
Citation: Bhamu, N.; Verma, H.; Dixit,

A.; Sarangi S.R.; Barbara B. Title.

Drones 2023, 1, 0. https://doi.org/

Received:

Revised:

Accepted:

Published:

Copyright: c© 2023 by the authors.

Submitted to Drones for possible open

access publication under the terms and

conditions of the Creative Commons

Attri- bution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

SmrtSwarm: A Novel Swarming Model for Real-World
Environments
Nikita Bhamu 1,‡, Harshit Verma 1,‡, Akanksha Dixit 2, Barbara Bollard 3, Smruti R. Sarangi 1

1 Department of Computer Science and Engineering, Indian Institute Of Technology Delhi, India ;
Nikita.Bhamu.cs518@cse.iitd.ac.in, Harshit.Verma.mcs21@cse.iitd.ac.in, srsarangi@cse.iitd.ac.in

2 Department of Electrical Engineering, Indian Institute Of Technology Delhi, India;
Akanksha.Dixit@ee.iitd.ac.in

3 School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong 2522, Australia;
bbollard@uow.edu.au

* Correspondence: Akanksha.Dixit@ee.iitd.ac.in
‡ These authors contributed equally to this work.

Abstract: Drone swarms have gained a lot of popularity in recent times because their operational 1

efficiency is more than that of a single drone. Drone swarms are strongly inspired by the flocking 2

behavior of birds, insects, and schools of fish, where all the members work in a coordinated manner to 3

achieve a common goal. Since each drone is an independent entity, automating the control of a swarm 4

is difficult. Previous works propose various swarming models with either centralized or decentralized 5

control. With distributed control, each drone makes its own decisions based on a small set of rules to 6

accomplish swarm behavior. Whereas in centralized control, one drone acts as the leader, who knows 7

the final destination and the path to follow; it specifies the trajectories and velocities for the rest of 8

the drones. Almost all the work in the area of swarming models follows Reynolds’ model, which has 9

three basic rules For GPS-aided settings, state-of-the-art proposals are not mature enough to handle 10

complex environments with obstacles where primarily local decisions are taken. We propose a new 11

set of rules and a game-theoretic method to set the values of the hyperparameters to design robust 12

swarming algorithms for such scenarios. Similarly, the area of realistic swarming in GPS-denied 13

environments is very sparse, and no work simultaneously handles obstacles and ensures that the 14

drones stay in a confined zone and move along with the swarm. Our proposed solution SmrtSwarm 15

solves all of these problems . It is the first comprehensive model that enables swarming in all kinds 16

of decentralized environments regardless of GPS signal availability and obstacles. We achieve this by 17

using a stereo camera and a novel algorithm that quickly identifies drones in depth maps and infers 18

their velocities and identities with reference to itself. We implement our algorithms on the Unity 19

gaming engine and study them using exhaustive simulations. We simulated 15-node swarms and 20

observed cohesive swarming behavior without seeing any collisions or drones drifting apart. We also 21

implemented our algorithms on a Beaglebone Black board and showed that even in a GPS-denied 22

setting, we can sustain a frame rate of 75 FPS, much more than what is required in practical settings. 23

Keywords: Swarming models; Reynolds’ forces; Stereo vision; Depth map; Decentralized control 24

1. Introduction 25

In the last couple of years, unmanned aerial vehicles (UAVs) have gained massive 26

attention and are being used in diverse fields ranging from wild-life monitoring to aerial 27

photography and agriculture [1–3]. The global commercial drone market alone was $19.89 28

billion in 2022 and is expected to grow at a CAGR (compound annual growth rate) of 13.9% 29

from 2023 to 2030 [4]. Usually, these UAVs or drones are used in groups or swarms because 30

a drone swarm tends to outperform single drones by leveraging their collective intelligence, 31

increased versatility, and higher operational efficiency [5]. The concept of drone swarms is 32

inspired by the flocking behavior of birds, animals, and insects, which exhibits a pattern 33

Version September 11, 2023 submitted to Drones https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com
https://www.mdpi.com/journal/drones

Version September 11, 2023 submitted to Drones 2 of 23

and a similar general direction of motion for all its members. Broadly speaking, drone 34

swarming can be defined as the coordinated behavior of a group of autonomous drones 35

that work together to achieve a common goal [6–8]. 36

One of the earliest and most well-known flocking models was proposed by Reynolds [9]; 37

it is also known as the boids model. It proposes three principles that govern the behavior 38

of individual drones within a group. These rules are: 1 each drone in the swarm should 39

maintain a minimum distance from its neighbors, 2 it should align its velocity with the 40

average velocity of its neighbors, and 3 it should move towards the center of mass of 41

its neighbors. Reynolds demonstrated that these three rules controlling individual drone 42

movement could result in complex collective behaviors such as flocking. The main aim 43

of this model is to capture the self-organizing and coordinated motion observed in flocks 44

of birds or schools of fish, where collective behavior emerges from localized interactions. 45

As of today, it serves as the fundamental foundational algorithm that forms the basis for 46

almost all drone swarming algorithms [6,8,10]. 47

The Reynolds’ model is based on a distributed control algorithm, also known as 48

self-organized flocking, where each UAV in the swarm decides its own movement. There 49

are models based on centralized control too. In these models, the movement of UAVs is 50

controlled either by an external agent or a specific drone within the swarm. The latter 51

model is known as a leader-follower swarming model. The self-organizing swarm has 52

the advantage of efficiency in terms of processing time since the work is divided among 53

all the members. Whereas the leader-follower structure is simpler, easier to implement 54

and verify [11,12]. The leader drone guides the followers and offers additional control 55

and coordination mechanisms. The follower drones can maintain a fixed distance and 56

relative position with respect to the leader ensuring that the swarm moves in a coordinated 57

and synchronized manner. However, the problem with centralized control is the single 58

point of failure. Hence, this paper proposes a hybrid model, SmrtSwarm, that combines the 59

leader-follower and self-organized flocking models. 60

Braga et al. [6] suggest that for a leader-follower-based model, all the follower drones 61

need to follow one more rule along with Reynolds’ flocking rules, i.e., Migration, which 62

forces the follower drones to migrate towards the leader drone. We integrate this behavior 63

into SmrtSwarm. The drone swarms are designed for working in a real-world environment 64

where the conditions may be adverse. For example, there may be obstacles, such as 65

buildings, towers, etc., which may block a drone’s path. The Reynolds’ model does not 66

consider the presence of such obstacles. Hence, we propose including an additional 67

obstacle avoidance rule that suggests alternative paths. However, this obstacle avoidance 68

rule may lead to problems: the entire flock may disintegrate into smaller flocks with no 69

inter-flock coordination owing to obstacles. Olfati-Saber, R. [13] identified this problem of 70

fragmentation in flocking [9]. To avoid such a situation, the Olfati-Saber model proposes to 71

define a boundary around the drones. Inspired by this method, we add a confinement rule 72

in our model that forces all the drones to be confined to a predefined boundary. 73

To realize our model, each drone must be aware of its position and the position and 74

movement of its neighbors. Therefore, the proposed model works only in a GPS-enabled 75

environment where each flock member knows the position and velocity of others. But 76

when operating in a real-world environment, such as in areas like mountain ranges, caves, 77

congested urban areas, etc., access to a reliable GPS signal becomes a major hurdle [14–16]. 78

In such scenarios, the swarm cannot rely on GPS for navigation. Much work has been done 79

in building the swarming algorithms, but not a single framework has been provided that 80

works on both the GPS-aided and GPS-denied environments; our proposed model has this 81

capability. 82

This paper proposes a computer vision-based strategy for achieving the flocking 83

behavior in GPS-denied environments. We use a vision-based sensor to take pictures of 84

the surrounding area and then analyze them to extract the required information. Previous 85

works used ML-based models for segmenting and processing those images [17]. However, 86

these methods require a significant amount of time and computing resources. Furthermore, 87

Version September 11, 2023 submitted to Drones 3 of 23

many drones cannot afford to implement these algorithms for processing in every time 88

frame; as a result, we must use or create conventional algorithms instead. Therefore, we 89

propose an image processing algorithm based on depth maps. No work has been presented 90

that processes depth maps for computation of the movement of drones in the swarm. 91

SmrtSwarm proposes a method to compute the depth maps of the images captured by 92

drones and to find the neighboring drones and obstacles along with their distance from a 93

reference drone. We also propose a novel algorithm to track the detected objects (drones and 94

obstacles) over time. The swarming rules can be applied once all the necessary information 95

is obtained. The code uses limited parallel processing to enhance its efficiency. 96

Our primary contributions in this paper are as follows: 97

1. We developed an enhanced Reynolds’ model that incorporates leader-follower be- 98

haviour. The control is still distributed; however, the leader is a distinguished drone 99

that knows the final destination. 100

2. We proposed new Reynolds’ like flocking rules that enable a swarm to navigate 101

through GPS-aided environments containing physical obstacles while maintaining 102

swarm behavior. The total processing time of our model is less than 1 ms on a popular 103

embedded board. 104

3. We proposed new flocking rules for GPS-denied environments too. We developed a 105

method to process depth maps quickly and process frames in around 13 ms (≈ 75 fps) 106

on a popular embedded board. 107

The paper is organized as follows. We discuss the background and related work 108

in Section 2. Section 3 discusses the proposed swarming model. Section 4 shows the 109

experimental results, and we finally conclude in Section 5. 110

2. Background and Related Work 111

In this paper, we consider two kinds of scenarios. The first set of scenarios has an 112

available GPS signal, which is arguably the most important input in a drone swarming 113

system. The second set of scenarios does not rely on a GPS signal – they are more suitable 114

for settings where GPS signals are weak, or places where jamming the GPS signal is a real 115

possibility. 116

2.1. Swarming Models in an Environment with GPS Signals 117

Drone swarming is primarily inspired by the flocking behavior of birds. In general, 118

flocking is a group behavior observed in birds, fish and many other animals. It involves the 119

coordinated movement of individuals within a group. To achieve this behavior, previous 120

works propose various swarming models that enable drones in a swarm to communicate 121

with one another and coordinate their movements [6,8–10]. These models specify certain 122

rules for all the drones that guide them on how to react to the movement of other drones 123

nearby. This way each drone contributes to the overall group behavior. In general, the flock- 124

ing process has five stages (see Figure 1). Each swarm member observes its surroundings 125

and locates all other drones during the initial stage. Following that, it employs a neighbor 126

selection strategy to select a set of neighbors who influence its movement. Every flocking 127

model has a unique neighbor selection technique, such as choosing the k closest drones as 128

neighbors. The drone then detects other obstacles in its vicinity and tracks the obstacles 129

as well as its chosen neighbors. Following that, the drone calculates the net force exerted 130

on it by the selected neighbors and obstacles and adjusts its position accordingly. There 131

exist various varieties of flocking behavior and resultant swarming models. The two broad 132

categories of flocking behavior are self-organized and leader-follower. 133

2.1.1. Self-Organized Swarming 134

Self-organized swarming or decentralized flocking is distinguished by the lack of 135

explicit leaders within the group [20]. Instead, each group member follows simple principles 136

to adjust its velocity based on its local interactions with other members in the vicinity. 137

Typically, these principles include maintaining a certain separation distance, aligning with 138

Version September 11, 2023 submitted to Drones 4 of 23

Sensing

Relevant
neighbors
selection

Detection and
tracking

Force
computation

Actual
movement

Figure 1. General workflow of a flocking model [18,19]

the average direction of nearby members and moving toward the group’s center of mass. 139

Global flocking patterns arise from these local interactions. Fish schools and insect swarms 140

exhibit this form of flocking behavior. Various papers have used different approaches to 141

develop self-organized drone swarms [6,8–10]. Reynolds gave the first-ever swarming 142

model for self-organized flocking. Reynolds observed the natural flocking behavior and 143

identified three simple rules that define the movement of each swarm member [9]. These 144

rules are as follows: 145

(i) Cohesion: Each swarm member must try to travel towards the group’s center. This 146

behavior is achieved by applying an attractive force between each flock member and the 147

group’s center of mass, which pulls the member towards the center (refer to Figure 2(a)). 148

(ii) Separation: Every member must keep a safe distance from its neighbors to prevent 149

collisions. This is achieved by exerting a repulsive force between each flock member and 150

its nearest neighbors (refer to Figure 2(b)). 151

(iii) Alignment: Every member in the swarm should try to match its neighbors’ speed 152

and direction. This behavior is achieved by exerting an attractive force between each flock 153

member and its neighbors. This pushes the member’s velocity closer to the group’s average 154

velocity (refer to Figure 2(c)). 155

If ~vc, ~vs, and ~va represent the velocity vectors resulting from the cohesion, separation 156

and alignment rules, respectively, then the final velocity ~Vf of a drone after incorporating 157

all three rules is given by Equation 1. Here, rc, rs, and ra are their respective weights in ~Vf . 158

~Vf = rc ∗ ~vc + rs ∗ ~vs + ra ∗ ~va (1)

v

x

c

x

x

x

4

3

21

(a)

 v

 x

 x

 x
 1

 3

 2

 s

(b)

1

va

6

5

4

3

2

v
v

v

v
v

v

(c)

Figure 2. Reynolds’ flocking principles: (a) Cohesion, (b) Separation, (c) Alignment. ~xi and ~vi are the
position and velocity of the ith drone, respectively. ~vc, ~vs, and ~va represent the cohesion, separation
and alignment velocity vectors. The final velocity of a drone is decided only by the drones inside the
circular boundary.

159

One point to note here is that the Reynolds model deals in velocities. It computes the 160

velocity of each drone for the next frame based on the flocking rules and inherently exerts 161

the required force to achieve that velocity. We adopt the same approach in the proposed 162

model. 163

Version September 11, 2023 submitted to Drones 5 of 23

Eversham et al. [8] analyze the classic Reynolds flocking model in detail and describe 164

the impact of the individual parameters on the observed flock behavior. Blomkvist et al. [10] 165

propose to use the Reynolds’ model to model flocking behavior in the case of prey escaping 166

a predator attack. However, these models work in a very constrained environment with 167

no obstacles. Braga et al. [6] consider the presence of obstacles and propose an obstacle 168

avoidance rule for swarm members. To detect obstacles, they use distance-based sensors. 169

All these models rely on communication among drones, which may not be possible in 170

real-world environments. Our proposed approach SmrtSwarm considers these real-world 171

constraints and provides a robust solution that requires very little communication be- 172

tween drones. Communication required only in GPS-aided environment to broadcast its 173

position and no communication required in GPS-denied environment. 174

2.1.2. Leader-Follower Swarming 175

In leader-follower swarming, one or more group members undertake the role of a 176

leader, while the remaining group members serve as followers [21]. The leaders determine 177

the direction and pace of the flock, whereas the followers adjust their movements to 178

maintain a certain distance or formation relative to the leaders. This flocking is commonly 179

observed in avian colonies, where one or a few birds take the lead, and the remainder 180

follow their movements. Bhowmick et al. [22] propose a model with a leader-follower 181

architecture with more than one leader; however, that number is fixed. They demonstrate 182

how each member tends to move towards the center of the flock without colliding and still 183

remaining in the flock. However, it only operates in two dimensions and does not account 184

for obstacles. Our proposed model SmrtSwarm works in a 3D space, even with obstacles. 185

Walker et al. [23] too propose a leader-follower-based swarming model that considers 186

multi-leader systems. However, the leaders are chosen dynamically during flight. Humans 187

are needed to control all the leaders. If the swarm divides itself into clusters, each with 188

a leader, and they get segregated, the operator must manually bring the leaders closer 189

together each time this happens. This can occur frequently in an environment with obstacles. 190

The SmrtSwarm model addresses this issue by defining a confinement area around the 191

leader and adding additional forces. Unlike the other two models, Zheng et al. [24] 192

propose a flocking method with a single leader only. They also consider privacy concerns, 193

such as hiding the leader if there is an adversary. However, their model does not define 194

how to identify an adversary in a flock – its location or identity. 195

Reza Olfati-Saber [13] pointed out one disadvantage of the Reynolds flocking model: 196

creating fragments in the swarm during flight time. Hence, the paper presented a method 197

to make the swarm like an α-lattice, ensuring no fragments are formed. However, the 198

leader in their model is virtual and can change anytime during the flight. Hence, this 199

required extra computation, and also, it is not scalable to the environment when there is no 200

GPS present. Our paper presents a simple yet effective algorithm that can be scalable to 201

environments where GPS is an issue. 202

2.2. Swarming in a GPS-denied Environment 203

As already discussed, most proposed models rely on GPS for location and velocity 204

information. But relying solely on GPS for swarm navigation and coordination can pose 205

challenges in real-world environments. GPS signals can be disrupted or lost due to various 206

factors such as signal jamming, multi-path interference, and natural obstructions such as 207

mountains, trees and buildings. In such scenarios, swarms that heavily depend on GPS 208

can face serious performance issues and may also suffer from complete failure [25]. To 209

address this challenge, swarms must be designed to be more robust and resilient to GPS 210

unavailability. 211

The drones thus need distance-sensing hardware [23,25]. Distance sensors are typically 212

limited in range and accuracy. They also have reliability challenges while navigating in 213

complex environments. In the natural world, birds and fishes rely on their sense of vision 214

for perceiving distance [26]. A stereo camera is the most often used vision-based sensor for 215

Version September 11, 2023 submitted to Drones 6 of 23

providing high-resolution images of the drone’s surroundings and enabling it to recognize 216

neighboring drones and obstacles. We are thus motivated to use such stereo cameras 217

inspired by the natural world. 218

Previous works that deploy vision-based sensors in drone swarms use large computa- 219

tional neural networks to extract and use the information provided by the sensors [2,3,27]. 220

In spite of this, state-of-the-art implementations mostly derive position information from 221

such sensors. They seldom get good quality velocity information that the Reynolds’ model 222

requires. References [2,3] offer alternatives to the Reynolds’ model by employing a rigorous 223

mathematically-derived flocking algorithm that is based on the Laplace’s equation – it 224

relies on large convolutional neural networks (CNNs) for navigation in environments with 225

obstacles. 226

For all the work which have been done in this area, most of them use machine learning 227

method to process images generated from a vision camera or use some other sensors to 228

detect the distance and track other agents or obstacles, which is overhead for a drone for 229

using multiple sensors or heavy computation [28]. And the papers which have used depth 230

map are meant for specific application like flood level monitoring or processing depth map 231

with Bayesian technique [29,30]. Our SmrtSwarm provides an efficient way of processing 232

images without using any extra sensors or any machine learning methods to provide a 233

distance of objects nearby to drones and in addition to detecting the objects it also tracks 234

the agent without requiring any extra hardware/software implementation. 235

A brief comparison of related work is shown in Table 1. The conclusions that can be 236

derived from this table and this section are as follows. 237

Insights:

1 Both leader-follower and self-organizing swarming have their own benefits and
drawbacks; we combine the best of both to create a hybrid swarming model that
can work in environments with and without GPS signals.

2 Existing works have one or more of the following limitations: they rely on GPS
signals, they do not account for the presence of obstacles, they do not operate in
three-dimensional space, they rely on communication between swarm members
and they use large CNNs that overwhelm the computational capacity of drones.
SmrtSwarm does not suffer from any of these limitations.

3 Vision-based sensors such as stereo-cameras can be utilized for computing the
positions and velocities of other drones in the vicinity. Using large CNNs for getting
velocity or depth information from a 3D depth map of the environment is not a
feasible idea. Drones have very limited on-board processing resources – there is
thus a need to create bespoke depth-map processing algorithms that are simple and
fast. They should easily be able to run on popular embedded boards.

238

Table 1. A comparison of related work

Work Year
Flock’s characteristics Environment

Sensor used AlgorithmLeader- Self- GPS- Existence of
Follower organized denied obstacles

Eversham et al. [8] 2011 × X × × GPS -
Blomqvist et al. [10] 2012 × X × X GPS -
Barksten et al. [31] 2013 × X × × GPS -
Walker et al. [23] 2014 X × X X Distance-based -
Virágh et al. [32] 2014 × X × × GPS -
Bhowmick et al. [22] 2016 X × × × GPS -
Braga et al. [6] 2016 × X × × GPS -
Schilling et al. [27] 2019 × X X × Vision-based ML-based
Zheng et al. [24] 2020 X X × × GPS -
Schilling et al. [3] 2021 × X X × Vision-based ML-based
Chen et al. [25] 2022 × X X × Distance-based -
Schilling et al. [2] 2022 × X X × Vision-based ML-based
SmrtSwarm 2023 X X X X Vision-based Traditional CV

Version September 11, 2023 submitted to Drones 7 of 23

3. Materials and Methods 239

3.1. SmrtSwarm in GPS-aided Environments 240

Our swarming model is based on the conventional Reynolds’ model that incorporates 241

the leader-follower behavior. In our implementation, each drone in the swarm considers all 242

other drones to be its relevant neighbors even though this is not strictly necessary in larger 243

settings. To improve the swarm’s coordination and robustness, we suggest a few more 244

novel swarming rules. The proposed rules are named 1 Migration, 2 Obstacle avoidance, 245

and 3 Confinement. Note that when working in a GPS-aided setting, every swarm member 246

is aware of its own position parameters, velocity, and tag, which are broadcasted to the 247

other members. All swarming rules in the GPS-aided setting rely on this information. 248

Finally, the weighted sum of all the vectors generated by the newly introduced rules 249

and the fundamental Reynolds’ rules are used to calculate the final velocity assigned to the 250

drone. 251

The description, implementation and mathematical representation of the rules are 252

shown next. The mathematical representation is designed for a drone swarm having n + 1 253

drones where one drone is the leader, and the remaining n drones are its followers. The 254

mathematical notations are shown in Table 2. 255

Table 2. Glossary

Symbol Meaning
~vi , ~xi velocity and position of the ith drone, respectively
~xL, ~zj position of the leader drone and of the jth obstacle, respectively
δ radius of the confined area around the leader
rc, rs, ra, weights of the cohesion, separation, alignment, migration, confinement,
rm, rct, roa and obstacle avoidance rules, respectively in the final velocity of the drone
~vc, ~vs, ~va, cohesion, separation, alignment, migration,
~vm, ~vct, ~voa confinement, and obstacle avoidance vector, respectively

3.1.1. New Rule: Migration Rule 256

The integration of the Migration rule within SmrtSwarm enhances the functionality 257

of our leader-follower-based model. In a leader-follower-based model, the leader drone 258

assumes complete trust from the follower drones, compelling them to faithfully adhere to 259

its chosen path [1,6,9]. By introducing this novel rule, we address the challenges associated 260

with coordinating a cohesive and goal-oriented flock. 261

The essence of the Migration rule lies in its ability to facilitate the migration of follower 262

drones towards the leader drone, thereby ensuring synchronized movement within the 263

swarm (see Figure 3(a)). The fundamental objective is to eliminate deviations from the 264

intended goal, as only the leader possesses the knowledge of the optimal route required to 265

reach the destination. This strategic alignment guarantees that each member of the flock 266

remains focused and informed throughout the journey. 267

The migration vector is the directional vector from a given drone to the leader drone, 268

which can be calculated by subtracting the position vectors of the respective drones. The 269

rule is mathematically represented in Equation 2. 270

~vm = ~xL − ~xi (2)

3.1.2. New Rule: Obstacle Avoidance Rule 271

In real-world scenarios, the presence of obstacles, such as trees, buildings, poles, 272

and other objects, poses an alarming challenge for drone swarms [33–35]. To tackle this 273

challenge, we propose the inclusion of a new rule known as the Obstacle Avoidance rule 274

in the SmrtSwarm model. Fundamental to our approach is the deployment of advanced 275

distance sensors [36] on each drone within the swarm. These sensors can encompass either 276

vision-based or infrared (IR) technology, providing the capability to detect obstacles within 277

the environment. We carefully select and integrate these sensors, ensuring their suitability 278

for obstacle detection tasks and their seamless integration with the overall swarm system. 279

Version September 11, 2023 submitted to Drones 8 of 23

We devise an obstacle avoidance rule that guides drones in creating new flight paths 280

devoid of obstacles. Central to this rule is the fundamental directive for each member of 281

the swarm to navigate in a direction away from the detected obstacle (refer to Figure 3(b)). 282

However, we go beyond mere directional guidance. To enhance our obstacle avoidance 283

strategy, we design the magnitude of the repulsive force in proportion to the inverse 284

distance between the drone and the obstacle. This approach ensures that the repulsive 285

force exerted along the line connecting the drone’s center and the obstacle increases as the 286

proximity to the obstacle decreases. This magnitude adjustment maximizes the likelihood 287

of successfully steering the drones away from potential collisions and obstructions. 288

Our approach to obstacle detection and avoidance showcases our awareness of the 289

real-world challenges faced by drone swarms. By integrating sensors and formulating 290

an effective obstacle avoidance rule, we aim to ensure the safe navigation and successful 291

completion of the swarm’s mission even in the presence of obstacles. 292

Equation 3 shows the mathematical representation of this rule. It takes multiple 293

obstacles into account. 294

~voa = −
n

∑
j=1

(~zj/|~xi − ~zj|) (3)

3.1.3. New Rule: Confinement Rule 295

The obstacle avoidance approach described in Section 3.1.2 may introduce potential 296

issues where certain members of the swarm diverge from the rest of the group while 297

avoiding obstacles. Furthermore, follower drones may surpass leader drones due to 298

prolonged exposure to these repulsive forces. To mitigate these concerns, we improve the 299

suggested model by drawing ideas from the Olfati-Saber flocking model [13]. 300

The Olfati-Saber model introduces the concept of a confinement area, which acts as a 301

protective boundary surrounding the swarm, ensuring that no member, or drone, ventures 302

outside of it. In our approach, we adopt a similar concept by defining a confined area 303

around the leader drone. This confinement area serves as a virtual enclosure, preventing any 304

subset of the flock from detaching or straying away from the main group (see Figure 3(c)). 305

According to the confinement rule, if any drone attempts to move outside the confine- 306

ment area, a force is exerted to redirect it toward the leader drone. This redirection can 307

be determined by subtracting the position vectors of the leader and the respective drone. 308

The magnitude of this force is directly proportional to the extent to which the drone has 309

deviated from the restricted area. 310

This confinement rule generates a non-zero vector only when a drone is outside the 311

confinement zone, which is represented by a sphere with a radius of δ centered around the 312

leader drone. When a member drone strays beyond this region, the confinement force acts 313

to guide it back toward the leader, ensuring the cohesion and integrity of the flock. 314

By incorporating this confinement rule, we address the potential problem of swarm 315

detachment and promote a collective behavior that preserves the cohesion and interdepen- 316

dence of the flock. The confinement force acts as a guiding mechanism, reinforcing the 317

importance of staying within the predefined confinement area. This enhancement enhances 318

the overall efficiency and coordination of the swarm, ensuring that no member drones 319

deviate too far from the rest of the group. 320

Equation 4 provides the mathematical representation of the rule. 321

~vct = −((~xi − ~xL) ∗max(0, |~xi − ~xL| − δ))/|~xi − ~xL| (4)

Up till now, we have discussed the proposed flocking rules. Since SmrtSwarm com- 322

bines these proposed rules with the basic Reynolds’ flocking rules and Section 2.1.1 only 323

provides a brief description of the basic flocking rules, we provide their implementation 324

details here. 325

Version September 11, 2023 submitted to Drones 9 of 23

3.1.4. Old Rule: Cohesion Rule 326

The cohesion vector (part of the original Reynolds’ model) tries to move the drone 327

towards the swarm’s centroid. So, we need a vector pointing in that direction. We calculate 328

this vector by averaging the neighboring drones’ position vectors. Equation 5 provides the 329

mathematical representation for this rule. 330

~vc =
n

∑
j=1

(~xj/n) (5)

3.1.5. Old Rule: Separation Rule 331

The separation vector tries to push the drone away from the neighboring drones; hence 332

a repulsive force needs to act between them along the line joining them. The direction 333

of this force is from the neighbor towards the reference drone, and the magnitude of it is 334

inversely proportional to the distance between the reference drone and the neighboring 335

drone. The rule can be mathematically represented as Equation 6. 336

~vs =
n

∑
j=1

(~xi − ~xj)/|~xi − ~xj|2 (6)

3.1.6. Old Rule: Alignment Rule 337

The alignment vector tries to move the drone in the direction of the movement of the 338

swarm. We can get the direction by taking the average of the velocities of all the drones in 339

the swarm and then moving the reference drone with that velocity. Equation 7 provides the 340

mathematical representation for this rule. 341

~va =
n

∑
j=1

(~vj/n) (7)

3.1.7. The Final Velocity 342

The final velocity ~Vf of a drone after incorporating all these rules is shown in Equa- 343

tion 8. Here, rm, roa, and rct, rc, rs and ra are the respective weights of these rules used in 344

calculating ~Vf . We are basically computing a linear weighted sum. 345

~Vf = rc ∗ ~vc + rs ∗ ~vs + ra ∗ ~va + rm ∗ ~vm + roa ∗ ~voa + rct ∗ ~vct (8)

 v m

Leader

(a)

voa

Obstacle

Sensor Rays

(b)

v

vct

ct

Confinement Boundary

Leader

(c)

Figure 3. Proposed flocking rules in a GPS-aided environment: (a) Migration, (b) Obstacle avoidance,
(c) Confinement. Here, ~vm, ~vct, and ~voa are migration, confinement, and obstacle avoidance vectors,
respectively.

Version September 11, 2023 submitted to Drones 10 of 23

Insights:
1 SmrtSwarm is a self-organizing model with a leader-follower behavior, increasing
coordination and navigation within the drone swarm as opposed to the conventional
Reynolds’ flocking model.
2 We introduce a migration rule in the proposed flocking model, guiding follower
drones to migrate toward the leader.
3 A confinement rule is implemented, preventing subsets of the flock from
detaching and maintaining overall cohesion.
4 Obstacle avoidance is also addressed by equipping drones with sensors and
implementing a rule that directs them away from detected obstacles.
5 For getting a balanced influence of various behavior, we use the weighted sum to
integrate the effects of the proposed rules with the three fundamental Reynolds’
principles.

346

3.2. SmrtSwarm in GPS-denied Environments 347

The model we propose in Section 3.1 requires the presence of a GPS while swarming 348

and also some communication regarding the drones’ coordinates. The GPS signal helps 349

each drone communicate its tags, velocity and position with the other members of the 350

swarm so that every drone can decide its motion accordingly. But GPS signal reception 351

is not always possible in the real world such as indoor environments, dense urban areas, 352

dense forests and security-sensitive environments and places where there is a possibility of 353

deliberate signal jamming [14–16]. Hence we need to adopt SmrtSwarm for GPS-denied 354

regions. For this, we use a computer vision-based approach. We deploy a stereo camera 355

on the drones to capture a specialized image of the environment that we shall refer to as 356

the depth map. We need to then use a lightweight image processing approach to get the 357

required information about the drones present in the field of view. We need to take this fact 358

into account that ML-based techniques are computationally expensive (refer to Section 2). 359

Hence, we need to look at either ultra-fast ML techniques or fast conventional algorithms. 360

We were not able to find good candidate algorithms in the former class, hence, we opted 361

for the latter class (i.e., conventional computer vision (CV) algorithms). 362

A depth map provides a pixel-wise estimation of the depth or distance of objects 363

from a particular viewpoint. It is typically represented as a 2D image, where each pixel 364

corresponds to a depth value indicating the distance from the camera or the viewpoint. 365

We use a bespoke algorithm on the produced depth map to get the neighboring drones’ 366

positions, velocities and tags. 367

(a) (b)

Figure 4. (a) Head and Lamp Image, (b) Depth map of the image. (adapted from the Tsukuba Stereo
Vision dataset [37])

Version September 11, 2023 submitted to Drones 11 of 23

3.2.1. Object Detection in the Depth Map 368

We begin by computing the depth map of the current scene. One example of a depth 369

map is shown in Figure 4. We make the following observations from the depth map: 370

1 A depth map is a 2D matrix, where the value in each cell represents the depth of the 371

relevant part of the object corresponding to it. 372

2 The objects seen on the depth map form a cluster of pixels with similar pixel values. On 373

the boundaries of these clusters, we can find a sudden change in pixel values. 374

3 The values of the pixels belonging to objects far away from the reference point are very 375

high. 376

We exploit these findings to detect the objects in the depth map. For the purpose of 377

describing the object detection algorithm, we use one drone from the swarm as a reference 378

drone. The suggested approach consists of two steps: 1) detecting objects in the depth map, 379

and 2) determining if the identified objects are drones or obstacles. For the first step, we 380

propose a depth-first search (DFS)-based approach. We observe that all objects which are in 381

front the reference drone form clusters in the 2D matrix corresponding to the depth map. To 382

identify all the pixels that belong to a particular cluster(object), we traverse the 2D matrix 383

(represented as a graph) using DFS. We ignore objects (clusters) that are far away from 384

the reference point because they will not influence the movement of the drone. We also 385

ignore very small clusters because they most likely do not correspond to drones. Both these 386

behaviors are controlled by threshold parameters. The exact values of these two thresholds 387

are given in Section 4.3.2. We start by identifying each cluster that is present in the depth 388

map. These clusters might represent drones as well as obstacles. So, the next step is to 389

determine whether they are drones or regular obstacles. They have different characteristics 390

as described in Section 4.3.2. 391

The identification of objects is not enough because the swarming model requires a 392

few more details such as the position and depth for applying the proposed rules. The 393

drone’s depth is determined by taking the pixel with the lowest value in the cluster that 394

represents it. The component of the drone closest to the reference drone corresponds to 395

the lowest pixel value. Additionally, to find its position, we compute the center of the 396

drone by averaging the coordinates of all the pixels forming its cluster. For obstacles, we 397

create a bounding box – a rectangular shape encompassing all the pixels in the cluster. 398

This rectangle provides us with the obstacle’s dimensions, and its depth is determined by 399

the pixel with the lowest value within the cluster. By incorporating this data, we exert an 400

obstacle avoidance force on the reference drone, ensuring it steers clear of the surrounding 401

obstacle. 402

3.2.2. Object Tracking 403

We need the velocities of the neighboring drones to calculate the alignment and 404

confinement vectors; we need to know where a drone was in the previous and current 405

frames. For tracking a drone, we associate it with a unique tag. Tagging also handles the 406

problem of identifying objects that leave or newly enter the field of view (FoV) of a drone. 407

The tagging of the drones uses the insight that because the drones move slowly, the 408

difference between their positions in successive frames will be less than a threshold (the 409

exact value is mentioned in Section 4.3.2). The threshold depends on the cluster size repre- 410

senting the drone in the depth map. Since every drone in the swarm is of the same size, the 411

neighbor drone closest to the reference drone has a larger cluster in the depth map and will 412

move more than the others. Therefore, the threshold for movement in successive frames 413

for this drone should reflect this fact. All of the drones’ positions within the FoV are kept in 414

lists. We maintain two such lists, one for the previous frame and the other for the current 415

frame. While traversing these lists, the following cases may happen: 416

417

1 A pair of positions in the list for the previous and current frames exist such that the 418

difference between them is less than the threshold. Then we conclude that these are the 419

positions of the same drone, and the drone is given the same tag in the current frame as it 420

Version September 11, 2023 submitted to Drones 12 of 23

was in the previous frame. 421

2 If a position in the list for the previous frame exists for which we are not able to find 422

such a match (described in point 1) in the list for the current frame, then that position refers 423

to a drone that recently left the FoV, and we do not issue a tag. In other words, if a tag 424

found in the previous frame is not present in the current frame, then that drone has left the 425

FoV of the reference drone. 426

3 If a position in the list of the current frame exists for which we cannot find such a match 427

in the list of the previous frame, then that position refers to a newly appeared drone in the 428

FoV. It needs to be assigned a new tag. 429

The tags are initially assigned in ascending order. As more drones continue to enter 430

the field of view, we increment a counter and assign the new value as the new drone’s 431

tag. In this way, we track the drones. We assume that there are no moving objects in the 432

environments except for swarm members. In other words, this paper only considers static 433

obstacles; which do not need to be tracked. After the completion of the steps mentioned 434

in Sections 3.2.1 and 3.2.2 for object detection and tracking, we gather all the required 435

information about the neighborhood and obstacles in the environment. 436

We still need a notional leader drone here. It is the drone that is at the front of the 437

swarm and cannot see any drones in its front-facing camera (towards the direction of 438

motion). It basically knows where to go. It either has a GPS or using visual guidance it 439

knows the path. The rest either implicitly follow it or have their own guidance system, 440

which implies that they consider the drone in front of them as their leader and follow it or 441

they can independently decide their paths. For instance, if the drones are tracking wildlife 442

and they can see a pack of deer, then they can all decide (independent of each other) to 443

follow the pack and not the leader. All the swarming rules are still required to ensure that 444

they behave as a swarm. It turns out that we need to make some alterations to the Reynolds’ 445

rules and also propose a new rule for this setting. 446

3.2.3. Flocking Rules in GPS-denied Environments 447

All the flocking rules proposed for a GPS-aided environment in Section 3.1 are appli- 448

cable to this case except one – the migration rule. Since all drones have identical physical 449

characteristics and, as a result, have the same kind of depth map projection, it is impossible 450

to distinguish between a leader and a follower by looking at the depth map. This is why 451

we skip the migration rule, which makes follower drones move towards the leader. 452

All the rules, which use only the position information of the drones forming the swarm 453

and the obstacles in the environment, are implemented in the same way as mentioned for 454

GPS-aided environments (refer to Section 3.1). The rules falling into this category are the 455

Cohesion, Separation, and Obstacle avoidance rules. The Alignment and Confinement 456

rules use velocity and tags, respectively. The algorithmic implementation of these rules in a 457

GPS-denied environment needs to slightly change. This is because finding the velocities 458

and tags is more complex than deducing the positions. 459

3.2.3.1 Alignment Rule for GPS denied environments 460

According to this rule, a drone needs to move in the direction given by the average 461

velocity of drones present in its field of view. We store the position vectors of all the drones 462

in the FoV for the previous and current frames in two lists. We store the tags assigned to 463

drones for both frames too. To find the velocity of a drone, we subtract the position vectors 464

of the current and previous frames. We can find the velocity of only that drone, which is 465

present in both the current and previous frames. The drones which newly appeared in the 466

FoV or recently left the FoV will not contribute to this. We then need to move the reference 467

drone in the same direction as the mean average velocity (note: it is a vector). The complete 468

flow is shown in Algorithm 1. 469

Version September 11, 2023 submitted to Drones 13 of 23

Algorithm 1: Alignment

1 Function Alignment():
2 ~va ← 0
3 counter ← 0
4 valNeighbours← 0 /* Initialize the count of valid neighbors */
5 while counter < currPositions.size do

/* Get the current position and tag of the drone */
6 currPos← currPositions[counter]
7 currTag← currTags[counter]
8 i← 0 /* Initialize the inner loop counter */
9 while i < prevTags.size do

10 if currTag == prevTags[i] then
11 prevPos← prevPositions[i] /* Get the previous position of the

corresponding drone */
12 ~va = ~va + (currPos− prevPos) /* Add the difference of

positions, i.e., their velocity in a unit time frame to the
alignment vector */

13 valNeighbours = valNeighbours + 1
14 break
15 end
16 i = i + 1 /* Move to the next tag in prevTags list */
17 end
18 counter ← counter + 1 /* Move to the next drone */
19 end
20 ~va ← ~va/valNeighbours /* Normalize the alignment vector */
21 return ~va

3.2.3.2 Confinement Rule for GPS denied environments 470

In a GPS-denied setting, a drone is said to be out of the confined area if no other drones 471

are within its field of view. This can easily be found because we maintain a list of position 472

vectors of all such drones (refer to Section 3.2.3.1). If a drone is outside the confined area, 473

we assign it a velocity in the opposite direction of its original movement or current velocity, 474

known as the confinement velocity. The drone will continue in this direction until it detects 475

a neighbor within its field of view. We cannot, however, just let the drone continue because 476

it may not find any drones even on this route. To prevent this, we limit the number of 477

frames (κ) for which the drone can move in the opposite direction. If, within this limit, 478

the drone does not encounter any drone within its field of view, it returns to its original 479

direction and moves 2κ steps, then it moves 4κ steps in the opposite direction, so on and so 480

forth, until it sees other drones. Algorithm 2 shows the complete implementation. In our 481

Version September 11, 2023 submitted to Drones 14 of 23

exhaustive simulations, we never had a case where a drone got lost even in an environment 482

with obstacles. 483

Algorithm 2: Confinement

1 Function Confinement():
2 ~vct ← 0

// If there are neighboring drones in the FoV
3 if currPositions.size > 0 then
4 con f inementCounter = 0
5 limit = κ

6 end
7 else

/* Set the confinement vector opposite to the previous velocity */
8 ~vct ← (prevVelocity.x, prevVelocity.y,−1 ∗ prevVelocity.z)
9 con f inementCounter+ = 1

/* If the confinement counter exceeds the limit */
10 if con f inementCounter > limit then
11 limit = limit× 2 /* update the limit */
12 end
13 end
14 return ~vct

484

vc

x

x3

2

1x

FO
V

(a)

 s v

 1 x x

 x 2

 3

 FO
V

(b)

v

v

v

v
FO
V

1
2

3

a

(c)

v

Obstacle

oa

(d)

Figure 5. Proposed flocking rules in a GPS-denied environment: (a) Cohesion, (b) Separation, (c)
Alignment, (d) Obstacle avoidance. Here, FoV represents the field of view of the reference drone. ~xi

and ~vi are the position and velocity of the ith drone. ~vc, ~vs, ~va, and ~voa represent cohesion, separation,
alignment, and obstacle avoidance vectors.

3.3. Workflow of the Proposed Model 485

Figure 6 shows the complete workflow of SmrtSwarm in a GPS-denied environment. 486

For each frame, we compute a depth map, detect all the objects within it, and then compute 487

their relative positions. We track the drones using information from the previous frame, 488

and then compute the velocity of all the drones, and their tags. This information is used to 489

compute all the velocities (yielded by the different rules), and the final target velocity is a 490

weighted sum of all the individual velocities (similar to Equation 8). 491

Start Depth map
detection

Neighbor drones
Computation of
relative positions

of drones
Tracking the
drones

Velocity
computation

Velocity
Asssignmentcomputation

Figure 6. Workflow of SmrtSwarm in GPS-denied environments

Version September 11, 2023 submitted to Drones 15 of 23

Insights:
1 In this model, we address the limitations of GPS signal reception in real-world
environments and propose a computer vision-based approach using cameras and
depth maps to overcome this limitation.
2 The migration rule from the GPS-aided model needs to be excluded in a GPS-
denied environment due to its inability to distinguish between leaders and followers
based on depth maps.
3 Drones can get lost in a GPS-denied environment. Thus the Confinement rule
needs to have an element of searching as well that will allow a drone to rejoin the
swarm if it temporarily moves out.

492

4. Results and Analysis 493

4.1. Simulation Setup 494

We implement SmrtSwarm on Unity, a popular cross-platform game-development 495

engine. It has a lot of features and pre-built elements for creating custom environments. We 496

added our code in C# for simulating a drone swarm [38,39] to it. We also experimented with 497

the Unreal engine [40] but found it to be far slower than Unity, especially when the number 498

of drones in the flock is increased. Other than visual effects, it was not adding any additional 499

value. Hence, we opted for Unity version 2020.3.40f1 for simulating our system (similar 500

to [38]). We use C# version 11.0 [41] for implementing the algorithms. A few simulation 501

environments were created using Unity assets, and few were purchased from the Unity 502

store, which contains urban settings with both low and high-rise towers and buildings [42, 503

43]. The configuration details of the simulator are shown in Table 3. The simulated 504

scenes and the drones placement are shown in Figure 7. In the literature on drones, using 505

simulators for studying the behavior of large drone swarms is the standard practice [2,3]. 506

Given that we don’t have any other direct competitor that implements swarming with 507

obstacle avoidance in GPS-aided and GPS-denied environments (see Table 1), we didn’t 508

perceive the need to implement any state-of-the-art algorithm and compare the results 509

with our paper.

Table 3. Platform configuration

Parameter Value
Simulator Unity 2020.3.40f1
Operating System Windows 10
Main Memory 1 TB
RAM 32 GB
CPU Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz
GPU NVIDIA Ge-Force GT 710
Video Memory 2 GB 510

(a) (b)

Figure 7. (a) Simulation scene, (b) Drone placement.4.2. Setting the Hyperparameters (Coefficients in the Equations) 511

Recall that in Equations 8 in Section 3, we had assigned weights to each component 512

velocity vector for computing the final velocity vector. In this section, we shall evaluate the 513

impact of these weights on drone swarming and find their best possible values. 514

Version September 11, 2023 submitted to Drones 16 of 23

To find the optimum value of each hyperparameter, we first assigned equal weights 515

to each hyperparameter and then observed, which force is acting more aggressively, and 516

which is not. We then fixed all hyperparameters except one and tried to discover its 517

optimum value (create a Nash equilibrium). For instance, when determining rs, we tried to 518

determine how quickly drones are moving apart from one another. The optimum value 519

was achieved when they moved at such a speed that they did not collide yet still remained 520

in the swarm. We then set this hyperparameter around that value and modified other 521

hyperparameters one by one. We are basically computing a Nash equilibrium here, where 522

the parameters are the players and the performance is the utility function. 523

We ran this experiment several times and tried many different parameter perturbations. 524

For each experiment, we assessed its performance, which is defined as follows. It is a tuple 525

comprising an integer (#collisions) and a Boolean value (whether any drone escaped the 526

confinement zone). 527

Tables 4 and 5 show the obtained results for a scene with an enabled and disabled 528

GPS signal, respectively. Note that in our simulations we did not observe any collisions 529

because the hyperparameters were chosen correctly. Specifically, we make the following 530

observations from the results: 531

1 Experiments 5 and 9 show the base set of values of the weights for the GPS-aided 532

and GPS-denied environments, respectively. We set these values as the default for the 533

subsequent experiments. 534

2 For the best case, the rule contributing the most to the final velocity is Cohesion. Even 535

though the values of rm, rct, and roa are much lower than rc, but the overall performance is 536

quite sensitive to these values – this is also observed in Section 4.4.1. 537

Table 4. Effect of the weights on the overall performance for a GPS-aided environment

Experiment Weights Performance
No. rc rs ra rm rct roa #Collisions Confined

1 10 1.0 1.0 1.0 2 1.0 3 ×
2 60 1.1 1.5 1.0 15 5.0 5 X
3 75 1.2 1.0 1.1 25 5.0 3 X
4 77 1.2 1.0 1.1 21 5.0 1 ×
5 77 1.2 1.0 1.1 21 5.0 0 X
6 78 1.0 1.2 1.0 24 4.9 1 X
7 80 1.1 1.0 1.2 23 5.1 2 X
8 80 11.0 1.0 1.2 23 5.1 2 X
9 81 1.0 5.5 1.0 25 4.8 3 X

10 81 1.0 1.5 4.0 25 4.8 1 X
11 82 1.0 1.2 1.0 10 4.9 4 ×
12 100 1.1 1.0 1.0 10 10.0 5 X

Table 5. Effect of the weights on the overall performance for a GPS-denied environment

Experiment Weights Performance
No. rc rs ra rct roa #Collisions Confined

1 10 1.0 1.0 1 1 3 ×
2 100 5.0 1.5 5 1 4 X
3 300 8.0 1.0 1 1 4 X
4 500 6.0 1.0 1 1 5 X
5 800 6.5 1.2 1 1 2 X
6 750 5.5 1.0 1 1 1 X
7 820 6.1 1.0 1 1 3 ×
8 800 6.2 1.5 1 1 1 X
9 750 6.0 1.1 1 1 0 X

10 800 6.0 0.9 1 1 1 X
11 810 6.2 1.2 1 5 0 ×
12 800 6.2 1.0 3 1 1 ×

4.3. Performance Analysis 538

To evaluate the performance of the proposed model, SmrtSwarm, in terms of the 539

achieved flocking behavior, we run the model in the simulated environment shown in 540

Figure 7 with GPS enabled as well as disabled. We used a 10-drone swarm to begin with. As 541

mentioned in Section 3.1.3, for a GPS-aided environment, we define a spherical boundary 542

Version September 11, 2023 submitted to Drones 17 of 23

(radius= 30 meters in the x, y, and z-direction of Unity’s coordinate system) around the 543

leader drone as the confinement zone. Whereas for GPS-denied environments, the field 544

of view (FoV) of the drone becomes the confinement area. In our experiments, we use 545

two cameras on all the drones, each with a field of view of 60◦. Hence, the total FoV is 546

120◦ (similar to [44]). The swarm size, the simulation environment, the total FoV, and the 547

confinement zone are the same for every experiment unless stated otherwise. 548

4.3.1. Swarming in a GPS-aided Environment 549

We use two types of tags in SmrtSwarm: Leader and Follower. All the follower drones 550

get the Follower tag and the leader gets the Leader tag. The communication between drones 551

is simulated using Unity’s built-in shared variables. We have uploaded a video of our 552

simulations, which can be accessed using this link [45]. 553

4.3.2. Swarming in a GPS-denied Environment 554

In the real world, stereo cameras can directly compute the depth values of each pixel 555

in the FoV. However, in Unity, the depth values (from simulated cameras) are stored in a 556

z-buffer called a depth buffer. This buffer is stored in the GPU memory and is not directly 557

accessible. We wrote a shader program using HLSL(High-Level Shader Language) to read 558

the depth values [46]. The shader program gives the depth map as a 256× 256 2D matrix. 559

They lie in the range of 0 to 1. We needed to post-process the data to transform them 560

to match the camera’s coordinate system. Furthermore, we also considered the camera’s 561

viewing range, which is 40 in the x, y, and z-direction, and converted all normalized 562

depth values to actual distances (in meters). In Figure 8, a few depth map illustrations are 563

displayed. We make the following observations from the depth maps: 564

1 The pixels within an object have similar depth values. 565

2 We observe that clusters corresponding to obstacles are much larger than that of drones 566

and at least have 2000 pixels. This defines a threshold for us – we use this to designate 567

a cluster as an obstacle. Furthermore, obstacles being static objects, often start from the 568

bottom of the FoV. 569

3 Also, there are a few clusters that correspond to random noise (far-away objects), which 570

can be discarded if the total number of pixels forming a cluster is less than 8. 571

4 As clear from Figure 8, some of the objects in the depth map may be occluded. Due 572

to the fact that all the drones follow the flocking principles, there must be some distance 573

between them, and as a result, a significant difference will be present in their depth values. 574

This allows us to readily filter out each cluster even in the presence of occlusion. 575

(a) (b) (c) (d)

Figure 8. Depth maps of frames with and without obstacles. (a) Frame 1, (b) Depth map of frame 1,
(c) Frame 2, (d) Depth map of frame 2.

We tried to design a proof technique for proving that our flocking rules will always 576

maintain a coherent swarm and avoid collisions in all kinds of environments, regardless 577

of obstacles. This is on-going work and our results are not fully mature yet. We exten- 578

sively searched the web, but we could not find any existing mathematical technique that 579

similar papers have used. Research in drone-swarming is validated using exhaustive 580

experimentation as we have done: references [47–53]. 581

Version September 11, 2023 submitted to Drones 18 of 23

4.4. Sensitivity Analysis 582

To check whether the proposed model is robust enough, we run the model in four 583

different simulation environments (refer to Figure 9). These environments cover various 584

lighting conditions, obstacle types, and relative positions of drones. The resulting swarm 585

movement for all these cases is shown in an uploaded video [45]. We tune the weights 586

according to the scenes and list their final values in Tables 6 and 7. We make the following 587

observations from the results: 588

589

1 The weights are almost the same for all the environments. 590

2 The model works well for almost all the environments if the value of the 6-tuple 〈rc, rs, 591

ra, rm, rct, roa〉 = 〈80, 1, 1, 1, 25, 5〉 for a GPS-aided environment. 592

3 For a GPS-denied environment, the optimal value of the weight tuple is 〈750, 6, 1, 1, 1〉. 593

(a) (b) (c) (d)

Figure 9. Simulation environments: (a) Scene 1, (b) Scene 2, (c) Scene 3, (d) Scene 4.

Table 6. Weights for various simulation environments with GPS

Scene Weights Performance
rc rs ra rm rct roa #Collisions Confined

1 78 1.0 1.0 1.0 21 5.0 0 X
2 77 1.2 1.0 1.1 21 5.0 0 X
3 77 1.1 1.5 1.0 25 5.0 0 X
4 80 1.2 1.0 1.1 25 5.1 0 X

Table 7. Weights for various simulation environments without GPS

Scene Weights Performance
rc rs ra rct roa #Collisions Confined

1 750 6.1 1.0 1 1 0 X
2 750 6.0 1.1 1 1 0 X
3 700 6.2 1.5 1 1 0 X
4 800 6.0 1.0 1 1 0 X

4.4.1. Effect of the Proposed Rules 594

The proposed flocking rules in this paper are: Migration, Confinement, and Obstacle 595

avoidance. To check whether these rules impact the overall swarming behavior, we run 596

the model by disabling these rules individually in the simulation environment shown in 597

Figure 9(d) (check the results in the uploaded videos here [45]). We make the following 598

observations from the results: 599

600

1 As per the migration rule, the drones migrate in the direction of the leader; after disabling 601

this, the drones did not even move, and the significance of the migration force becomes 602

abundantly clear. 603

2 Without the obstacle avoidance force, drones collided with the obstacles. 604

3 In the absence of the confinement force, all of the follower drones move far ahead of 605

the leader. However, when there is a confinement force, they remain confined within a 606

boundary. 607

Version September 11, 2023 submitted to Drones 19 of 23

4.5. Scalability Analysis 608

To check the scalability of the proposed model, we vary the swarm size by keeping 609

the simulation environment fixed. When the size of our swarm increases, we increase the 610

radius (δ) of the confined region around the leader so that the swarm can cover a larger 611

area and we reduce the likelihood of a collision. However, in the case of GPS-denied 612

environments, there is no concept of a confinement zone. We tune the weights in this 613

case as well, and we list the optimal values in Tables 8 and 9. We make the following 614

observations from the results: 615

616

1 The weights are almost the same for all swarm sizes. 617

2 For the GPS-aided environment, the model works well with all the swarm sizes if the 618

weight values 〈rc, rs, ra, rm, rct, roa〉 = 〈80, 1, 1, 1, 25, 5〉. The results are in line with the 619

observations made in Section 4.4. 620

3 Similarly, for the GPS-denied environment, the optimal values of weights are the same 621

as given in Section 4.4. 622

Table 8. Weights for drone swarms of different sizes in a GPS-aided environment

Experiment Swarm Radius Weights Performance
No. size (δ) rc rs ra rm rct roa #Collisions Confined

1 5 30 81.0 1.0 1.2 1.0 25 4.8 0 X
2 7 35 79.0 1.1 1.5 1.1 25 4.7 0 X
3 8 35 80.0 1.0 1.3 1.0 22 5.0 0 X
4 10 40 79.5 1.0 1.4 1.1 24 4.8 0 X
5 12 45 80.0 1.2 1.4 1.0 23 5.0 0 X
6 15 50 79.0 1.1 1.4 1.0 24 5.0 0 X

Table 9. Weights for drone swarms of different sizes in a GPS-denied environment

Experiment Swarm Weights Performance
No. size rc rs ra rct roa #Collisions Confined

1 5 790 6.0 1 1.0 1.0 0 X
2 7 808 6.2 1.2 1.0 1.0 0 X
3 8 810 6.0 0.9 1.0 1.0 0 X
4 10 800 6.5 1.0 1.0 1.0 0 X
5 12 795 6.0 1.0 1.0 1.0 0 X
6 15 800 6.0 1.0 1.0 1.0 0 X

4.6. Real-time Performance of SmrtSwarm 623

To check the performance of the proposed model, SmrtSwarm, in a real-world en- 624

vironment, we run it on a Beaglebone Black Board [54]. Beaglebone Black is a popular 625

embedded board with an ARM Cortex-A8 processor clocked at 1GHz frequency. It also 626

has 512 MB RAM. We use Python 3.8 and GCC version 4.9.2 to implement the swarming 627

model. Table 10 shows the execution time of each step involved in the swarming model on 628

the board. We make the following observations from the results: 629

630

1 For a GPS-aided environment, all the steps have an extremely low latency (< 0.3 ms). 631

Additionally, the variance in execution times is very low (< 2%). 632

2 The previously mentioned observation (point (1)) holds true in a GPS-denied environ- 633

ment as well, except for two steps: object detection and obstacle avoidance. The maximum 634

and average latencies for these steps vary significantly across frames because these values 635

are directly proportional to the number of objects in the depth map. 636

3 The step that takes the longest (with a maximum value of ≈ 12 ms) is object detection in 637

the depth map using our algorithm. 638

4 The total latency for the GPS-aided environment is very low (< 0.5 ms). The FPS (frames 639

processed per second) can be as high as 2000 frames per second, which is orders of mag- 640

nitude more than what is required (we typically need 10-20 FPS 1for drones, which are 641

1 FPS = frames per second. 75 FPS is considered to be high given that traditional displays operate at 30 FPS.

Version September 11, 2023 submitted to Drones 20 of 23

relatively slow-moving). Even for a GPS-denied environment, the maximum frame rate 642

that can be achieved is 75 FPS (total execution time < 14 ms). 643

Table 10. Runtime (in milliseconds) breakdown of our proposed method

Steps
Environment

GPS-aided GPS-denied
Max Min Avg Max Min Avg

Object detection - - - 11.87 8.17 9.95
Cohesion 0.04 0.01 0.02 0.02 0.01 0.01
Separation 0.28 0.21 0.24 0.27 0.23 0.25
Alignment 0.01 0.01 0.01 0.02 0.01 0.01
Migration 0.01 0.01 0.01 - - -
Confinement 0.05 0.03 0.04 0.01 0.01 0.01
Obstacle avoidance 0.02 0.02 0.02 1.23 0.84 1.03
Total time 0.44 0.39 0.42 13.55 09.32 11.44

5. Conclusion 644

In this work, we proposed a leader-follower flocking model for controlling a drone 645

swarm, aiming to enhance coordination within the swarm. To achieve this, we introduced 646

three additional rules, migration, confinement, and obstacle avoidance, to the traditional 647

Reynolds’ flocking model. These rules play a crucial role in maintaining better coordination 648

and synchrony among the drones. 649

While GPS-assisted communication is effective for calculating the target velocity of 650

each drone under ideal conditions, we recognized the limitations posed by unreliable GPS 651

signals in real-world scenarios. To address this challenge, we presented a depth map- 652

based approach that allows for accurate control and coordination of nearby drones even 653

in the absence of reliable GPS signals. This alternative approach significantly enhanced 654

the swarm’s operational capabilities, enabling precise coordination and control in various 655

environments. 656

In addition to our model’s contributions to swarm coordination and overcoming GPS 657

limitations, it is essential to consider the evaluation of countermeasures and defensive 658

strategies against adversarial actions. By studying the interactions between the swarm and 659

moving adversaries, valuable insights can be gained into adversarial tactics, strategies, and 660

vulnerabilities. These insights can further guide the development of more robust defense 661

mechanisms and contribute to the creation of resilient swarm behaviors. This is a part of 662

future work. 663

Author Contributions: N.B: Conceptualization, Methodology, Software, Writing – original draft. 664

H.V.: Conceptualization, Methodology, Software, Writing – original draft. A.D.: Conceptualization, 665

Methodology, Validation, Writing – review & editing, Formal analysis. B.B.: Conceptualization, 666

Methodology, Supervision. S.S.: Conceptualization, Methodology, Validation, Formal analysis, 667

Writing – review & editing, Supervision. 668

Funding: 669

Institutional Review Board Statement: In this section, you should add the Institutional Review 670

Board Statement and approval number, if relevant to your study. You might choose to exclude this 671

statement if the study did not require ethical approval. Please note that the Editorial Office might ask 672

you for further information. Please add “The study was conducted in accordance with the Declaration 673

of Helsinki, and approved by the Institutional Review Board (or Ethics Committee) of NAME OF 674

INSTITUTE (protocol code XXX and date of approval).” for studies involving humans. OR “The 675

animal study protocol was approved by the Institutional Review Board (or Ethics Committee) of 676

NAME OF INSTITUTE (protocol code XXX and date of approval).” for studies involving animals. OR 677

“Ethical review and approval were waived for this study due to REASON (please provide a detailed 678

justification).” OR “Not applicable” for studies not involving humans or animals. 679

Data Availability Statement: 680

The source code and all simulation results are available on a GitHub repository [55]. 681

Conflicts of Interest: 682

Version September 11, 2023 submitted to Drones 21 of 23

References 683

1. Masehian, E.; Royan, M. Characteristics of and approaches to flocking in swarm robotics. In 684

Proceedings of the Applied Mechanics and Materials. Trans Tech Publ, 2016, Vol. 841, pp. 685

240–249. 686

2. Schilling, F.; Soria, E.; Floreano, D. On the scalability of vision-based drone swarms in the 687

presence of occlusions. IEEE Access 2022, 10, 28133–28146. 688

3. Schilling, F.; Schiano, F.; Floreano, D. Vision-based drone flocking in outdoor environments. 689

IEEE Robotics and Automation Letters 2021, 6, 2954–2961. 690

4. Research, G.V. Commercial Drone Market Size, Share and Trends Analysis Report By Product, By 691

Application, By End-use, By Propulsion Type, By Range, By Operating Mode, By Endurance, By 692

Region, And Segment Forecasts, 2023 - 2030. https://www.grandviewresearch.com/industry- 693

analysis/global-commercial-drones-market. [Online; accessed 2023-08-02]. 694

5. Ling, H.; Luo, H.; Chen, H.; Bai, L.; Zhu, T.; Wang, Y. Modelling and simulation of distributed 695

UAV swarm cooperative planning and perception. International Journal of Aerospace Engineering 696

2021, 2021, 1–11. 697

6. Braga, R.G.; da Silva, R.X.; Ramos, A.C. Development of a Swarming Algorithm Based on 698

Reynolds Rules to control a group of multi-rotor UAVs using ROS 2016. 699

7. Braga, R.G.; Da Silva, R.C.; Ramos, A.C.; Mora-Camino, F. Collision avoidance based on 700

reynolds rules: a case study using quadrotors. In Proceedings of the Information Technology- 701

New Generations: 14th International Conference on Information Technology. Springer, 2018, pp. 702

773–780. 703

8. Eversham, J.D.; Ruiz, V.F. Experimental analysis of the Reynolds flocking model. Paladyn 2011, 704

2, 145–155. 705

9. Reynolds, C.W. Flocks, herds and schools: A distributed behavioral model. In Proceedings of 706

the Proceedings of the 14th annual conference on Computer graphics and interactive techniques, 707

1987, pp. 25–34. 708

10. Blomqvist, O.; Bremberg, S.; Zauer, R. Mathematical modeling of flocking behavior., 2012. 709

11. Rizk, Y.; Awad, M.; Tunstel, E.W. Cooperative heterogeneous multi-robot systems: A survey. 710

ACM Computing Surveys (CSUR) 2019, 52, 1–31. 711

12. Gunnarsson, H.; Åsbrink, A. Intelligent Drone Swarms: Motion planning and safe collision 712

avoidance control of autonomous drone swarms, 2022. 713

13. Olfati-Saber, R. Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE 714

Transactions on automatic control 2006, 51, 401–420. 715

14. Wang, T.; Wang, C.; Liang, J.; Chen, Y.; Zhang, Y. Vision-aided inertial navigation for small 716

unmanned aerial vehicles in GPS-denied environments. International Journal of Advanced Robotic 717

Systems 2013, 10, 276. 718

15. Lu, Z.; Liu, F.; Lin, X. Vision-based localization methods under GPS-denied conditions. arXiv 719

preprint arXiv:2211.11988 2022. 720

16. Balamurugan, G.; Valarmathi, J.; Naidu, V. Survey on UAV navigation in GPS denied environ- 721

ments. In Proceedings of the 2016 International conference on signal processing, communication, 722

power and embedded system (SCOPES). IEEE, 2016, pp. 198–204. 723

17. Morihiro, K.; Isokawa, T.; Nishimura, H.; Matsui, N. Characteristics of flocking behavior model 724

by reinforcement learning scheme. In Proceedings of the 2006 SICE-ICASE International Joint 725

Conference. IEEE, 2006, pp. 4551–4556. 726

18. Bragaa, R.G.; da Silva, R.C.; Ramosa, A.C. Development of a Swarming Algorithm Based on 727

Reynolds Rules to control a group of multi-rotor UAVs using ROS. 728

19. Fine, B.T.; Shell, D.A. Unifying microscopic flocking motion models for virtual, robotic, and 729

biological flock members. Autonomous Robots 2013, 35, 195–219. 730

20. Turgut, A.E.; Çelikkanat, H.; Gökçe, F.; Şahin, E. Self-organized flocking in mobile robot swarms. 731

Swarm Intelligence 2008, 2, 97–120. 732

21. Gu, D.; Wang, Z. Leader–Follower Flocking: Algorithms and Experiments. IEEE Transactions on 733

Control Systems Technology 2009, 17, 1211–1219. https://doi.org/10.1109/TCST.2008.2009461. 734

22. Bhowmick, C.; Behera, L.; Shukla, A.; Karki, H. Flocking control of multi-agent system with 735

leader-follower architecture using consensus based estimated flocking center. In Proceedings of 736

the IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2016, 737

pp. 166–171. 738

23. Walker, P.; Amraii, S.A.; Lewis, M.; Chakraborty, N.; Sycara, K. Control of swarms with multiple 739

leader agents. In Proceedings of the 2014 IEEE International Conference on Systems, Man, and 740

Cybernetics (SMC). IEEE, 2014, pp. 3567–3572. 741

https://www.grandviewresearch.com/industry-analysis/global-commercial-drones-market
https://www.grandviewresearch.com/industry-analysis/global-commercial-drones-market
https://www.grandviewresearch.com/industry-analysis/global-commercial-drones-market
https://doi.org/10.1109/TCST.2008.2009461

Version September 11, 2023 submitted to Drones 22 of 23

24. Zheng, H.; Panerati, J.; Beltrame, G.; Prorok, A. An adversarial approach to private flocking in 742

mobile robot teams. IEEE Robotics and Automation Letters 2020, 5, 1009–1016. 743

25. Chen, S.; Yin, D.; Niu, Y. A survey of robot swarms’ relative localization method. Sensors 2022, 744

22, 4424. 745

26. Haller, N.K.; Lind, O.; Steinlechner, S.; Kelber, A. Stimulus motion improves spatial contrast 746

sensitivity in budgerigars (Melopsittacus undulatus). Vision Research 2014, 102, 19–25. 747

27. Schilling, F.; Lecoeur, J.; Schiano, F.; Floreano, D. Learning vision-based flight in drone swarms 748

by imitation. IEEE Robotics and Automation Letters 2019, 4, 4523–4530. 749

28. Zhou, X.; Zhu, J.; Zhou, H.; Xu, C.; Gao, F. Ego-swarm: A fully autonomous and decentral- 750

ized quadrotor swarm system in cluttered environments. In Proceedings of the 2021 IEEE 751

international conference on robotics and automation (ICRA). IEEE, 2021, pp. 4101–4107. 752

29. Zanol, R.; Chiariotti, F.; Zanella, A. Drone mapping through multi-agent reinforcement learning. 753

In Proceedings of the 2019 IEEE wireless communications and networking conference (WCNC). 754

IEEE, 2019, pp. 1–7. 755

30. Baldazo, D.; Parras, J.; Zazo, S. Decentralized multi-agent deep reinforcement learning in 756

swarms of drones for flood monitoring. In Proceedings of the 2019 27th European Signal 757

Processing Conference (EUSIPCO). IEEE, 2019, pp. 1–5. 758

31. Barksten, M.; Rydberg, D. Extending Reynolds’ flocking model to a simulation of sheep in the 759

presence of a predator. Degree Project in Computer Science, First Level, Royal Institute of Technology, 760

Sweden 2013. 761

32. Virágh, C.; Vásárhelyi, G.; Tarcai, N.; Szörényi, T.; Somorjai, G.; Nepusz, T.; Vicsek, T. Flocking 762

algorithm for autonomous flying robots. Bioinspiration & biomimetics 2014, 9, 025012. 763

33. Reynolds, C. Boids background and update. http://www.red3d.com/cwr/boids/ 2001. 764

34. Müller, H.; Niculescu, V.; Polonelli, T.; Magno, M.; Benini, L. Robust and efficient depth-based 765

obstacle avoidance for autonomous miniaturized uavs. arXiv preprint arXiv:2208.12624 2022. 766

35. Lin, J.; Zhu, H.; Alonso-Mora, J. Robust vision-based obstacle avoidance for micro aerial vehicles 767

in dynamic environments. In Proceedings of the 2020 IEEE International Conference on Robotics 768

and Automation (ICRA). IEEE, 2020, pp. 2682–2688. 769

36. Siegwart, R.; Scaramuzza, D. Range sensors. http://www.cs.columbia.edu/~allen/F15/ 770

NOTES/rangesensing.pdf. [Online; accessed 2022-10-10]. 771

37. university of Tsukuba, C. Vision Image. https://home.cvlab.cs.tsukuba.ac.jp/dataset. [Online; 772

accessed 2022-09-20]. 773

38. Unity. Unity Scene. https://docs.unity3d.com/Manual/index.html. [Online; accessed 774

2022-03-02]. 775

39. Technologies, U. Unity. https://unity.com/frontpage. 776

40. Unreal Engine. https://www.unrealengine.com/en-US. [Online; accessed 2023-08-07]. 777

41. C#. https://learn.microsoft.com/en-us/dotnet/csharp/. [Online; accessed 2022-02-04]. 778

42. Unity Asset 2. https://assetstore.unity.com/packages/3d/environments/urban/city-low- 779

poly-2455. [Online; accessed 2022-04-06]. 780

43. Unity Asset 1. https://assetstore.unity.com/packages/3d/environments/urban/polygon-city- 781

low-poly-3d-art-by-synty-95214. [Online; accessed 2022-04-10]. 782

44. RealCamera. https://robu.in/product/high-definition-1200tvl-coms-camera-2-8mm-lens-fpv- 783

camera-fpv-rc-drone-quadcopter/. [Online; accessed 2023-02-04]. 784

45. Verma, H.; Bhamu, N. Simulation Results. https://drive.google.com/drive/folders/1T_Gk5 785

irVTQTxdUJGYH93ccMLhA5MEUYi?usp=sharing. [Online; accessed 2023-06-23]. 786

46. Shaders. https://docs.unity3d.com/Manual/SL-ShaderPrograms.html. [Online; accessed 787

2023-01-04]. 788

47. Viscido, S.V.; Wethey, D.S. Quantitative analysis of fiddler crab flock movement: evidence for 789

‘selfish herd’behaviour. Animal behaviour 2002, 63, 735–741. 790

48. Conradt, L.; Krause, J.; Couzin, I.D.; Roper, T.J. “Leading according to need” in self-organizing 791

groups. The American Naturalist 2009, 173, 304–312. 792

49. Couzin, I.D.; Krause, J.; Franks, N.R.; Levin, S.A. Effective leadership and decision-making in 793

animal groups on the move. Nature 2005, 433, 513–516. 794

50. Lopez, U.; Gautrais, J.; Couzin, I.D.; Theraulaz, G. From behavioural analyses to models of 795

collective motion in fish schools. Interface focus 2012, 2, 693–707. 796

51. Smith, J.; Martin, A. Comparison of hard-core and soft-core potentials for modelling flocking in 797

free space. arXiv preprint arXiv:0905.2260 2009. 798

http://www.cs.columbia.edu/~allen/F15/NOTES/rangesensing.pdf
http://www.cs.columbia.edu/~allen/F15/NOTES/rangesensing.pdf
http://www.cs.columbia.edu/~allen/F15/NOTES/rangesensing.pdf
https://home.cvlab.cs.tsukuba.ac.jp/dataset
https://docs.unity3d.com/Manual/index.html
https://unity.com/frontpage
https://learn.microsoft.com/en-us/dotnet/csharp/
https://assetstore.unity.com/packages/3d/environments/urban/city-low-poly-2455
https://assetstore.unity.com/packages/3d/environments/urban/city-low-poly-2455
https://assetstore.unity.com/packages/3d/environments/urban/city-low-poly-2455
https://assetstore.unity.com/packages/3d/environments/urban/polygon-city-low-poly-3d-art-by-synty-95214
https://assetstore.unity.com/packages/3d/environments/urban/polygon-city-low-poly-3d-art-by-synty-95214
https://assetstore.unity.com/packages/3d/environments/urban/polygon-city-low-poly-3d-art-by-synty-95214
https://drive.google.com/drive/folders/1T_Gk5irVTQTxdUJGYH93ccMLhA5MEUYi?usp=sharing
https://drive.google.com/drive/folders/1T_Gk5irVTQTxdUJGYH93ccMLhA5MEUYi?usp=sharing
https://drive.google.com/drive/folders/1T_Gk5irVTQTxdUJGYH93ccMLhA5MEUYi?usp=sharing
https://docs.unity3d.com/Manual/SL-ShaderPrograms.html

Version September 11, 2023 submitted to Drones 23 of 23

52. Szabó, P.; Nagy, M.; Vicsek, T. Turning with the others: novel transitions in an SPP model with 799

coupling of accelerations. In Proceedings of the 2008 Second IEEE International Conference on 800

Self-Adaptive and Self-Organizing Systems. IEEE, 2008, pp. 463–464. 801

53. Levine, H.; Rappel, W.J.; Cohen, I. Self-organization in systems of self-propelled particles. 802

Physical Review E 2000, 63, 017101. 803

54. BeagleBone. BeagleBone Black. https://beagleboard.org/black. [Online; accessed 2023-06-20]. 804

55. Drone Swarm Simulator. https://github.com/srsarangi/droneswarm. [Online; accessed 805

2023-08-08]. 806

https://beagleboard.org/black
https://github.com/srsarangi/droneswarm

	Introduction
	Background and Related Work
	Swarming Models in an Environment with GPS Signals
	Self-Organized Swarming
	Leader-Follower Swarming

	Swarming in a GPS-denied Environment

	Materials and Methods
	SmrtSwarm in GPS-aided Environments
	New Rule: Migration Rule
	New Rule: Obstacle Avoidance Rule
	New Rule: Confinement Rule
	Old Rule: Cohesion Rule
	Old Rule: Separation Rule
	Old Rule: Alignment Rule
	The Final Velocity

	SmrtSwarm in GPS-denied Environments
	Object Detection in the Depth Map
	Object Tracking
	Flocking Rules in GPS-denied Environments

	Workflow of the Proposed Model

	Results and Analysis
	Simulation Setup
	Setting the Hyperparameters (Coefficients in the Equations)
	Performance Analysis
	Swarming in a GPS-aided Environment
	Swarming in a GPS-denied Environment

	Sensitivity Analysis
	Effect of the Proposed Rules

	Scalability Analysis
	Real-time Performance of SmrtSwarm

	Conclusion
	References

