
JASS: A Tunable Checkpointing System for
NVM-based Systems

Abstract—Checkpointing (or snapshotting) a system’s state has
always been a problem of great interest and has found a lot
of use in ensuring system reliability, record-replay debugging,
job migration and running high-throughput transaction systems.
In the last few years ultra-fast hardware-assisted NVM-based
checkpointing schemes have come up that can collect incremen-
tal full-system checkpoints in milliseconds. Unfortunately, such
systems have large overheads in terms of their write amplification
(increased number of writes). This, in turn, seriously reduces the
reliability and lifetime of NVM devices. We propose the first
tunable scheme in this space, JASS, where given a checkpoint
latency (CL), we near-optimally minimize the write amplification
(WA). This allows us to run parallel programs in a disciplined
fashion. To realize this goal, we propose many novel hardware
along the way such as a rigorous method of flushing pre-
checkpoint messages in the NoC, a novel DRAM scrubber and
locality predictor, and a control-theoretic algorithm to guarantee
a CL while minimizing the WA. We reduce WA by 35-96% as
compared to the nearest state-of-the-art competing method and
improve performance of PARSEC benchmarks by 19.4%.

I. INTRODUCTION

Checkpointing (or snapshotting) is a classical problem in
computer systems. It finds wide applications in record-replay
debugging, error analysis, system backup and replication, and
crash recovery. Over the years, checkpointing latencies are
becoming smaller and at the same time, newer applications
of ultra-fast checkpointing are also coming up. As of today,
the best software-based checkpoint latencies are in the 300-
500 ms range and are thus the methods of choice for Level
1 fault recovery methods in computing systems, notably HPC
systems and data centers. The popular schemes in this space
are CRIU [1], ULFM [2], Legio [3] and ReInit++ [4].

In the last few years, NVM-based checkpointing solutions
that additionally rely on bespoke checkpointing hardware have
been proposed. They are disruptive inventions because they
bring down the checkpoint latency to a few milliseconds [5],
[6], [7], [8], [9]. This is not exactly new in the HPC community.
Way back in the times of the Bluegene/P system [10], check-
pointing times were recorded to be of the order of milliseconds
for low-memory-footprint workloads. However, the modern
schemes are more generic (workload independent) and use fast
on-chip hardware to collect checkpoints on persistent memory,
as opposed to traditional in-memory checkpointing. Typically,
they also collect incremental full-system checkpoints per node
(including the OS state). There are many applications now that
have begun to use such ultra-fast checkpointing schemes such as
record-replay debugging[11], system backup and recovery[12],
high-throughput transaction systems[13], [14], and ultra-fast
job migration in exascale systems[15]. Given that exascale

systems are expected to fail once every few hours or maybe
once an hour on an average [16], the need for ultra-fast per
node checkpointing is obvious. In our view, unless the Level
1 checkpoint time (per node) is of the order of milliseconds,
it will be very hard to collect a global (semi)coordinated
checkpoint quickly. Finally, note that with these requirements,
an incremental, full-system checkpointing method is quite
suitable to HW-based approaches because we can run our full
software stack unmodified or at best add one or two instructions
to tell the HW when to checkpoint.

Let us describe the problem formally. There are four
variables of interest: CL (checkpoint latency), ES (epoch size
or checkpoint interval), MT BF (mean time between failures)
and WA (write amplification). In our case, the system continues
to execute during the checkpointing process. Let CLdown be the
system downtime during checkpointing, which in our case
tends to zero. Classical theory [17] says that the optimal
epoch size (ESopt) should be equal to

√
2×CLdown×MT BF ,

if we wish to minimize the overall execution time. Given that
CLdown → 0 for us, ESopt → 0, which does not make sense
because ES ≥ CL. Hence, we need to set ES based on the
application’s requirements; in fact if CLdown = 0, ESopt =CL
(keep checkpointing all the time). For instance, if a transaction
takes 2 milliseconds [13], [14], and we wish to log a batch of
5 transactions before making them visible, then ES = 10ms, or
if we want to debug at most 7 ms of an application’s execution,
then ES = 7ms.

Now, a low millisecond-scale CL does not come for free. We
need to incur a lot of additional writes in the non-checkpointing
phase of the application to ensure that when the time for
checkpointing arises, the latency of the latter process is bounded
by the chosen CL. These extra writes increase the WA (write
amplification). We shall show in Section VI that WA increases
super-linearly (roughly quadratically) with a linear decrease
in the CL. The endurance of NVMs is known to be very
sensitive to the number of writes and its reliability quickly
decreases with increased write stress[18]. Hence, given an ES,
our problem basically boils down to optimally trading off CL
and WA (see [18], [19]). We thus set the value of a CL (based
on user requirements) and minimize the WA.

Our proposal JASS embodies the basic realization that we
amplify writes (create more writes to the NVM) throughout an
epoch such that our target CL can be achieved at the epoch
boundary. We shall see in Section VI that to achieve a reduction
of even 1 ms in the CL, we will have to pay a big price in
terms of the WA (2 ×). Our first contribution is a system that
allows us to operate anywhere in the region of the feasible

〈CL,WA〉 values for a workload and a given value of ES. In
other words, given a pair of CL and ES values, we make a
best effort to meet it and also minimize the WA. No other
competing work supports this tunability aspect.

Many more innovations are possible because of this design
philosophy. Existing NVM-based checkpointing schemes [8],
[6], [7] checkpoint at the granularity of epochs (like us),
however, while doing so, they introduce a very complex system
that requires them to tag cache lines and sometimes DRAM
rows with multiple bits, persist when there is a coherence write
or eviction, maintain the state of many epochs at the same time
and have elaborate data coalescing algorithms. We design a
scheme that is far simpler, where the crux of our algorithm is a
coherent cache flushing scheme using a variant of the classical
Chandy-Lamport algorithm [20] for distributed systems. We
need to maintain only a single bit per cache line and require
no changes to be made to the DRAM; we propose a simple
closed-loop control algorithm to ensure that the CL target is
met while minimizing the WA. We compare JASS with the
nearest competing work, NVOverlay [6], and show that for its
constraints, our WA is 3× lower. Given a CL target, we never
overshoot (or undershoot) by more than 5%.

Novel ideas in our proposal: JASS
1) A novel cache flushing scheme that flushes all in-flight pre-

snapshot messages from the NoC and pre-snapshot data
from the caches using a variant of the Chandy-Lamport
algorithm. This often overlooked aspect of cache flushing
[8] is quite difficult to correctly and comprehensively
implement in practice, as we found out during the course
of this work.

2) A locality predictor that decides whether to keep a page
in DRAM or not based on some tunable hyperparameters.

3) A method to dynamically tune those hyperparameters such
that the target CL is achieved while minimizing the WA.

4) For the same CL, we reduce the WA by 35-96%, as
compared to the state-of-the-art.

5) Because of our simpler design, we also speedup a suite
of PARSEC benchmarks by 19.4% (a collateral benefit of
our scheme arising from its simplicity).

Section II describes the relevant background, Sections III
and IV elaborate on the design; we present our results in
Section VI, described related work in Section VII and finally
conclude in Section VIII.

II. BACKGROUND

The nonvolatile nature of byte-addressable Nonvolatile
Memory (NVMs) has inspired different approaches to use them.
Most software approaches implement some form of logging
or transactions, while most hardware approaches define and
restrict the order of stores to memory. In order to understand
these approaches, we must look at the characteristics of NVMs
first.

A. NVM Cell Characteristics

All popular types of NVM cells (ReRAM, FeRAM, STT-
RAM, PCM, NAND flash) have a smaller write endurance

(roughly 1000X lower) when compared to DRAM [18]. When
the number of writes to a cell exceeds the endurance threshold,
the cell loses its ability to retain data without applied power
(persistence). Since the major benefits of using an NVM device
is persistence, repeated writes to the same cells are extremely
problematic. As a result, wear-leveling is implemented to
ensure that every cell sees roughly the same number of writes.

B. Wasted Writes

Although NVM devices placed on the memory bus are byte-
addressable, they have an internal hardware buffer (for reading
and writing) that caches data at the granularity of blocks [21].
Writes to this block are coalesced by this buffer. A block switch
causes a write-back of a modified block to a cell at a different
location. This relocation of blocks is part of a device-side wear-
leveling technique. We formally define write amplification as a
ratio: number of block-level writes made by the target system
divided by the number of byte-level writes intended by the
target system (assuming no checkpointing and logging).

C. Place in the Memory Hierarchy

Since NVMs are a new memory class, their position in
the hierarchy is critical. Figure 1 shows the different options.
Most research papers place DRAM and NVM at the same
level [19], i.e., horizontal integration. This provides greater
flexibility, as applications can divide their address space into
persistent and non-persistent zones. The resulting problem
of data placement is handled by software. A system can
opt for replacement integration, replacing DRAM with NVM.
Although cost-effective, such a system suffers from long read
and write delays to main memory. In this paper, we opt to
design a system with the more popular horizontal integration.

DRAM

CPU

NVM (a)

NVM (b)

Hard drive

Fig. 1. Placement of the NVM in the memory hierarchy. (a) Horizontal
integration puts NVM and DRAM on the same level. (b) Vertical Integration
places NVM below DRAM.

D. Chandy-Lamport Snapshot

JASS collects a snapshot of a running system using a
(modified) Chandy-Lamport distributed snapshotting algorithm
as shown in Algorithm 1. The Chandy-Lamport snapshotting
algorithm is initiated over the NoC by any node. It could also
be initiated upon a message received from a remote machine
(in the case of distributed coordinated checkpointing). Point-
to-point links in the network are assumed to be FIFO, which
is the case for an NoC.

The main idea is to propagate token messages on every link.
If a node has received a token, it acknowledges the receiving

Algorithm 1 Chandy-Lamport algorithm
1: if Snapshot token received for the first time then
2: Take local snapshot.
3: Propagate token to all neighbors.
4: Send an acknowledgment to the sender.
5: else if Snapshot token received more than once then
6: Send an acknowledgment to the sender.
7: else if Token received and message arrives on a non-token/non-ack

receiving link then
8: Record message.
9: end if

of the token. Upon the first arrival of a token at a node, a local
snapshot is taken at that node. This snapshot records the local
state. Since the arrival of a token signifies that the sender has
taken a snapshot, any subsequent messages on that link are
post-snapshot messages and are not recorded.

Note that all pre-snapshot messages (prior to arrival of the
token) need to be recorded and are a part of the checkpoint.

III. JASS: OVERALL DESIGN

CoreCore Core Core

Flusher

L1

L2

Network on Chip (NoC)

NVM cntrl. Checkpoint
controllerAccess

scheduler

DRAM
controllerShared LLC

Scrubber

New components

Fig. 2. Design of the overall system. The red (darkly shaded) regions are the
new components in JASS.

JASS is a full-system user-transparent snapshotting system.
The overview of the system is shown in Figure 2. Figure 3
shows the sequence of events as they occur within JASS. Just
like our predecessors [5], [6], [7], [8], we are epoch-persistent.
The system can be seamlessly started from its last epoch
boundary (standard assumption).

Unlike previous works where multiple epochs can be alive
(unpersisted) at the same time, we need to maintain the state
for only 2 epochs (1-bit state): pre-snapshot and post-snapshot.
This reduces cache pollution. At the end of the current epoch,
the sense reverses (post-snapshot in the current epoch becomes
pre-snapshot in the next epoch). Every cache line is tagged with
this bit; however, the main memory (DRAM) or the transfer
protocol are left unmodified (quite unlike NVOverlay and
Donuts). Both epochs have separate DRAM page (simply called
a page henceforth) tables that refer to the modified working
sets of the epochs. A DRAM scrubbing scheme persists the
modified pages for the epoch that is being persisted. Note that
a page is defined as a 256-byte region of contiguous memory
in this paper (not the 4 KB virtual memory page, which we
refer to as a VM-page). The persist path is the same as the
store path (caches → DRAM → NVM); this reduces WA.

Start the checkpoint

Flush the NoC

Scrub the caches and send
data to the lower level Scrub the DRAM and

send data to the NVM
Scrub the LLC (send data

to NVM and DRAM)

Coalesce data on-chip

Finish the scrubbing

Checkpointing Complete

To NVM

1

2 2

3

4

4

5

6

Fig. 3. Sequence of events when a checkpointing operation begins. Arrows
with the same number indicate the events start executing simultaneously.

A. Checkpoint Initiation

JASS has two ways to initiate a checkpoint. A clock-driven
method takes a periodic checkpoint of the system. If the system
decides that, in the rare event of a failure, it is okay with losing
a maximum of η minutes of work, we set the period between
checkpoints to η minutes. This is the epoch size, ES. The
system sets this value, and we expose this using a privileged
instruction. This mode can be turned off if periodic checkpoints
are not desirable. The other method is to initiate a checkpoint
before an event of interest like a system call or I/O instruction.
A machine can also initiate a checkpoint in a large distributed
system when it gets a message from a remote node.

B. Process of Taking a Checkpoint

We can divide the process of taking a checkpoint into three
distinct phases: 1© Flush the pre-snapshot messages in the NoC
and the lines in the high-level caches to the LLC, 2© scrub the
caches and write the changes to the NVM, 3© scrub the main
memory and move all the modified pages (since the last epoch
boundary) to the NVM.

C. Incremental Checkpoints and Recovery

JASS takes incremental checkpoints. The NVM device has
a page table in a known location that is used during recovery.
We use atomic logging (similar to [6]) to ensure recovery of
the page table data structure. Post-crash recovery is simple
but time-consuming. First, we read the page table and move
pages to DRAM one by one. When this is done, we restore
the register state in all the cores. The system can then resume.

IV. JASS: DETAILED DESIGN - CACHES

As described in the previous section, a checkpoint can be
initiated for a variety of reasons: periodic timer interrupt, before
a system call or I/O operation, or as a part of a coordinated
activity in a distributed system. Regardless of the reason, the
flow of actions is the same. A checkpoint controller starts the
process and initiates the Chandy Lamport algorithm by sending
a checkpoint message (snapshot token) to its neighboring nodes
on the NoC (see Section II).

A. The Process of Snapshotting

Upon receiving a snapshot token at a router on the NoC, the
router checks if it has received one before. If it has not received
a token, the connected elements are notified to take a snapshot,
and the router propagates the token to all its neighbors. Every
core has a single bit initialized to zero. This bit is attached to
every message and cache line in the system. Let us call this
bit the snapshot bit. Consider the case when we are taking the
first snapshot.

If the snapshot bit is 0, we know that the message/cache
line associated with the bit is pre-snapshot. Once an element
is made aware of an ongoing snapshot, all further message
generation and cache modifications happen by appending a 1 bit
instead of a 0 bit, thereby distinguishing between pre-snapshot
and post-snapshot data/messages.

After snapshot completion, we can change the sense of the
bits: now 1 stands for a pre-snapshot state and 0 stands for a
post-snapshot state.

1) Snapshotting Cores and Private Caches: Snapshotting
a core is simple. We first flush the pipeline and then store
the architectural register state in a known location in the
NVM. The core is thus assumed to be checkpointed. All
subsequent memory writes are deemed to be post-snapshot
writes. Snapshotting a cache also entails changing the state
of future evictions to post-snapshot writes. We assume that
both the cores and caches contain a snapshot bit, whose sense
changes every epoch.

B. Flushing Messages on the NoC

Correctly flushing pre-snapshot messages from the NoC is
complicated and even though it looks simple, it is not so. This
is something that has not gotten its due share of importance
in prior work. Many a time architects assume that a solution
is simple and something at design time can be worked out;
however, this is one such instance where this assumption is
not true. There are a lot of hidden subtleties and doing this
correctly is quite difficult. It is possible that a pre-snapshot
message gets stuck for a long time in a router. We must make
sure that this message reaches its destination before we start
scrubbing data in the lower-level caches. To achieve this, we
must perform some form of termination detection that makes
sure that there are no messages in the NoC with a pre-snapshot
tag.

Algorithm 2 describes the operation of routers when a
snapshot is going on. Ri describes the ith router. buffer
represents the internal buffers of a router. Each router can be
in one of two states: token received (T R) or no token received
(NT R). When the router is in state NT R, and the incoming
message is not a token, normal operations continue. Algorithm 2
augments the classical Chandy-Lamport algorithm [20] with a
few additional actions (see Section II). To start with, note that
the checkpoint token gets the highest priority in the routers,
which preserves the abstraction of FIFO channels with respect
to the token.

The main idea is to keep a count of the all pre-snapshot
messages in the system and ensure that all of them reach

Algorithm 2 Flushing Algorithm
1: Initially, ∀i,state(Ri) = NT R . No token received
2: Router Ri receives message M
3: if state(Ri) = NT R∧ type(M) = TOK then . First token received
4: state(Ri) = T R
5: xcount = 0
6: for M j ∈ bu f f er(Ri) do
7: mark(M j)
8: xcount← xcount +1 . Mark all in-flight messages
9: end for

10: Send xcount to the checkpoint controller, pcount← 0
11: for node ∈ neighbors(Ri)∪ tile elements(Ri) do
12: Send TOK to node . Propagate to all neighbors
13: end for
14: else if state(Ri) = T R then . Already received
15: if dest(M) = i∧ type(M) 6= TOK then . Leaving the NoC
16: pcount← pcount +1 . pcount is the msg processed count
17: end if
18: end if
19: Periodically:
20: Send pcount to the checkpoint controller
21: if ∀i,Ri has taken a checkpoint ∧∑ pcounti = ∑xcounti then
22: Flushing complete
23: end if

their destinations before we begin the next phase. We achieve
this in a distributed way, having each router count messages
internally (expressed in the xcount variable), and later sharing
this information with the checkpoint controller, which stores
the value. Periodically, all the destination routers send the count
representing the total number of messages processed (pcount)
to the checkpoint controller. When ∑ pcounti is the same as
∑xcounti and all the routers successfully take their checkpoint,
we can conclude that all pre-snapshot messages in the NoC
have reached their destination.

Theorem IV-B.1: Algorithm 2 will correctly flush all pre-
snapshot messages from the system.

Proof IV-B.1: Since the token has the highest priority, a post-
snapshot message never reaches a router in state NT R. All
messages buffered at the routers will be counted. For messages
in transit, a small timer (set to the delay of the link) is set for
all the router’s links that changed their state from NT R to T R.
Pre-snapshot message received within this timer are counted.
This leads to all pre-snapshot messages being counted exactly
once.

As messages reach their destination, the process count
(pcount) increases. When the sum of these counts across
all routers equals the number of pre-snapshot messages, we
can conclude that all messages have reached their destination,
leaving no pre-snapshot message in the NoC.

C. Cache Operations

After we take a snapshot at a cache, normal operations
continue. The pipeline or upper levels will keep sending
requests, albeit marked post-snapshot, and the caches will
continue to service them. However, we must reconsider some
cache operations that may depend on the snapshot bit.

Read: Reading from a line does not interfere with our
snapshot. Since future writes on the same core will not be a
part of the checkpoint, locally servicing a read even from a
pre-snapshot marked line is correct.

Write: Locally servicing a write to a line may overwrite the
data that is marked pre-snapshot. As a result, we must evict the
line to the lower level before we effect the write. If the lower
level receives this write but has a line marked as pre-snapshot,
we overwrite that value because values at higher levels are
more recent. In this way, the cache hierarchy coalesces writes
internally.

Wx1
Rx1
Wy1

rf
Snapshot

Snapshot

Core 0 Core 1

Fig. 4. An r f -edge (read-from) cannot cross a snapshot token

GETS: A GETS (get a copy of the block in the shared state)
request does not lead to a write to the line. However, one might
argue that a GETS can cause inconsistency in snapshotted data.
Figure 4 illustrates the problem. Consider a write to x (Wx1)
by core 0. We then have a read to x by core 1. Core 1 reads x
as 1, thereby creating an r f (read-from) edge. Now, at core 1,
a write to y executes. We will have an inconsistent snapshot if
Wx1 is not included in the snapshot while Wy1 is included.

The above situation implies that the writer (Wx1) is post-
snapshot, since it is not included in the snapshot while a
causally related write (Wy1) is included in the snapshot.
However, this situation can never arise. Since the token has the
highest priority in our network (discussed above), the reading
cache in Core 1 will receive the token from the sister cache
(Core 0) before any subsequent write from it. Hence, as shown
in Figure 4, in our system, a token cannot cross an rf-edge in a
hypothetical dependence graph. Consequently, GETS messages
can be serviced normally.

GETX: A GETX (get a copy in the exclusive state) message
will write to the line. As a result, we must writeback this line
to the lower level before forwarding it to the requesting cache.

EVICT/INVALIDATE: We send pre-snapshot information
to the next level along with the line.

D. Cache Scrubbing

Fetch
Line

Modified?

Counter
Increment

Y YBit ≠ Snapshot bit Evict

Data from cache

To Cache From Cache

1 2

3 4 5
6

Fig. 5. The implementation of the scrubber

Figure 5 shows the implementation of our scrubber in a
cache. The idea is to read entire rows and send pre-snapshot

data to lower levels. Scrubbing can be made more efficient by
delaying the time between consecutive scrubs. However, the
checkpoint’s latency depends on our scrubber’s frequency since
a long-lived pre-snapshot line can be present in the last row
of our cache (one that the scrubber touches at the end). We,
therefore, present a tunable parameter called scrubbing-step.
We perform a scrubbing cycle of the cache at each scrubbing-
step. The lower its value, the more frequently the scrubber
activates.

To avoid a scenario where an evicted pre-snapshot line
reaches a lower level after the lower level has scrubbed the set
for that line, we serialize the scrubbing at different levels. First,
we scrub the L2 cache after flushing finishes (in our setup).
When this is over, a broadcast from the checkpoint controller
tells the next level caches to start scrubbing. Serializing
scrubbing in this way does not affect the latency of our
checkpoints since the DRAM turns out to be the bottleneck.

V. JASS DETAILED DESIGN - DRAM

In this section, we discuss DRAM scrubbing, which is
required to persist pages in the DRAM that are a part of
the epoch that needs to be checkpointed. This need arises
because we do not persist all writes to the NVM by default.
Three research questions emerge.
• RQ1: How and when should the DRAM be scrubbed?
• RQ2: How to enforce an upper-bound on the number of

unpersisted pages in the DRAM?
• RQ3: How to merge the DRAM and cache data before

writing to the NVM?

A. RQ1: DRAM Scrubbing

If we were to scrub the DRAM like the caches, we would
need to walk and read the whole DRAM for every epoch,
which is not only wasteful but also unnecessary, and it makes
maintaining a bound on the CL difficult. Any epoch will
populate a fraction of the DRAM that is a part of the working
set of that epoch. Due to the incremental nature of our snapshot,
the additional pages in the working set need to be persisted
(referred to as the modified working set).

We must, therefore, track the working set of each epoch.
We use a per-epoch DRAM page table that only tracks the
modified pages; note that in the DRAM no page address
re-mapping/translation is done. This page table is similar to
page tables used by the OS (albeit conceptually). However,
unlike OS page tables, this page table is for the entire system
that covers all used physical addresses. Recall that a page in
our discussion refers to a 256-byte region (a 4 KB region is a
VM-page).

The design of the page table is shown in Figure 6. This
table is indexed whenever we issue a write to the DRAM.
Since writes are not on the critical path, this does not hurt
the performance of the applications. Walking the DRAM and
persisting pages belonging to the current epoch is achieved by
walking through this page table. The least significant 8 bits are
used as an offset. We implement our page table as a four-level
tree, indexed using 10 bits at each level. At a non-leaf level

10b 10b 10b 10b 8b offset
48b Physical Address

Fig. 6. Per-epoch DRAM page table.

(marked as blue in Figure 6), we store a physical address for
the next page and a valid bit. The final level (marked as yellow
in Figure 6) holds a 2-bit private counter for every DRAM
page (to be discussed next) as well as a valid bit. It is the
valid bits at the last level that signify whether a DRAM page
belongs to an epoch’s modified working set or not.

We use an incremental scheme to walk through this page
table. The idea is to balance the scrubbing traffic and regular
post-epoch DRAM traffic;note that we do not stall the execution
while taking a checkpoint. Since we know the page size at
each level, it is more efficient to have a per-level hierarchical
counter in the memory controller (to maintain the progress
of the page-walk process: one counter for each level of the
page table). Alongside this counter, we cache each level’s 48b
starting page address. To walk the DRAM, we continually
increment the lowest level counter to find a page to persist. If
the resulting page has its valid bit set in the page table, it is
read and persisted. This process continues until the last level
counter reaches 210 (the number of entries in each page at
a level). When this happens, we calculate the entry’s index
corresponding to the last level of the page table by incrementing
the counter stored in the previous level until we find a valid
page. The page found, if not already cached (in a 3KB cache
at the memory controller), is read from the DRAM, and the
address stored in its 48b field is copied to the last-level counter
as the base address for future walks. The process continues up
the hierarchy until all valid pages have been walked. In this
way, the hierarchical counter implements a nested for loop in
hardware.

B. RQ2: Limiting the Number of Pages in DRAM

It is necessary to bound the maximum number of pages to
be walked in the DRAM to limit the latency of the checkpoints.
Failing to do this results in an increase in the minimum time
it takes to snapshot. Hence, we must periodically persist pages
from the current epoch in the hope that a future snapshot
will arrive sooner than a modification to those speculatively-
persisted pages. This task calls for using a locality predictor
(Figure 7) alongside our DRAM scrubber.

We have not seen any prior work that treats a running epoch
as a future to-be-persisted epoch. All previous works have
assumed that the line between a running epoch and a persisting
epoch is the epoch boundary. By persisting parts of the running
epoch, we blur the epoch boundaries. However, the recovery
epoch must remain consistent. Therefore, these speculated

persists are not merged with the recovery page table until we
reach the epoch boundary.

The upper bound that our locality predictor must work with is
defined by the CL and is calculated by the checkpoint controller.
Let l be the CL value (in seconds) and f be the frequency of
the system. The number of cycles in which the snapshot must
complete is c = l f . If it takes k cycles to persist a page, then
the upper bound for an epoch is simply

n≤ c
k

(1)

However, this does not take into account the non-determinism
on a real system and makes simplistic assumptions. Let us thus
use this as a baseline result and design a more sophisticated
algorithm.

C. Dynamic Tuning of the Locality Predictor

It is important for the locality predictor to know when
to persist a page. From Equation 1, we know the value of
n that roughly corresponds to the target CL. If we were to
keep no pages in DRAM that need to be persisted (similar to
NVOverlay), we will achieve a checkpoint latency equivalent
to the scrubbing time of caches. Let us call this the minimum
latency CLmin. The acceptable observed latency (CLobs) must
therefore lie in the interval (CLmin,CL).

The checkpoint controller, working with the memory con-
troller tunes the locality predictor for minimizing WA. The idea
is to achieve a CLobs close to CL. This means that the locality
predictor should not be over-aggressive. An over-aggressive
locality predictor will increase the checkpoint latency because
more pages that need to be persisted will be in memory; if it
is less aggressive, then the WA will increase.

To tune it, an epoch is divided into 50 sub-epochs. At the
start of each sub-epoch, the memory controller calculates how
close the epoch’s modified set is to the theoretical maximum
number of modified pages (n). Tracking any epoch’s modified
set requires a counter at the memory controller, which is
incremented after a new page is added into the page table.
Let the difference divided by n be δ . In this paper, we tune
the aggressiveness of the predictor by changing its activation
rate R (how frequently it runs). It can vary from 512-256K
cycles. It varies linearly with δ .

D. Locality Prediction

To make the prediction, we allocate a private 2-bit counter
for each DRAM page and a shared 3-bit saturating counter
for a group of 64 contiguous pages. The private counters are
stored alongside the last level page table entry for an epoch,
whereas the shared counters are stored separately. It can never
be the case that a page is a part of both epochs’ modified
working set because we do not do any further address re-
mapping/translation: we thus need to persist the earlier avatar
of the page first. Therefore, we can safely store the private
counter alongside the DRAM page-table entry. On the other
hand, for shared counters, it is expected that a small subset
of these counters will be used (due to locality) during a given

Calculate R (activation Rate)

Predictor starts looking for a page

Finds a page with counters set to 0

Persists Page
(c) Prediction

Predictor Activates
(b) Predictor Tuning

Calculate δ

Store Received

Update Page Table

Cyclic clear cycle

Update counters
(a) Passive Operation

Fig. 7. Operations of JASS that occur irrespective of whether a checkpoint is
in progress or not. (a) shows passive operation. (b) and (c) shows predictor
functions.

time. As a result, separately storing these is a better idea. If
these counters were present in the page table, a shared counter
jump would mean a jump that is 64 pages away.

Every time we walk the DRAM page table, looking for a
page to persist, we do a cyclic clear of bits in private and
shared counters. This cyclic clear will clear bit 0 of the private
counter in one operation and bit 1 in the next operation. The
main idea is to capture both temporal and spatial locality. The
shared counter captures spatial locality since nearby addresses
share this counter. The cyclic clear captures temporal locality
since it will eventually clear all bits of shared and private
counters to zero for pages that have not been accessed in a
long time. We can persist pages speculatively if we see that
they are a part of the current epoch with their shared and
private counters set to zero.

E. RQ3: Mispredictions and Data Coalescing

To reduce write amplification, we coalesce data from the
upper levels with data in the DRAM using an access scheduler
(similar to those used in modern GPUs [22]). To achieve this,
the first time a request from the cache for a block reaches
the access scheduler, a request is sent to the DRAM scrubber
asking it to scrub the page that belongs to the cache line. The
scrubber obliges if this page is present in the pre-snapshot
epoch table. If the page is absent, the scrubber sends a nak
(negative acknowledgement) to the access scheduler.

The locality predictor may predict to persist a page before
a request from the access scheduler arrives. This is the case
of misprediction since a line from the cache has reached the
access scheduler, whereas the predictor did not expect this. As
a result, the misprediction penalty is that we send a nak to
the access scheduler, which must then persist the page again,
creating wasted writes. Correctness is never violated since the
recovery table in the NVM is never updated speculatively. We
don’t describe the maintenance of this table and checkpoint

recovery in detail because it is the same as that used by other
competing work [6].

F. Tunable Parameters

Our system tunes the following values. The system deter-
mines these values using the 〈ES,CL〉 pair provided to the
system. However, these parameters are not directly accessible
to the user or the OS. This tuple is sent along with the token
by the checkpoint controller.

1) scrubbing-step : Frequency of the cache scrubber.
2) scrubbing-granularity: Number of rows (or sets) to scrub

in one scrubbing-cycle.
3) memory-walk step: Frequency of the DRAM walker.

VI. EXPERIMENTAL RESULTS

In this section, we implement and evaluate JASS on Tejas
[23], a cycle-approximate Intel PIN-based [24] architectural
simulator. We ran benchmarks from the PARSEC [25] bench-
mark suite, with each program executing for a minimum of
one billion instructions.

A. Setup

Parameter Value

Number of cores 8
Pipeline type Out-of-order

Frequency 3200MHz
Private Caches L1 L2

Coherence L2
L1 Cache 32K 4-cycle WT 8-way 64B block
L2 Cache 256K 8-cycle WB 8-way 64B block
L3 Cache 8-way Tiled SNUCA LLC

L3 Cache Bank 2M 30-cycle WB 8-way 64B block
NoC Topology TORUS
DRAM ranks 2 ranks, 8 banks per rank
NVM ranks 2 ranks, 8 banks per rank

DRAM page size 2Kb
NVM page size 2Kb

TABLE I
SYSTEM SETUP. OUR SYSTEM SETUP IS IN LINE WITH RECENT WORK IN

THE AREA OF PERSISTENT MEMORY ARCHITECTURES [26], [27]

Table I show the system setup used for evaluating JASS along
with the nearest competing works in the area: ThyNVM[8],
PiCL[7] and NVOverlay[6]. The design choices used for
ThyNVM, PiCL and NVOverlay were chosen to minimize
WA (for a fair comparison). L2 is coherent in all cases. The
shared LLC is the L3 level, which is distributed across the
chip. We use the popular SNUCA [28] scheme. The system
uses a torus NoC with eight cores and eight LLC tiles. The
NoC also has nodes for the directory and memory controllers.
All implementations include an on-chip persistent buffers that
coalesce data before writing to the NVM.

B. Performance (∝ 1/(Simulated Execution Time))

In this section we compare the performance of ThyNVM,
PiCL, NVOverlay and JASS. Figure 8 shows the normalized
performance (reciprocal of execution time) relative to JASS.
Contrary to PiCL and ThyNVM, NVOverlay and JASS do not
affect the critical path (loads do not get stalled). While PiCL

blackscholes bodytrack canneal dedup facesim ferret fluidanimate freqmine raytrace streamcluster swaptions vips
0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 p

e
rf

o
rm

a
n
ce

(R

e
la

ti
v
e
 t

o
 J
A

S
S
)

Comparison of performance of ThyNVM, PiCL, NVoverlay and JASS

ThyNVM PiCL NVOverlay JASS GM speedup
19.4% over
NVOverlay

Fig. 8. Normalized performance ThyNVM, PiCL and NVOverlay with respect to JASS.

checks undo logs for all reads, ThyNVM’s address remapping
scheme has performance implications. While NVOverlay adds
no latency to its read operations, the system persists data upon
eviction from the coherent domain, increasing NoC traffic.
Because of our non-intrusive mechanisms, we get a speedup
of 19.4$ over NVOverlay.

C. Write Amplification

In this section, we compare the write amplification of
JASS with ThyNVM, PiCL and NVOverlay. Figure 9 shows
an improvement of at least 2× on most benchmarks. This
improvement is largely attributed to the fact that data is not
persisted on to the NVM upon cache eviction. Moreover, we
see a fair amount of coalescing taking place in the entire
hierarchy (compared to only L1 and L2 for NVOverlay).

D. Insights into the Operation of the System

Table II shows salient features of the execution: CL, % of
pre-snapshot data in the caches, DRAM, degree of coalescing,
misprediction rate of the locality predictor, and the LLC MPKI
(misses per kilo instructions). In this CL = 5 ms. It is evident
from column 2 in Table II that we achieve our CL target
(within ± 5%). Since DRAM and caches begin scrubbing
independently, the slowest of the two will dictate the total time.
Inevitably, DRAM scrubbing is the limiting factor. The caches
are more or less fully full with pre-snapshot data. Canneal and
Fluidanimate are notable exceptions given their access patterns.
The DRAM (%) numbers are relative: the numerator is the
pre-snapshot footprint in the DRAM and the denominator is
the total size of the snapshot. The degree of coalescing is small
(0.4 to 23%); most values are less than 10%.

The LLC MPKI gives us an insight into the locality of
the application. Benchmarks with small (blksch) and medium
(swap,vips) working sets have a smaller LLC MPKI due to
increased locality. This distinction will help us understand the
write amplification trends (in the next section).

% DRAM-WA represents the additional writes that we need
to perform owing to imperfect locality prediction with reference
to a scenario where we have a perfect predictor. We see an
additional 8.7-50.1% writes. This leads to write amplification.

We also tune our parameters dynamically. In our setup, we
set the initial values of scrubbing-step and memory-walk step to
1K cycles each and scrubbing-granularity is set to 1 (one cache

row at a time). We allow the memory-walk step to be tuned
within the range (0.5K,256K) cycles. These values represent
a vast tuning range for our experiments. Since cache scrubbing
is faster than DRAM scrubbing, we have more opportunities
to steal a cache’s cycles or even just a read port to read entire
rows very quickly. This causes the caches to rarely tune their
scrubbing-step values.

E. Sensitivity to Input Parameters

In this section we run two experiments to compare JASS
to NVOverlay. In the first experiment, we run JASS with five
different epoch sizes. In the second experiment, we run JASS
on five different latency constraints.

1) Epoch Size (ES): We evaluate JASS with five different
epoch sizes (2.5 ms, 3 ms, 3.5 ms, 4 ms and 4.5 ms) and study
the effects of write amplification with increasing ES. CL is set
to 2 ms. The results in Figure 10 show that WA generally
reduces with increasing epoch sizes. The slope of the line is
negative with increasing ES, highlighting the saturation effect
as expected.

The point of saturation is different for every benchmark.
For the benchmarks bodytrack, blacscholes, raytrace: moving
from 2.5 ms to 3 ms increases the WA; For the benchmark
canneal, there is a significant increase from 4 to 4.5 ms. These
outliers are happening because of the non-deterministic nature
of coalescing.

2) Checkpoint Latency (CL): We compare JASS with five
different CL values: 1, 2, 3, 4, and 5 ms. We show that we
always meet the CL constraint (refer to Figure 11). We see
that given a latency, JASS meets it. CLobs (observed CL) is
always within 5% of the target CL. The corresponding write
amplification is shown in Figure 12. This figure illustrates the
tradeoff between write amplification and the checkpoint latency.
As with epoch size, our latency graph has a negative slope, i.e.,
with increasing latency, write amplification decreases. JASS is
unique in this space. Our system, given a CL, will minimize
the write amplification as well as meet the checkpoint latency.

Although the general trend of Figure 12 is a downward slope,
there exist some outliers. Outliers in Figure 12 are a result of
a similar, albeit subtle, impact of checkpoint latency on time
between checkpoints as seen with increasing ES . bodytrack is
the most notable outlier here, as its WA increases at 3,4 and
5 ms as compared to 2 ms. Since slower checkpoints (large

blackscholes bodytrack canneal dedup facesim ferret fluidanimate freqmine raytrace streamcluster swaptions vips Geometric Mean
0

10

20

30

40

W
rit

e
Am

pl
ifi

ca
tio

n
(R

el
at

iv
e

to
 JA

SS
)

Write Amplification (Lower is better)
ThyNVM PiCL NVOverlay JASS

Fig. 9. Normalized write amplification of ThyNVM, PiCL and NVOverlay with respect to JASS.

Workload CL (ms) % Cache % DRAM % Coalescing LLC MPKI % DRAM-WA

Blk. 5.25 88 12 13 0.20 50.16
Body. 5.0 78 22 2 0.14 25.6
Cann. 5.0 40 60 23 0.48 49.1
Ded. 5.0 81 19 4 17.6 23.1
Face. 5.0 84 16 0.4 0.91 8.7
Ferr. 5.05 78 22 9.5 0.33 50.7

Fluid. 5.0 68 32 1.6 0.51 10.7
Freq. 5.0 86 14 4 0.89 20.6
Ray. 5.0 84 16 1.5 0.78 15.2
Strm. 5.1 84 16 0.9 0.55 18.7
Swap. 5.23 86 14 5.5 0.09 25.3
Vips 5.01 84 16 2.6 0.17 49.9

TABLE II
DIFFERENT EXECUTION STATISTICS THAT PROVIDE AN INSIGHT INTO THE WORKING OF THE SYSTEM. TIME VALUES FOR THE LONGEST EPOCH ARE

REPORTED FOR A LATENCY CONSTRAINT OF 5 MS.

2.5 ms 3 ms 3.5 ms 4 ms 4.5 ms
ES (Epoch Size)

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d
 W

ri
te

 A
m

p
lif

ic
a
ti

o
n

Sensitivity to epoch size

blackscholes

bodytrack

canneal

dedup

facesim

ferret

fluidanimate

freqmine

raytrace

streamcluster

swaptions

vips

Fig. 10. Normalized write amplification of JASS with increasing epoch size.

CL) will push the completion of a checkpoint to a future point,
JASS remains quiescent after the completion of the checkpoint.
This causes the time between checkpoints to increase, which
interferes with the access patterns of the outliers.

VII. RELATED WORK

In this section, we look at system-level checkpointing
proposals: ThyNVM [8], PiCL [7] and NVoverlay [6].

ThyNVM [8] divides each program’s execution into time-
ordered epochs. Each epoch has two phases: an execution
phase and a checkpointing phase. To avoid application stalls,
the checkpointing phase of an epoch runs concurrently with
the execution phase of the next epoch. ThyNVM incurs a large

1ms 2ms 3ms 4ms 5ms

CL (ms)

0

1

2

3

4

5

Meeting latency constraints
C

L
O

b
se

rv
e
d

(m
s)

Fig. 11. Maximum checkpoint completion time for JASS under different
checkpoint latency constraints.

write amplification since it maintains three versions of data at
any given point of time (current, last, second-last). All three
copies are required since a failure can corrupt both the working
copy and the checkpoint in progress.

PiCL [7] aims to improve on ThyNVM by reducing the epoch
sizes further. It uses undo logging in the caches. Although not
a problem at the level of blocks (since logs are persisted in
batches), the system produces a log for every write operation
on the cache. Such a scheme is prohibitive since the baseline
write amplification is high because of the writes to the log.

NVOverlay [6] defines epoch boundaries by monitoring
coherence traffic, thus creating prohibitively small epochs.
The system uses a distributed vector clock with no global

1ms 2ms 3ms 4ms 5ms
CL (Checkpoint Latency)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

No
rm

al
ize

d
W

rit
e

Am
pl

ifi
ca

tio
n

Sensitivity to latency

blackscholes
bodytrack
canneal
dedup

facesim
ferret
fluidanimate
freqmine

raytrace
streamcluster
swaptions
vips

Fig. 12. Tradeoff between latency and write amplification.

synchronization. This causes some cores to run ahead of others
(in terms of the epoch number). Designed for high-frequency
checkpointing, NVOverlay tags each cache line with a 16-bit
epoch id. Moreover, the system tags each DRAM row using
ECC bits, which is not practical. A multi-version snapshotting
mechanism manages different versions of page tables for each
epoch in DRAM, while a single recovery epoch page table is
present in the NVM. To reduce writes to NVM, NVOverlay
unmaps data in the NVM at cache line granularity while
mapping is done at page granularity. This causes the system
to occasionally perform garbage collection of sparsely mapped
pages.

VIII. CONCLUDING REMARKS

There are two key takeaway points from the design of
JASS: tunability and efficiency. Any target CL has a WA cost,
and thus minimizing the number of additional writes is of
paramount importance. There is a need to design a very efficient
control algorithm. Moreover, the downtime of a checkpointing
algorithm can be made near-zero and we can efficiently flush the
in-flight messages and scrub the DRAM to ensure that the work
that needs to be done during checkpointing always remains
within bounds. JASS requires very little HW modifications and
has dual benefits: WA reduction by 35-96% and a speedup of
19.4% as compared to the nearest state-of-the-art competitor
NVOverlay.

REFERENCES

[1] R. S. Venkatesh, T. Smejkal, D. S. Milojicic, and A. Gavrilovska, “Fast
in-memory criu for docker containers,” in ISMS, 2019.

[2] N. Kohl, J. Hötzer, F. Schornbaum, M. Bauer, C. Godenschwager,
H. Köstler, B. Nestler, and U. Rüde, “A scalable and extensible check-
pointing scheme for massively parallel simulations,” The International
Journal of High Performance Computing Applications, vol. 33, no. 4,
pp. 571–589, 2019.

[3] R. Rocco, D. Gadioli, and G. Palermo, “Legio: fault resiliency for
embarrassingly parallel mpi applications,” The Journal of Supercomputing,
vol. 78, no. 2, pp. 2175–2195, 2022.

[4] G. Georgakoudis, L. Guo, and I. Laguna, “Reinit: Evaluating the
performance of global-restart recovery methods for mpi fault tolerance,”
in ICHPC, 2020.

[5] P. Ekemark, Y. Yao, A. Ros, K. Sagonas, and S. Kaxiras, “Tsoper:
Efficient coherence-based strict persistency,” in HPCA, 2021.

[6] Z. Wang, C.-H. Choo, M. A. Kozuch, T. C. Mowry, G. Pekhimenko,
V. Seshadri, and D. Skarlatos, “Nvoverlay: Enabling efficient and scalable
high-frequency snapshotting to nvm,” in ISCA, 2021.

[7] T. M. Nguyen and D. Wentzlaff, “Picl: A software-transparent, persistent
cache log for nonvolatile main memory,” in MICRO, 2018.

[8] J. Ren, J. Zhao, S. Khan, J. Choi, Y. Wu, and O. Mutiu, “Thynvm:
Enabling software-transparent crash consistency in persistent memory
systems,” in MICRO, 2015.

[9] K. Kruger, R. Pannain, and R. Azevedo, “Donuts: An efficient method for
checkpointing in non-volatile memories,” Concurrency and Computation:
Practice and Experience, 2023.

[10] G. Zheng, X. Ni, and L. V. Kalé, “A scalable double in-memory
checkpoint and restart scheme towards exascale,” in DSN, 2012.

[11] A. Miraglia, D. Vogt, H. Bos, A. Tanenbaum, and C. Giuffrida, “Peeking
into the past: Efficient checkpoint-assisted time-traveling debugging,” in
ISSRE, 2016.

[12] Y. Zhang, J. Yang, A. Memaripour, and S. Swanson, “Mojim: A reliable
and highly-available non-volatile memory system,” in ASPLOS, 2015.

[13] S. Wang, J. Liagouris, R. Nishihara, P. Moritz, U. Misra, A. Tumanov,
and I. Stoica, “Lineage stash: fault tolerance off the critical path,” in
SOSP, 2019.

[14] A. Khorguani, T. Ropars, and N. De Palma, “Respct: fast checkpointing
in non-volatile memory for multi-threaded applications,” in Proceedings
of the Seventeenth European Conference on Computer Systems, 2022,
pp. 525–540.

[15] E. Meneses, X. Ni, G. Zheng, C. L. Mendes, and L. V. Kale, “Using
migratable objects to enhance fault tolerance schemes in supercomputers,”
IEEE transactions on parallel and distributed systems, vol. 26, no. 7,
pp. 2061–2074, 2014.

[16] D. Dauwe, S. Pasricha, A. A. Maciejewski, and H. J. Siegel, “Resilience-
aware resource management for exascale computing systems,” IEEE
Transactions on Sustainable Computing, vol. 3, no. 4, pp. 332–345,
2018.

[17] J. W. Young, “A first order approximation to the optimum checkpoint
interval,” Communications of the ACM, vol. 17, no. 9, pp. 530–531,
1974.

[18] J. Boukhobza, S. Rubini, R. Chen, and Z. Shao, “Emerging nvm: A
survey on architectural integration and research challenges,” ACM Trans.
Des. Autom. Electron. Syst., vol. 23, no. 2, nov 2017.

[19] A. Baldassin, J. a. Barreto, D. Castro, and P. Romano, “Persistent memory:
A survey of programming support and implementations,” ACM Comput.
Surv., vol. 54, no. 7, jul 2021.

[20] N. A. Lynch, Distributed algorithms. Elsevier, 1996.
[21] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu, A. S. Memaripour, Y. J.

Soh, Z. Wang, Y. Xu, S. R. Dulloor, J. Zhao, and S. Swanson, “Basic
performance measurements of the intel optane DC persistent memory
module,” CoRR, vol. abs/1903.05714, 2019.

[22] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens,
“Memory access scheduling,” SIGARCH Comput. Archit. News, vol. 28,
no. 2, p. 128–138, may 2000.

[23] S. R. Sarangi, R. Kalayappan, P. Kallurkar, S. Goel, and E. Peter, “Tejas:
A java based versatile micro-architectural simulator,” in PATMOS, 2015.

[24] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. J. Reddi, and K. Hazelwood, “Pin: Building customized program
analysis tools with dynamic instrumentation,” SIGPLAN Not., vol. 40,
no. 6, jun 2005.

[25] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation,
Princeton University, January 2011.

[26] S. Yadalam, N. Shah, X. Yu, and M. Swift, “Asap: A speculative approach
to persistence,” in HPCA, 2022.

[27] M. Vemmou and A. Daglis, “Cosplay: Leveraging task-level parallelism
for high-throughput synchronous persistence,” in MICRO, 2021.

[28] S. R. Sarangi, Advanced Computer Architecture, 1st ed. India: McGraw
Hill, 2021.

