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ABSTRACT

Over the past two decades, a rich ecosystem of open-source soft-

ware has evolved. For every type of application, there are a wide

variety of alternatives. We observed that even if different appli-

cations that perform similar tasks and compiled with the same

versions of the compiler and the libraries, they perform very differ-

ently while running on the same system. Sadly prior work in this

area that compares two code bases for similarities does not help us

in finding the reasons for the differences in performance.

In this paper, we develop a tool, SoftMon, that can compare the

codebases of two separate applications and pinpoint the exact set of

functions that are disproportionately responsible for differences in

performance. Our tool uses machine learning and NLP techniques

to analyze why a given open-source application has a lower per-

formance as compared to its peers, design bespoke applications

that can incorporate specific innovations (identified by SoftMon) in

competing applications, and diagnose performance bugs.

In this paper, we compare a wide variety of large open-source

programs such as image editors, audio players, text editors, PDF

readers, mail clients and even full-fledged operating systems (OSs).

In all cases, our tool was able to pinpoint a set of at the most 10-15

functions that are responsible for the differences within 200 seconds.

A subsequent manual analysis assisted by our graph visualization

engine helps us find the reasons. We were able to validate most of

the reasons by correlating themwith subsequent observations made

by developers or from existing technical literature. The manual

phase of our analysis is limited to 30 minutes (tested with human

subjects).

CCS CONCEPTS

• Software and its engineering→ Software performance.

KEYWORDS

Software comparison, Performance debugging, NLP basedmatching

ACM Reference Format:

Shubhankar Suman Singh and Smruti R. Sarangi. 2020. SoftMon: A Tool to

Compare Similar Open-source Software from a Performance Perspective.

∗Joint Appointment with Electrical Engineering

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7517-7/20/05. . . $15.00
https://doi.org/10.1145/3379597.3387444

In 17th International Conference on Mining Software Repositories (MSR ’20),

October 5–6, 2020, Seoul, Republic of Korea. ACM, 12 pages. https://doi.org/

10.1145/3379597.3387444

1 INTRODUCTION

In today’s complex software ecosystem, we have a wide variety

of software for the same class of applications. Starting from mail

clients to operating systems, we have a lot of choices with regards

to the application, particularly in the open-source space [56]. When

the source code is freely available and can be used without signifi-

cant licensing restrictions it is expected that for the same high-level

task, all the competing alternatives will take a roughly similar

amount of time. Paradoxically, this is not the case as we show in

Table 1. This table compares the time that different open-source

software programs take for executing the same high-level task on

the same platform. The last column shows the ratio of the time

taken for the fastest and the slowest applications. We observe that

this ratio varies from 1.1 to 6.2, which is significant considering the

fact that with the rest of the parameters remaining the same namely

the hardware, OS version, compiler, binutils, and libraries, the dif-

ferences purely arise from the code of the application itself. Other

researchers have also found similar differences in performance

and energy among similar applications such as similar Android

apps [56].

Table 1: Popular open-source software categories

Category Similar open-source software Task P

Image processor GraphicMagick, ImageMagick Crop an image 6.2
PDF reader Evince, Okular, Xpdf Load a pdf 2.1
Text editor Geany, Gvim, Vim Open a file 2.6
Music Player Audacious, VLC, Rhythmbox Play an audio 4.6
Mail Client Thunderbird, Balsa, Sylpheed Compose a mail 1.1
Operating System Linux, OpenBSD, FreeBSD Unixbench 1.7

P→Maximum/ Minimum performance

These differences lead to two natural conclusions: � either one

of the applications uses suboptimal algorithms [36, 65, 70, 79], �

or the applications are optimized for different end goals and the

performance differences are a manifestation of that [38, 76]. In this

paper, we try to answer this question and find out the real reasons

for the differences in performance between similar applications that

use the same software and hardware environment. We present the

design of a tool, SoftMon, that can be used to compare similar open-

source software that are created by different vendors. It allows us to

find the portions of the code that disproportionately account for the

difference in performance in large codebases consisting of millions

of lines. In this paper, we focus on the largest codebases [20] that are

released with open-source licenses, notably operating systems, mail

clients, image tools, and multimedia players. From our analyses, we
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conclude that the reasons for the differences are a combination of

reasons � and �: suboptimal design choices and a preference for

certain kind of inputs at the expense of others.

To the best of our knowledge, tools like SoftMon do not exist

(open-source or proprietary), and an effort of this magnitude has

not been attempted before. Existing work compares very small

pieces of code for either syntactic and semantic similarity; they are

not designed to compare million-line code bases from the point

of view of performance. There is however a need for such tech-

nologies. There are services such as the Technology Evaluation

Centers [19], where one can purchase a software comparison re-

port for thousand software solutions in different categories such as

ERP, business intelligence and CRM. The results are created and

curated by a team of professional analysts and are not based on the

analysis of source code. In comparison, we propose a mostly auto-

matic approach that relies on extensively analyzing the source code

and function call trees; we extensively use unsupervised machine

learning, sophisticated graph algorithms, and natural language

processing techniques. In our view, a problem of this scale could

not have been solved with traditional algorithms, AI and machine

learning techniques were required.

The input to SoftMon is a pointer to the root directory of the

source codes and the binary. The first step is to generate large

function call trees for the binaries that are to be compared. We

use existing tools such as binary instrumentation engines for this

purpose. Subsequently, we propose a series of steps to parse, prune,

and cluster the function call trees. Once this is done, we map similar

functions across the binaries using contextual information (posi-

tion in the call stack and the nature of the function call tree), and

textual information such as comments, the name of the function

and its arguments, and developers’ notes in GitHub. Subsequently,

we extend our analysis to also cover functions called within a li-

brary. Finally, after several rounds of pruning where we remove

nodes that have similar performance across the binaries or whose

performance impact is negligible, the final output of the tool is a

set of 10-15 functions arranged as a function call graph that shows

all caller-callee relationships between them. Most of the time, it is

possible to make very quick conclusions by looking at this graph.

However, in some cases particularly with operating systems such

as FreeBSD and Linux, it is necessary to look at the source code

of a few functions (limited to 5). The reasons for the difference

are quite visible given the fact that SoftMon additionally annotates

functions with their detailed performance characteristics such as

the cycles taken, cache hit rates, and branching behavior. We tested

the usability of our tool with a cohort of human subjects, all of

them could pinpoint the reasons within 30 minutes.

� Users can use this tool to get a much better understanding

of the relative strengths and weaknesses of different open-source

software. � Software developers can derive insights from this tool

regarding the parts of the code that are suboptimally implemented

(performance bugs) by comparing their code with similar open-

source software.� Even closed source software vendors can use this

tool internally to compare different versions of the same software

and find the reasons for differences in performance.

The organisation of this paper is as follows. We discuss relevant

background and related work in Section 2. Section 3 describes the

tool, SoftMon, and then we discuss our evaluation and results in

Section 4. Finally, we conclude in Section 5. The SoftMon tool is

available at https://github.com/srsarangi/SoftMon.

2 BACKGROUND AND RELATEDWORK

2.1 Taxonomy of Prior Work

The problem of detecting if two pieces of code are the same or not is

a classical problem in computer science. In its general form it is un-

decidable; however, it is possible to solve it using various restrictive

assumptions. The solutions find diverse uses in malware detection,

vulnerability analysis, plagiarism detection, and in studying the

effects of compiler optimizations. There are three broad classes of

techniques to find code similarity: Same, Structural and Functional.

We further classify these proposals into two broad classes: static

or dynamic; the static methods [27, 30, 35, 43, 45, 47, 67] only use

the source-code or binary to establish similarity but the dynamic

methods [42, 52, 59, 68, 71, 73, 82, 83] generate traces based on fixed

input parameters and use the observed outputs and the behavior

(memory state, system calls, etc.) to establish similarity (see the

vertical-axis in Figure 1).
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Figure 1: Prior work - classification

We then further classify these works based on the level that

they operate at (see the horizontal-axis in Figure 1) into different

categories. Code version: Proposals [27, 45, 47, 67, 68, 83] in this

area detect code similarity across multiple versions of the same

code. The techniques are used for bug detection and plagiarism

detection. The next phase of proposals proposed to detect simi-

larities across different compiler optimizations [42, 59, 73]. These

techniques were used for binary optimization and malware analy-

sis. The next generation of techniques find similarities irrespective

of the code-version, compiler optimization and instruction set archi-

tecture [30, 35, 43, 52, 71, 82]. These techniques are used for code

search and semantic similarity identification.

We add a new category in this taxonomy called different imple-

mentation, where we compare two codes that represent the same

high-level algorithm yet are coded differently, such as bubble sort

and quick sort. There are approaches [24, 69] in the literature to

find if two such codes are the same; they primarily work by creat-

ing a corpus of algorithms and check if a given implementation is

similar to any other algorithm in the corpus. This is however not

a very scalable technique, hence, we propose a new approximate

technique that matches two codes based on the comments, func-

tion names, library name, commit logs, Github comments and their

context (its callers and callees).
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Table 2: Summary of Prior Work

Paper Venue Algorithm Complete? 𝑇𝑐 Remarks

Bindiff DIMVA’04 Graph isomorphism on control flow graph of
basic blocks (CFG)

Yes 2𝑂 ( (𝑙𝑜𝑔𝑛)3 ) [𝑛 → # basic blocks]

Zhang FSE’05 Graph isomorphism on data dependence graph Yes 2𝑂 ( (𝑙𝑜𝑔𝑛)3 ) [𝑛 → # instructions]

CP-miner TSE’06 Frequent sequence mining: code Yes O(𝑛2) [𝑛 → # lines of code]

Binhunt ICICS’08 Graph isomorphism on CFG Yes 2𝑂 ( (𝑙𝑜𝑔𝑛)3 ) [𝑛 → # basic blocks]
STOKE ASPLOS’13 Machine state: registers and memory No 𝑂 (𝑚) [𝑚 → size of the machine state], Does not handle loops.

CoP FSE’14 Sub-sequence matching on CFG Yes 𝑂 (𝑛2) [𝑛 → #basic blocks]
BLEX USENIX’14 Dynamic features: system calls, memory writes Yes 𝑂 (𝑑) [𝑑 → # dynamic features]
Pewny IEEESSP’15 Minhash of input-output Yes 𝑂 (𝑘𝑛) [𝑘 → # hash operations, 𝑛 → #basic blocks]
POLLUX FSE’16 Dynamic features (same as BLEX) Yes 𝑂 (𝑑) [𝑑 → # dynamic features]

discovRE NDSS’16 Pre-filtering and graph isomorphism on CFG Yes 2𝑂 ( (𝑙𝑜𝑔𝑛)3 ) [𝑛 → size of the filtered CFG]

Mockingbird SANER’16 Longest common sub-sequence on signature Yes 𝑂 (𝑑2) [𝑑 → size of the signature]
Bingo-E TSE’18 Static + Dynamic features Yes 𝑂 (𝑑) [𝑑 → # dynamic features]
code2vec POPL’19 Neural network on fixed-length code vector No 𝑂 (𝑣 + 𝑛) [Pre-

diction]
[𝑣 → size of the code vector, 𝑛 → size of the code]. Does
not handle pointers, and structs.

SoftMon — Comment Similarity and contextual informa-
tion (e.g. stack trace)

Yes 𝑂 (𝑐) [𝑐 → size of the comments], Functions are matched based
on their comments and other textual information.

𝑇𝑐 : Time complexity order→𝑂 (𝑐) < 𝑂 (𝑑) < 𝑂 (𝑚) < 𝑂 (𝑛)

2.2 Techniques to Find Code Similarity

We shall refer to Table 2 extensively in this section; it summarises

recent work in chronological order. Note that all the time com-

plexities are normalized to the same baseline: detect if a pair of

𝑛-instruction functions are the same (or similar). Given that we
are using the big-O notation, it does not matter if 𝑛 refers to the
number of lines of code, number of instructions, or the number of

basic blocks, because in almost all cases, they are linear functions

of each other.

Same: Two codes are said to be the same if they contain the same

instructions, read the same inputs, and produce the same outputs.

The main difference is the order of instructions. The proposals

in this domain [47, 68, 71] construct a control flow graph (CFG)

representation of the code and apply graph isomorphism or proof

techniques to establish similarity. Since graph isomorphism does

not have a polynomial-time solution [50], these techniques are not

scalable to large codebases. Hence, these techniques generally work

well in establishing similarity between different versions of the

same set of functions, but fail to scale (see Table 2).

Structural: Several proposals [27, 35, 43, 45, 67] try to identify the

similarity between two pieces of code based on their structural

similarity. As compared to the previous set of techniques, this is

an approximate approach. Structural similarity is useful for plagia-

rism detection or finding differences across different versions of the

same set of functions. Any algorithm in this space needs to reduce

a piece of code into an intermediate representation such that the

names of variables or the order of instructions are not relevant.

The solutions use different intermediate representations such as

n-grams, CFGs, DFGs, ASTs, graphlets or tracelets to establish sim-

ilarity. The advantage of this approach is that the time complexity

reduces from exponential to linear or quadratic. For example, CP-

miner [67] uses the frequent sequence mining algorithm, which is

faster than graph isomorphism. However, this technique is limited

to identifying copy-paste similarities. Thus, this technique will not

work for our problem.

Recent proposals [25–27, 53] applymachine learning to solve this

problem. code2vec [27] uses a neural network on the abstract syntax

tree (AST) of the code snippet to construct a fixed-length code

vector. The similarity in the code vector is used to compute the code

similarity. We observed that their implementation is not general

as it does not handle pointers and structs. The time complexity of

the prediction phase is linearly dependent on the code size and the

code vector. (see Table 2)

Functional: All the works [42, 52, 59, 73, 83] in this domain compare

two pieces of code (set of functions) if they produce the same result.

Formally, two functions are said to be functionally the same if they

produce the same output given the same input, and have the same

side effects (systems calls, and memory footprint). Most works in

this area have also adopted an approximate approach, where they

create a signature that encodes the output and the side effects, and

then the signatures are compared to determine if the functions are

functionally same.

For example, BLEX [42] and POLLUX [59] use dynamic features

such as the sequence of system calls, library calls, and memory read-

write values to construct a signature. The difference between these

signatures is a measure of the dissimilarity of two functions. Bin-

goE [82] uses both static and dynamic features to establish similarity.

Hence, it can identify similarities even in the case of a different

compiler optimization or a cross-architecture compilation. The time

complexity of their algorithm is linearly dependent on the num-

ber of dynamic features. However, this technique is only limited

to comparing different code versions (example: forked projects).

Hence, they will not be able to detect similarities across different

implementations.

2.3 Performance Analysis

2.3.1 Profiling Tools. There is a large body of work on performance

profiling of software [37, 39, 48, 64, 80]. The profiling can be done

by either sampling or instrumenting the given software. gprof [48]

and perf [40] are the most commonly used software profiling tools.

Similarly, ftrace [6] and dtrace [4] are the most commonly used OS

profiling tools. These tools rank functions based on their execution

time. But, these tools do not provide any mapping between the

functions across different applications.

2.3.2 Visualization Tools. A Flamegraph [49] visualizes the out-

put of the profiling tools. It visualizes a function call stack and
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can be used to identify frequently executed functions. Differential

Flamegraphs [31] can be used to understand the differences in the

functional call patterns across different versions of the same soft-

ware. They cannot be used for differential analysis in our case as

they do not provide any mapping algorithm for functions across

different applications. Our novelty is that we use the function name,

textual information and the function context (in the graph) to map

functions across different applications.

2.3.3 Performance Bug Detection. Many performance bug detec-

tion tools have been proposed [41, 55, 75, 81]. These tools try to

find a specific type of hidden performance bug or diagnose the

bugs detected by the end users. They employ different rule based

techniques or statistical approaches. The idea is to compare the

behavior of the same software for different inputs. However, our

problem is different: compare different software with the same

inputs.

3 THE DESIGN OF SOFTMON

The SoftMon tool comprises the following components. � A Trace

collector to generate the sequence of function calls invoked in the

execution of a program and to construct a function call tree from

the trace. � A Classification and Clustering step to classify the call

trees into different high-level tasks and then cluster the different

call trees into fewer groups. � A Graph engine to compress and

filter the function call trees, � an Annotation step to annotate the

call trees with their relevant comments. � A Map engine to find

the mappings between the nodes across the call trees of different

applications and � a Graph Visualization engine to render the

mapped trees to simplify human analyses (Figure 2).
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Figure 2: Flow of actions

3.1 Trace Collector

For a set of applications, we need to first define the high-level tasks

whose performance we wish to compare. Once we have defined

a set of high-level tasks, we need to generate a trace of functions

(with appropriate annotations) for each application. Each trace is

a sequence of 3-tuples <name of the function, name of the caller,

number of execution cycles>.
The Trace collector is a thinwrapper on the built-in tools, ftrace [6]

in Linux and dtrace [4] in FreeBSD/OpenBSD to collect OS traces.

We use the PIN tool [16] to collect the application traces. We sub-

sequently post-process this trace to generate a function call tree

(FCT), where each node is a function, and there is an arrow from

node 𝐴 to node 𝐵, if node 𝐴 is the caller and node 𝐵 is the callee.
Note that for recursive function calls, or when we call the same

function over and over again, we generate different nodes. The

main advantage of this method is that it is very easy to find the

frequently executed paths (also used by [45, 47, 56, 83]).

It is possible that a high-level task may call functions billions

of times. To reduce the size of the generated FCT we propose a

compression technique. For every sub-trace of 200,000 nodes (average

number of functions in a system call), we generate a signature.

Whenever a signature matches any of the previous signatures in

the collected trace we discard the sub-trace. We add the number of

execution cycles corresponding to each function in the discarded

sub-trace to the corresponding function nodes in the matched trace.

The signature is generated as follows. It is the Jaccard distance [54]

(also used in [59]) between the set of unique functions present

in both the sub-traces. The Jaccard distance (𝐽 (𝐴, 𝐵)) measures
the similarity between two finite sets, 𝐴 and 𝐵, and is defined as:
𝐽 (𝐴, 𝐵) = |𝐴 ∩ 𝐵 |/|𝐴 ∪ 𝐵 |
Two signatures are said tomatch if their Jaccard distance is more

than a threshold 𝑇𝑡 .

3.2 Classification and Clustering

For the same high-level task, we can obtain thousands of different

FCTs due to the following reasons: different arguments, condi-

tional statements, wakeup/sleep statements, interrupts and thread

switches done by the scheduler. Analyzing and comparing thou-

sands of such trees is hard. We also found that a single tree is not

sufficiently informative to represent the behavior of a task. Hence,

we cluster the different trees based on the set of functions that

they contain, and choose a representative tree from each cluster for

doing further analyses. The clustering is done by using the Jaccard

distance as the distance metric.

We proceed to cluster the call trees based on this metric using

hierarchical clustering [60]. Initially, all the clusters are initialized

containing a single tree. The clusters are then merged based on the

similarity of the clusters calculated using the Jaccard distance. Note

that if we consider a minimum Jaccard distance of 𝜅 for the sake
of creating clusters, then it is guaranteed that the set of unique

functions will at least have a (100×𝜅) percentage overlap between
two call trees in the same cluster. We limited the total number of

clusters to 𝐶𝑛 . We select a representative tree for each cluster that
has the following properties. Its total execution cycles should be

closest to the average value for that cluster. Let us call this the

m-tree (output of the classification and clustering step).

3.3 Graph Engine

We annotate each node of an m-tree with additional information:

the number of instructions executed by all the functions that are a

part of it, and the number of cycles taken by the sub-tree with the

node as the root. In our workloads, the size of the m-tree is very

large. Understanding, analyzing, and comparing such large trees

is computationally prohibitive; hence, we used graph reduction

techniques to reduce the size of the trees. This will help to simplify

our analyses (see Figure 3).

3.3.1 Reduce. We observed that the number of nodes in an m-

tree is significantly larger than the set of unique functions in it.

This implies that many functions are called multiple times. We also

found many repeating patterns in the m-tree, because of iterative

structures in the code. Hence, the next logical step is to reduce the

size of the m-tree by folding repeating sub-trees into a single node.

We mapped this problem of finding the largest repeating sub-tree
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with finding the number of occurrences of all the sub-strings in a

given string.

We first do a pre-order traversal of the tree. This lists all the

nodes in the order that they are seen first. Now, let us consider

the output of the pre-order traversal – list of nodes – as a string.

Every sub-tree is a contiguous string in this representation. Let us

consider all repeating sets of sub-strings, where there is a constraint

on the minimum size of the sub-string, and the minimum number of

repetitions. Let us represent the length of the substring 𝑆𝑖 𝑗 (between
indices 𝑖 and 𝑗 ) as 𝑠 = 𝑗 − 𝑖 + 1, and the number of occurrences as 𝑜 .
We then reduce the tree by replacing each occurrence of 𝑆𝑖 𝑗 with
a new single node (see Figure 3(b)). Thus, we replace 𝑠 × 𝑜 nodes
with 𝑜 nodes, reducing the size of the tree by 𝑠 × 𝑜 − 𝑜 nodes.
We use a dynamic programming algorithm [33, 72] that pro-

vides the number of occurrences of each substring, whose length is

greater than a threshold. For each substring, we compute its weight,

i.e., the number of nodes that will be reduced if it is replaced by a

single node (= 𝑠 ×𝑜 −𝑜), and order them in the descending order of

weights. We then run an iterative algorithm, where in each iteration

we replace the most frequent substring in our list of substrings with

a single node. It is possible that other substrings might have an

overlap with it; they are removed from this list.

For each of these nodes that represents a sub-tree, we store the

sub-tree in a separate data structure, which is basically a forest.

Each sub-tree in the forest, has been replaced by a single node in

the new reduced tree (rm-tree). For the added node, the value of the

number of instructions and cycles are the sum of the corresponding

numbers for each node in the corresponding sub-tree.

3.3.2 Filter. Subsequently, we applied a filter function on the rm-

tree to filter out nodes that take very few cycles to execute (less

than a threshold, 𝐶𝑡 ). Our goal is to understand the difference in
performance across similar applications. Hence, the nodes that do

not have a significant contribution to the total number of execution

cycles can be discarded.

The filter operation is done by an in-order traversal of the rm-tree

and deleting the nodes that take less than 𝐶𝑡 cycles. The complete
sub-tree corresponding to such a node 𝑁 is deleted. Note that we

store the number of cycles taken by the sub-tree with the given

node(𝑁 ) as the root, within 𝑁 itself. (see Figure 3(c)).

3.3.3 Partition: Finally, we partition the filtered rm-tree into few

sub-trees (10-15) based on the number of cycles and the structure

of the rm-tree.

We observed that the call trees corresponding to two different

implementations do not match at the structural level. For example,

one implementation may have more functions as compared to the

other one. However, we observed that both the implementations do

similar high-level tasks. Thus, the call-trees can be easily matched

at the task level. Hence, we partition the rm-tree into few sub-trees

that represent high-level tasks.

The partition operation is done by iteratively reducing the depth

of the tree by coalescing leaf nodes with their parent node (see

Figure 3(d)). In each round we consider all the internal nodes with

the maximum depth, and coalesce (merge their leaves with the

parent) all of them; we repeat this process until the number of total

nodes that are left is less than a threshold, 𝑃𝑡 .

3.4 Annotation

We use the cscope tool [21] to find the location of the functions’

definitions in the application’s source code. Then, we extract the

comment at that location and store it in a hashtable. Some comments

even describe the function arguments, which are not necessary for

our annotation. Hence, we filter out the definitions of the function

arguments (using a script). We also found a lot of abbreviations or

undefined terms in the comments such as ‘buf’ for buffer, ‘getblk’ for

get block, ‘async’ for asynchronous, etc. We automatically corrected

them by using the online kernel glossary [13].

The comment and the function-name are then used to annotate

the nodes in the partitioned rm-tree. In case the comments are not

available, we also mine the GitHub commit logs. We use an au-

tomated script that uses the git diff command to check whether

a given function was edited in a particular commit. If there is an

edit, we use the commit message to annotate the node. A particular

partition is annotated with the comments, commit message and

the function-names corresponding to all the functions/nodes in the

partition. The final annotation is the concatenation of all the corre-

sponding comments. Henceforth, we shall use the term comment

to the entire annotation.

3.5 Map Engine

The input to the Map Engine is a set of partitioned rm-trees of

different applications, which are annotated with comments. Now,

our goal is to map the partitions across the applications with similar

functionality so that we can look for differences. For example, the

pagecache_get_page function in Linux and the getblk function in
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FreeBSD have similar functionality. We automate this process by

using the Map Engine.

3.5.1 Comments and Name Similarity: We use spaCy [22] –

an NLP tool – to calculate the similarity index between a pair of

comments/function-names. The tool converts a text into a token vec-

tor of fixed length. The Euclidean distance between the two vectors

is used as the objective function to determine the similarity (value

between 0 and 1) between two text inputs. An output of 1 means a

perfect match. We used the en_core_web_mdmodel provided by the

tool for computing the similarity index. It is trained over web-blogs,

news and comments and consists of 685,000 keys and 20,000 unique

vectors. The average accuracy of the tool is 92.6% [51]. We aim

to detect the functional similarity of two partitions based on their

comment+name similarity.

3.5.2 Bipartite Matching: The mapping of two partitioned rm-

trees (𝑟𝑚1 and 𝑟𝑚2) is done as follows. We construct a complete

bipartite graph using the partitions of the two rm-trees. The edge

weight is the comment (+name) similarity index. The set of edge

weights represented as a 2-D matrix is provided to the optimal

Hungarian algorithm [63]. The optimization function is tomaximize

the sum of the weights of the matched edges (also used by [77]).

Finally, we obtain a one-to-one (not necessarily a bijection)mapping

between the partitions in the two trees. An example of a mapping

is shown in Figure 4. We run the Map Engine for all the pairs of

rm-trees of the same task across different applications.

Once, we have the mapping, we remove all the pairs of partitions

that have similar (within 15% i.e. mean - 3-sigma values for the

deviation in execution time) performance. Then, we run the Map

Engine again (on-demand) on the partition-pairs that are left to find

a function-wise mapping. This helps us ensure that the context

(parent-child relation) of the nodes is maintained across mappings.

To summarize, we follow a top-down approach. We first match

at the level of large partitions and then focus our attention on

similar partitions that have differing performance. We run the map

engine again on these partitions to match function groups (typically

reduced nodes) and then prune out those groups that have similar

performance.

The presented steps suffice for code such as operating systems

and image tools, where the entire source code is available, and third-

party libraries account for a miniscule fraction of the execution.

However, if a large part of the execution is accounted for by code in

third-party libraries, then an additional pass is required, where we

analyze the stack trace (function call trace) of invoked functions.

3.6 Library Engine: Analysis of Stack Traces

The execution of an application in general consists of two compo-

nents: application source code and library calls. We can analyze the

functions in the application source code by mapping their rm-trees

based on their source code comments. But, this will not be appli-

cable in the case of the library functions since we do not have the

source code. There are two possibilities when comparing two such

applications; both of them use the same libraries (libc, libz, etc.) or

they use different libraries to perform the same operation (example:

libQT vs libglib). From the trace, we have a list of functions called

and their cycle counts. We observed that there exist many library

functions (example: malloc, hash_table_lookups) that account for a

disproportionate fraction of the execution, and are responsible for

the differences in performance. Hence, to understand why these

library functions were called so frequently, we need to create the

corresponding stack traces (function call trace from the main func-

tion to the current function). We observed that there are many such

paths to a particular library function that are pruned and clustered

as follows. Note that we analyze the stack traces of only those

library functions, which are called frequently (number of calls is

beyond a certain threshold).

Step 1) We first collate all the paths to a particular library func-

tion. We find all the nodes corresponding to the library function

by applying a depth first search on the function call tree. Next, for

each such node, we follow the parent pointer and construct a path

to the root. Each such path is annotated with the cycle count of the

leaf node (library function). This is known as the cost of the path.

Step 2) We then construct a graph using these paths and we

remove the rest of the nodes. The cost of each node is equal to the

sum of the cost of the paths that intersect it.

Step 3) We then filter the graph by removing the nodes whose

cost is less than a threshold.

Step 4) We then run the mapping engine on the stack trace graph

for the same library function across different software. Here, we

consider all the textual information that we can find: name of the

function, and any GitHub comments.

The benefit of this step is that even if the libraries themselves

are responsible for differences in performance, we can pinpoint

the relevant functions within the libraries (or the functions in the

application code that invoke them) and after processing their stack

traces we end up with a small graph (10-15 nodes), which is given

to the visualization engine.

3.7 Graph Visualization

The visualization engine produces two kinds of graphs: one for the

source code, and one for the source code along with library code.

Source code browsing: We used the graphviz [46] tool to vi-

sualize the matched functions of the rm-trees (see an example in

Figure 4). We display the output of the Mapping Engine in the form

of a function call graph. In the function call graph, the matched

nodes are in the same color. Each node is further annotated with the

function name, instruction count, source code comments, number

of calls and link to the source code (file name and line number).

The tool also highlights the nodes that are responsible for the

maximum performance difference. A user can then further inspect

the node by expanding the sub-tree corresponding to the node. We

402



Table 3: Software Categories, Properties and Description of Benchmarks (loc→ lines of code)

Software # files # functions # loc List of benchmarks

Image ImageMagick-6,7, GraphicMagick-1.3.33 450-800 700-1400 500K crop, cnvt: convert from png to jpg and flop an 1024x512 pixel image (file size: 24 KB)
Pdf Xpdf-4, Evince-3.27, Okular-1.9.7 200-500 9K-15K 150K open, load a page (page number), full: open in presentation mode (file size: 2 MB)
Text Vim-8.1, Gvim-8.1, Geany-1.27 230-300 2K-9K 120K-450K open: load a text file (file size: 1 MB)
Music Vlc-3.0.8, Rhythmbox-3.4.3 400-1800 12K-14K 200K-700K open: play an audio file for 30 seconds (file size: 1 MB)
Mail Balsa-2.5.9, Sylpheed-3.7 335-348 10K 150K compose, attach: a mail with/without an attachment file (file size: 4 KB)
OS OpenBSD-5.7, Linux-4.2, FreeBSD-10.2

𝐾 → 1000,𝑀 → 1000000
5K-40K 20K-90K 3M-18M File copy, Pipe: communication, Process creation, System call, FileIO: read-

writes, OLTP: database server, Find: search a file, Iscp/Oscp: secure copy [2, 62]

can also re-run the matching algorithm on the expanded sub-tree

to do a deeper analysis (on demand).

Library code browsing In this case the engine produces a small

graph using the graphviz toolkit that typically fits in a single screen.

It is possible to visually identify the different execution paths within

the library, and it is also possible to identify which paths contributed

to the differences in performance.

Summary: This is the only part of the tool that requires human

intervention. Note that to get here we had to prune and cluster

thousands of functions; however, at this stage a human is required

to identify the observed patterns and decide the reasons for the

difference in performance. On the basis of user studies, we shall

argue in the evaluation section that given the small size of graphs,

this process can be done easily within 10-30 minutes.

4 EVALUATION

4.1 Implementation Details

All the benchmarks were compiled using the same version of the

compiler (gcc-7.5) and libraries (glibc 2.27). The applications and

the benchmarks are described in Table 3. The number of files in

these applications lie in the range 200 (in smaller apps) to 40,000

for Operating systems. We also observe that the number of lines

of code is 10x higher for OSs (million lines) as compared to other

applications. The OS benchmarks were run on all three OSs with

the same input parameters that were provided with the Unixbench

suite. These benchmarks have also been used in other works in the

OS evaluation space [28, 29, 44, 57, 58, 61, 74]. We discarded a few

benchmarks as they did not make any system calls and did not have

any OS contribution. They had the same performance on all the

three OSs. We conducted all our experiments on a Dell R610 server

with 2 Intel Xeon X5650 processors with 12 cores each (2.67 GHz

frequency) and 32 GB of memory running Ubuntu 18.04.

All the components of the SoftMon tool including the clustering,

graph and map engines, and the graph visualization tool are imple-

mented in Python 3. The comments are extracted with the help

of the cscope tool [21] that has support for C, C++, Java and other

languages.

4.2 Execution of the Graph Engine

We started with the complete function call trace for all the bench-

marks that correspond to 27K (for image tools) to 200M (for OS)

function calls. Then, the trace was converted into a call-tree after

applying classification and clustering. Finally, we used the graph en-

gine to compress the call-trees. The m-trees contained up to 10,000

nodes. The thresholds 𝐶𝑡 and 𝑇𝑡 were set to 500 cycles (mean -

3-sigma values for the deviation in execution cycles of functions)

and 0.9 respectively. We observed a 2-4X and 4-8X reduction in the

Table 4: Comment Similarity (from spaCy)

Software Function Comment in the source code Similarity

ImageMagick CropImage extracts a region of the image starting
at the offset defined by geometry.

GraphicMagick CropImage extract a region of the image starting
at the offset defined by geometry.

100%

Linux pagecache
_get_page

Find and get a page reference. Looks
up the page cache slot.

FreeBSD getblk Get a block given a specified block
and offset into a file.

89%

Linux __radix_tree
_lookup

Lookup and return an item at position
index in the radix tree

FreeBSD pctrie_lookup Returns the value stored at the index. 86%

number of nodes after applying the Reduce and the Filter functions

respectively. The Partition function further reduced the tree to a

few partitions (10-15) (𝑃𝑡 ). The total reduction in the size of the
m-tree is thus between 600-1000X across the different stages of

our algorithm.

Table 5: SoftMon: runtime of different steps

Steps Input size Time taken (s)

Classification Trace of 200 M functions 60 s
Clustering Call tree with 25 K nodes 6 s
Reduce m-tree with 10 K nodes 112 s
Filter & Partition rm-tree with 4K nodes 15 s
Map Engine 125 tree pairs of 15 nodes 5 s

Total time per benchmark 198 s

4.3 Execution of the Map Engine

We automatically mapped functions among different applications

using the textual annotations. On an average, we found comments

for 50% of the functions across all the applications. Table 4 shows a

few examples of the comment similarity values calculated using the

spaCy tool. Most of these comments described the behavior and the

working of the corresponding functions. Recall that we aggregate

the functions into reduced nodes, and also concatenate all the textual

information (comments, function names, etc.). Hence, we were able

to map functions from the different applications with a comment

semantic equivalence (NLP similarity score) of more than 80%. We

manually verified that the mapping provided by comment similarity

actually translates to similar functionality of these functions.

The engine mapped 40 pairs of partitioned rm-trees across the 18

benchmarks, which resulted in themapping of 400 pairs of functions.

The matches were validated manually by examining the source code

of the respective functions using a team of 10 participants. Each

participant was given a set of 120 function pairs. She had to look at

the comments and the code of the function and assign a 0/1 score

if the functions matched or not. Each function pair was analyzed
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Figure 5: Breakup of Cycles (smaller value is better): (a) Image (b) Pdf (c) Text (d) Audio (e) Mail (f) Operating system

for 5 minutes on average. We evaluated each function pair by three

different participants. Finally, we selected the majority value.

The accuracy (fraction of correct matches determined subjec-

tively (similar to [78])) of our tool was 90%. If we would not have

partitioned the rm-trees, then the accuracy would have reduced

to 68% owing to the large number of false-positives (thus context

information captured by partitioning is important). One such exam-

ple of a false positive by our tool is (GetCacheNexus, SetCacheNexus

in ImageMagick) which was assigned a score of 0.77 but they are

different functions. We do not have false negatives as we consider

all relevant matches. Next, we report the run times of the individual

steps in Table 5 (maximum times across benchmarks reported). The

maximum cumulative execution time of all the stages is limited to

200 seconds.

4.4 Differences in Performance

We show the cycle count of different applications for each category

in Figure 5 (lower value is better). The performance difference varies

from 1.1x to 6.2x. The two mail clients have a similar performance

since they use the same set of libraries, whereas GraphicMagick

is 6.2x faster as compared to ImageMagick. Next, we will discuss

the cycle breakup of different applications into application code,

libraries and OS system calls.

The cycle count of the libraries (libz and libc) is similar in the

case of ImageMagick and GraphicMagick. The major difference is

due the application code. We also observed that ImageMagick-7 per-

forms poorly as compared to ImageMagick-6. In other applications,

the cycle count is dominated by the library code. There are two

observations, � the same set of libraries are used but they differ

in the cycle count (Evince vs Okular), � different libraries are used

to perform the same function (libglib vs libQT5 for GUI render-

ing). Similarly, for OSs, we observed that the total cycle count is

dominated by different system calls. OpenBSD is better suited for

executing search and network based applications (Find, Iscp and

Oscp), while FreeBSD is better suited for executing I/O heavy appli-

cations (FileIO, Pipe and OLTP); Linux provides better performance

in File copy, Process creation and System call benchmarks.

4.5 Reasons for the Differences in Performance

We shall first present three representative case studies (all the rea-

sons cannot be presented because of a lack of space). Hence, we

shall briefly summarize all the reasons at the end in Section 4.6 and

also provide pointers to discussions that allude to the same reasons.

4.5.1 Case Study 1: Image Tools. The performance of Graphic-

Magick is better than ImageMagick for all the benchmarks (see

Figure 5(a)). We now show the output the Mapping Engine in Fig-

ure 6(a). We found the following reasons by comparing the matched

nodes (after extensive pruning and filtering). In the ReadImage func-

tion, ImageMagickmakes a copy of the pixel data-structure and then

passes it to the next function. In contrast, GraphicMagick directly

passes the pointer to the pixel data-structure. Hence, this function is

faster in GraphicMagick as compared to ImageMagick. The CropIm-

age function is a nested for loop with three levels in ImageMagick.

In contrast, GraphicMagick uses a single for loop that iterates over

the image’s rows and uses memcpy to copy the cropped image –

this is a faster implementation. In ImageMagick, a PixelCache is

maintained, which is not used in GraphicMagick. It creates a copy

of the full image from the source cache to the destination cache. It

adds an additional 14M cycles (28%) to the overall execution.

Comparison with gprof and PIN: The gprof and PIN tools rank

functions based on their execution time. The ranks of the functions

ReadImage, CropImage and PixelCache were 5, 7 and 12 respectively

in the output of gprof. These functions pairs were ranked 1, 2 and

3 respectively in the output of SoftMon. Also, these tools do not

provide any function mapping across different applications.
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4.5.2 Case Study 2: Pdf readers (Library: libpoppler). We observe

that the library libpoppler has the highest cycle footprint for both

Evince and Okular. The getChars and getRGBLine functions inside

libpoppler are the most frequent functions. Because of the presence

of libraries, we need to construct and analyze the stack trace (see

Figure 6(b)) of these functions for both Evince and Okular (as de-

scribed in Section 3.6). The OutputDev function is called multiple

times in Okular as compared to Evince. This leads to 20% more

cycles in Okular. The function getRGBXLine in Okular has an extra

instruction (for padding) in the for loop as compared to that of the

similar function in Evince. This leads to 10% more execution cycles

in Okular.

Comparison with gprof and PIN: The ranks of thematching func-

tions ev_job_render_run and renderToImage were 3,905 and 3,813

respectively in the gprof output of Evince and Okular. The ranks of

the matching functions CairoOutputDev and SplashOutputDev were

92 and 31 respectively. These functions pairs were ranked 1 and 2

respectively in the output of SoftMon.

4.5.3 Case Study 3: OS (Find). In all three OSs the getdents – get

the directory entries – system call has the maximum cycle footprint

(up to 40%). This is followed by the fstat – get file status – system

call (10-20%). Let us thus compare the execution of the getdents

system call for OpenBSD and Linux and find out why OpenBSD is

26% faster.

Classifier Engine: Linux is dominated by only one cluster that ac-

counts for 97% of the cycles. Whereas, in OpenBSD, we see two

different clusters that contribute 66% and 32% respectively to the

cycle count. The second cluster is an example of a fast-path system

call invocation. Here, the getdents system call exits in the case when

the I/O device is busy instead of waiting (like Linux). One of the

reasons for Linux being slower is that it does not exploit this fast

path.

Map Engine: We feed the partitioned rm-trees of both the OSs to

the Map Engine. The output of the mapping is shown in Figure 6(c).

There are three major partitions: a) allocate memory blocks, b) read

the directory structure into the memory blocks, c) free memory

blocks. The respective partitions match with a comment similarity

index of 84%, 81% and 76% respectively. The memory allocation

operation takes almost an equal number of cycles for both the

OSs. But, the read operation of OpenBSD takes only 6,646 cycles as

compared to 34,283 cycles in Linux.

Reasons (found after visualization):

Data Structure in the map function: Linux uses a red-black tree

to store the directory structure whereas OpenBSD uses a Trie data-

structure. The search operation in a red-black tree takes 𝑂 (𝑙𝑜𝑔 𝑛)
time, where 𝑛 is the total number of elements in the tree. Whereas,

the search operation’s complexity in a Trie is 𝑂 (𝑘), where 𝑘 is the
maximum length of all the strings in the set. The red-black tree is

always a balanced tree, whereas in the case of a Trie we can have

severely unbalanced trees in worst cases, leading to slower lookups.

Hence, the choice of the data structure thus depends on the size of

the file-system. Validation: [32] (Section 9.3 in the book).

Greedy page allocation: OpenBSD’s developers have written a

function get1page (not there in Linux), which quickly allocates a

page from a pool of pages. If multiple pages need to be allocated,

then all the pages after the first page are read in conventional

fashion. This optimization is inefficient if we are running a lot of

memory intensive workloads because the pool’s size will become

very large.

I/O batching (submit_bio): We found two different clusters in

the case of OpenBSD. The memory read operation happens only in

one of the clusters. The fast-path (second cluster) returns from the

system call when the device is busy. Whereas in Linux, there are no

fast paths. It calls a __const_udelay function when the device is not

available. We validated this finding by looking through the code of

the latest Linux kernel. We found that the __const_udelay function

is not being used for this action in the later Linux kernel (4.3). We

found that this performance bug was first reported in 2012 [14] but

was ultimately diagnosed and fixed in 2018.

Comparison with ftrace and dtrace: The functions uvm_map and

ext4_map_blockswere ranked 20 and 32 respectively. The functions

getblk and get_request were ranked 15 and 26 respectively. These

functions pairs were ranked 1 and 2 respectively by our tool.

4.6 Summary of Differences

Tables 6 and 7 shows a summary of the reasons found by SoftMon

and subsequent manual analysis. In each row, we display the reason

for the difference in performance for a particular benchmark using

SoftMon and a reference to the online validation. We classify the

reasons into two sets: performance bug (B) and feature (F).We found

performance bugs that used inefficient data structures or algorithms,

called unnecessary functions, or repeated previously done tasks.
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Table 6: Summary of differences in Applications (B/F→ Performance Bug/Feature)

Function Reasons B/F Validation

Image ReadImage ImageMagick makes a copy of the pixel data-structure but GraphicMagick passes a pointer. B GraphicMagick Blog [12]
Image CropImage IM-7 uses a nested three level for loop to update the image but GM uses a single for loop and memcpy. B Verified from the source code [11]
Image ClonePixel In IM-7, ClonePixel function creates a copy of the image from the source cache to the destination cache. B ImageMagick Documentation [10]
PDF getChars This function is called multiple times in Okular as Splash is an inefficient library as compared to Cairo. B Cairo vs Splash [3]
PDF getRGBLine This function has an extra instruction in the for loop as compared to that of the function in Evince. B Verified from the source code [9]
PDF GUI lib Evince uses libglib for creating the GUI, whereas Okular used libQT for the same. F Verified from the source code
PDF full In Xpdf-full the file is loaded twice, first in a window and then in the presentation mode. B Verified from the source code
Text malloc Geany loads the file and runs multiple passes over it to determine encodings and highlighting. F Geany GitHub comments [8]
Text plugins Geany loads multiple plugins (example: spell check) by default. It can be turned off. F Geany Documentation [7]
Audio GUI lib Rhythmbox uses libglib and libgobject for creating the GUI, whereas VLC uses libQT for the same. F VLC vs Rhythmbox [23]
Audio Library Rhythmbox saves the audio file into a play-list by default. It can be turned off. F Rhythmbox Documentation [17]
Audio plugins Rhythmbox loads multiple plugins (example: python support) by default. It can be turned off. F Rhythmbox man-pages [18]
Mail GUI lib Balsa uses a css based library to render a general GUI. Sylpheed uses a fixed GUI format. F Balsa GTK library [1]

Table 7: Summary of differences in OSs (� : Optimization available, 	 : Optimization not available, – : Not relevant)

Reasons Linux OpenBSD FreeBSD B/F Validation

Find Fast Path vs Slow Path: function exits when device unavailable 	 � � B Linux change logs: native_read_tsc
Find Batching-Type1: OpenBSD fetches more pages 	 � � F Verified from the source code comments [66]
Find Greedy Page Allocation: get1page function 	 � � F OpenBSD user manual: getblk
Find Data Structure for storing directory Red-Black Tree Trie – F Book: Understanding the Linux Kernel (9.3)
Iscp Batching-Type2: function uiomove to write data in one go 	 � � F OpenBSD user manual: uiomove
Copy Architecture Optimization: rep is used to optimize copy � 	 	 B Verified from the source code
Copy Prefetching (Sequential access): Linux uses prefetching � 	 	 B FreeBSD user manual: prefetch
Copy Prefetching (Locks): type of lock algorithm used seqlock – RW-lock B Linux user manual: seqlock
Fork Process Creation: Copy on demand optimization � 	 	 B FreeBSD: kernel limits [5]
OLTP Multi-core: scheduling algorithm for equal work division � 	 � B OpenBSD: Slashdot article [15]
FileIO No Prefetching for non-sequential access 	 � � B Linux: kernel documentation read-ahead
FileIO Data Structure for page-cache Radix Tree – Queue F Aggressive read-ahead in Linux [34]

We also discovered some specific features such as loading of plugins

or multiple passes over the data that increase the loading time of

the application. We also discovered features such as prefetching

and caching in operating systems that benefit the application.

4.7 User Study

To validate the effectiveness of our tool, we performed a user study.

The study had 10 participants: 1 faculty, 1 PhD student and 8 un-

dergrad. students from the Computer Science (CS) department at

IIT Delhi, India. All the participants were proficient in C/C++. We

floated a non-graded (pass/fail) course that was open to all, and

anybody who wished to participate joined (selected without bias).

The benchmarks were divided among the students and the reasons

for analyzing the performance were not conveyed to them before

the end of the grading. We constructed a golden data set of the

reasons using available online content such as source code com-

ments, commit logs, Github user questions, code documentation,

news-group discussions, and developer manuals (Tables-6, 7). The

success criteria was that the students needed to analyze the source

code and find reasons that are mentioned in our list of collected

reasons.

We first held a session in which we demonstrated the differ-

ent software categories and the benchmarks. We provided them

with the output of the PIN, gprof and ftrace tools for the relevant

benchmarks. We gave them the task of identifying reasons for the

differences in performance for three benchmark pairs. Each partici-

pant spent a week (minimum 20 hours) to analyze these applications.

We held another session after this task and checked their progress.

Only one participant was able to find the relevant reasons for Image

tools: ReadImage and CropImage functions. The image tools are one

of the simplest and smallest (in terms of the number of lines of code)

programs as compared to other applications. Other participants

faced difficulty as there were a large number of functions, function

mappings were not provided and the function call graph consisted

of thousands of nodes.

We held another session and demonstrated the working of the

SoftMon tool and provided them with the output (function mapping,

pruned and annotated function call graphs) to all the participants.

All the participants were able to find the reasons described in Table 6

and Table 7 for a benchmark-pair within 30 minutes.

Summary: SoftMon saved 500 man hours of analysis, and found

25 reasons for 6 categories of large open-source programs.

5 CONCLUSION

We solved a very ambitious problem in this paper, which is to com-

pare some of the largest open-source programs and explain the

reasons for their performance difference. We were able to find a di-

verse set of reasons that explainmost of the differences, andwewere

able to validate them against various sources. Out of the reasons,

manywere performance bugs, and the rest were application-specific

features. SoftMon takes just about 200s to complete the analyses for

the largest code bases (operating systems) and to reduce the search

space from roughly 50-100k functions to 10-15 functions.
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