 11–15, 2023, Bologna, Italy

[5] Jeff Barr. 2022. Accelerate Your Lambda Functions with Lambda SnapStart. Re-

trieved May 25, 2023 from https://aws.amazon.com/blogs/aws/new-accelerate-

your-lambda-functions-with-lambda-snapstart/

[6] Deepavali Bhagwat, Kave Eshghi, Darrell D. E. Long, and Mark Lillibridge. 2009.

Extreme Binning: Scalable, parallel deduplication for chunk-based file backup.

In 2009 IEEE International Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems. 1–9. https://doi.org/10.1109/MASCOT.

2009.5366623

[7] Gary Bradski. 2000. The openCV library. Dr. Dobb’s Journal: Software Tools for
the Professional Programmer 25, 11 (2000), 120–123.

[8] Zhichao Cao, Hao Wen, Fenggang Wu, and David H.C. Du. 2018. ALACC:

Accelerating Restore Performance of Data Deduplication Systems Using Adaptive

Look-AheadWindow Assisted Chunk Caching. In 16th USENIX Conference on File
and Storage Technologies (FAST 18). USENIX Association, Oakland, CA, 309–324.

https://www.usenix.org/conference/fast18/presentation/cao

[9] Google Cloud. 2023. Cloud Functions. Retrieved May 25, 2023 from https:

//cloud.google.com/functions

[10] IBM Cloud. 2023. IBM Cloud Functions. Retrieved May 25, 2023 from https:

//cloud.ibm.com/functions

[11] Marcin Copik, Grzegorz Kwasniewski, Maciej Besta, Michal Podstawski, and

Torsten Hoefler. 2021. SeBS: A Serverless Benchmark Suite for Function-as-a-

Service Computing. In Proceedings of the 22nd International Middleware Conference
(Québec city, Canada) (Middleware ’21). Association for Computing Machinery,

New York, NY, USA, 64–78. https://doi.org/10.1145/3464298.3476133

[12] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang Qin,

Qixuan Wu, and Haibo Chen. 2020. Catalyzer: Sub-Millisecond Startup for

Serverless Computing with Initialization-Less Booting. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems (Lausanne, Switzerland) (ASPLOS ’20). As-
sociation for Computing Machinery, New York, NY, USA, 467–481. https:

//doi.org/10.1145/3373376.3378512

[13] Simon Eismann, Joel Scheuner, Erwin van Eyk, Maximilian Schwinger, Johannes

Grohmann, Nikolas Herbst, Cristina L. Abad, and Alexandru Iosup. 2021. Server-

less Applications: Why, When, and How? IEEE Software 38, 1 (2021), 32–39.

https://doi.org/10.1109/MS.2020.3023302

[14] Kave Eshghi and Hsiu Khuern Tang. 2005. A framework for analyzing and
improving content-based chunking algorithms. Technical Report.

[15] Min Fu, Dan Feng, Yu Hua, Xubin He, Zuoning Chen, Jingning Liu, Wen Xia,

Fangting Huang, and Qing Liu. 2016. Reducing Fragmentation for In-line Dedu-

plication Backup Storage via Exploiting Backup History and Cache Knowl-

edge. IEEE Transactions on Parallel and Distributed Systems 27, 3 (2016), 855–868.
https://doi.org/10.1109/TPDS.2015.2410781

[16] Min Fu, Dan Feng, Yu Hua, Xubin He, Zuoning Chen, Wen Xia, Fangting

Huang, and Qing Liu. 2014. Accelerating Restore and Garbage Collection in

Deduplication-based Backup Systems via Exploiting Historical Information. In

2014 USENIX Annual Technical Conference (USENIX ATC 14). USENIX Association,

Philadelphia, PA, 181–192. https://www.usenix.org/conference/atc14/technical-

sessions/presentation/fu_min

[17] Tal Hoffman. 2021. Firecracker internals: a deep dive inside the technology powering
AWS Lambda · Tal Hoffman. RetrievedMay 20, 2023 from https://www.talhoffman.

com/2021/07/18/firecracker-internals/

[18] IBM. 2019. About Sparse Files. Retrieved Feb 21, 2023 from https://www.ibm.

com/support/pages/about-sparse-files

[19] K. R. Jayaram, Chunyi Peng, Zhe Zhang, Minkyong Kim, Han Chen, and Hui

Lei. 2011. An Empirical Analysis of Similarity in Virtual Machine Images. In

Proceedings of the Middleware 2011 Industry Track Workshop (Lisbon, Portugal)

(Middleware ’11). Association for Computing Machinery, New York, NY, USA,

Article 6, 6 pages. https://doi.org/10.1145/2090181.2090187

[20] Zhipeng Jia and Emmett Witchel. 2021. Nightcore: Efficient and Scalable Server-

less Computing for Latency-Sensitive, Interactive Microservices. In Proceed-
ings of the 26th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (Virtual, USA) (ASPLOS ’21). As-
sociation for Computing Machinery, New York, NY, USA, 152–166. https:

//doi.org/10.1145/3445814.3446701

[21] Keren Jin and Ethan L. Miller. 2009. The Effectiveness of Deduplication on Virtual

Machine Disk Images. In Proceedings of SYSTOR 2009: The Israeli Experimental
Systems Conference (Haifa, Israel) (SYSTOR ’09). Association for Computing Ma-

chinery, New York, NY, USA, Article 7, 12 pages. https://doi.org/10.1145/1534530.

1534540

[22] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag

Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja

Yadwadkar, et al. 2019. Cloud programming simplified: A berkeley view on

serverless computing. arXiv preprint arXiv:1902.03383 (2019).
[23] Michal Kaczmarczyk, Marcin Barczynski, Wojciech Kilian, and Cezary Dubnicki.

2012. Reducing Impact of Data Fragmentation Caused by In-Line Deduplication.

In Proceedings of the 5th Annual International Systems and Storage Conference
(Haifa, Israel) (SYSTOR ’12). Association for Computing Machinery, New York,

NY, USA, Article 15, 12 pages. https://doi.org/10.1145/2367589.2367600

[24] Linux Kernel. 2023. The Definitive KVM (Kernel-based Virtual Machine) API
Documentation. Retrieved May 20, 2023 from https://www.kernel.org/doc/

Documentation/virtual/kvm/api.txt

[25] Jeongchul Kim and Kyungyong Lee. 2019. FunctionBench: A Suite of Workloads

for Serverless Cloud Function Service. In 2019 IEEE 12th International Conference
on Cloud Computing (CLOUD). 502–504. https://doi.org/10.1109/CLOUD.2019.

00091

[26] AWS Lambda. 2023. Lambda execution environments - AWS Lambda. Retrieved

May 19, 2023 from https://docs.aws.amazon.com/lambda/latest/operatorguide/

execution-environments.html

[27] AWS Lambda. 2023. Lambda runtimes. Retrieved Feb 21, 2023 from https:

//docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html

[28] AWS Lambda. 2023. Memory and computing power - AWS Lambda. Retrieved

Feb 21, 2023 from https://docs.aws.amazon.com/lambda/latest/operatorguide/

computing-power.html

[29] AWS Lambda. 2023. Serverless Computing - Amazon Web Services. Retrieved May

25, 2023 from https://aws.amazon.com/lambda/#:~:text=AWS%20Lambda%20is%

20a%20serverless,pay%20for%20what%20you%20use

[30] Pengfei Li, Yu Hua, Qin Cao, and Mingxuan Zhang. 2020. Improving the Re-

store Performance via Physical-Locality Middleware for Backup Systems. In

Proceedings of the 21st International Middleware Conference (Delft, Netherlands)
(Middleware ’20). Association for Computing Machinery, New York, NY, USA,

341–355. https://doi.org/10.1145/3423211.3425691

[31] Mark Lillibridge, Kave Eshghi, and Deepavali Bhagwat. 2013. Improving Re-

store Speed for Backup Systems that Use Inline Chunk-Based Deduplication.

In 11th USENIX Conference on File and Storage Technologies (FAST 13). USENIX
Association, San Jose, CA, 183–197. https://www.usenix.org/conference/fast13/

technical-sessions/presentation/lillibridge

[32] Mark Lillibridge, Kave Eshghi, and Deepavali Bhagwat. 2013. Improving Re-

store Speed for Backup Systems that Use Inline Chunk-Based Deduplication.

In 11th USENIX Conference on File and Storage Technologies (FAST 13). USENIX
Association, San Jose, CA, 183–197. https://www.usenix.org/conference/fast13/

technical-sessions/presentation/lillibridge

[33] Mark Lillibridge, Kave Eshghi, Deepavali Bhagwat, Vinay Deolalikar, Greg

Trezise, and Peter Camble. 2009. Sparse Indexing: Large Scale, Inline

Deduplication Using Sampling and Locality. In 7th USENIX Conference on
File and Storage Technologies (FAST 09). USENIX Association, San Francisco,

CA. https://www.usenix.org/conference/fast-09/sparse-indexing-large-scale-

inline-deduplication-using-sampling-and-locality

[34] Athicha Muthitacharoen, Benjie Chen, and David Mazières. 2001. A Low-

Bandwidth Network File System. In Proceedings of the Eighteenth ACM Sym-
posium on Operating Systems Principles (Banff, Alberta, Canada) (SOSP ’01).
Association for Computing Machinery, New York, NY, USA, 174–187. https:

//doi.org/10.1145/502034.502052

[35] Youngjin Nam, Guanlin Lu, Nohhyun Park, Weijun Xiao, and David H. C. Du.

2011. Chunk Fragmentation Level: An Effective Indicator for Read Performance

Degradation in Deduplication Storage. In 2011 IEEE International Conference on
High Performance Computing and Communications. 581–586. https://doi.org/10.

1109/HPCC.2011.82

[36] Young Jin Nam, Dongchul Park, and David H.C. Du. 2012. Assuring Demanded

Read Performance of Data Deduplication Storage with Backup Datasets. In 2012
IEEE 20th International Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems. 201–208. https://doi.org/10.1109/

MASCOTS.2012.32

[37] OpenCV. 2023. OpenCV: Cascade Classifier. Retrieved May 25, 2023 from https:

//docs.opencv.org/3.4/db/d28/tutorial_cascade_classifier.html

[38] Abhisek Panda and smruti ranjan sarangi. 2023. FaaSCtrl: A Comprehensive-

Latency Controller for Serverless Platforms. (8 2023). https://doi.org/10.36227/

techrxiv.24049809.v1

[39] New Relic. 2020. Executive Summary | For the Love of Serverless. Retrieved May 25,

2023 from https://newrelic.com/resources/ebooks/serverless-benchmark-report-

aws-lambda-2020

[40] Shweta Saharan, Gaurav Somani, Gaurav Gupta, Robin Verma, Manoj Singh

Gaur, and Rajkumar Buyya. 2020. QuickDedup: Efficient VM deduplication in

cloud computing environments. J. Parallel and Distrib. Comput. 139 (2020), 18–31.
https://doi.org/10.1016/j.jpdc.2020.01.002

[41] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry, Paul Batum,

Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and Ricardo

Bianchini. 2020. Serverless in the Wild: Characterizing and Optimizing the

Serverless Workload at a Large Cloud Provider. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20). USENIX Association, 205–218. https://www.usenix.

org/conference/atc20/presentation/shahrad

[42] Wonseok Shin, Wook-Hee Kim, and Changwoo Min. 2022. Fireworks: A Fast,

Efficient, and Safe Serverless Framework Using VM-Level Post-JIT Snapshot. In

Proceedings of the Seventeenth European Conference on Computer Systems (Rennes,
France) (EuroSys ’22). Association for Computing Machinery, New York, NY, USA,

663–677. https://doi.org/10.1145/3492321.3519581

https://aws.amazon.com/blogs/aws/new-accelerate-your-lambda-functions-with-lambda-snapstart/
https://aws.amazon.com/blogs/aws/new-accelerate-your-lambda-functions-with-lambda-snapstart/
https://doi.org/10.1109/MASCOT.2009.5366623
https://doi.org/10.1109/MASCOT.2009.5366623
https://www.usenix.org/conference/fast18/presentation/cao
https://cloud.google.com/functions
https://cloud.google.com/functions
https://cloud.ibm.com/functions
https://cloud.ibm.com/functions
https://doi.org/10.1145/3464298.3476133
https://doi.org/10.1145/3373376.3378512
https://doi.org/10.1145/3373376.3378512
https://doi.org/10.1109/MS.2020.3023302
https://doi.org/10.1109/TPDS.2015.2410781
https://www.usenix.org/conference/atc14/technical-sessions/presentation/fu_min
https://www.usenix.org/conference/atc14/technical-sessions/presentation/fu_min
https://www.talhoffman.com/2021/07/18/firecracker-internals/
https://www.talhoffman.com/2021/07/18/firecracker-internals/
https://www.ibm.com/support/pages/about-sparse-files
https://www.ibm.com/support/pages/about-sparse-files
https://doi.org/10.1145/2090181.2090187
https://doi.org/10.1145/3445814.3446701
https://doi.org/10.1145/3445814.3446701
https://doi.org/10.1145/1534530.1534540
https://doi.org/10.1145/1534530.1534540
https://doi.org/10.1145/2367589.2367600
https://www.kernel.org/doc/Documentation/virtual/kvm/api.txt
https://www.kernel.org/doc/Documentation/virtual/kvm/api.txt
https://doi.org/10.1109/CLOUD.2019.00091
https://doi.org/10.1109/CLOUD.2019.00091
https://docs.aws.amazon.com/lambda/latest/operatorguide/execution-environments.html
https://docs.aws.amazon.com/lambda/latest/operatorguide/execution-environments.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html
https://docs.aws.amazon.com/lambda/latest/operatorguide/computing-power.html
https://docs.aws.amazon.com/lambda/latest/operatorguide/computing-power.html
https://aws.amazon.com/lambda/#:~:text=AWS%20Lambda%20is%20a%20serverless,pay%20for%20what%20you%20use
https://aws.amazon.com/lambda/#:~:text=AWS%20Lambda%20is%20a%20serverless,pay%20for%20what%20you%20use
https://doi.org/10.1145/3423211.3425691
https://www.usenix.org/conference/fast13/technical-sessions/presentation/lillibridge
https://www.usenix.org/conference/fast13/technical-sessions/presentation/lillibridge
https://www.usenix.org/conference/fast13/technical-sessions/presentation/lillibridge
https://www.usenix.org/conference/fast13/technical-sessions/presentation/lillibridge
https://www.usenix.org/conference/fast-09/sparse-indexing-large-scale-inline-deduplication-using-sampling-and-locality
https://www.usenix.org/conference/fast-09/sparse-indexing-large-scale-inline-deduplication-using-sampling-and-locality
https://doi.org/10.1145/502034.502052
https://doi.org/10.1145/502034.502052
https://doi.org/10.1109/HPCC.2011.82
https://doi.org/10.1109/HPCC.2011.82
https://doi.org/10.1109/MASCOTS.2012.32
https://doi.org/10.1109/MASCOTS.2012.32
https://docs.opencv.org/3.4/db/d28/tutorial_cascade_classifier.html
https://docs.opencv.org/3.4/db/d28/tutorial_cascade_classifier.html
https://doi.org/10.36227/techrxiv.24049809.v1
https://doi.org/10.36227/techrxiv.24049809.v1
https://newrelic.com/resources/ebooks/serverless-benchmark-report-aws-lambda-2020
https://newrelic.com/resources/ebooks/serverless-benchmark-report-aws-lambda-2020
https://doi.org/10.1016/j.jpdc.2020.01.002
https://www.usenix.org/conference/atc20/presentation/shahrad
https://www.usenix.org/conference/atc20/presentation/shahrad
https://doi.org/10.1145/3492321.3519581

Middleware ’23, December 11–15, 2023, Bologna, Italy Abhisek Panda and Smruti R. Sarangi

[43] Paulo Silva, Daniel Fireman, and Thiago Emmanuel Pereira. 2020. Prebaking

Functions to Warm the Serverless Cold Start. In Proceedings of the 21st Interna-
tional Middleware Conference (Delft, Netherlands) (Middleware ’20). Association
for Computing Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/

3423211.3425682

[44] Kiran Srinivasan, Timothy Bisson, Garth R Goodson, and Kaladhar Voruganti.

2012. iDedup: Latency-aware, Inline Data Deduplication for Primary Storage.

In 10th USENIX Conference on File and Storage Technologies (FAST 12). USENIX
Association, San Jose, CA. https://www.usenix.org/conference/fast12/idedup-

latency-aware-inline-data-deduplication-primary-storage

[45] Daniel Strmecki. 2023. New Features in Java 11. Retrieved May 25, 2023 from

https://www.baeldung.com/java-11-new-features

[46] Markus Thömmes. 2017. Squeezing the milliseconds: How to make
serverless platforms blazing fast! Retrieved May 25, 2023 from

https://medium.com/openwhisk/squeezing-the-milliseconds-how-to-make-

serverless-platforms-blazing-fast-aea0e9951bd0

[47] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion, and Boris

Grot. 2021. Benchmarking, Analysis, and Optimization of Serverless Function

Snapshots. In Proceedings of the 26th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (Virtual,
USA) (ASPLOS ’21). Association for Computing Machinery, New York, NY, USA,

559–572. https://doi.org/10.1145/3445814.3446714

[48] Wen Xia, Hong Jiang, Dan Feng, and Yu Hua. 2011. SiLo: A Similarity-

Locality based Near-Exact Deduplication Scheme with Low RAM

Overhead and High Throughput. In 2011 USENIX Annual Techni-
cal Conference (USENIX ATC 11). USENIX Association, Portland, OR.

https://www.usenix.org/conference/usenixatc11/silo-similarity-locality-

based-near-exact-deduplication-scheme-low-ram

[49] Wen Xia, Yukun Zhou, Hong Jiang, Dan Feng, Yu Hua, Yuchong Hu, Qing Liu,

and Yucheng Zhang. 2016. FastCDC: A Fast and Efficient Content-Defined

Chunking Approach for Data Deduplication. In 2016 USENIX Annual Technical
Conference (USENIX ATC 16). USENIX Association, Denver, CO, 101–114. https:

//www.usenix.org/conference/atc16/technical-sessions/presentation/xia

[50] Nannan Zhao, Hadeel Albahar, Subil Abraham, Keren Chen, Vasily Tarasov, Dim-

itrios Skourtis, Lukas Rupprecht, Ali Anwar, and Ali R. Butt. 2020. DupHunter:

Flexible High-Performance Deduplication for Docker Registries. In 2020 USENIX
Annual Technical Conference (USENIX ATC 20). USENIX Association, 769–783.

https://www.usenix.org/conference/atc20/presentation/zhao

[51] Xiangyu Zou, Wen Xia, Philip Shilane, Haijun Zhang, and Xuan Wang. 2022.

Building a High-performance Fine-grained Deduplication Framework for Backup

Storage with High Deduplication Ratio. In 2022 USENIX Annual Technical Con-
ference (USENIX ATC 22). USENIX Association, Carlsbad, CA, 19–36. https:

//www.usenix.org/conference/atc22/presentation/zou

https://doi.org/10.1145/3423211.3425682
https://doi.org/10.1145/3423211.3425682
https://www.usenix.org/conference/fast12/idedup-latency-aware-inline-data-deduplication-primary-storage
https://www.usenix.org/conference/fast12/idedup-latency-aware-inline-data-deduplication-primary-storage
https://www.baeldung.com/java-11-new-features
https://medium.com/openwhisk/squeezing-the-milliseconds-how-to-make-serverless-platforms-blazing-fast-aea0e9951bd0
https://medium.com/openwhisk/squeezing-the-milliseconds-how-to-make-serverless-platforms-blazing-fast-aea0e9951bd0
https://doi.org/10.1145/3445814.3446714
https://www.usenix.org/conference/usenixatc11/silo-similarity-locality-based-near-exact-deduplication-scheme-low-ram
https://www.usenix.org/conference/usenixatc11/silo-similarity-locality-based-near-exact-deduplication-scheme-low-ram
https://www.usenix.org/conference/atc16/technical-sessions/presentation/xia
https://www.usenix.org/conference/atc16/technical-sessions/presentation/xia
https://www.usenix.org/conference/atc20/presentation/zhao
https://www.usenix.org/conference/atc22/presentation/zou
https://www.usenix.org/conference/atc22/presentation/zou

	Abstract
	1 Introduction
	2 Background
	2.1 Serverless Computing
	2.2 Firecracker
	2.3 Deduplication

	3 Characterization of a Function Snapshot
	3.1 Evaluation Methodology
	3.2 Analyzing Non-dirty Memory Pages
	3.3 Analyzing Dirty Memory Pages
	3.4 Analyzing Duplicate Memory Pages

	4 Design
	4.1 Design Principles
	4.2 High-level System Design
	4.3 Data Structures
	4.4 Preprocess Function Snapshot
	4.5 Region-based Backup
	4.6 Region-based Retrieval

	5 Evaluation
	5.1 Experimental Setup
	5.2 Deduplication Performance
	5.3 End-to-End Performance
	5.4 Limit Study with Different Runtime Environments

	6 Related Work
	6.1 Deduplication in Cloud Environments: Overall Operation
	6.2 Specific Schemes

	7 Conclusion
	Acknowledgments
	References

