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Abstract—Securing deep neural networks (DNNs) is a problem
of significant interest since an ML model incorporates high-
quality intellectual property, features of data sets painstakingly
collated by mechanical turks, and novel methods of training
on large cluster computers. Sadly, attacks to extract model
parameters are on the rise, and thus designers are being forced
to create architectures for securing such models. State-of-the-
art proposals in this field take the deterministic memory access
patterns of such networks into cognizance (albeit partially), group
a set of memory blocks into a tile, and maintain state at the
level of tiles (to reduce storage space). For providing integrity
guarantees (tamper avoidance), they don’t propose any significant
optimizations, and still maintain block-level state.

We observe that it is possible to exploit the deterministic
memory access patterns of DNNs even further, and maintain state
information for only the current tile and current layer, which may
comprise a large number of tiles. This reduces the storage space,
reduces the number of memory accesses, increases performance,
and simplifies the design without sacrificing any security guaran-
tees. The key techniques in our proposed accelerator architecture,
Securator, are to encode memory access patterns to create a
small HW-based tile version number generator for a given layer,
and to store layer-level MACs. We completely eliminate the need
for having a MAC cache and a tile version number store (as
used in related work). We show that using intelligently-designed
mathematical operations, these structures are not required. By
reducing such overheads, we show a speedup of 20.56% over the
closest competing work.

I. INTRODUCTION
The AI hardware (Neural Processing Unit (NPU)) market

was valued at 8 billion USD in 2020 and is expected to
grow to 84 billion USD by 2028 [1] (CAGR of 34.15%).
Hardware-based AI chips are expected to play a major role
in telecommunications [8], mobile vision [39], edge com-
puting [7], augmented/virtual reality [2], health care [17],
and autonomous driving [47]. Similar to code for general-
purpose processors, ML models incorporate a lot of high-
value intellectual property (IP) that takes a lot of time and
effort to collate and develop. For example, even for a mid-
size AI project, just collecting the raw data using mechanical
turks takes upwards of $100K USD [32]; the know-how for
the model and training methodology can be worth millions
of dollars, and finally it may take many weeks to finally
train the model using large cluster computers. Along with
these conventional arguments, many a time we don’t realize
that even getting access to the training data can be quite
challenging with numerous legal hurdles. Therefore, protecting

an ML model is of paramount importance, which sadly also
makes it an attractive target for hackers.

There are three broad approaches for protecting models,
as shown in Figure 1. All of them rely on secure CPUs as
the baseline technology. To secure CPUs, we rely on Trusted
Execution Environments (TEEs) such as Intel SGX [5], AMD
SEV [18], and ARM Trustzone [29]. In all these TEEs, the
CPU is assumed to be secure; it is within the TCB (Trusted
Computing Base). The main contribution of the most elaborate
scheme, Intel SGX, is in protecting the off-chip memory and
providing confidentiality, integrity, and freshness. The key
insight is ensuring that every time a block is written to main
memory, it is encrypted with a different key. Since, storing a
key for every memory block is too expensive, a more efficient
mechanism is used based on AES counter-mode encryption.
Every page is associated with a major counter, and every
block uses a minor counter (a combination of both guides the
encryption/decryption). The counters themselves need to be
protected; this is achieved using a Merkle tree, where the root
of the tree is guaranteed to be in the TCB. Let us refer to this
version of SGX as SGX-Client. Because of the Merkle tree and
associated overheads of maintaining counters, the maximum
size of the protected memory region is limited to 128-256 MB
(same problem with ARM TrustZone). Most ML models and
datasets as of today are much larger. As a result, SGX-Client
is not the best choice for them.

Keeping in mind these issues, Intel recently discontinued
support for SGX-Client in its 11th and 12th generation pro-
cessors. It replaced it with another version of SGX (referred to
as SGX-Server) that simply encrypts memory and foregoes the
integrity and freshness guarantees [33] (on the lines of AMD
SEV). It can provide up to 512 GB of encrypted memory. We
should bear in mind that SGX-Server is far weaker than SGX-
Client in terms of the security guarantees that are provided,
namely integrity and freshness.

ML architecture designers have traditionally opted to use
versions of SGX-Client to secure their systems (refer to Fig-
ure 1). Several early approaches either proposed optimizations
to SGX-Client [5], [33] to reduce its overhead or partition
an ML algorithm into a secure portion and unsecure portion
that ran on fast hardware such as GPUs [40]. However,
these approaches have been superseded by a newer family
of approaches that leverage the stable data communication
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patterns of ML workloads to design bespoke NoCs. Two
custom accelerators stand out in this space: TNPU [22] and
GuardNN [15]. Their basic ideas are similar: group a set of
contiguous memory blocks into tiles and provide freshness
guarantees at the level of a tile. Both use a dedicated software
module running on the host CPU for managing version num-
bers (VNs); they are used to encrypt data as well as ensure its
freshness. The major difference is that TNPU stores the VNs
in an on-chip cache and GuardNN relies on a CPU program to
generate all the VNs. The program needs to store all the VNs
in use in secure memory, and securely communicate them to
the accelerator (a difficult problem in itself). Both still perform
integrity checking at the level of individual memory blocks.

Our scheme, Securator, improves upon these ideas and
proposes a natural extension, where we perform freshness
and integrity checks at the layer level. Given that no data is
stored and no checking is done at the block-level (like previous
schemes), there is an associated performance gain (20.56%).
Additionally, there is no need to run a VN-generation module
on the host CPU using a TEE. To realize this, we thoroughly
characterize the memory access patterns of different kinds of
ML accelerators, efficiently encode them, and pass the encod-
ing to a small hardware circuit that automatically generates all
VNs at runtime (without external intervention). This eliminates
the need for storing and managing VNs in on-chip caches or
main memory regions. Furthermore, we leverage the insight
that the only consumer for the output(s) of a layer are a few
layers that it is connected to – random access of output data
is not required because these consumer layers access the data
in a structured fashion. Hence, computing and storing MACs
at the layer-level is good enough as long as the next layer
accesses all the data (in any order), which is often the case.

To summarize, the main contributions in this paper are
as follows: 1 Characterization of traffic in CNNs and popular
data pre/post processing algorithms, 2 A method to succinctly
encode the traffic pattern, 3 A method to generate VNs on the
fly using such patterns, 4 A technique to perform integrity
checking at the level of layers, and 5 A detailed experimental
analysis of Securator that shows a 20.56% speedup over the
nearest competing work. 6 Given that the overheads are low,
we additionally assess the benefits of interspersing the execu-
tion with the running of a dummy network (for the purpose
of adding noise) or widening each layer. This helps reduce
the possibility of model extraction attacks (MEA) by utilizing
timing or address-based side channels [37] substantially.

The paper is organized as follows. Section II presents
the background of TEEs and basic convolution operations in
neural networks. Section III presents the threat model and the
security guarantees provided by Securator. We characterize
the workloads in Section IV, present an analytical model
for automatic version number generation in Section V, and
present the architecture of Securator in Section VI. Section VII
presents an extensive security analysis of the proposed design
and finally, VIII reports the experimental results, Section IX
presents the related work and we conclude in Section X.

Outsource heavy computations
from an insecure, resource rich
platform

Optimize NN computations
for SGX

Design a custom and secure
platform for NN execution

DeepEnclave
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Fig. 1: A timeline depicting a pragmatic shift from outsourcing
execution from an unsecure compute-rich platform to design-
ing an optimized and secure custom TEE for accelerating ML
workloads.

II. BACKGROUND
A TEE provides an isolated execution environment for

security-sensitive applications, ensuring data confidentiality
and integrity. The security community has relied on them
for performing secure data computations even in an insecure
environment.
A. Intel SGX

SGX is a TEE provided by Intel to enable remote code
execution in a secure enclave by isolating security-sensitive
code and data from other applications.

1) SGX-Client (10th Gen Intel CPUs): SGX-Client pro-
vides a protected memory of limited size, 256 MB, which
is accessible from within the secure enclave only. If the data
size exceeds this limit, there will be a significant overhead due
to pages’ eviction and encryption.

Confidentiality With Memory Encryption: SGX uses AES-
CTR (counter mode) for performing encryption. A data block
P is XORed with a one-time pad, which is generated by
encrypting the address of the data block PA and the counter
value C (major+minor counter) with a secret key. The secret
key is a concatenation of the enclave ID E, PUF P , and a
random number generated at boot time R. The entire process
can be written as: P ⊕ AES(E||P ||R)(PA||C) , where ||
represents a concatenation operator and ⊕ represents a XOR
operator. Each block in a page is assigned a 6-bit minor
counter, which is concatenated with a 64-bit page-level major
counter. The counter value is incremented when a modified
cache block is evicted from the last-level cache (LLC) [35].
The major counter is incremented once a minor counter
overflows. These steps ensure that the combined counter value
C is never reused, thus avoiding a replay attack. The counter
values are stored inside a secure cache known as a counter-
cache. If an entry is not present in the cache, it is fetched from
main memory. A Merkle tree guarantees the integrity of the
counters stored in DRAM.

Integrity and Authenticity Verification using Message Au-
thentication Codes (MACs): MACs are encrypted hashes, that
are used to ensure that an adversary does not alter the data
stored in an untrusted location. A unique MAC is generated for
each data block and the corresponding counter value. When
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a data block is fetched from main memory, its MAC is also
fetched and verified. As the data encryption takes into account
the block address, an attacker cannot swap the 〈data,MAC〉
pair with another pair. Sadly, these security guarantees come
with significant overheads, and thus the size of protected
memory is limited to 256 MB.

2) SGX-Server (11th and 12th Gen Intel CPUs): Intel
recently launched a scalable and efficient TEE [33] for Intel
3rd Gen scalable Xeon servers with an additional feature, Total
Memory Encryption (TME), to overcome the size limitations
of SGX-Client. This feature provides a secure memory size of
512 GB. Sadly, Intel compromised hardware-based integrity
and replay protection in order to securely encrypt the entire
memory (as mentioned in their documentation [22], [33]).
SGX-Server uses AES-XTS for performing total memory
encryption, which does not rely on per-block counters. With
the elimination of counters and the Merkle tree, the need
for data caching and tree traversal are also eliminated, thus
reducing the associated overheads.
B. Convolution

A convolution operation [25] is the heart of a convolutional
neural network (CNN). The single-image version has a basic 6-
loop structure. We iterate through the input and output feature
maps (ifmap and ofmap, resp.), and compute the convolutions.
For the ease of explanation, we assume that they have the same
size (both are referred to as an fmap) and are 2D matrices (each
element is a pixel).

1 for (k=0; k<K ; k++){ // K: #output fmaps
2 for (c=0; c<C ; c++){ // C: #input fmaps
3 for (h=0; h<H ; h++){ // H: #rows in an fmap
4 for (w=0; w<W ; w++){ // W: #cols in an fmap
5 for ( r=0; r<R ; r++){ // R: #rows in a filter
6 for (s=0; s<S ; s++){ // S: #cols in a filter
7 ofmap[k][h][w]+=ifmap[c][h+r][w+s] *

weights[k][c ][ r ][ s ];
8 }}}}}}

Listing 1: A basic convolution operation

The loop order in Listing 1 can be written as k . c . h .w .
r . s, where, the operator . shows the order of the nesting.
Due to the restricted capacity of on-chip buffers, we often
group pixels into tiles. In this case, an example notation for a
tiled execution where the fmaps (channels) are tiled (rows and
columns grouped) will be of the form, k.c.hT .wT .r.s.h.
w; the subscript T indicates the tile number, and the iterator
without a subscript retains its previous meaning (pointing to a
single element). Figure 2 shows a generic example, where k, c,
h, and w are tiled. We will follow a consistent terminology for
all iterators, e.g., C is the number of ifmaps (input channels),
CT is the size of a channel tile, cT is the iterator for a channel
tile, and c is the iterator of a channel (see Table I).
C. TNPU and GuardNN

We shall compare Securator with two state-of-the-art pro-
posals: GuardNN [15] and TNPU [22]. A brief description
follows (see Section IX for more details).

In GuardNN, every tile is associated with a version number
(VN), which is incremented on every memory write. The
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Fig. 2: Graphical representation of a tiled convolution opera-
tion. The ifmaps, ofmaps, input and output channels are tiled.

VNs are managed by the scheduler that runs on the host
CPU. MACs are generated and maintained per memory block.
GuardNN advocates for a larger block size (512 B); however,
that unnecessarily constrains the subsequent layer to read data
in that order, which we found to be impractical for modern
CNNs where dataflow patterns are different for each layer.
TNPU on the other hand, maintains VNs in a Tensor Table
that is stored in the host CPU’s secure memory. It is protected
by an integrity tree. MACs are maintained per block, and are
stored in an on-chip MAC cache.

III. SYSTEM DESIGN AND THREAT MODEL
We use the same high-level system design and threat model

as previous works [15], [22].

Fig. 3: An overview of the system design and threat model
(note that it is not necessary that the NPU and CPU are in the
same package)

A high-level overview of the system is shown in Figure 3
along with the possible attacks that can be mounted. The
CPU and NPU may or may not be in the same package;
all that we need is a way for the CPU to populate DRAM
memory (accessible to the NPU) with the input and the NN
model. They could share DIMMs or have any other method
of communication. The CPU can optionally run a scheduler
(possibly on a TEE) to coordinate the actions of the NPU, or
the NPU could completely take over after the CPU has sent
it a few initialization instructions. Our design is unaffected
by this choice. Insofar as the NPU is concerned, it needs to
securely run an ML model, layer by layer. We only focus on
inferencing in this paper (like [22]).

The CPU, NPU, and caches are within the TCB. A hacker
can however target the main memory and the NPU-memory
bus. A hacker in this case would include the OS, hypervisor,
malicious program, or even a person who has physical access
to the main memory or memory bus. She can try to read the
data (eavesdropping), tamper with the data (integrity attack),
replace the contents of memory addresses with old data (replay
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attack), masquerade as a different entity (authentication at-
tack), read the memory address sequence from the memory bus
and try to figure out the model parameters (MEA). Securator
protects against all types of aforementioned attacks.

IV. CHARACTERIZATION OF DNN WORKLOADS IN A
SECURE ENVIRONMENT

Simulation configuration (similar to [22])
Parameter Value Parameter Value
PE array 32× 32 Counter cache (secure

NPU & TNPU)
4 KB

Global buffer 240 KB MAC cache (secure
NPU & TNPU)

8 KB

Frequency 2.75 GHz Write mode Write back
Dual-channel
DRAM

DDR 4, 100
cyc (lat)

Block Size 64 B

List of benchmarks (similar to [15], [40])
Workload Layers Parameters
MobileNet [14] 23 4.2 million
ResNet [13] 18 11 million
AlexNet [21] 13 62 million
VGG16 [38] 24 138 million
VGG19 [38] 19 143 million

Terminology used
Term Meaning
H # rows
HT # row tiles
hT row tile

iterator
h row iterator

TABLE I: NPU configuration, list of benchmarks, and the
terminology used in the paper

A. Setup and Benchmarks
We characterize the behavior of popular benchmarks on

an in-house cycle accurate CNN simulator that has been
rigorously validated with SCALE-Sim [34] and native hard-
ware. It relies on a systolic array architecture to perform
convolutions. We relied on the Timeloop [28] tool to provide
the most optimal dataflow pattern. We show the configuration
of the simulated system in Table I. We simulated a vanilla,
unsecure accelerator version as the baseline. The baseline
architecture provides no assurances of security. It is comprised
of a systolic array of 32 × 32 PEs arranged in a grid-like
fashion. PEs comprise a computational unit and a register file.
The neural networks are regular and deterministic, so rather
than caches, we use 240 kB of scratchpad memory as the on-
chip global buffer (similar to previous work [22]). When PEs
are performing computations, the system employs a double
buffering technique in which data is loaded into the on-chip
buffer from memory. The workloads comprise popular neural
network benchmarks as shown in Table I. Layers represents
the total number of layers and Parameters represents the total
number of tunable model parameters present in a specific
benchmark. Additionally, we simulate a secure configuration
that is constructed upon the baseline with all the security
guarantees similar to SGX-Client (see Section II-A1). The
MACs and counter values are saved in the 8 KB MAC
cache and 4 KB counter cache, respectively (values taken
from [22]). All the models fit within the DRAM. Finally, note
that performance is defined as the reciprocal of the simulated
execution time (appropriately normalized).

1) Performance Insights: Figure 4 shows the performance
results. The secure configuration is 45% slower than the
baseline, TNPU is 27% slower, and GuardNN is 75 % slower.
Clearly, reducing the size of secure memory helps, and having

Fig. 4: Performance comparison
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Fig. 5: Cache miss rates for the MAC cache and counter cache,
respectively.

a MAC cache also helps (as opposed to not having one like in
GuardNN). Figure 5 shows the miss rates for the MAC cache
and counter cache in the secure configuration. We observe a
high hit rate for the counter cache and a relatively lower hit
rate for the MAC cache. Each 64-byte data block can store
16 four-byte pixels (element in a feature map). Each page of
64 blocks can store 64 × 16 pixels implying that a counter
cache entry can keep track of 64 × 16 = 1024 pixels. For
uniform streaming data, after a cache miss, we may observe
a cache hit for the next 1024 consecutive pixels. On the other
hand, a 64-byte line can store only 8 MACs (each 8 bytes).
Since each MAC protects a block of 16 pixels (64 bytes), this
means that a MAC cache block can track 16×8 = 128 pixels,
which is 8× less than a counter cache block. This means that
the MAC cache miss rate will be much higher; however, on
the flip side its miss penalty will be much lower – primarily
a DRAM memory read as opposed to traversing a Merkle
tree for counters (DRAM+cache). In any case, streaming data
such as pixels in DNNs have poor temporal locality and the
low absolute values of miss rates attest that.

Conclusion: MAC caches have a very poor hit rate.
Moreover, frequently accessing secure memory to read VNs
and MACs has a high overhead. Hence, we should try to
avoid both.

V. ANALYTICAL CHARACTERIZATION OF PATTERNS IN
ML WORKLOADS

Imagine a pair of observers sitting at the global buffer (GB)
of the NPU and recording the VN of every tile that is read or
written. Let us refer to them as the read-observer and write-
observer, respectively. For a layer, they will see a sequence
of VNs. Prior works have used a tabular data structure to
store the latest VN for each tile (just before it is written to
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Expression Possible patterns Expression Possible patterns

[1αK , 2αK ..αC
αK ]αHW

VN 

Time 

1αKαHW , 2αKαHW ..α
αKαHW
C

P1:Multi-step P2:Step P3:Linear(αKαHW
= 1)

1αK , 2αK ..αC
αK

P4:Sawtooth (αK = 1) P5:Line(αC = 1)
Pattern Diagrams: The colored dots, squares, and stars, etc., represent accesses for a group of tiles (fetched and processed at one go)

The x-axis represents time; the y-axis represents the VN. Axes not shown in other figures to enhance readability.

Input reuse Output reuse
Tiling style Loop order Rd/Wr pattern Loop order Rd/Wr pattern

Tile movement along the channel
1 Partial channel [4], [44] hT .wT .c.kT WP: [1αK , 2αK . . . αC

αK ]αHW hT . wT . kT . c WP: 1αKαHW

2 Partial-multi-channel [44] hT .wT .cT .kT RP: [1αK , 2αK . . . [αC − 1]αK ]αHW hT . wT . kT . cT RP: –
Patterns: P1,P2,P3,P4,P5 Patterns: P5

Tile movement along the width/height
3 Partial channel [30] c.hT .wT .kT WP: 1αKαHW , 2αKαHW . . . α

αKαHW
C – –

4 Partial-multi-channel [44] cT .hT .wT .kT RP: 1αKαHW , 2αKαHW ..[αC − 1]αKαHW – –
Patterns: P2,P3,P5 – –

5 Channel-wise [4] c . kT ; WP: 1αK , 2αK ..αC
αK kT . c WP: 1αK

cT . kT ; RP: 1αK , 2αK ..[αC − 1]αK kT . cT RP: –
Patterns: P2,P3,P5 Patterns: P5

6 Full-channel [42] hT . wT . kT WP: 1αKαHW hT . wT . kT WP: 1αKαHW

RP: – RP: –
Patterns:P5 Patterns:P5

TABLE II: Pattern table for convolution: various possibilities for scheduling the input tiles for input reuse and output reuse.
αK = K

KT
;αC = C

CT
;αHW = H.W

HT .WT
; RP→ VN read pattern, WP→ VN write pattern, − refers to empty or not applicable.

Assumption: As per the loop order, we fetch a group of tiles that is read, processed, and written in one go. They have the
same VN, which is generated by the aforementioned WP/RP patterns.

main memory). The same VN needs to be fetched from the
table when the tile is read the next time. We argue in this
section that using a conventional table is an overkill. An ML
application has a very well-defined behavior, and the sequence
of VNs seen by the observers can be very nicely characterized
(depending upon the type of data reuse and fmap). We can thus
supplant the multi-KB table stored in the host CPU’s secure
memory with a simple mathematical formula processor that
can generate VNs at runtime. This will be a part of the NPU,
and the storage requirement will be limited to a few registers.

A. Convolution Layer
In convolution, there are three possible types of data reuse:

input reuse, weight reuse, and output reuse [30].
1) Input Reuse (IR): The goal of this scheme is to minimize

the number of times an ifmap is accessed. The stages are: 1
The tiled ifmaps are loaded into the GB. 2 The ifmaps are
entirely reused in order to compute the corresponding ofmaps.
3 The partially computed ofmaps are stored back to memory.
They are retrieved for the next ifmap and updated. Let us
look at various patterns generated by scheduling ifmap tiles
in different ways [30]. The following text heavily refers to
Table II that compiles the most popular data flow patterns.
The notations are similar to Section II-B.
Rows 1 and 2 I Partial (multi) channel loading:
Consider the first entry’s loop order with KT = 1:
hT . wT . c . k. We do not show the rest of the iterators

because it is assumed that once the data corresponding to a
set of input/output tiles is fetched (as per the loop order), the
rest of the processing happens within the NPU. We are not
concerned with internal aspects of the NPU, we only care
about the accesses to main memory. Now, as per this loop
order, we consider an input tile, and then we compute the
results for a set of ofmaps. We cycle through the ofmaps, and
then move to the next ifmap.
Example: Let us understand the pattern generation process
using a simple example. Let us assume, C = 2, K = 3, and
the GB can hold only one ofmap tile at any point of time.
Each ifmap tile is reused by three filters to generate 3 distinct
partially computed ofmap tiles. Each ofmap tile is associated
with a VN. After the ifmap tile has been fully utilized, all
three ofmap tiles will have the same VN (VN=1), as they are
in the same computational stage (only one ifmap channel is
processed). This leads to a VN write pattern 13 as seen by
the Write-observer. Thereafter, the next ifmap tile from the
next channel is read from memory. These partially computed
ofmap tiles are again sequentially updated – we increment the
VN of all the tiles from 1 to 2 (as they get evicted from
the GB) leading to the following pattern: 13, 23. We illustrate
the pattern generation using a pattern diagram (Table II) in
which the X-axis represents the time instance and the Y -axis
represents the updated VNs.

After processing both the channels of an ifmap tile, we
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schedule the input tile movement along the w-axis and the
aforementioned process will repeat until all the αHW =
H×W
HT×WT

ifmap tiles are processed. The same version number
creation process will be repeated αHW times, leading to a final
VN pattern of (13, 23)αHW . Additionally, if we group a set of
KT output tiles and consider them together, then this expres-
sion will change to 1αK , where αK = K/KT . We can gener-
alize the equation and write it as: (1αK , 2αK ....ααK

C )αHW .
The VN updates will generate a simple deterministic pat-

tern: Multi-step or Sawtooth. Additionally, the ofmap tile’s
read pattern will be mostly identical to the write pattern. The
only difference is that we will not read the final ofmap. The
final ofmap will be read in the subsequent layer. In Row 2 ,
we consider a group of CT channels together. The expressions
are similar.
Rows 3 and 4 I Movement along the Width/Height: Con-
sider the loop order, c . hT . wT . kT . Basically, we first
cover an ifmap and then move to the next. This means
αHW = (H ×W )/(HT ×WT ) ifmap tiles will be accessed
one after the other. Each ifmap tile will thus partially generate
all the K ofmaps (in groups of KT ). All these groups of ofmap
tiles will have the same VN. Then we shall move to the next
ifmap to update all the partially computed output tiles. We
increment the VNs accordingly. The process will repeat until
all the ofmap tiles are fully computed.
Rows 5 I Channel-wise:

In this scheme, a single input channel (channel-wise) or
a group of input channels (multi-channel) of size H × W
constitute an input tile. Due to the stationary nature of the
input tile, it will be reused αk = K/KT times to generate all
of the αk ofmap tiles of size H ×W leading to the pattern
(1αK ). These partially computed output tiles are updated when
a new ifmap tile is fetched from memory. The operation will
be repeated until all input channels are processed.
Rows 6 I Full Channel:

This is a simple scheme in which all the channels required
for the generation of an output tile are available. The VN for
a tile will be updated only once due to the availability of all
the channels, leading to the pattern 1αKαHW .

2) Output Reuse (OR): An output tile is completely com-
puted in this scheme before being sent to memory. Initially, 1
successive channels of the same ifmap are loaded into the GB.
2 The partial ofmap tile is reused until it is fully computed.
The write patterns are very simple because there is no write-
read-update cycle. They are of the form 1x. There is no read
pattern because partially computed ofmap data is never read.

Rows 1 and 2 I Partial(multi) channel loading: Prior to
storing an output tile in memory, it must be completely
computed. The VN of an output tile of size HT × WT

remains the same as it does not leave the GB. Then we
proceed to the next output tile. The pattern generated above
will repeat for (H ×W )/(HT ×WT ) times for each of the
(H ×W )/(HT ×WT ) tiles.

3) Weight Reuse: The steps involved in this process are as
follows. Consider the first row. 1 The tiled weight matrix (4D

Tiling style Loop order Pattern
Filter-wise movement

1 Multi-channel
wise [30]

cT . kT WP:1αK , 2αK . . . α
αK
C ;

RP:1αK , 2αK . . . (αC − 1)αK

Patterns: P2,P3,P5
Channel-wise movement

2 Channel- kT . c WP: 1αK ; RP: −
wise [30] Patterns: P5
3 Full kT WP: 1αK ; RP: −
-filter [42] Patterns: P5

TABLE III: Pattern table for convolution: Different methods
of scheduling weight tiles for weight reuse.

tensor) of size CT ×KT ×R×S is loaded in memory. 2 CT
ifmaps of dimension H ×W are loaded in the GB [42]. 3
The weights are reused to compute KT ofmaps of dimension
H ×W . The pattern generation methodology is similar to the
previous schemes. The generated patterns for all the rows are
shown in Table III.

B. Other Kinds of Layers

Let us now look at some other kinds of layers in DNNs.
Generative-Adversarial Networks (GANs): GANs [10], [36]
are composed of a discriminator and a generator network.
To generate fake images, the generator uses deconvolution,
whereas the discriminator uses convolution to discern between
fake and real images. The pattern generation approaches for
general convolution presented in Table II will work for any
kind of convolution including deconvolution.
Matrix Multiplication: We analyze the data access pattern in
the case of matrix multiplications as it is extensively used in
several workloads such as transformers [43]. We classify the
different tiling scenarios and present our findings in Table IV.

Tiling Style Loop order Pattern
1 Fix P hT .cT .wT WP: (1αW , 2αW . . . α

αW
C )αH

[26] RP: (1αW , 2αW . . . (αC−1)αW )αH

2 Fix Q cT .wT .hT WP: (1αH , 2αH . . . α
αH
C )αW

[26] RP: (1αH , 2αH . . . (αC −1)αH )αW

3 Fix R wT .hT .cT WP: 1αHW

[26] RP: −

TABLE IV: Pattern table for matrix multiplication (R = P ×
Q): Various methods for tiling the input. Dimensions of P :
H×C, Q: C×W αC = C/CT ;αH = H/HT ;αW =W/WT

Image Pre-processing/ Pooling: Numerous ML applications
require the input image to be in a specific format. Additionally,
it may be necessary to enhance an image’s features prior to
computation. This necessitates an analysis of the data access
patterns for various image pre-processing methods.

We divide image pre-processing applications into three
computation styles. The output channel is sometimes com-
pletely dependent on a single input channel, the scenario is
represented as Style-1 Sx = Tx(X), where TX repre-
sents the transformation function, and X represents the input
element. Because there is no requirement to store partially
computed outputs in memory, the output access pattern will
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be linear. However, as illustrated in Table VIII (in the Ap-
pendix), the number of output tiles will vary. We observe
that pooling and Style-1 computations follow a similar
pattern. Typically, a window is positioned above the image
to perform computations relative to the surrounding pixels in
order to generate an output pixel. Style-2 depicts a scenario
in which all input channels are merged to form a single
output channel S = T (R,G,B), whereas Style-3 depicts a
scenario in which all input channels are merged using various
transformations to form multiple output channels. Please refer
to Table IX and Table X (in the Appendix).

Additionally, with regards to multiple reuse, we can easily
capture such scenarios; we don’t discuss many more possible
combinations because they are quite rare in practice, we have
space constraints and we were also limited by the dataflows
that Timeloop can simulate.

Insight: We note that the pattern of VN updates is highly deterministic
and is quite similar across a range of operations. All of the patterns can
be expressed using a single master equation: (1η , 2η . . . κη)ρ. The triplet
〈η, κ, ρ〉 exactly specifies the read/write VN pattern.

VI. DESIGN OF SECURATOR
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Fig. 6: The high-level design of Securator

A. Overview
Securator provides a hardware-assisted secure environment

for the execution of neural networks. A high-level design of
the framework is presented in Figure 6. The host CPU securely
delivers instructions (using a shared key) to the accelerator via
a PCIe link to execute a layer of the CNN. It also points to the
location of the encrypted data stored in memory. Thereafter,
the accelerator starts the execution. Initially, all the model
parameters and the user input are encrypted and stored in
memory. During the processing, the data is transferred to the
NPU to perform the convolution. The compute engine(CE) is
made up of a PE array and some local storage. When a layer
is completed successfully, the accelerator writes the encrypted
data to memory. In the case of a security breach, a system
reboot is performed.

A security breach is detected by the security module, which
will be in charge of securing the data and protecting it from
various threats. To reduce the overheads and memory traffic,

we integrate the VN generator with the security module such
that the processed versions can be directly consumed. We
explain the modules in the following subsections.
B. A Programmable Version Generation Scheme

Securator encrypts the output data when the data is evicted
from the GB to memory. To automatically generate the VNs
for the output data, we thoroughly analyzed the movement
of ofmap tile data in Section V. An automatic VN generation
scheme helps reduce the overheads associated with the storage
and management of VNs. Even though the storage require-
ments per se are not very high (max: 8 KB in prior work [22]),
the additional complexity in the design and runtime for reading
this table, which is stored in the host CPU’s secure memory,
is quite onerous. Securator overcomes this limitation by gen-
erating VNs automatically (once for every group of tiles) as
per the master equation in Section V: (1η, 2η . . . κη)ρ, which
is parameterized with a set of triplets, which are provided as
an input to the programmable unit. The job of the unit is to
generate the VNs at runtime based on the triplets 〈η, κ, ρ〉.
The triplet is securely shared with the accelerator by the user
along with a session-specific encryption key or public key (to
decrypt data for the first time). Subsequently, we generate VNs
based on memory accesses and the value of the triplet.
C. Details of the Encryption Process

We rely on AES counter-mode encryption (CTR) for en-
crypting each data block. To encrypt a 64-byte data block,
we employ four parallel AES-128 engines. The 128-bit key is
created by concatenating the accelerator’s secret id (embedded
within it) with a random number generated prior to execution.
This technique ensures that the key is hardware-specific and
changes with each execution. The major counter value is
created by concatenating the fmap ID and layer ID, whereas
the minor counter value is created by concatenating the VN
and index of the block within the fmap. This approach ensures
that the counter value changes in accordance with the index of
the block in an fmap (the same value is encrypted differently).
The counters are encrypted using the AES-CTR mode to
generate a one-time pad (OTP). This OTP is XORed with the
block data to create the ciphertext (standard algorithm).
D. MAC Generation

Unlike competing work, we do not maintain per-block
MACs, we operate at the layer-level. The reason that prior
work maintained per-block MACs is because they wanted to
give the freedom to subsequent layers to read data randomly
(no pre-specified order). We also give the same freedom, with
one caveat, which is that a consumer layer needs to verify
the output generated by the producer layer, regardless of how
they are connected (holds for multi-output, skip and back
connections as well). This is a very reasonable restriction
because there is no reason to otherwise perform a layer
computation if the computation is never used.

When we read/write a block, we compute
its MAC. The 32-byte MAC is computed as
MAC = SHA256(P ||L||F ||V N ||I||B), where, P is
the secret id of the accelerator, L is the layer ID, F is the
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id of the fmap, I is the block index within the fmap, and
B is the contents of the data block (64-bytes). || is the
concatenation operator.

Let the MAC of a block that is being read/written be denoted
by MACB . We maintain two 256-bit registers: MACR (for
reads) and MACW (for writes). For a block that is read we
compute MACR =MACR ⊕MACB , where ⊕ is the XOR
operator. We do the same in the case of writes, albeit with
the register MACW . As per Bellare et al. [3], this scheme is
quite secure (theoretically similar to chaining).

We need to verify that whatever has been written is also
read back without tampering. MACW embodies everything
that has been written. If we analyze all the access patterns
in Section V, we observe that in the same layer we read
everything back other than data written in the last iteration.
This is read back in the next layer. In the next layer, we use
one more register MACFR (first read) that computes a MAC
of all the ifmap data (ofmaps of the previous layer) that is read
for the first time. We use the layer id of the previous layer.
Note that it is very easy to design a circuit using our master
equation to figure out when an input tile is read for the first
time (not shown due to a lack of space).

The crucial condition that needs to hold is as follows. This
is provable from the equations shown in Section V.

MACW =MACFR ⊕MACR (1)

We can use two pairs of these registers (that alternate
across layers) because of the overlaps in terms of usage (need
MACR for the previous layer when the current layer is being
processed).

Let us now consider read-only data such as inputs and filter
weights. Their VN remains the same (it is equal to the last-
generated VN in the previous layer for ifmaps and 1 for filter
weights). Without loss of generality, consider ifmap data. We
maintain a separate MACIR register for it. If the same ifmap
tile is read an even number of times, the result of all the XOR
operations to update MACIR should be zero, otherwise it will
be equal to the XOR of the MACs – same as the first-read
data (MACFR). This is because the outputs of the previous
layer should be the inputs of the current layer. In either case,
the inputs are verified because we are verifying that the “first-
read” data for the inputs is correct in Equation 1.

Furthermore, it is important to note that Securator is a
standalone unit, as we only care about the read-write patterns
of the physical memory.

VII. SECURITY ANALYSIS

On the lines of prior work, the trusted computing base
(TCB) comprises the accelerator, the code running on the
host CPU (assumed to run within a secure execution envi-
ronment), and their communication interface. The DRAM is
not encrypted and securing its contents is the main aim here.

Confidentiality All the data written to DRAM is fully
encrypted. The key changes with each run, guaranteeing
that each execution of the same application generates unique
encrypted data. Moreover, data blocks with the same content
and address produce different ciphertexts over time due to

the VN, fmap ID, layer ID, and block index (described in
Section VI-C).

Integrity The output of a producer layer is verified when it is
read in a consumer layer. Equation 1 in Section VI-D states the
condition for block-level correctness (whatever is written ==
whatever is read). We can extend this result to a full layer on
the lines of reference [3]. Regardless of the order of accesses,
we read and write full layers several times. We just verify
the same constraint at the layer level. This process is further
strengthened by including the block address as a part of the
MAC computation (avoids swapping and replication attacks).

Authenticity Similar to GuardNN [15] we can either use a
session key and encrypt all the weights using it, or we can
use a public key based mechanism. This is a solved problem
in related work.

Freshness VNs ensure that Securator does not receive
outdated data. We can correctly read data only when we use
the latest VN, and a VN changes on every write. This is a
standard approach that is extensively used in SGX [5] as well.

Side Channel Attacks We do not consider power and EM
side-channel attacks. Cache side-channel attacks are not pos-
sible as such accelerators do not use the caches. The main
memory access sequence is potentially visible to attackers even
though the data in main memory is encrypted. To stop this,
we need to use a scheme to stop model extraction attacks.

Model Extraction Attacks Li et al. [24] list various ob-
fuscation methods for preventing MEAs. Our scheme is an
orthogonal idea and can be used with any of these methods.
For 3 of the 8 proposed schemes, we needed to change the
triplets used in our master equation, which holds for all of
their schemes. For two schemes, the compiler needs to add
an extra layer (we are oblivious to it). The only scheme that
needs rigorous evaluation is layer widening as it involves the
maximum slowdown because the layers are increased in size
to confuse the attacker. It essentially translates to a scalability
study, because the more scalable the solution, the larger a layer
can be (we can add more redundancy and make it hard for the
attacker to extract useful information).

VIII. EVALUATION
A. Setup

We showed the detailed simulation setup and list of bench-
marks in Section IV. We evaluate 5 designs as shown in Table
V. They are the baseline design (no security), secure design
(ClientSGX), TNPU, GuardNN, and Securator. We used CNN
benchmarks from Table I, along with GAN [31], and basic
transformer [43]. We implemented the hardware of the pattern
generator circuit, the SHA-256 and AES circuits in Verilog.
We used the Cadence Genus Tool to synthesize, place, and
route the design in a 28 nm technology (scaled to 8 nm using
the results in [16]). TNPU and secure use an 8 KB MAC
cache. We conducted simulations for an augmented design,
Securator+, that protects against MEA and bus snooping
attacks (details in Section VIII-E).

B. FPGA Prototype
We implemented a proof-of-concept (PoC) on the

CHaiDNN [46] framework for FPGA-based accelerators (sim-
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Configuration Integrity
(MAC)

Encryption
(AES)

Anti-
Replay

MEA

Baseline × × × ×
Secure per-block CTR Counters ×
TNPU per-block XTS VN ×
GuardNN per-block CTR VN ×
Securator per-layer CTR VN ×
Securator+ per-layer CTR VN X

TABLE V: Simulated designs

TABLE VI: Overhead associ-
ated with the h/w structures

Module Area
(µm2)

Power
(µW )

AES-128 3900 640
SHA-256 270 40
VN gen-
erator

40 4.4

Fig. 7: Experimental setup

ilar to GuardNN [15]) to assess the changes need to the
DNN compiler and the work that needs to be done by the
host CPU. CHaiDNN v2 was synthesised with Vivado HLS
2018.2 in an SDSoC [19] development environment, with the
Xilinx Zynq Ultrascale+ ZCU102 board as the target (shown
in Figure 7). The user runs a program to generate the triplets
for each layer based on a dataflow computed by Timeloop
(or decided a priori). In the frontend, this data is kept as a
dummy layer alongside the existing model parameters (first
layer of the DNN). The backend design requires bypassing
this extra layer, tracking main memory requests, and passing
them to the Securator components. We added a pluggable
triplet generating module (experimentally validated) and other
Securator modules to the code of the synthesized accelerator.
Integrating the Securator components – AES encryption unit,
SHA unit, and VN generator – proved to be easy. The design
didn’t require any more changes and the code of the host CPU
was not modified. Of course, in a more realistic setting we
need to create a system for raising an alarm when a security
exception is detected. This was not implemented in the PoC.
C. Verilog Synthesis Results

The overhead associated with the hardware structures is
shown in Table VI. We incur a marginal area overhead of
4210 µm2 (area) and a sub-mW power overhead.

Fig. 8: Normalized performance for different workloads

D. Performance Analysis

Figure 8 presents the performance results using the sim-
ulation configuration mentioned in Table I. The baseline
configuration is used to normalize the results. We reduced
the performance overhead by nearly 20.56% compared to the
state-of-the-art scheme TNPU. The fact that TNPU verifies
integrity block-by-block results in a large number of MAC
accesses. With TNPU, we observed nearly 35% misses in
the MAC cache since streaming data results in a high cache
miss rate as described in Section IV. This results in an
increase in DRAM accesses as shown in Figure 9 (nearly
21%). Additionally, the access to the Tensor Table/tile stored
in the secure memory location adds to the overhead. Securator
simplifies the design by computing on-chip versions, thus
eliminating the requirement for additional DRAM accesses.
Because of direct DRAM accesses, there is a good correlation
between the DRAM traffic and the performance. A similar cor-
relation between the reduction of accesses and the performance
improvement has been seen in prior work such as GuardNN,
TNPU (albeit in very different settings).

In GuardNN, the MACs are generated according to the
granularity of the accelerator data block (64 bytes). The
scheme does not use any MAC cache. All the MACs are stored
in an off-chip memory. Each data read or write request is
accompanied by a MAC read/write request. This leads to a
very high memory traffic with a performance degradation of
nearly 64%.

Fig. 9: Normalized memory traffic for different workloads

E. Scalability Analysis: Securator+
Li et al. [24] suggest many methods to prevent MEA and

memory-based side-channel attacks. A key technique is layer
widening: increase the size of all layers by padding junk data
such that it is not possible to find their real size. To investigate
the effect of layer widening, we increase the size of the base
layer of MobileNet (111×111×3) to 3×, 4×, 5×, 6× and 7×
the original size (see Figure 10). We observe that Securator is
the most scalable and its relative performance increases with
the layer size. Its speedup over TNPU increases from 16.6%
(1×) to 21% (7×). Hence, Securator+ is the best choice for
implementing layer widening to avoid MEA attacks.

F. Limitations
Securator is capable of simulating any DNN, other than

those with data-dependent accesses, as they result in unpre-
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Work Security Freshness(via VNs) Integrity(via MACs) MEA Tile
size

(via encryption) Granularity Space Granularity Space prot.
Outsourcing
computations [9], [12],
[40]

Partial Block BTm+ TM Block BTH × 64 blocks

SGX+ Optimiza-
tions [20], [23], [41]

Full Block BTm+ TM Block BTH ×

Custom accelerators
NPUFort [45] Partial Block BTV – – Obscure

time*
Depends
on
resources,
schedul-
ing
scheme
and
workload

Seal [49] Partial Block BTV – – ×
TNPU [22] Full Tile TV Block BTH (on-chip) ×

VNs for each tile are stored in a secure memory (similar to SGX)
GuardNN [15] Full Tile TV Block BTH (off-chip) ×

VNs are stored and managed by a scheduler running on the host CPU (uses a TEE)
Securator Full Layer V Layer O(H) (on-chip) Widen

layers
VNs are not stored, but generated using on-chip FSM

H: MAC size, V : VN size, M : Major counter size, m: Minor counter size, T : Total # of tiles, B: # of blocks per tile
*Secure and unsecure fmaps have different latencies resulting in a fuzzy separation (in terms of temporal behavior)

TABLE VII: A comparison of related work

Fig. 10: Normalized execution latencies for scalability analysis
(normalized to 111× 111× 3)

dictable access patterns. Thus, we cannot design a circuit for
its automatic VN generation. However, note that having data
dependent accesses is a bad idea for secure processors as it
exposes a side channel (data information). Designing a scheme
that can do data-dependent access pruning and yet not sacrifice
security is a subject of future work.

IX. RELATED WORK

TEEs provide a secure platform for the execution of CNN
workloads even in an untrusted environment; additionally,
they outperform computationally heavy cryptographic methods
such as fully homomorphic encryption [6]. Recent works
focus on 1 outsourcing the computation to an untrusted
GPU [12], [40]; 2 optimizing a pre-existing TEE such as
SGX or Tensorcone [9]; and 3 designing a secure, custom
accelerator [15]. We present a brief comparison of related
works in Table VII.
A. Outsourcing Computations

Slalom [40] and DarkNight [12] focus on providing a hybrid
and secure execution platform. They split the computations
between a TEE and an untrusted GPU. Layers are obfuscated
and delegated from the TEE to the GPU. The output from
the unsecure GPU is verified using the Freivald’s algorithm

[40]. The central insight behind the data obfuscation is that
convolution is a bilinear operation. Instead of directly exposing
the inputs to an untrusted third party, the CPU adds controlled
noise. The bilinear property will ensure that the noise can
later on be removed from the computed result. The overheads
associated with input blinding, output verification along with
the additional communication overhead due to data transfer
from the TEE to the GPU cannot be avoided. Securator relies
on a TEE alone, hence, these overheads are not involved.

HybridTEE [9] divides the computation between a
constrained-resource local TEE (ARM Trustzone) and a
resource-rich remote TEE (Intel SGX) based on the presence
of security-critical features. A separate algorithm is used to
detect which parts of the image are security-critical (the
SIFT and YOLO algorithms are used). However, executing
an auxiliary DNN to find security-critical features might lead
to high overheads and may compromise system security.

B. Optimizing Intel SGX
Several works such as [20], [23], [41] focus on optimizing

the execution of the whole DNN within a TEE. Vessels [20]
solves the problem of low memory re-usability and a high
memory overhead by creating an optimized memory pool for
the TEE. This is done by characterizing the memory usage
patterns in a CNN layer. Similarly, Truong et al. [41] propose
to partition the layers to minimize the memory usage. In
Occlumency [23], the authors proposed a memory-efficient
feature map allocation technique and partitioning convolution
operation to optimize the CNN execution in SGX.

On the contrary, DeepEnclave [11] aims to secure only the
user data. It optimizes the memory utilization by executing
the initial few layers inside the secure enclave and the latter
outside. It is important to note that these works use the
vanilla version of client-side SGX where Merkle trees and
eviction trees are maintained for the entire data. However, we
should note that such memory optimizations lose their utility
in modern server-side SGX-based designs where the enclave
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Tiling Style Loop Pattern
order Style-1

1 Channel-wise k WP:1αK

2 Multi-channel kT RP:−
3 Partial channel h . w . kT WP:1αKαHW

4 Partial-multi-channel hT .wT .kT RP:−
5 Full-channel hT . wT WP: 1αHW ,

RP: −

TABLE VIII: Pattern table for image pre-processing
(Style-1)/Pooling (Sx = Tx(X)): Possibilities for
scheduling the output tiles. (HT ,WT , CT ) represents the
tiling factor. (C = K)

Tiling Style Loop order Pattern (Style-2)
1 Channel-wise c WP: 1, RP: 1
2 Multi-channel cT WP: 1, RP: 1

Tile movement along the channel
3 Partial channel hT . wT . c WP: 1αHW

4 Multi channel hT .wT .cT RP:−
Tile movement along the width/height

5 Partial channel c . hT . wT WP: 1αHW , 2αHW . . . α
αHW
C

6 Multi channel cT .hT .wT RP:1αHW , 2αHW ..(αC−1)αHW

7 Full-channel hT . wT WP: 1αHW , RP: −

TABLE IX: Pattern table for image pre-processing(Style-2:
S = T (R,G,B)): Methods of scheduling input tiles (K=1)

Output Reuse Input Reuse
Tiling Style Loop order (OR) Rd/Wr Pattern Loop order (IR) Rd/Wr Pattern
1 Channel-wise c . kT WP:1αK kT . c WP:1αK , 2αK . . . α

αK
C

2 Multi-channel cT . kT RP:− kT . cT RP: 1αK , 2αK . . . (αC − 1)αK

Tile movement along the channel
3 Partial channel hT . wT . kT . c WP:1αKαHW kT .hT .wT . c WP:(1αK , 2αK ..α

αK
C )αHW

4 Multi channel hT .wT .kT .cT RP: − kT .hT .wT .cT RP:(1αK , 2αK . . . (αC − 1)αK )αHW

Tile movement along the width/height
5 Partial/Multi channel – – kT .hT .wT . c WP: 1αKαHW , 2αKαHW . . . α

αKαHW
C

6 Multi channel – – kT .hT .wT .cT RP:1αKαHW , 2αKαHW . . . (αC − 1)αKαHW

7 Full-channel hT . wT . kT WP: 1αkαHW ; RP: − kT . hT . wT WP: 1αHW αK ; RP: −

TABLE X: Pattern table for image pre-processing (Style-3: Si = Ti(R,G,B))

size can be as large as 512 GB [33]. The key advantage of
our scheme is that we provide all security guarantees without
the additional overheads of counters and Merkle trees.

C. Designing a Custom TEE

GuardNN [15] and TNPU [22] focus on bringing the
security guarantees provided by traditional secure processors
such as Intel SGX to custom accelerators. The majority of
the overheads in a conventional secure processor comes from
cache misses and Merkle tree traversals. GuardNN and TNPU
both aim to eliminate the Merkle tree and counters with a more
sophisticated and efficient VN management mechanism that
makes use of a DNN’s extremely deterministic and statically
defined memory access patterns.

TNPU needs a “Tensor Table” to keep track of the output
tile updates (every update is associated with a new VN). Since
input tiles are never updated, the VNs linked with them are
never updated. TNPU divides the secure memory into two
regions: the first is protected by the information stored in the
Tensor Table (Region 1), while the second 128 KB secure
memory region is protected by a system similar to SGX-
Client (Region 2). The Tensor Table protects Region 1, and
the table itself is stored in Region 2. MACs are generated at
the granularity of individual blocks and they are stored in an
8 KB on-chip MAC cache (overflows go to main memory).

GuardNN relies on counter-mode encryption, which re-
quires VNs. For memory writes, the accelerator generates VNs
using on-chip counters, which are managed by the scheduler
(running on the host CPU with a secure TEE). For memory
reads, VNs are received from the scheduler on the host CPU.

GuardNN also generates block-specific MACs which are not
stored in an on-chip cache (read directly from main memory).

Due to the high memory requirements of DNNs, generating
per-block MACs like GuardNN and TNPU results in high
memory overheads. Even if an on-chip cache is used, the
situation does not improve significantly because caches are
not optimized for streaming data. Securator addresses these
two concerns by significantly reducing the number of MACs
required to verify the integrity of a DNN. For GPUs, [48]
and [27] provide a secure execution environment that is quite
similar to GuardNN. They are not specific to neural networks
and thus don’t leverage their characteristics.

X. CONCLUSION
We showed that competing works such as GuardNN and

TNPU naturally segue into the Securator proposal. It is a
logical successor in this line of work, where the move to layer-
level security checks is complete. For realizing this, it was
necessary to mathematically characterize a large number of
memory access patterns (with different levels of stationarity)
and encode them efficiently. The VN generator coupled with
the MAC verifier helped realize layer-level operations. Be-
cause of the reduced need for data storage and consequently
reduced DRAM traffic, it was possible to reduce wasted cycles,
and achieve an additional 20.56% throughput as compared to
TNPU, which is the nearest competing work.

APPENDIX
We show the results for image pre-processing (Style-1,

Style-2, and Style-3) in Tables VIII, IX, and X.
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