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ABSTRACT
Modern software programs have dedicated license-check modules

that restrict access to users, who possess valid credentials. They

also have a large number of add-on pluggable modules that can be

separately purchased and have their dedicated license managers.

Sadly, recent work shows that regardless of their complexity, it is

possible to break their security using a novel class of attacks known

as control flow bending attacks (CFB attacks), where the program is

run on a virtual CPU, unbeknownst to it.

In this paper, we propose SecureLease – a novel approach that

efficiently solves this problem by running the license managers and

other parts of the application in a trusted execution environment

(TEE) (hardware managed sandbox). Since it is not enough to just

move the license managers to the TEE because they can be circum-

vented using CFB attacks, we need to further handicap the attacker

by also moving key parts of the application to the TEE subject

to various runtime and software engineering constraints. Hence,

we propose a novel application partitioning algorithm that is far

superior to the state of the art scheme. Furthermore, we propose

an extremely fine-grained yet scalable license management and li-

cense distribution scheme. The key insight is that we avoid remote

calls and intelligently use some degree of local caching. Hence, our

license validation phase is 66.34% faster than the nearest competing

work.
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Figure 1: Figure showing execution flows in the case of
a valid license file and during a control flow bending or
CFB [32] attack to bypass the authentication module.

1 INTRODUCTION
Digital rights management (DRM) tools for protecting software

are as old as commercial software itself. Today, it is almost un-

thinkable for a company to release a software without some form

of DRM protection method such as a licensing or authentication

mechanism. There is a need to restrict usage to only legitimate

users who have purchased their rights. It is also not uncommon

for a software bundle to have multiple DRM protection methods

such as entering a license key and periodic online authentication.

It is also possible to buy add-ons separately with restrictions on

how they can be used. We shall say that any software (including an

add-on) obtains an ephemeral lease before execution, with specific

lease expiry conditions. The lease can be valid for either a fixed

duration – a time-based lease – or for a fixed number of executions

– a count-based lease [5, 10, 21]. We use the generic term lease for a

license in this paper.

For natural reasons, DRM mechanisms are the prime targets of

hackers and securing them is an important research area. Over the

last 20 years, many influential works have been published [33, 35, 40,

44, 78] in the space of both attacks as well as countermeasures. One

of the most powerful type of attacks in this space are control flow

bending or CFB attacks [32, 56]. Here, the attacker forces a binary

to take a certain execution path to execute a DRM “protected-logic”,
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irrespective of the validity of the license provided. The insight is

that a CFB attack tampers with the execution flow of an application

by forcing it to take branches that would have been skipped in

normal execution or forcing it to skip functions by running the

application on a virtual CPU (like Intel Pin [62]) or by tampering

with the binary (if possible). As shown in Figure 1, in the case of

an invalid license file, the authentication module after verification

will cause the execution to abort. However, the CFB attack forces

the execution flow to proceed to the protected region (see Section

2.1.1 for more details).

F-LaaS [56] uses AI-based analyses to find the function within

the execution that was responsible for the license check and then

bypasses it – this approach was used to break many commercially

used license managers [36, 76]. To secure a software against such

attacks, the authors argue for a hardware-based countermeasure,

yet fail to provide a practical and realizable implementation. The key

idea that was proposed is to execute the license manager within

a TEE like Intel SGX [19, 37]. This is not enough, because this

part can be easily circumvented. The other solution is to run the

entire binary within SGX. However, this is associated with high-

performance overheads (see Section 2.3.2). A good solution is to

identify key parts of the application and move them to SGX if it

is possible to easily do so. This will severely handicap an attacker

even if she manages to bypass the license check.

We leverage a growing body of work [34, 41, 42, 56, 60, 61, 63, 67,

68] that proposes to partition applications into secure and unsecure

regions for various purposes. We show that a naive partitioning can

be quite slow (2000× slowdown), and thus we propose an intelligent
call graph clustering based partitioning scheme that outperforms

state-of-the-art partitioning schemes.

The next step is to support a flexible, fine-grained licensemanage-

ment scheme such that a “partitioned application” can seamlessly

run on Intel SGX and use a large number of licenses — one for

each add-on module. Most add-on modules today do not come with

perpetual licenses. Instead, they use complex licenses that place

limitations on the duration of use, number of uses, etc. We show

in Section 4.3 that we can use a generic count-based lease (GCL)

to implement all such kinds of licenses. The key idea here is to

decrement the count based on the fulfillment of some condition.

Once the counter reaches zero, the lease is deemed to have expired.

We cannot make a call to the server to obtain such a lease every

single time (large overheads). We thus propose an algorithm to

efficiently locally cache leases in a secure manner.

The key idea is to predictively pre-distribute leases to client

machines, which run applications that will require the leases in the

future. This will eliminate the need for network communication.

Hence, the last piece of this puzzle is to propose a novel lease

distribution scheme that is sensitive to the demand on the client

machine, its crash probability, the network conditions, the overall

demand at the server, and the reserve that the server must keep.

Contributions: To summarize, the setting that we consider is

as follows: a machine runs multiple complex software packages,

where each package has a large number of add-on modules with

separate licensing mechanisms. Each application is partitioned into

secure and unsecure regions. All the licensing modules are in the

secure region along with the code of a few key functions (functions

intended to be protected by the license module, see Section 4.2.1).

Lease acquisition is a frequent process where an add-on module

obtains it before executing, and thus for efficiency we have secure

local caching of leases as well as predictive distribution by a remote

server to minimize costly network communication. The software

developer assumes that the client machine may mount CFB attacks,

but it will then be severely handicapped because it will not be able

to run the key functions since they require a valid lease.

Our contributions can thus be summarized as follows:

• We present a secure, efficient, and scalable solution for run-

ning complex software packages in a manner that is immune

to CFB attacks.

• We propose a novel application partitioning scheme that

improves performance by 32.62% over the current state of

the art solution, Glamdring [61].

• We propose a novel method to grant secure leases, even in

the absence of a stable network connection. Subsequently, we

propose a method to efficiently pre-distribute leases keeping

various constraints in mind.

• We implement SecureLease on a real system and show that

it outperforms the current state of the art solution [56] by

an average of 66.34%.

The rest of the paper is organized as follows. We discuss the

relevant background and motivation for the paper in Section 2.The

related work is discussed in Section 3. This is followed by the design

of SecureLease in Section 4 and its implementation in Section 5.

Section 6 provides a detailed security analysis. Section 7 discusses

the performance results. Finally, we conclude in Section 8.

2 BACKGROUND AND MOTIVATION
In this section, we discuss the relevant background required for

the rest of the paper, and motivate the need for a better software

authentication mechanism using Intel SGX.

2.1 Software-based Authentication Modules
Traditionally, the execution of an application (or a part of it) is

guarded by an authentication module (or AM); it is also popularly

called a license manager [36, 56, 76]. The authentication module

comprises many different functions that are responsible for pro-

cessing the input – a license file – from the user.

An authentication module typically acts as a black box with

a single access point: authentication function. The user calls this

function with the license file as its argument. The authentication

module processes the license file, either locally or on a remote

machine, and either returns success indicating a valid license file

or failure indicating an invalid license file. The outcome is used to

decide the path of the execution. As of today, this is the most widely

used method to authorize the execution of an application [21, 36,

76]. The authentication module is generally not dependent on any

other component of the application and vice-versa. We can have

an AM for the full application or separate AMs for different add-on

components [29, 30, 59].

2.1.1 Attack on Software-based Authentication Modules. As shown
in related work [32, 56], a software-based authentication module is

vulnerable to control flow bending (or CFB) attacks. A CFB attack
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MySQL authentication logic Corresponding assembly code

...
25c: jne 10c2 
262: mov 0x0(%rip),%rax 
269: movb $0x0,0x108(%rbx)
270: movq $0x0,0x1b0(%rbx)
....
95e: retq 
...
10c2: lea -0x590(%rbp),%r13
10c9: mov %r13,%rdi
10cc: callq 10d1
...
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res= do_auth_once(...);

...

if (res > CR_OK && 

mpvio.status != MPVIO_EXT::SUCCESS) {

....

login_failed_error(...);

DBUG_RETURN (1);

}

sctx->assign_proxy_user("", 0);

... // Access Granted

CFB AttackCFB Attack

Figure 2: Authentication logic of MySQL 5.7 and its cor-
responding assembly code. The license check function
do_auth_once() is guarding the access to the protected re-
gion.

aims to bypass the authentication module by allowing the execution

of the “protected region” of the application even in the absence of

a valid license file. The first step in a CFB attack is to identify the

authentication function while the binary is executing. This can be

done by analyzing the control flow graph (CFG) of the application’s

execution. We can follow a supervised approach where we compare

the CFG of two executions – one with a valid license file and one

without it. The other method is to use an unsupervised approach,

where we try to guess the authentication function using multiple

execution traces of the application [56].

Once the attacker identifies the authentication function, she can

try to flip the branch instruction that makes the final decision,

skip the function altogether, or skip a few related functions and

possibly change the state of the program to reflect the fact that the

license check has successfully passed. Given that we are running the

program on a virtual CPU, we have full access to the internal state

of the CPU, including the registers and memory, unbeknownst to

the secure program. If it is possible to tamper with the binary, then

we can also change the corresponding instructions and distribute it

to others such that they can run the “cracked binary” on their CPU.

This attack is also feasible if we only execute the authentication

module in SGX; note that SGX does not allow any other process to

read or modify the code/data that resides in the secure region of

main memory. Here, even though we cannot tamper with the execu-

tion flow of the authentication module, we always have the option

of skipping the entire secure license-verification code by cracking

the unsecure part of the application. For example, Figure 2 shows

the authentication logic of MySQL 5.7
1
. The authentication mod-

ule (do_auth_once()) is protecting the execution of the protected

region (Line 𝐸 onwards). Figure 2 also shows the corresponding

assembly code. The jne instruction in Line𝐺 in Block 1 of the as-

sembly code is controlling the access to the instructions in Block 1

and Block 2 . In the case of a valid license, the inequality condition

for jne evaluates to false, and we execute the rest of the instruc-

tions in Block 1 If the license check fails, the inequality condition

for jne evaluates to true and the branch is taken, resulting in the

program to exit. The attack simply forces the jne instruction to not

take the branch (even when the condition is true) [32, 56] resulting

1
file: sql/auth/sql_authentication.cc

in the execution of the rest of the instructions in Block 1 . This can

be easily achieved by running the application on a CPU emulator

such as the Intel Pin tool [62]. This breaks the security of MySQL.

A CFB attack leverages the lack of dependency between the

authentication module and the rest of the application. This is a

key shortcoming of existing authentication mechanisms – once

the AM’s security is circumvented, the rest of the program can

be executed seamlessly. This is why it is necessary to move other

functions within the application to SGX to encumber a potential

attacker.

2.2 FaaS- and Plugin-based Applications
Modern distributed applications rely on many third-party compo-

nents regardless of the specific architecture: client-server (CS) or

peer-to-peer (P2P). Consider the case of CS applications first. Ap-

plications such as Matlab and Visual Studio use many third-party

add-ons and extensions [14, 18, 22]. They rely on a multitude of

third-party servers to provide these extensions. We can view them

as plugin servers and the machine running the application as a

client. Such an architecture is chosen because the vendor of the

software typically does not have the expertise or resources to design

all the add-ons. Hence, it is better to provide interfaces for third

parties to develop add-ons; they also have the required expertise.

For example, Visual Studio Code offers 30,000+ extensions [22]

and Matlab offers over 10,000 functions bundled into 150+ tool-

boxes [18]. Furthermore, plugins in this space are beginning to

support pay-per-use models [1, 8], and they thus require an elabo-

rate license checking and access tracking mechanism. Now, let’s

consider tens of users running their jobs on such a machine (e.g.,

a university setting). We will need a very elaborate license-check

mechanism that simultaneously supports 100s of license checks.

Now consider P2P systems. Modern applications are increas-

ingly adopting a microservice (serverless design, FaaS) to manage

and consolidate their services [38, 43, 52]. Such a design makes an

application easy to manage, scale, and debug by splitting it into

small services or functions, which are then deployed on different

machines with frequent communication between them. For exam-

ple, Netflix uses a serverless design where thousands of function

calls [16] are made to handle different aspects of the platform such

as video uploading, processing, distribution, and backup. Even a

traditional company like Coca-Cola also uses a serverless design

to collect information from thousands of vending machines and

use this information to optimize the distribution mechanism [20].

Given that we have thousands of differentiated services provided

by a host of parties, which are themselves running on a cloud ar-

chitecture, each machine needs to track the usage of hundreds of

such FaaS functions and account for them.

Given that distributed applications are scaling and the diversity

of solutions is increasing, solutions for secure and scalable leasing

mechanisms such as ours will continue to become more and more

relevant.

2.3 Intel SGX
Intel Software Guard eXtension or SGX provides a secure way to

execute an application on a remote, untrusted machine by creating

a secure sandbox called an enclave. At boot time, SGX reserves a
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part of the main memory for its operation. This region is called

the Processor Reserved Memory (or PRM) and is managed by the

hardware. The size of the PRM is limited to 128MB, and out of this,

only ≈92MB, called the enclave page cache (or EPC) is available for

user applications. Intel SGX ensures the confidentiality, integrity,

and freshness of the data stored in the EPC. Any application is by

default unsecure; however, it can execute a few functions within

SGX by running them within an enclave. Henceforth, the code

and data in the enclave cannot be accessed or tampered with by

any other process including the OS. Furthermore, it is possible

to create a binary where some functions are encrypted and then

they are decrypted within SGX (in the context of an enclave). This

may require the services of other servers who first verify that

the encrypted function is being executed in a valid enclave, and

then they provide the key to decrypt it. If an application executing

within SGX requires more memory than 92MB, SGX transparently

evicts pages from the EPC to the unsecure region of the main

memory. SGX transparently handles a page fault for an evicted page

and loads the page back into the EPC. Intel recently announced a

scalable version of SGX where the EPC memory can be scaled up

to 512GB [50]. We discuss its pros, cons, and relevance of our work

in its context in Section 7.5.

Local and Remote Attestation: Often there is a need for an

enclave to communicate with another enclave on the same ma-

chine or on a different machine. They need to verify each other

before initiating any communication. The developer needs to code

the secure applications with identifiers about the other enclaves

with which contact is to be established. For establishing contact

locally (same machine), local attestation needs to be performed

where digitally signed reports (mutually known information) are

exchanged. Remote attestation (or RA) has a slightly different pro-

cess where a hardware-generated report is sent to a third server that

is trusted. The remote server uses the third server for establishing

the bonafides of the client machine. As seen in our experiments, a

single RA call takes 3-4 seconds. This is unsuitable for workloads

that either have a short execution duration such as FaaS workloads

(a few seconds [71]) or require a large number of license checks.

2.3.1 Execution control in SGX. By default, SGX only protects the

integrity of the code, not its confidentiality. To enable confiden-

tiality, SGX provides a feature called the protected code loader or

PCL [49] that allows the execution of an encrypted enclave on a re-

mote, untrusted machine. Here, the application contains encrypted

functions that are only decrypted at runtime if the enclave has

valid credentials. For this, we need the help of trusted servers. Once

the application initiates a request to execute encrypted code in an

enclave, a complicated chain of events starts. First, it is necessary

to prove to a remote server that the enclave is a valid SGX enclave

running on a trusted machine. Once that is done, we need to get a

key to decrypt the encrypted code if the user holds valid credentials.

The key itself is encrypted and is fetched over the network and

handed over to the enclave, where the key is extracted by hardware

and is used to decrypt the encrypted code within the enclave. The

decrypted code is not visible to other processes including the unse-

cure part of the same process. The sad part is that this is a one-time

activity and cannot be used to implement a lease because once an

application has decrypted the secure code, it can continue use it.

However, there is a solution to this problem, which is to embed the

leasing logic within the secure code. The secure code will search

for the existence of a lease and contact remote servers to verify the

validity of leases and fetch more, if necessary. However, this results

in a very high performance overhead (see Section 7).

2.3.2 SGX Performance Overheads. Intel SGX can be used to pre-

vent CFB attacks against an application. An attacker cannot tamper

with the execution flow of an application executing within SGX.

However, executing a complete application in SGX can result in a

slowdown of over 300× (HashJoin in Figure 9). The reasons for this

overhead are a large number of EPC faults (a single fault can take

up to 12,000 cycles [77] to service) and frequent OS interactions

(involve TLB flushes). The SGX framework puts several restrictions

on an application executing within it; the most notable being no

direct access to the OS as the OS is not a part of the TCB [19].

To access an OS service, the application must do an OCALL. Simi-

larly, to access a function inside an enclave, an ECALL is required.
Weisse et al. [77] show that the cost of calling an enclave function

(an ECALL) typically requires 17,000 cycles. Furthermore, porting

a complete application to SGX is a non-trivial task mainly due

to the limitations imposed by the SGX framework [45] and the

concomitant software engineering challenges.

3 RELATEDWORK
We envisage a system that runs a large application securely by

partitioning the binary into secure and unsecure parts, where the

secure regions are small and are executed within SGX. There is a

plethora of research [34, 41, 42, 56, 60, 61, 63, 67, 68] on reducing

the performance overheads of SGX by partitioning an application,

and these ideas have been shown to be effective. In general, an

application can be automatically partitioned using two methods:

based on the sensitive data present in an application [61] (data-

based) or based on some key events during execution [41, 56] (code-

based).

In the data-based approach, developers annotate the source code

by marking certain data structures as sensitive. Then, an informa-

tion flow tracking mechanism is used to track the functions that

can access these sensitive data structures. All of these functions are

marked as secure and migrated to SGX at runtime. Lind et al. [61]

use this method in their work Glamdring. However, any such ap-

proach employed to protect the authentication module will only

migrate all the authentication module functions to SGX. This is

because in modern applications, the authentication module is inde-

pendent of other functions in the applications. The license provided

by the user is processed only by the functions present in the au-

thentication module and is not accessed by any other function in

the application. However, a CFB attack can still be mounted in such

cases where only the authentication module is executing within

SGX— free from any tampering. In such cases, a CFB attack does

not interfere with the working of the authentication module but

with its outcome. For example, in MySQL the do_auth_once() will
be migrated to SGX as a part of the authentication module (see

Section 2.1.1). However, its output (stored in “res”) is processed

outside SGX, and the attack forces the execution to ignore its value

by inserting a direct jump.
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In the code-based approach, an application is partitioned based

on important events such as specific function calls. Geneiatakis

et al. [41] analyze the trace of a binary’s execution to identify the

call to the authentication function, and partition the application

into pre-authentication and post-authentication phases. The authors

argue that this partition can be used to implement different pro-

tection mechanisms in different regions based on the application’s

requirements. However, once the application is partitioned, it is

unclear what should be migrated to SGX. Migrating the entire post-

authentication phase functions might be riddled with the same

issues of performance and porting.

Kumar et al. [56] propose to migrate functions that have a high

out-degree, i.e., they make a large number of functions calls. The

idea is that a function making many functions calls is orchestrating

a complicated piece of logic, and migrating it inside SGX will render

the application useless. However, they do not take into considera-

tion the overheads due to ECALLs, OCALLs, and total EPC usage. We

implemented their scheme on a real-SGX machine and found that

this type of partitioning incurs an overhead of up to 2000×. Hence,
we need a better way to partition the application.

3.1 Takeaways
The key takeaways are as follows:

(1) Software-only solutions are susceptible to CFB attacks

and are thus not fully capable to protect modern applica-

tions.

(2) Intel SGX can prevent a CFB attack by executing a com-

plete application within an enclave. However, doing so

incurs a significant performance overhead (over 300×)
along with concomitant porting issues.

(3) Current partitioning schemes for applications are ill

suited to prevent CFB attacks.

(4) Remote attestations are costly and must be used as spar-

ingly as possible.

Hence, there is a requirement for a secure, optimal, and scalable

way of providing fine-grained control over the execution of an

application on an untrusted system.

4 KEY DESIGN PRINCIPLES
Our two key contributions are a novel method of application parti-

tioning that protects the intellectual property (IP) within an appli-

cation, and more importantly a technique to mitigate the cost of

costly remote verification of fine-grained leases.

4.1 Threat Model
We assume that the attacker has the complete binary of the appli-

cation with her (the binary may have several encrypted functions).

The execution of the application or certain parts of it are protected

(encrypted and secured) by corresponding authentication modules

and are only allowed to execute when the user possesses a valid

license. The attacker is free to execute the application in any setting

(a real/virtual machine or a CPU simulator.). SecureLease should be

able to handle all such scenarios. As is standard with prior work in

this domain, denial-of-service attacks or side-channel attacks are

beyond the scope of this paper.

4.2 Dependency-based Partitioning
We propose a dependency-based partitioning algorithm, which can

prevent CFB attacks while ensuring a minimal performance over-

head. The key idea is to add a dependency between the authenti-

cation module and its corresponding protected region, such that if

an attacker bypasses the authentication module, the binary will be

rendered handicapped, i.e., not capable of producing any meaning-

ful results. To do so, along with the authentication module, we also

migrate a set of functions from the corresponding protected region

to SGX. The access to those functions is only guaranteed if the

user possesses a valid license file. If the user attempts to bypass the

authentication module using a CFB attack, she will not have access

to the other migrated functions and those functions will check for

a valid lease when they are executing within an enclave.

We use the following observation to select the functions that

are to be migrated to SGX while ensuring a minimal performance

overhead. A modern application has a high-degree of modular-

ity [11, 12, 53]. The submodules present in an application, including

the authentication module show up as distinct clusters in its control-

flow graph or CFG (Figure 7). In a CFG of an application, the nodes

represent functions in the application and directed edges between

the nodes represent a function call from the source node to the

destination node.

Observation: The total number of intra-cluster function calls

is much higher than the total number of inter-cluster function

calls (see Figure 7). Moving a part of a cluster to SGX while the

making the rest execute in the untrusted region will cause a

high number of ECALLs and OCALLs. Hence, we migrate entire

submodules to SGX.

4.2.1 Partitioning Algorithm: Let 𝑁 be all the nodes (key func-

tions) in the protected region of the authentication module (see

Section 2.1.1). A “key" function is a function, which has a dispro-

portionate amount of importance in implementing the logic of the

program. These are typically identified by the developer. Many prior

works [34, 41, 42, 61, 63, 67, 68] have made the same assumption,

where they assume that the developer is aware of these functions

and willing to annotate them. Furthermore, the code footprint of

these functions is quite low as seen in our experiments and also

others (20%-40% by Lind et al. [61]). If the developer annotations are

not available, then it has been shown by Kumar et al. [56] that we

can do a clustering-based analysis and treat functions that appear

in a cluster as key functions based on the total number of calls made

from and to the cluster. We have done something similar, albeit

using a bespoke, SGX-specific approach.

We use the K-Means [51] clustering algorithm on the CFG of the

application to identify 𝑘 clusters from 𝑁 nodes using the directed

edges between the nodes. Let us say, 𝐶 is the set of 𝑘 identified

clusters, with 𝑐𝑖 ∈ 𝐶, 0 ≤ 𝑖 < 𝑘 . To ensure optimal performance,

we use the observation made by Hasan et al. [45]; we define two

thresholds,𝑚𝑡 and 𝑟𝑡 , which determine the amount of memory used

by functions executing in SGX and the acceptable performance

overhead, respectively. Hasan et al. [45] report that an application

executing in SGX incurs negligible performance overheads if the

memory footprint of the application is less than the EPC size i.e.,

92MB, and it performs a limited number of ECALLs and OCALLs.
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After clustering, we sort𝐶 (all the clusters) in terms of the mem-

ory requirements of the individual clusters in increasing order. We

use the standard proc interface to estimate the memory usage of

a function [17, 57]. This value is used while “compiling” the SGX

application as SGX requires the memory requirements to be stated

upfront. We further fine tune the total amount of memory required

by using the EMMT tool [7]. After sorting, we start adding clusters

in increasing order (smallest first) till the total memory requirement

of the set reaches𝑚𝑡 and simultaneously the performance overhead

induced is less than 𝑟𝑡 . After this step, all the functions in the set

of clusters are migrated to SGX. Furthermore, we also move all the

common data structures to the untrusted region of the application.

This is required as functions that are not migrated to SGX cannot

access data from the EPC. This is also in tandem with our goal of

protecting the IP embedded within an application and not its data.

4.3 Modeling Lease Types
A typical leasing (or licensing) software supports different kinds

of leases: perpetual lease, time-based lease, execution time-based

lease, and count-based lease. A perpetual lease allows unrestricted

access to the application. A time-based lease is valid for a fixed time,

and a user can only execute the application during that period. An

execution time-based lease puts a limitation on the amount of time

an application can execute. Finally, a count-based lease restricts the

execution of an application to a fixed number of times.

We argue that lease managers can use a generalized counter-based

lease (GCL) to model all types of leases – here, we assume that a

lease has an associated counter, which is modified based on certain

criteria (as we describe next).

Consider a standard time-based lease that says that a software

will run in the “evaluation mode” for the next 30 days and during

this time the user needs to purchase a valid license.We can discretize

the time into 1-day intervals, and increment the GCL counter once

every day. Additional state information is required to note the times

at which the last measurement was collected. If the system stays off

for some time, then the GCL needs to be appropriately updated the

next time the system turns on and the counter is updated. We can

do something similar for a lease that is based on just the execution

time. For a perpetual lease, the counter modification operation is

vacuous and we can just have a binary value (software activated

or not). Revoking a license will just involve setting the counter to

0. This abstraction is well correlated with the way that leases are

actually implemented in popular license managers [5, 10, 21].

Needless to say, we need a secure way of accessing the GCL

counter, maintaining its integrity, and securely storing it (along

with associated state information) when the system shuts down.

In Section 5, we shall explain how SecureLease ensures that all of

these requirements are satisfied.

4.4 Lease Management
Figure 3 shows the high-level design of our novel solution. The

design introduces three new components: SL-Remote, SL-Manager,

and SL-Local. SL-Remote is a trusted remote server, SL-Manager is

the authentication module added to the application, and SL-Local

is a local service that handles the license check requests from the

enclaves running on the samemachine. The developer is responsible
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Figure 3: A high-level design of SecureLease.

for partitioning the applications. Furthermore, she also creates a

GCL corresponding to every partition that needs to be separately

accessed and leased.

The main idea here is that SL-Local manages a snapshot of leases

on the local machine obtained from SL-Remote, which enforces the

leases. SL-Local uses the leases to attest executions on the same

machine, thus avoiding the costly remote attestation process. Here

is the workflow:

❶ SL-Manager first performs a local attestation with SL-Local

to ensure that the service is available. After that, it collects the

license information from the user and forwards it to SL-Local for

verification.

❷ SL-Local checks its local database to see if it has a valid GCL

for the license. If it has, it updates its entries and sends a valid token

of execution to SL-Manager (corresponding to the GCL). The token

can be anything from a simple Boolean value to a data packet. Upon

receiving the token, SL-Manager allows the execution to proceed.

❸However, if SL-Local does not have any valid GCLs correspond-

ing to the license information provided, it forwards the license file

to SL-Remote and asks for a lease (or renewal). SL-Remote, after

validating the license, may send a new/updated GCL to SL-Local.

As a part of this process, SL-Remote also validates SL-Local. At

any point in time, if the license information is not valid, then no

further executions are allowed for that license file. This represents

a situation where an attempt has been made to breach the security.

5 IMPLEMENTATION
In this section, we discuss the implementation of SecureLease. As

discussed in Section 4, there are three main components of Se-

cureLease: the remote server component (SL-Remote), the local

component (SL-Local), and the SL-Manager, which is a part of an

application (secure region).

5.1 SL-Remote & SL-Manager
SL-Remote is responsible for issuing licenses, and maintaining data

for all the active SL-Locals. An SL-Manager instance is responsible

for contacting SL-Local and presenting it with the license infor-

mation provided by the user. If the license is valid, SL-Local will

provide a token of execution that indicates that the execution can

proceed. Note that SL-Manager is executed within SGX and is free

from tampering. The developer is responsible for augmenting the

secure component with an SL-Manager.



SecureLease: Maintaining Execution Control in The Wild using Intel SGX Middleware ’22, November 7–11, 2022, Quebec, QC, Canada

Figure 4: Organization of leases. We index into different lev-
els of the trees using the bits in the lease ID.

5.2 SL-Local
SL-Local is a local service running within Intel SGX that attests

the execution requests (license check requests) from applications

running on the same machine. It maintains a set of leases, which

are obtained from SL-Remote.

5.2.1 Design of SL-Local. A single server in a data center can have

multiple VMs and containers that can host thousands of applica-

tions (though only a few are active at the same time) [29, 30, 47, 59].

Furthermore, each of those applications can have multiple regions

that need to be protected by different leases (for example, an ap-

plication using a large number of “add-ons”). Hence, in a typical

scenario, at a given time, a single system might require to hold

1000-5000 leases (similar numbers reported in [29, 30, 59]).

There are many different ways to organize the lease data (and

the corresponding metadata). The techniques could be array-based,

hash table-based, or tree-based. They all have their pros and cons in

terms of operational efficiency, simplicity, and memory utilization.

We implement a paging-like mechanismwhere unused leases can be

offloaded to the untrusted region to save the precious EPC memory.

To enable this, the metadata entry for each lease contains: a 64-

bit encryption key (used for encrypting leases before offloading)

and a 64-bit pointer (points to a dynamically allocated lease, NULL
if offloaded). This remains the same across all the techniques. To

decide what will be the best scheme, we first list down the key

requirements (for SL-Local):

(1) Efficient handling of concurrent attestation requests for the

same or a different lease. Hence, it should have an efficient

mechanism to find a lease.

(2) All the SL-Local data is stored in the EPC. However, as the

size of the EPC is limited and is shared across enclaves, SL-

Local should efficiently use this memory.

(3) SL-Local should support an efficient “shutdown" and “re-

initialization" procedure while ensuring confidentiality, in-

tegrity, and freshness of the leases.

5.2.2 A Tree-Based Design. Inspired by how an OS maintains a

page table, we organize the leases present in SL-Local in a 4-level

tree structure (see Figure 4). We call it a lease tree. Here, all the

nodes in the tree are 4 KB each (page size). Each node contains 256

Table 1: Lookup peformance for different schemes.

Lease Ops

Technique 10 100 1,000 5,000

Murmur Hash 40 𝜇s 52 𝜇s 144 𝜇s 440 𝜇s

SHA-256 149 𝜇s 182 𝜇s 742 𝜇s 1,803 𝜇s

Tree 26 𝜇s 33 𝜇s 61 𝜇s 184 𝜇s

entries of size 16 B each. Each entry consists of a 64-bit key and a

64-bit pointer that points to a node in the next level (NULL if the

node has not been allocated yet). Each lease is assigned a 32-bit

unique ID. Its bits are used to index into the lease tree, just like a

page table. As we have 256 bits in every node, we need 8 bits to

index into it (2
8 = 256). Each of the lease data structures (at the leaf

level) contains a single GCL and is pointed to by an entry present

in its parent node in the fourth level of the tree. The size of a lease

is 312 B. It contains a 32-bit lock, 64-bit hash, and 300 B for the lease

data [36, 76].

Running example: We explain how we locate a lease in the

tree using an example (say accessing a lease with ID 345). Figure 4

shows how we use the bits of the lease ID to locate the lease. The

first 8 MSB bits of the ID are used to index into the root level node

(0
𝑡ℎ

entry in the example) and fetch the pointer to the node in

the second level. Subsequently, the next 8 bits in the ID are used

to index into the previously fetched node (again 0
𝑡ℎ

entry in the

example) and fetch a node in the third level. We repeat this process.

The pointer in the indexed entry of the last node will give us access

to the desired lease data structure.

Memory efficiency: Since the lease tree is stored in the EPC,

we want to ensure that its memory requirement is as little as possi-

ble. A tree-based implementation provides a natural solution for our

limited memory problem. We only create internal nodes if they are

required. Furthermore, a subtree can be offloaded to the untrusted

region if it is not in use (like data pages in a page table [57]) after

“committing" it (see Section 5.6). The ACIF (authenticity, confiden-

tiality, integrity and freshness) properties of the evicted data are

ensured by always keeping a root-of-trust (a trusted entity [39]),

i.e., the root node in the EPC. Furthermore, the leases within an

application are allocated in such a manner that they exhibit spatial

locality, i.e., all the leases of an application can be within the same

4
𝑡ℎ

level node (if the total number of leases required is less than

256).

5.2.3 Performance of the Tree-BasedDesign. Weanalyzed the find()
performance for a tree-based SL-Local and a hash-based SL-Local.

We implemented two variants of a hash table using MurmurHash

(used to implement the unordered map in C++ STL) [13] and SHA-

256 [65]. The latency of the find() operation in (𝜇s) is shown in

Table 1.

As can be seen, for 5000 operations, a tree-based implementation

outperforms a hash table-based approach based on MurmurHash

and SHA-256 by 58% and 89%, respectively. This is due to the time

taken for computing the hashing function. Once a lease is found,

the update operations remain the same across different schemes.

Furthermore, a tree-based design outperforms an array-based or

hash table-based design by up to 94% in terms of the memory foot-

print since we can also offload metadata nodes in a tree structure

while doing so is a non-trivial operation in an array or hash table
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Table 2: Terminology

Notations
L License to be renewed

TG Total #GCLs corresponding to a license.

g Allocated GCLs.

C Number of concurrent requests for L

𝛼𝑖 Weight of node 𝑖 , s.t.
∑𝐶−1

𝑖=0 𝛼𝑖 = 1

n Network reliability ∈ [0, 1]. 0: Dead Network, 1: Stable Network

h Node Health∈ [0, 1] 0: High Crash Prob., 1: Low Crash Prob.

𝛽 Per-license scale down factor to bound the expected losses ∈ [0, 1]
𝜏 Maximum total expected GCL loss

𝐷 Lease scaling factor

structure [58]. Hence, we opted for a tree-based design for imple-

menting SL-Local.

5.2.4 SL-Local Initialization. During initialization, SL-Local per-
forms two key operations: establishing a secure connection with

SL-Remote and restoration of any previously stored state on the

untrusted client machine. For the first operation, SL-Local reads

its unique id (SLID) from a plaintext file (NULL if this is the first

initialization). A SLID is a unique id assigned to each SL-Local

by SL-Remote to uniquely identify it. SL-Local then initiates an

init() procedure with SL-Remote. SL-Remote performs a remote

attestation to ensure that SL-Local is genuine.

For the next operation, after successful validation, SL-Local re-

ceives its SLID (if it was NULL before, otherwise it remains un-

changed) and a 64-bit key, which we call the old backup-key (OBK ).
This key is then used to restore any locally saved state (discussed

in Section 5.6).

5.3 Adaptive GCL Renewal
Once the initialization of an SL-Local is done, it needs to fetch

GCLs from SL-Remote before it can handle attestation requests

from an application locally. SecureLease imposes strict criteria that

say that if a client system or SL-Local crashes for any reason, all the

valid GCLs currently stored on the client machine are lost. This is

required to prevent replay attacks on an instance of SL-Local (more

details in Section 5.7). Hence, SL-Remote employs heuristics while

distributing GCLs to SL-Locals such that the total expected loss of

the GCLs is bounded (< 𝜏).

We now explain the adaptive lease allocation mechanism. Table 2

explains the terminology. While issuing a GCL to an SL-Local, SL-

Remote considers different factors such as the network delay (n),

stability of the client (h), and the number of concurrent requests

(C) for the same lease (see Table 2). The complete algorithm for

lease renewal is shown in Algorithm 1. We assume that a developer

wants to restrict the execution of the application corresponding to a

particular license to a total of𝑇𝐺 times. Here, the assumption is that

all the client machines that request leases are part of a multi-party

group and share a set of licenses.

Concurrent requests: SL-Remote first gets the total number of

concurrent requests for the license. If there is more than one node

accessing the license, SL-Remote computes the share of the request-

ing node 𝑖 , (𝐺𝑖 ) (Line 3). SL-Remote ensures that

∑𝐶−1
𝑖=0 𝐺𝑖 ≤ 𝑇𝐺 is

satisfied. Here, C is the total number of concurrent instances of the

application.

Sub-GCL: Now, if SL-Remote assigns the full 𝐺𝑖 to the node 𝑖 , the

loss will be 𝐺𝑖 in case the node goes down immediately. Hence, to

limit the losses, SL-Remote first applies a default reduction policy

(Line 4). Doing so ensures that it can handle subsequent requests

for the same license from other nodes and also restricts the loss

suffered in case a node crashes. SL-Remote employs a configurable

policy (D) that controls the number of GCLs given to a node. The

scaled-down 𝐺𝑖 is henceforth called a sub-GCL (𝑔𝑖 ). A sub-GCL

allows only 𝑔𝑖 executions of the applications to be handled locally

on node 𝑖 by SL-Local before renewing the lease again. Intuitively,

𝑔𝑖 = 𝐺𝑖/D.
Node and Network health: SL-Remote imposes a penalty if the

node health (h) is low (Line 5). However, SL-Remote does not im-

pose any penalty for network connection issues; in fact, it allocates

more leases to a node that is suffering from constant losses in con-

nectivity to ensure that it has sufficient resources to handle any

local allocation requests. This is only done for the nodes with health

greater than a threshold (𝑇𝐻 ), subject to a limitation that it cannot

be more than 𝐺𝑖 (Line 7).

Restricting losses: Furthermore, each license is associated with

an upper bound of the expected loss (𝜏 ). SL-Remote ensures that the

expected loss of the license is always less than 𝜏 on every node it is

assigned to. In order to do so, SecureLease uses a global per-license

scale down factor (𝛽). Expected loss (ExpLoss) for a license L can

be calculated as follows:

𝐸𝑥𝑝𝐿𝑜𝑠𝑠 (𝐿) =
C−1∑
𝑖=0

𝑔𝑖 ∗ (1 − ℎ𝑖 ) (1)

where, (1 − ℎ𝑖 ) is the crash probability for the node 𝑖 , and 𝑔𝑖 is the

sub-GCL assigned to the same node. 𝑔𝑖 can be calculated as follows:

𝑔𝑖 =

{
( 𝑇𝐺
𝐷∗C ) ∗

𝛼𝑖∗ℎ𝑖
𝑛𝑖

, if 𝑔𝑖 < 𝐺𝑖

𝐺𝑖 , otherwise
(2)

We also scale up the number of licenses if the expected loss is low

(Line 16 in Algorithm 1).

Algorithm 1 GCL Renewal

1: function RenewLease(L, C, n, h)

2: 𝑇𝐺 ← GetTotalGCL(L) ⊲Max GCL

3: 𝐺𝑖 ← (𝛼𝑖 ∗𝑇𝐺/C) ⊲Max GCL per node

4: 𝑔𝑖 ← 𝐺𝑖/𝐷 ⊲Apply the default Policy

5: 𝑔𝑖 ← 𝑔𝑖 ∗ h𝑖 ⊲Crash penalty

6: if h𝑖 > 𝑇ℎ then
7: 𝑔𝑖 ← min(𝐺𝑖 , 𝑔𝑖 ∗ (1/n𝑖 )) ⊲Network benefit if the client’s health is good.

8: end if
9: 𝛽 ← FetchBeta()

10: if ExpLoss(L) > 𝜏 then
11: while ExpLoss(L) > 𝜏 do ⊲Expected loss

12: 𝛽 ← 𝛽 ∗ (𝐸𝑥𝑝𝐿𝑜𝑠𝑠 (𝐿)−𝜏 )
𝐸𝑥𝑝𝐿𝑜𝑠𝑠 (𝐿) ⊲Scaling down

13: 𝑔𝑖 ← 𝛽 ∗ 𝑔𝑖
14: end while
15: else
16: 𝛽 ← (𝜏−𝐸𝑥𝑝𝐿𝑜𝑠𝑠 (𝐿) )

𝜏
, 𝑔𝑖 ← 𝛽 ∗ 𝑔𝑖 ⊲Scaling Up

17: end if
18: return 𝑔𝑖
19: end function
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Figure 5: Procedure for committing a lease.

5.4 Issuing a Lease
Prior to issuing a lease, SL-Manager and SL-Local validate each

other using the local attestation feature of SGX [37]. Once the

validation is completed, SL-Local takes the license from the cor-

responding SL-Manager and checks the lease corresponding to

the license provided. If it has a valid GCL (a positive value), it is

decremented, and a token of execution is sent to the SL-Manager,

indicating that the execution can proceed. To ensure correctness

in the event of multiple requests for the same license arriving at

the same time, we use the lock associated with the lease (locked

using sgx_spin_lock() [72]).

5.5 Committing a Lease
The lease tree stays in the trusted region of the memory and hence,

cannot be tampered with without detection. However, once the

application requesting a particular set of leases quits, there is no

need to keep the corresponding leases in the EPC memory since

it might affect the performance of other enclaves due to memory

pressure. Hence, we introduce a “commit" operation for a lease,

after which it can be evicted to the untrusted region.

Algorithm 2 Protect Data

1: function Protect(Data)

2: 𝐻 ′ ← Hash(𝐷𝑎𝑡𝑎)
3: 𝑘𝑒𝑦 ← RandomKeyGen()

4: 𝐶← AES(𝐷𝑎𝑡𝑎 | |𝐻,𝑘𝑒𝑦)

5: return < 𝐶,𝑘𝑒𝑦 >
6: end function

Algorithm 3 Validate

1: function Validate(C,key)

2: 𝐷 | |𝐻 ← DEC(𝐶,𝑘𝑒𝑦)

3: 𝐻 ′ ← Hash(𝐷)

4: if 𝐻 == 𝐻 ′ then return D

5: end if
6: return NULL

7: end function

Committing a single lease file, say 𝐿, requires first locking the

lease. We then protect 𝐿, which involves calculating a hash (𝐻 )

of 𝐿, generating a random 64-bit key (𝑘) for it, encrypting 𝐿 | |𝐻
(lease file concatenated with its hash value) using 𝑘 , and sending

the encrypted payload to the untrusted region (see Algorithm 2).

The key (𝑘) is stored in the corresponding entry in its parent node

(see Figure 5). Note that the key changes every time the lease is

committed and thus replay attacks are not possible.

5.6 SL-Local Exit and Re-Initialization
When SL-Local legally shuts down, SecureLease ensures that its

state can be securely restored during its next instantiation. This

prevents the costly step of repopulating all the leases. However,

we cannot store the lease-tree data in the untrusted region as SGX

does not provide any freshness guarantees for this. To ensure fresh-

ness, SL-Local first stops servicing all the attestation requests, then

commits all the nodes in the tree (except for the root node) to the

untrusted region. Finally, while committing the root node, the gen-

erated 64-bit random key (𝑘𝑒𝑦𝑅 ) is sent to SL-Remote. This marks

the shutdown procedure as complete.

During its next initialization, SL-Local will get 𝑘𝑒𝑦𝑅 as the old-

backup key (OBK ) from SL-Remote. It will read the encrypted root

node from the untrusted region, decrypt it using OBK , and validate
it within SGX (see Algorithm 3). We then proceed to populate the

subsequent levels (with keys stored in their corresponding entry in

the parent node).

5.7 Replay Attacks on SL-Local
Now, consider an event where SL-Local crashes due to either a bug

or a wilful attack. The key question is that if SL-Local had valid

leases with it, but could not complete graceful shutdown, then what

should happen to those leases when SL-Local comes back up at a

later point in time? In an optimistic approach, SL-Remote can trust

that the SL-Local instance went down because of a genuine reason

(and not because of an attack) and can restore the lost leases to it.

However, this approach is susceptible to a replay attack.

Replay attack: A replay attack on SL-Local can be mounted like

this: Assume a lease allows 𝑁 executions of an application. The

attacker starts the application, gets the token to execute, and im-

mediately crashes SL-Local running on her system. Here, the lease

update ( allowed executions from 𝑁 to 𝑁 − 1) did not persist in the

crash. In the next instantiation of SL-Local, SL-Remote will trust

that it crashed due to a genuine reason and restores the lease with

the previous limit (𝑁 ). Hence, the attacker can run the application

any number of times by repeating this process.

Hence, SecureLease follows a pessimistic approach, where in

the event of an SL-Local crash, all the leases present in SL-Local

are deemed to be used. Consequently, we have designed our lease

renewal scheme in such a manner that it restricts the total expected

loss corresponding to a license (see Algorithm 1).

5.8 Design Benefits
There are many benefits of this design:

(1) The total number of remote attestations required is sub-

stantially reduced (≈ 99% as shown in Section 7.4).

(2) SL-Local does the heavy lifting; this significantly reduces

the load on the server and allows SL-Remote to scale.

(3) After SL-Local gets a lease from SL-Remote, there is no

need for network communication till the issued sub-lease

(𝑔𝑖 ) is valid.

6 SECURITY ANALYSIS
Here, we analyze the security guarantees of SecureLease.
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Figure 6: A high-level working of MySQL [15], two CFB at-
tacks on it, and the partitioning done by SecureLease.

6.1 Control Flow Bending (CFB) Attacks
SecureLease migrates certain key functions of an application to SGX

to prevent CFB attacks. In order to identify these key functions,

SecureLease relies on the developer. CFB attacks can always be

mounted on the unsecure portion of the application. It may be

possible to bypass a license check for instance and also fix some

local state to make the program believe that the license check has

passed. This is possible to do because we are assuming a virtual

CPU in our threat model. However, in such cases, the attacker will

not have access to the key functions executing inside SGX, resulting

in an incomplete execution. To explain further, we use a mock-up

attack on MySQL and show how SecureLease protects it.

Figure 6 shows a high-level overview of steps for (1) initializing

a MySQL server, (2) authenticating a query request (AM), (3) and

processing the query. A CFB attack ( 1 in Figure 6) attacks the

function acl_authenticate within the AM and makes it return

success even when the license is not valid (discussed in Section 2.1.1).

To stop the attack, a developer may choose to migrate only the AM

to SGX. However, now, a branch can be forced by changing the

output of the authentication function that is processed outside the

authentication logic ( 2 in Figure 6).

To prevent these attacks, SecureLease creates a dependency be-

tween the authentication function and its corresponding protected

region by migrating the AM and a key function to SGX. MySQL

has many key functions such as query parsing, query dispatch, and

executing the query. SecureLease picks the query parsing logic as

its key function. If an attacker bypasses the authentication check by

a CFB attack, she will not have access to the query parsing system,

rendering the complete application useless. Moving additional key

functions (such as the query executor) inside SGX may improve

the security slightly but will definitely add to the performance

overhead.

6.2 Replay Attacks
SL-Local controls the execution of applications and manages their

leases. An attacker cannot tamper with the code of SL-Local since

the code is secure and decrypted at runtime within an enclave.

SecureLease guarantees that if an SL-Local instance exits grace-

fully, its changes will persist across multiple executions. If the

attacker attempts to replay an old version of the lease tree (𝐿𝑇 ′)
then the validation of the root node at the time of init() will fail

(Line 4 in Algorithm 3) since the root node of 𝐿𝑇 ′ would have been

Table 3: System configuration

Hardware Settings
Core i7-10700 CPU, 2.9 GHz Disk: 256GB (SSD)

CPUs: 1 Socket, 8 Cores, 2 HT

DRAM: 16GB L1: 256 KB, L2: 2MB, L3: 16MB

System Settings
Linux kernel: 5.9 ASLR: Off GCC: 9.3.0

DVFS: performance Transparent Huge Pages: never

SGX Settings
PRM: 128MB Driver: 2.11 SDK version: 2.13

Table 4: Description of the workloads in SecureLease along
with the specific settings used in the paper.

Workloads Description Input
BFS [73] Traverse graphs generated by web crawlers. Use

breadth first search.

Nodes: 1M,

Edges: 23M

B-Tree [27] Create a B-Tree and perform lookup operations

on it.

Elements: 3M

HashJoin [28] Probe a hash-table (used to implement equi-join

in DBs)

Data Table Size:

1.22 GB

OpenSSL [66] Encryption-decryption library. File Size: 151MB

PageRank [73] Assign ranks to pages based on popularity (used

by search engines).

Nodes: 10 K,

Edges: 50M

Blockchain [64] A distributed ledger that stores data, the hash of

the content, and the previous block’s hash in a

block.

Chain length:

1000

SVM [46] Popular ML algorithm (application: text and hy-

pertext categorization)

Data: 4000,

Features: 128

MapReduce [54]

(FaaS)

Count the occurrences of a word in a set of files Data: 19MB, Map:5,

Reduce:2

Key-Value [74]

(FaaS)

Read and write operations on a key-value store. 70MB, 500 K

elements

JSONParser [55]

(FaaS)

Parse JSON strings Size: 1 KB,

Count: 10 K

Mat. Mult. [75]

(FaaS)

Perform matrix multiplication Dimension: 2000

× 2000

encrypted by another key. Now assume that the root is the same

but a node’s value is tampered with or replayed. We can detect

this because the key to encrypt it lies with its parent, and this key

changes every time the data is persisted. Given that the hash is also

a part of the bundle, we will be able to easily detect if there has

been a tampering or replay attack.

7 EVALUATION
In this section, we report the performance numbers of SecureLease

and compare it with F-LaaS [56] and Glamdring [61].

7.1 Experimental Setup
The details of our evaluated system are shown in Table 3. We use

the standard RDTSC instruction [25, 69] to measure the latency of

ECALLs. Furthermore, we modified the Intel SGX driver code [48]

to collect statistics about SGX-related events, such as the total

number of page evictions, page allocations, and page load backs.

Table 4 shows the workloads used for experiments in the paper.

These workloads have been used by the SGX community across

different domains such as machine learning [46], cryptography [66],

blockchain [64], key value storage [74], and different processing

paradigms [28, 31, 54]. We also evaluated SecureLease for 4 different

FaaS workloads that make a large number of license check calls

(10 K in JSONParser to 500K in Key-Value in less than a minute).

Furthermore, these workloads can scale up to several GBs – suitable
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Table 5: Table showing the static and dynamic coverage for Glamdring (Glam.) and SecureLease (SLease), functions migrated
by SecureLease, memory-related statistics for Glamdring and SecureLease, and the performance improvement in SecureLease.

Workload Functions
Migrated

Static Coverage Dynamic Coverage Memory (EPC Evicts) Perf.
Impr.Glam. SLease(vs Glam.) Glam. SLease (vs Glam.) Glamdring SLease

BFS update() 36.2 K 10K (27.76%) 11.53 B 10.88 B (94.39%) 200MB (147 K) 4MB (0) 43.39%

B-Tree find(), leaf(),
create()

23.9 K 23.4 K (97.94%) 29.6 B 23.5 B (79.24%) 280MB (1,430 K) 4MB (0) 35.99%

HashJoin probe() 22.9 K 10.3 K (45.09%) 33 B 30.2 B (91.39%) 130MB (7,909 K) 4MB (0) 84.14%

OpenSSL decrypt() 815.3 K 811.9 K (99.58%) 189.1 B 181 B (95.71%) 310MB (3,539 K) 4MB (0) 74.83%

PageRank map(), reduce(),
set_rank()

23.3 K 10.5 K (45.28%) 8.9 B 8.82 B (99.09%) 1,360 MB (2,234 K) 4MB (0) 84.93%

Blockchain insert(), hash() 32.9 K 11.2 K (34.23%) 133.5 B 129.6 B (97.03%) 4MB (0) 4MB (0) 3.30%

SVM predict() 12.52 K 11.58 K (92.50%) 295 B 293.5 B (99.35%) 110MB (50 K) 85MB (0) 14.11%

MapReduce tokenize(),
word_count()

104 K 103 K(98.86%) 14 B 12.9 B(92.53%) 82MB(0) 66MB(0) 35.65%

Key-Value set() 118 K 118 K (99.9%) 13 B 10 B (78.21%) 162MB (59 K) 4MB (0) 68.80%

JSONParser parse() 580 K 566 K (97.58%) 12.5 B 12.34 B (98.82%) 34MB (0) 4MB (0) 8.88%

Mat. Mult. multiply() 122 K 101 K (82.5%) 192.7 B 192.5 B (99.85%) 320MB (147.5 K) 81MB (0) 52.53%

Geo. Mean - – 67.80% – 92.93% Mean:280,MB (1,410 K) 24MB (0) 32.62%

Nodes migrated by
Glamdring

Migrated Node

Clusters

(a) Glamdring

Migrated Node

Nodes migrated by
SecureLease

(b) SecureLease

Figure 7: Figure showing the functions migrated by Glam-
dring and SecureLease for a representative benchmark
OpenSSL.

for the new scalable SGX [50]. We use Intel VTune [9] to collect

statistics for applications executing within Intel SGX. We report

the performance overheads normalized to a vanilla setting (no SGX

and no attestations).

7.2 Application Partitioning Performance
Here, we compare the performance of our partitioning scheme (no

attestations) with that of Glamdring. We report the key functions

migrated by SecureLease, the static and dynamic coverage [79], the

memory usage of both Glamdring and SecureLease, and the perfor-

mance improvement of SecureLease over Glamdring in Table 5.

Compared to Glamdring [61], SecureLease reduces the total size

of the code that is to be executed in SGX by an avergage of 67.80%

while maintaining a dynamic coverage of 92.93%. SecureLease in-

curs an average slowdown down of 41.82% over the vanilla mode

(no SGX) but outperforms Glamdring by 32.62% because of reduced

operations within SGX and efficient memory utilization that leads

to no EPC faults in SecureLease. For example, in OpenSSL, Secure-

Lease reduces the total memory stall cycles by 65.85%, and the total

number of dTLB-misses comes down by ≈ 98% (not shown) when

compared with Glamdring [61]. Figure 7 shows the functions mi-

grated by Glamdring and SecureLease for the workload OpenSSL.

Table 6:Memoryusage of SecureLeasewith andwithout evic-
tion.

# Total leases 1K 5K 10K 50K

No-Evict 332 KB 1.6MB 3.2MB 15.6MB

SecureLease 332 KB 1.6MB 1.6MB 1.6MB

Summary: SecureLease provides similar levels of dynamic cover-

age but migrates far fewer functions, and since the functions are

better chosen, the performance numbers are better.

7.3 SL-Local Performance
The design of SecureLease allows SL-Local to service multiple appli-

cations on the same machine. Here, we measure the performance

of SL-Local in the presence of concurrent lease allocation requests

using a micro-benchmark. Each concurrent instance of the micro-

benchmark executes for 10 seconds and records the total number

of successful lease allocation requests. Figure 8 shows the perfor-

mance of SL-Local in two modes: when concurrent applications

are trying to access the same lease and when they are accessing

different leases. As already mentioned, we perform a local attesta-

tion before servicing the lease allocation request. However, a local

attestation is a costly operation compared to updating the lease

value. Hence, the cost of doing a local attestation dominates the

total procedure (98%). To optimize this, an application can choose

to obtain multiple tokens of executions with a single local attes-

tation. Note that this is application-dependent. We configure our

micro-benchmark and SL-Local such that 10 tokens are granted

with a single local attestation. This leads to an average performance

improvement of 10× (see Figure 8).

SecureLease memory footprint: As shown in Table 6, Secure-

Lease is capable of servicing a large number of leases while main-

taining approximately the same memory footprint of 1.6MB by

evicting unused or cold leases (see Section 5.6).

7.4 Complete Performance Evaluation
Here, we measure the total performance overhead of the workloads

while executing with SecureLease (partitioning and lease allocation)
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Enclaves

Impact of issuing
multiple tokens (10)

Figure 8: Attestation performance for single and concurrent
requests.

and compare it with F-LaaS [56] and Glamdring [61]. We enable

lease allocations in Glamdring using the same lease-based method

as in SecureLease. To ensure a fair comparison with F-LaaS, we use

the same set of migrated functions for both F-LaaS and SecureLease;

only the lease allocation logic is different. This is done this way

because the partitioning scheme in F-LaaS results in a very high-

performance overhead (up to 2000×). Based on our evaluation

setup, we use a value of 25% for the parameter 𝐷 (𝑔𝑖 = 25% of 𝐺𝑖 )

as it offers a balance between the performance of an application

and crash-based attacks on SL-Local (as seen in our experiments).

As ours is a local setup, we use a high value for 𝑇𝐻 (0.9). We assign

a default value of 0.01 for 𝛽 which is shown to be a good estimate

in similar scenarios [70]. For 𝜏 , we set its value as 10% of the total

GCL, a lower value results in frequent remote attestations as it will

severely restrict the number of leases (𝑔𝑖 ) allocated to SL-Local.

Figure 9 shows the performance overhead of F-LaaS, Glam-

dring, and SecureLease w.r.t. the vanilla setting. SecureLease out-

performs F-LaaS by 66.34% due to fewer remote attestation calls

(by ≈ 99%), and Glamdring by 19.55%. Adding attestation to Se-

cureLease reduces its benefit over Glamdring (32.62%→ 19.55%)

due to fewer ECALLs made by Glamdring (by 8%) to get leases. This

is because Glamdring migrates almost the complete application to

SGX, whereas SecureLease breaks the protected region and requires

more ECALLs and leases to execute the logic. However, in this case

also SecureLease outperforms Glamdring mainly due to far fewer

EPC faults.

7.5 Impact of Scalable SGX
Intel recently announced a scalable version of SGX which supports

an EPC size of up to 512 GB [50]. However, SecureLease is agnostic

to this. Let us elaborate on the relevance of SecureLease.

The new version of SGX does not provide important security

guarantees such as protection against integrity violations and re-

play attacks (Table 3 in [50]). The onus of providing these security

guarantees is transferred to a trusted firmware, which will have ac-

cess to the secure memory as per Intel’s latest documentation [50].

The firmware developer can choose the features that need to be

implemented. However, in order to ensure complete protection, the

firmware must provide integrity and freshness guarantees (much

like the current version of SGX). This will restrict the secure mem-

ory footprint of an application due to performance constraints.

Local allocation 
takes < 1% of 

the lease renewal 
time

2272

Figure 9: Performance overhead comparison for F-LaaS,
Glamdring (Glam.), and SecureLease (SL) due to SGX, alloca-
tion requests with SL-Local (Local alloc.), and lease renewal.

Hence, a partitioned binary that exclusively tries to reduce the

secure memory footprint will continue to be extremely relevant.

Even when we consider a scenario where an application is com-

pletely utilizing the EPC of size 512GB, it still cannot make system

calls and invoke privileged instructions within SGX. Within SGX,

we also cannot isolate add-ons from each other as they share their

address space. This allows a malicious add-on to steal data from

the application or other add-ons [2–4, 6, 23, 24] (CVE-2018-[20031,

20032, 20033, 20034]). Hence, there is a need to protect an applica-

tion from itself or one plug-in from another [26]. Our partitioning

algorithm isolates the add-ons, and also seriously handicaps the at-

tacker even if she manages to mount a few successful CFB attacks.

8 CONCLUSION
In this paper, we propose a hardware-based, secure, efficient, and

scalable method to securely authorize the execution of an applica-

tion on a remote, untrusted server. We leverage Intel SGX to ensure

a controlled, secure, and tamper-free environment on a remote

server for the license managers and large parts of the execution

(without which the program cannot successfully complete). This

severely limits the utility that an attacker can derive by mounting

CFB attacks on the application. Moreover, our design mitigates

several costly Intel SGX operations, such as the costly remote at-

testation step. Finally, we propose an effective distributed lease

management algorithm. SecureLease incurs a performance over-

head of 41.82% over the vanilla setting as compared to 72.08% for

the nearest competing solution [61]. Our proposed partitioning al-

gorithm and lease management mechanisms have a generic scope

and can be repurposed for other application areas as well.
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