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Abstract—In modern vehicles, efficiently storing CAN bus
data is crucial for on-board diagnostics, performance monitor-
ing, analysis, and the investigation of failures and accidents. In
past work, an EDR (Event Data Recorder) akin to the ones
in aircrafts has been mooted. The state-of-the-art in this field
comprises proposals that propose efficient lossless compression
of CAN data for such analyses — this limits the data storage
capacity. Our contribution SmrtComp aims to achieve a much
larger storage efficiency by storing recent data in a lossless
format and compressing older data in increasingly lossy formats.
The system tries to approximately adhere to an expected
accuracy vs time curve (a QoS metric) that is specified a priori.
Our study evaluates SmrtComp’s performance using various
metrics such as the compression gain (CG), root mean square
error (RMSE), total data storage and the preservation of key
features. SmrtComp was implemented on an ARM Beaglebone
board; it was used to store realistic traces and synthetic traces
obtained from CAN bus simulators. We achieve a 3.2x higher
data storage efficiency as compared to the closest competing
work and outperform a popular lossy algorithm by 94.33% in
terms of the RMSE. SmrtComp achieves line-speed compression
of CAN bus data making it a promising solution for managing
large data volumes, and we also show that our compression
method preserves anomalies. To the best of our knowledge,
this is the first hybrid and tunable compression system in this
domain.

Index Terms—Data compression, CAN bus, Embedded sys-
tem, Event data recorder, Memory efficiency

I. INTRODUCTION

The automotive industry is seeing a move towards more
connected and intelligent cars [1]. A modern car has a
network of over 100 electronic control units (ECUs) inter-
connected through a controller area network (CAN) bus [1].
These ECUs collect and analyze data from vehicle sensors
generating significant data traffic on the CAN bus [2].
Thus, akin to aircraft, there are proposals to record this
information using an EDR [3] (Event Data Recorder) for
various purposes such as diagnosing vehicle issues, real-time
monitoring, scheduling maintenance, studying component
behavior (particularly electric vehicle batteries) and analyzing
driving patterns. Notably, EDRs hold legally cognizable data,
particularly in accidents involving self-driving or automated
systems.

There are predominantly two kinds of EDRs proposed in
the literature. The first category captures video data using
on-board cameras [3], while the second kind logs CAN
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bus data [4], [5]. The former retains video recordings for
a short period, typically about 30 seconds [6], sufficient
for accident reconstruction. Video compression technologies
enable efficient storage but are not suitable for long-term
analysis of driving patterns and identification of abnormal
behavior — critical in legal cases.

ECUs can generate data at a rate of 500 kbps on the
CAN bus [2], which poses challenges for analysis without
adequate processing. Effective techniques are required to
manage ECU data inflow and efficient storage (compressed
or uncompressed). This area is sparse. Hence, in this paper,
our focus is on the second type of EDRs that log CAN bus
data. We propose an improved CAN bus data logger that
surpasses state-of-the-art technology. This research area has
gained momentum due to the advent of automated driving,
electric vehicles (EVs), and hydrogen-based vehicles that are
heavily reliant on electronic systems [7].

A. Motivation

Before designing an efficient solution for logging CAN
bus data, it is crucial to understand the significance of storing
such data and the inadequacies of traditional storage methods.
The intention is to propose a novel and effective CAN
bus data logger that can overcome the existing challenges
and offer better performance in terms of data storage and
processing speed without losing the key features of the logged
data.

@ Importance of Data Storage:

Due to the growing complexity of ECUs a significant
amount of data is generated in modern cars (around 25 GB
per hour [8]), which necessitates efficient storage solutions.
Efficient ECU log storage enables real-time analysis, issue
diagnosis, and long-term benefits such as enhanced vehicle
performance, reliability, safety, and reduced maintenance
costs and downtime. Of late cyber attack detection and
courtroom evidence have emerged as important use cases.

In the event of an ECU failure, recorded data helps identify
the root cause [9]. Vehicles may employ selective logging to
minimize data storage by capturing specific data relevant to
expected faults like the notion of the frozen frame [9]. While
selective logging partially solves the problem, it relies on the
predictability of faults, which may seldom be very realistic.

Coming to attacks, CAN injection is a popular cyber attack
where unauthorized entities maliciously transmit messages
through a vehicle’s CAN bus by illegitimately getting access
to it. The lack of authentication and encryption in the CAN
bus protocol allows attackers to send false or unauthorized
messages, potentially resulting in unintended actions such
as vehicle theft [9]. Detecting such attacks again requires
monitoring ECU data and analyzing all CAN message traffic
for abnormal patterns or unexpected behavior [10].



Globally, courts have recognized recorded CAN bus data as
admissible evidence when proven to be reliable and tamper-
proof [11]. This aids in accident reconstruction and identify-
ing abnormal driving behavior. However, we often need more
than 250 hours of data for proving that a given driving pattern
was anomalous and inconsistent [12]. The dictum is “more
the data better it is” [13]. Furthermore, this information
is also proving to be useful to insurance companies [14],
because it facilitates anomalous pattern identification and
compliance with driving standards.

The aforementioned case studies indicate the importance
of the long-term storage of data. An EDR aids this, but due
to memory capacity constraints, it can only store data for
a limited time. As a result, there is a need to increase the
effective capacity of an EDR [13]. Let us elaborate.

O Requirements in terms of nonvolatile memory: Automo-
tive components are exposed to harsh ambient conditions,
including elevated temperatures and strong electromagnetic
fields, necessitating the implementation of robust EDR stor-
age systems capable of withstanding such extreme conditions.
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Therefore, an EDR storage system must have a high
endurance and also a fast write speed to accommodate
the substantial volume of data generated, particularly in
systems with frequent writes and many read-write cycles.
Furthermore, it should possess resilience against security
attacks [15].

F-RAM and automotive SD cards are preferred over
traditional EEPROM (Electrically Erasable Programmable
Read-Only Memory) and flash memory in vehicular en-
vironments [16], [17] due to their durability and superior
performance [18]. For instance, F-RAMs offer faster write
times (<50 ns) and a significantly higher PE (Program Erase)
endurance (100 trillion cycles) compared to EEPROM’s
limited endurance (100,000 cycles). F-RAM devices operate
at a lower voltage (1.5V), provide resistance against power
analysis attacks, and exhibit good temperature resistance (up
to 125°C). AEC-Q100 [19] Grade 3 automotive SD cards are
a practical alternative to F-RAMs [20]. These are tailored for
vehicular use, offering high temperature tolerance (-40 °C to
85°C), ECC and wear leveling [20], and reliable storage with
high endurance (over 500,000 cycles). In our experiments we
have used a functionally similar option.

Both F-RAMs and automotive SD cards have much lower
storage capacities (typically KBs to 64/256 GB) as compared
to standard flash. Hence, efficient data compression tech-
niques are very important in this space.
® Solutions: We will now explore potential methods for
storing such massive data (see Figure 1). Expanding memory

capacity is the natural solution to accommodate increasing
data storage requirements. However, the high price of F-
RAM makes this option highly unfeasible. While an 8 GB
automotive SD card costs around 17 USD, an F-RAM with
only 256 Kb capacity costs the same [21], [22]. In developing
countries where cars are bought in the range of 7,000-12,000
USD [23], an F-RAM based EDR may account for 20-25
% of the total cost of the car. While automotive SD cards
are cost-effective, the generation of substantial data volumes
at short intervals [8] imposes significant storage capacity
demands, resulting in substantial cumulative costs (an order
of magnitude less than F-RAM though).

An alternative solution for storing large data volumes
is transferring it periodically to an external drive like a
disk drive or a solid-state drive (SSD) for retention, when
the EDR memory reaches its maximum capacity. However,
this approach increases the EDR cost and may have lim-
ited reliability in automotive environments [24], [25]. With
numerous parameters recorded from over 100 ECUs, the
memory quickly fills up, requiring frequent data retrieval and
storage. Thus, this solution is neither feasible nor scalable.
Also note that cloud-based storage is also not an option due
to continuous internet connection requirements, associated
costs, and privacy concerns.

Given the storage limitations and our preference for ro-
bustness, employing data compression techniques proves
advantageous for storing more data without adding more
storage. Traditional approaches use lossless compression,
but for incident analyses, storing all data is unnecessary.
Instead, a subset of the recorded data suffices to identify
the root cause [26]. Therefore, recent research [27], [28] has
focused on performing lossy compression and storing only
the relevant signals. Building upon this concept, we propose
SmrtComp- a highly efficient solution for storing CAN bus
data. SmrtComp uses an intelligent and tunable algorithm
to store recent data in a lossless format while older data is
stored in a lossy format with varying degrees of compression,
i.e., information loss. In addition, SmrtComp dynamically
attempts to compress old data based on a pre-defined quality
of service (QoS) metric, such as the expected accuracy versus
time curve.

B. Contributions

To the best of our knowledge, this is the @ first contri-
bution in this space that stores CAN bus data in a hybrid
fashion (lossless + lossy). ® Second, we propose a novel
online compression algorithm based on principal component
analysis (PCA) and the discrete cosine transform (DCT)
where we can dynamically reduce the resolution of the data.
® Our tunable algorithm varies the degree of information
loss in data without uncompressing it. @ The system is
implemented on an ARM Beaglebone board; it can compress
and store CAN data at line speed. ® The efficacy of our
proposed algorithm can be seen from the results, which show
that we can store 3.2x more data than the state-of-the-art
algorithms while preserving most anomalies in the data.

The paper is organized as follows: we discuss related work
in §II to provide the context for our proposed algorithm.



In §III, we provide the necessary background information
followed by our proposed algorithm in §IV. We evaluate
the performance of our algorithm in §V and and finally,
conclude in §VI.

II. RELATED WORK
To the best of our knowledge, we are not aware of any
hybrid and dynamically tunable compression algorithm for
CAN data.
@®Lossless compression References [4] and [5] present a
GD (Generalized Deduplication)-based algorithm for lossless
compression of CAN data. However, the compression ratios
are not tunable; we can thus store data only for a fixed
duration.
@Lossy compression Similar to SmrtComp, Yao et al. [27]
propose a two-level lossy compression approach - high and
low. In contrast, our approach employs 10 compression
levels, gradually reducing the data quality. Furthermore [27]
focuses only on some events of interest (e.g., hard braking)
and discards low-priority data, regardless of age. In contrast,
SmrtComp considers age and priority while compressing,
using a user-specific QoS curve. Havers et al. [29] use
piecewise-linear approximations for lossy compression but
do not leverage correlations in vehicular data. Khelifati et
al. [28] exploit correlations for storing multivariate data but
incur high overheads for dictionary creation and storage.

III. BACKGROUND

@ CAN Protocol: CAN [30] is the de-facto standard for com-
munication between ECUs in modern vehicles. The typical
CAN bus bandwidth is 500 kbps [2].

When multiple ECUs concurrently try to send messages
on the CAN bus, an arbitration based on message IDs is
done to allow only one ECU. The process is equivalent to
scanning the IDs of the concurrent messages from the left,
and finding the index of the first 0 bit. The message with
the lowest such index has the highest priority. For example,
consider two ECUs, ECU; and ECUs,, with message IDS
(11010000001)5 and (11100100011)3, respectively. ECU; is
allowed to send because its first 0 bit is at index 3 (index 1
refers to the MSB position), while it is at index 4 for ECUs.
® Principal Component Analysis (PCA): PCA is a pop-
ular dimensionality reduction technique that projects n-
dimensional data onto a transformed space using a few prin-
cipal components. These components capture the majority
of the data’s variance. The process involves computing the
covariance matrix, decomposing it to obtain eigenvalues and
eigenvectors. The eigenvectors represent orthogonal direc-
tions with maximum variance, while the eigenvalues indicate
the magnitude of variance. The principal components, defined
by the eigenvectors, exhibit the highest variance.
® Discrete Cosine Transform (DCT): DCT transforms the
data by expressing it as a weighted sum of cosine functions
with different frequencies. The weights (or coefficients) are
indicative of the amount of information stored in the cor-
responding cosine functions. The lower-valued coefficients
store less information, hence, they can be removed to reduce
the data size without significantly affecting the data quality.

IV. SMRTCOMP: AN INTELLIGENT ONLINE DATA

. RECORDER
A. Overview

Ideal Recorder: Ideally, we would like to log the vehicle’s
data since it was last serviced. However, in practice, due to
the recorder’s limited storage space, such a large amount of
data cannot be stored. In addition, lowering the cost of the
recorder is essential to ensure widespread acceptance in the
market while meeting cost constraints. Typically, an EDR
can cost around 1000 USD (based on market estimates for
similar products); hence, reducing the price will improve its
acceptability and make it more appealing to potential buyers.
While lossless compression is ideal, memory efficiency can
be achieved through lossy compression. However, accuracy
is compromised in this trade-off. To strike the right balance,
recent data is stored in a lossless format, while older data un-
dergoes increasingly aggressive lossy compression over time
(older data is compressed more). The inherent redundancy
in CAN data, both temporal and spatial, makes it well-suited
for this compression approach. Eventually, extremely old data
can be discarded.
Intelligent Recorder: SmrtComp, intelligently takes compres-
sion decisions at runtime based on the amount of memory
available for logging (log size) and recency of the data. Our
goal is to maximize the amount of logged data (for a fixed
log size) while still adhering to pre-decided QoS criteria.

B. Frames and their Storage

Let us define a signal as a numeric representation of the
state of some vehicular component. A single ECU may be
responsible for monitoring multiple signals. Whenever an
ECU senses a change, it collects all the relevant signals and
generates a CAN bus data packet, which is transmitted on
the bus. The recorder snoops it and stores it in a buffer.
Along with this set of signals, it also stores the current time
stamp and the latest values of all other signals as well (as
required by the vehicle’s user). Thus, a particular entry in the
buffer comprises the values of all the signals at a particular
timestamp (similar to [29]). Similarly, when a new message
from any other component arrives, it is stored in the buffer
as a separate entry. A collection of k such entries is called
a frame, and a collection of [ such frames is called a macro
frame.

Original Frame: As shown in Figure 2(a), a frame can be
represented as a 2D array with m rows and n columns,
where each column corresponds to a specific signal. A row
represents the state of all the signals at a given instant in
time.

Compressed Frame: To perform lossless compression on
the frame, we use the Deflate [31] algorithm. We use a
combination of PCA and DCT for lossy compression because
of their respective benefits.

PCA transforms the frame into a sequence of components
with the first few having the most variance and hence
capturing the maximum information. PCA then retains the
first n’ components and removes the remaining components
(Figure 2(b)). The value n' is chosen such that the sum
of the variance of these components is > X% of the
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Fig. 2: (a) Original frame, (b) frame after applying PCA, (c) frame
after applying DCT, (d) compressed frame with the corresponding
bitmap, (e) macro frame and (f) function to determine the macro
frame’s compression level.

variance of the entire frame (with n columns) [32]. We set
X =100 — 0.1x current compression level, so as to ensure
a faithful reconstruction of all n dimensions of data from n’
principal components. The compression level, in this context,
refers to the extent of information loss.

Next, DCT transforms the updated frame and removes
values smaller than a particular threshold. This is shown
in Figure 2(c), where X indicates the removed values. The
remaining values are stored in a row-major order to get the
compressed frame. Figure 2(d) shows a compressed frame
with k entries.

Storing the Frames: The black box recorder buffers the
incoming CAN data in its volatile memory, and when the
number of entries equals the frame size, the frame is finalized.
A frame’s size is typically in kilobytes (KBs) (in our exper-
iment, the frame size was set to 20KB); thus, writing a new
frame repeatedly to the secondary storage device (automotive
SD card) is expensive. So, we group frames into macro
frames. A compressed macro frame (Figure 2(e)) is a list of
compressed frames, wherein each frame is augmented with
its bitmap (described next). A sequence of compressed macro
frames forms the log.

Frame Reconstruction: Reconstruction requires three steps:
(i) converting the compressed frame back to the matrix form
(similar to Figure 2(c)), (ii) performing an inverse DCT,
and (iii) performing an inverse PCA operation. We call the
process of converting a compressed frame to its matrix form
frame reshaping. Frame reshaping requires keeping track of
indexes in the frame’s 2D representation that have been
removed during DCT. This can be done by maintaining a
2D bitmap (Figure 2(d)). A 0 in the bitmap indicates that
the entry at the corresponding index was removed during the
DCT transform, while a 1 indicates that the corresponding
entries are still present in the compressed frame.

Using the QoS Function to Determine Compression Lev-
els: Since the logged data loses its importance with time,
it’s a good idea to compress different macro frames with
varying degrees of compression, which can be done using

different thresholds in DCT (please see §IV-B). The varied
compression levels would result in different error values. In
particular, there is a direct correlation between error values
and compression levels. So, we can use a function, f(x),
to control the amount of error. This function determines
the macro frame’s compression level (i.e., the degree of
compression) based on its recency. In particular, it is a
decreasing function with higher compression levels for older
frames (as shown in Figure 2(f)). Similar to [33], we have
used the exponential function (f(x) = Ae™**) as our QoS
function, where x is the macro frame index (older frames
have a lower index) and A is a parameter that is provided
by the user. Please note that any decreasing function can be
used instead of an exponential function.

Aggressively compressing very old macro frames, drasti-
cally reduces their quality, making it difficult to reconstruct
them. Thus, it is wise to discard such frames. Similarly,
preserving very recent frames with lossless compression is a
good choice. The number of frames to be discarded/preserved
(lossless) can be decided based on two user-provided hyper-
parameters, «, and (. The frames with compression levels
greater than « are discarded, while new frames with com-
pression levels less than 3 are preserved without any loss. In
our case, since we limit our lossy compression to 10 levels,
we assign the values of o and 3 as 10 and 1, respectively.

The selection of « and S relies on user preferences for the
trade-off between storage efficiency and quality. A higher
« value permits quality reduction in older frames to save
space, while a smaller 3 value decreases the number of pre-
served lossless frames, sacrificing data quality for improved
efficiency. Thus, these parameters should be chosen carefully
based on applications’ requirements and available resources.

TABLE I: Notations used in SmrtComp

Notations Definition

Msg Incoming CAN message.

Fy, M Fy, Frame and macro frame buffers (lists), respectively.
Fsize Max. no. of messages in a frame.

Mg e Max. no. of frames in a macro frame.

log List of compressed macro frames.

logn No. of macro frames in the log.

logmaz Max. size of the log (in bytes).

cl; Compression level for the it* macro frame.

f @) Function to get the cl; of the macro frame.

a, B Discard and lossless thresholds, respectively.

F, F. Reshaped and compressed (lossy) frame, respectively.
MF., MF,. Lossy compressed macro frames (list of F}. or F¢).

Algorithm 1 Macro Frame Creation
1: procedure CONSTRUCT_MF(M sg)

2 Fy.add(Msg)

3 if Fy.size() = Fy;ze then

4 M Fy.add(compresspossiess(Fp))
5: Fy + {}
6
7
8
9

end if
if M Fy.size() = M;.. then
log(M Fy)
MF(, — {}
10 end if
11: end procedure




C. Compression Algorithm

Our proposed approach SmrtComp comprises two pro-
cesses: (i) macro frame creation and (ii) log compression.
The first process handles incoming CAN data and creates
macro frames to be stored in the log (secondary storage).
The second process continuously monitors the log in real
time and recompresses them iteratively to make room for
new incoming macro frames. Algorithms 1 and 2 present the
pseudo codes for these processes, and Table I summarizes
the notations used in them.
Algorithm 1 - Macro Frame Creation: This process main-
tains a list (F3) to store the incoming CAN data. Whenever
a new CAN message (packet) arrives, it is appended to F
until the number of entries in Fj equals the frame size,
Fsi.e (Lines 2-3). A lossless compression is performed on
this frame (using the function compressrossiess()), and the
compressed frame is added to a macro frame buffer, M F;
(Line 4). F} is cleared to store new data (Line 5). When the
size of a macro frame buffer (M F}) reaches the macro frame
size (Ms;..), the data is logged to the secondary storage and
the macro frame buffer is emptied (Lines 7-9).
Algorithm 2 - Log Compression: This process monitors the
instantaneous size of the log. When the size exceeds the
maximum log size, [0g,,q,; (Line 2), all the macro frames
in the log are recompressed (Line 3). The compression
level is determined using the function f(i) (Line 4), which
gives higher compression levels for older macro frames and
lower compression levels for newer macro frames. The macro
frames with compression levels greater than « are discarded
(Lines 5-6), while the macro frames with compression lev-
els greater than (§ are recompressed using the procedure
Compress_MF(), and are replaced in the log (Line 8).

Algorithm 2 Log Compression

1: procedure COMPRESS_LOG(log, logmaz, [ (%), a, B)
2: if sizeof(log) > logmaq. then

3 for i < 1,logy do

4 cl; f(’L)

5 if ¢cl; > o then > discard i*" macro frame
6: log.remove(i)

7 else if cl; > 5 then > recompress log(i)
8 log(i) + Compress_MF(log (%), cl;)

9: end if

10: end for

11: end if

12: end procedure

13: procedure COMPRESS_MF(M F,, cl)
14: MF. «+ {}

15: for all ' € MF, do

16: F, « reshape(F)

17: F. < compresspossy(Fr, cl)
18: MF. .add(F,)

19: end for

20: return M F
21: end procedure

At a high level, recompressing a macro frame necessitates
reconstructing the macro frame and then compressing it as
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Fig. 3: Simulation setup

per a specified compression level. Reconstruction, however,
involves three steps: frame reshaping (see §IV-B), inverse
DCT, and inverse PCA, making it an expensive operation. We
observed that during recompression, as the new compression
level is higher than the previous, the new DCT threshold (for
a macro frame) would also be higher. So, instead of uncom-
pressing the frame, we can simply reshape and compress it
using the new DCT thresholds, thus considerably reducing
the overheads. Please note that reshaping is sufficient when
we recompress a lossy frame. To create a lossy frame from
a lossless one, we must first uncompress the frame and then
compress it. This, however, is done only once for a frame.
Compress_MF() compresses a macro frame based on
this insight. It sequentially iterates over all the frames in the
macro frame, and every frame is reshaped (using reshape())
and compressed (using compressLossy()) according to the
new compression levels (Lines 15-17). The compressed
frame, F, is appended to a new compressed macro frame
MF, (Line 18), which is returned to the compress_log
procedure (Line 20). Please note that only for a lossless
frame, the reshape() function will uncompress the frame.

V. EXPERIMENTS AND RESULTS
A. Experimental Setup

To evaluate SmrtComp’s resilience and adaptability, we uti-
lized three distinct datasets: one from a previous study [34],
synthetic data resembling autonomous driving scenarios gen-
erated with the Carla simulator, and data captured from a
Unity car game, encompassing diverse manual driving behav-
iors, including normal and aggressive driving styles. Figure 3
shows the setup used for collecting data and performing all
our experiments.

1) Software Setup: We use multiple software: (i) Synopsys
Silver [35] (a virtual ECU platform), (ii) Unity car game, and
(iii) Carla simulator [36]. We used a Windows 10 system with
32 GB RAM and a 6-core Intel® Core™ i7-8700 processor
running at 3.2 GHz.

Synopsys Silver: It is an industry-standard tool that simulates
virtual ECUs, which monitor the various components of a
car. When a component’s state changes, the corresponding
ECU senses the change and generates a CAN message that



contains this information. The Silver GUI (shown in Figure 3)
provides knobs to change various parameters (e.g., speed,
gear, etc). In addition to the Silver GUI, the component states
can be changed via a Python script. The final output is a set
of CAN bus messages.

Unity Car Game: This is used for capturing realistic driving
behavior. The car game is interfaced with equipment to con-
trol the steering, acceleration, and brakes (7'80 Thrustmaster
488 GTB Edition). We employ a socket-based communica-
tion channel to connect the car game to Silver, allowing real-
time input control from the user, driving the car in the game.
Carla Simulator: It is an open-source simulator for au-
tonomous driving research. In contrast to the car game
that captures human driving, Carla implements an in-house
autonomous driving algorithm. The driving decisions are
communicated to Silver to generate the CAN bus traces.

2) Hardware components: Synopsys Silver generates
CAN bus data that is stored in our prototype system: a
Beaglebone Black Board [37] with the SmrtComp software
running on it. Beaglebone Black is an open-source single-
board computer with a 1GHz ARM Cortex-A8 processor,
512 MB RAM, and 16 GB microSD card. This board is a
good choice for a data recorder, given its present pricing and
various configurations. On the board, we installed Ubuntu
(version 5.10.100-ti-r38) and used Python 3.8 and GCC
version 9.3.0 to implement the recorder. The recorder is
considered to have 4 GB of storage for the logs. Owing to
price considerations, we did not opt for an F-RAM based
solution.

B. Datasets

We utilized the Real dataset from [34], containing real-
world driving data from 10 drivers over 23 hours, and
generated additional data using our in-house setups. The
Carla simulator provided the Autonomous dataset, while the
Unity car game captured the Normal and Rash datasets.

1) Normal driving: The behavior in a typical driving
scenario is emulated with a legal driving speed and
a few lane changes.

2) Rash driving: In this, the lanes are changed more often
and the acceleration pedal is pressed more eagerly.

We sent all the traces to Synopsys Silver, and generated CAN
bus data, which was streamed to the EDR via a socket-based
channel in real time.

C. Performance Metrics

Given that we do not have any direct competitors, we
show the efficacy of our proposed algorithm by comparing it
against the best algorithms at the two ends of the memory-
accuracy spectrum, i.e., the best lossless and lossy compres-
sion algorithms. To choose the best lossless (or lossy) algo-
rithm, we performed an extensive experimental analysis and
compared the compression gain and RMSE (root mean square
error) of different algorithms. The compression gain (CG) is
the ratio of the original size of the entire log to its compressed
size (i.e., CG = original_size/compressed_size).

Compression Gain

D. Experimental Results

® Choosing the best lossless algorithm: Figure 4
compares various state-of-the-art lossless algorithms: De-
flate, BZip2, Lempel-Ziv-Markov (LZMA) and Lempel-Ziv-
Storer-Szymanski (LZSS). The results demonstrate Deflate’s
superiority, indicated by the shortest compression time and
largest compression gain across all datasets. We also com-
pared Deflate to a recent work by Yazdani et al. [5], which
employs a combination of the Generalized Deduplication
(GD) algorithm with a dictionary. Deflate exhibited a superior
compression gain over GD without a dictionary, while GD
with a dictionary showed slightly better performance. How-
ever, GD with a dictionary incurred a 1.4x higher decom-
pression time and an additional dictionary storage overhead,
outweighing its marginal improvement over Deflate.
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Fig. 4: Comparison between various lossless algorithms (a) com-
pression time and (b) compression gain
® Choosing the best lossy algorithm:

Storage efficiency requires a high CG; however, Fig-
ure 5(a) highlights that a high CG leads to increased RMSE
impacting data accuracy. The simultaneous pursuit of a high
CG and minimized RMSE is crucial. We evaluated several
transformation-based lossy algorithms: Fast Fourier Trans-
form (FFT), Discrete Wavelet Transform (DWT), Discrete
Cosine Transform (DCT), Fast Hankel Transform (FHT),
and Hilbert transform, focusing on their CG vs. RMSE
performance. As seen in Figure 5(a), DCT outperformed the
others, exhibiting both the highest CG and the lowest RMSE.
Due to space constraints, we have only shown findings for
the autonomous dataset; other datasets behaved similarly.
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Fig. 5: (a) Compression gain vs RMSE for different lossy
algorithms and (b) correlation of various signals between themselves

Apart from compressing the CAN data, we also studied the
correlations between its various signals and found that several
of them are highly correlated. For example, the carSpeed
and gear signals in the heatmap (Figure 5(b)). Thus, we can
conclude that we can compress CAN data using PCA.
® Performance evaluation of SmrtComp: Figure 6 com-
pares - SmrtComp to the best lossless (Deflate) and lossy
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(PCA-DCT) algorithms. Along with SmrtComp, we also
implemented the other two algorithms on the Beaglebone
board. All three algorithms see the same number of macro
frames at every time instance. The experiments are performed
with a frame size of 20 KB, a macro frame size of 32 MB,
and a log size of 4 GB. The data rate of CAN is 500 kbps.

3.0
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Fig. 6: Comparison of the three approaches in terms of mean (a)
compression gain and (b) RMSE

Based on the findings in Figure 6, it is apparent that the lossy
algorithm yields the highest compression gain. However,
this comes at the expense of a substantially high RMSE.
Conversely, the lossless algorithm demonstrates the lowest
RMSE but results in poor compression gain. Therefore, it is
imperative to consider both the compression gain and RMSE
while evaluating compression algorithms. Accordingly, as
indicated in Figure 6, SmrtComp delivers a desirable (and
tunable) outcome in the middle of the spectrum by effectively
balancing the compression gain and RMSE.

Apart from the compression gain (CG) and RMSE, the
number of macro frames stored is an important metric, as
it quantifies the amount of information captured in the log.
Considering the log size of 4 GB, SmrtComp was able to store
more than 400 macro frames, while the lossless algorithm
could store only 128 macro frames. In general, considering
the CAN bus data rate of 500 kbps [2], SmrtComp fills the
4 GB log in ten days, whereas the lossless approach fills it
in three days.

In contrast to the lossless algorithm, the lossy algorithm
supports storing a large number of macro frames (around
800) but at a higher RMSE cost. A large RMSE value indi-
cates high information loss, making the highly compressed
data unusable. SmrtComp, on the other hand, maintains the
data quality. Figure 7 (a) illustrates that we were able to
accurately reconstruct the original acceleratorPedal signal
by using SmrtComp’s compressed data. SmrtComp avoids
the aforementioned data quality loss issue by adjusting the
compression levels of the frames based on the QoS function
(please see §IV-B).
® Assessing SmrtComp’s Accuracy and Efficacy: Having
evaluated SmrtComp’s performance, it is necessary to look
at the preservation of vital features in the lossy compressed
data, notably anomalies indicating potential accident-related
aspects. We detected anomalies in the original data and tried
to find if they still remain with different levels of compres-
sion. The reliable Isolation Forest algorithm [38], adept at
detecting anomalies in high-dimensional time series data, was
employed for this purpose. Hyperparameter tuning was per-
formed using GridsearchCV, setting n_estimators = 100, 000
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Fig. 7: (a) Comparison of the original and recorgst)ructed acceler-
ation pedal signal and (b-d) distributions of different metrics for
different QoS functions. (b) compression gain, (¢) RMSE and (d)
memory consumption (in MBs)

(number of isolation trees), contamination = 0.01 (expected
proportion of anomalies), and random_state = 42 (seed for
reproducibility), ensuring the model’s generalizability to new
data and avoiding overfitting.

Using our machine learning model, we detected anomalies
in the uncompressed data followed by decompression of
the lossy data at varying levels. Each decompressed dataset
underwent anomaly detection with the same model to assess
the presence of original anomalies. Experimental findings
showed misclassification rates ranging from 15.1% (compres-
sion level = 1) to 29.8% (compression level = 10), indicating
increased vulnerability to misclassification with higher lossy
compression. Table II summarizes the misclassification per-
centages corresponding to each compression level. SmrtComp
achieved an average misclassification rate of 24.37% below
the acceptable threshold [39]. This demonstrates its efficacy
in preserving critical anomaly information while reducing
data size, making it a valuable data compression tool. Be-
tween levels 5 and 10, we achieved an 80% space gain with a
mere 15% misclassification increase. However, beyond level
10 (specifically levels 11 to 15), misclassification surged to
40%. This defeats the purpose of storing CAN bus data,
thereby restricting lossy compression to 10 levels.
OSmrtComp’s flexible QoS function: For our experiments,
we used the exponential QoS function(f(x) = Ae™?) is a
tunable parameter and z is the macro frame index, which is
indicative of the age of the frame.

To demonstrate SmrtComp’s flexibility, we also experi-
mented with a linear QoS function, f(z) = a * x + b where
a and b are the tunable parameters. The compression gain,
RMSE, and memory consumption (in the log) for both cases
are shown in Figures 7(b-d). The graphs depict how the
metrics vary across different macro frames. The dashed lines
(curve-fits) in Figure 7(c) clearly show that the error curve
is in accordance with the compression gain (Figure 7(b)),
which is proportional to the QoS values (f(z)) provided by



the user.

TABLE II: Misclassification rates at different compression levels

Lossy Compression Levels Misclassification (%) at each level
1-5 15.1 194 216 224 255
6-10 26.1 272 283 28.3 29.8
11-15 31.8 33.2 353 382 404

®SmrtComp’s overhead: The time taken by SmrtComp to
recompress all the macro frames (in the log) was compared
to the macro frames’ inter-arrival time. Ideally, the recom-
pression should finish before a new macro frame reaches the

log.

The minimum inter-arrival time for 32 MB CAN macro

frames is roughly 34 minutes (assuming that the practical
maximum CAN data rate is 500 kbps [2]). SmrtComp re-
compresses the entire log in ~ 4 minutes, thus ensuring a
minimal overhead.

VI. CONCLUSION

In this paper, we showed the feasibility of implementing
a hybrid compression scheme with CAN bus data. We
employed our proposed scheme — SmrtComp— to implement
an intelligent EDR. SmrtComp dynamically changes the
quality and the size of the logged data while conforming to
pre-specified QoS metrics. Our recorder is able to process
CAN data at line speed (500 kbps) and can record data
continuously for 10 days, considering a log size of 4 GB.
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