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Abstract—With the advent of edge computing and 5G, multiple
mobile applications are being offloaded to cloud servers to
meet their computational demands. Computer vision workloads
dominate this space. Since the vision workloads are composed
of linear algebra kernels, they perform significantly well on
SIMT/SIMD architectures such as GPUs. While an application
can maximize its performance on a GPU when it is the sole
consumer of the GPUs resources, it fails to maintain that
performance in a multi-application scenario. The primary cause
of this problem is the lack of efficient virtualization techniques
for GPUs and contention among the applications for the shared
resources. Sadly, most of the prior work in this area is devoted
to predicting single application performance. To the best of our
knowledge, we propose the first machine learning-based predictor
to predict the performance of an ensemble of applications on a
GPU. Our predictor achieves an error of 9% across a suite of
representative vision workloads for predicting the execution time.
Competing algorithms that primarily work for single application
scenarios have significantly inferior prediction accuracy and their
error rates are more than 140%.

I. INTRODUCTION

The rapid growth of 5G technologies [1], [2] and the
increasing bandwidth and latency requirements of mobile
applications [3] have led to a rapid expansion of the edge
computing market. Predictions by Gartner indicate that 30%
of the total mobile workloads in 2021 will be driven by strict
real-time requirements [3]. Additionally, the growing number
of IoT devices are expected to generate 507.5 zettabytes of
data by the end of 2020 [4]. The dire need to process this
data at the local collection points also promotes the growth of
the edge computing market [5], which is expected to grow at
a rate of 32.8% per year [6].

It is thus predicted that the majority of applications run-
ning on mobile devices will move to the edge [7], and
this space will be dominated by computer vision and image
processing workloads [8]–[10]. Conventional wisdom would
suggest that these applications should be run on a GPU server
because such applications are mainly composed of linear
algebra kernels [11] that are known to work well on SIMT
architectures [12]–[14]. However, in this case GPU resources
will be shared among competing vision applications, and thus
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concurrency shall play a very key role. There is a need to
distribute resources among threads temporally and spatially.

Let us have a look at the effect on performance numbers of
an application using both the types of multiplexing: temporal
and spatial. Ausavarungnirun et al. [15] show that the perfor-
mance with temporal multiplexing degrades as the number of
concurrent applications increases. Another approach is spatial
multiplexing (NVIDIA MPS [16]) that provides address space
isolation. We performed multi-application experiments on the
latest NVIDIA Turing [17] GPU and found the performance
getting worse with an increasing number of concurrent ap-
plications (explained later in Section IV-C and Figure 2 ).
Surprisingly, the performance degradation on a CPU with
multi-application concurrency was much less worse (see Fig-
ure 1). To summarize, we did not observe good results with
multi-application concurrency. This may be attributed to the
destructive interference among the applications that does not
allow each application to utilize the allocated resources fully.
Thus, there is a need to predict these performance variations
beforehand to maximize the performance benefit of offloading
applications.

A lot of work has been done in predicting the GPU
performance based on the performance of the code on a
CPU, however none of them solve the performance prediction
problem for multi-application concurrency. Existing predictors
use different techniques: ¶ detailed analytical models [18]–
[20] for performance prediction, design space exploration [21],
· idiom recognition [22], and ¸ ML-based performance pre-
diction [23] for design space exploration [24], and prediction
based on performance binning [25]. These are discussed in
detail in Section III. The standard approach is to profile a pro-
gram on a CPU, collect statistics, and predict the performance
on a GPU for a single application. However, the problem of
predicting the performance of a bag of tasks is open.

This forms the motivation of our work. To the best of our
knowledge, we are the first to propose a predictor for pre-
dicting the performance of multiple applications concurrently
running on a GPU. We propose a decision tree based predictor
that uses standard features such as the execution time on the
CPU and the instruction mix, and some novel features such as
the GPU execution time for a single instance and the fairness.
The fairness metric quantifies the maximum relative slowdown
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an application experiences when running in a multi-application
setting on a multicore processor. The crux of our technique is
to measure runtime parameters of applications on a multicore
server, collect basic single-instance execution statistics on a
GPU, and use them to predict the performance of a bag of
tasks on a GPU. Moreover, our simple decision tree based
model outperforms many other machine learning algorithms
such as support vector regression, and allows us to explain the
features of learned model. This gives us additional insights to
multi-application concurrency in a GPU.

Our primary contributions are:

¶ We show that it is possible to predict the performance of a
bag of tasks on a GPU using simple metrics that are primarily
collected on a multicore machine. Furthermore, we show that
the two most important metrics in terms of their predictive
value are the execution time of a single instance on a GPU,
and the fairness metric (defined in Section V).

· We show that a simple decision tree is more accurate than
regression based approaches, and because of its explainability,
it gives us unique insights into the performance of an ensemble
of applications running on a GPU.

¸ We demonstrate a very low error rate (9%) as compared
to state of the art work that do not take multi-application
concurrency into account. They have error rates that exceed
140%.

The organization of the paper is as follows. We provide
the relevant background in Section II, discuss related work
in Section III, and motivate the paper in Section IV. The
implementation of the scheme is described in Section V. We
evaluate the proposed approach in Section VI, and finally
conclude in Section VII.

II. BACKGROUND

A. Multi-application Concurrency

Any GPU server will have to deal with multiple concur-
rent applications. To effectively support this feature in an
edge/cloud computing setting some support for concurrency
is required. Sadly, unlike multicore servers, GPUs were orig-
inally not designed for this purpose. Enabling application
level concurrency came as an afterthought, and that too very
recently. The two approaches are time multiplexing and space
multiplexing. Many initial works employed time multiplex-
ing by interleaving the applications at some pre-determined
scheduling points [26]. However, this kind of resource sharing
was not effective since it caused destructive interference in the
GPU memory system (studied in detail by Jog et al. [27]) and
also lead to severe performance degradation when the number
of concurrent applications was scaled [15].

An alternative approach uses spatial multiplexing. Initially,
NVIDIA’s CUDAstream feature allowed applications from
different streams to execute concurrently but at the cost of
reduced memory protection as they all ran in the same address
space [28], [29]. Later CUDA MPS (multi-process service)
allowed spatial multiplexing where different applications are
assigned to different partitions of the same address space [30]

and isolation is guaranteed as long as there are no illegal
memory accesses that try to access words outside the allocated
memory regions.

There are several issues with concurrent multi-application
execution on GPUs with any form of multiplexing: ¶ The
TLBs that provide the address translation service are shared
among the applications, and their limited size leads to frequent
flushing of the context of other applications [15]. · This leads
to TLB misses and hence increased latency. ¸ The concurrent
applications cause interference in the GPU memory system
due to interference in the L2 caches and beyond [15], [27].
¹ Since the error reporting resources are shared among the
concurrent applications, an exception raised by any one appli-
cation causes all the applications to terminate. º Scheduling
many threads belonging to different applications adds to the
overheads.

The latest NVIDIA GPU, Turing [17], extends this basic
MPS support and provides full address space isolation. Even
though such modifications increase the security, the basic
performance challenges highlighted in the previous paragraph
still remain. In fact in the latest GPU there are provisions to
limit the scalability (threads per application) to place limits
on the amount of destructive interference and time spent in
scheduling. This motivates our work because predicting the
performance loss due to such factors is important.

B. ML-based Prediction Models

For such problems, we typically use supervised machine
learning techniques. Since we need to predict a value and
not a class label, we opt for an approach using regression. A
regression based approach needs an error metric (also known
as the loss function). Typically the mean-square error (MSE) is
used. Equation 1 is the equation for the MSE loss function for
N predictions. Here Yi is the real value and Ŷi is the predicted
value. It can come from any kind of a regression algorithm (eg:
linear regression, decision tree, or support vector regression).

Error =

∑N
i=1(Yi − Ŷi)

2

N
(1)

1) Linear Regression: Linear regression is the simplest
regression technique that models a linear relationship between
the input and the output. Given input X , we compute a W and
b such that Y =WX + b. In essence, it uses an independent
variable X to predict the dependent variable Y .

2) Support Vector Regression: The primary aim in Support
Vector Regression (SVR) is to find a hyperplane that can fit the
maximum number of points. In addition, we define boundary
lines at ε deviation from the hyperplane such that maximum
number of points lie within the boundary and the error is
restricted. These points are called the support vectors. The
prediction for any new point is done by finding its similarity
(dot product) with these points. The technique is highly
dependent on finding a good hyperplane. To get a distinctive
hyperplane, the points are sometimes transformed to a higher
dimensional space. The dot product of the transfomed points is
called a kernel function, which represents the similarity metric
in the transformed space.
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3) Decision Tree based Regression: Decision trees are
normally used for classification. However, there are many
upcoming applications that also use them for performing
regression primarily because it is possible to interpret the
models very well. In our work, explainabilty of the model
is an important requirement, and thus we use this technique.

Let us start with the root node (while building the tree).
Each node has a condition, a corresponding prediction, and is
associated with a set of data points (N input features, and 1
output). All the data points are associated with the root node,
and the prediction for the root node is a value that minimizes
the mean square error for all the input points. Then we add
two children to the root node (left and right). We split all the
points associated with the root node into two sets (left and
right resp.) such that the sum of the mean square error (MSE)
is minimized. For the left and right nodes we compute their
predicted values in the same way as we did for the root node.
We are however not allowed to arbitrarily split the points.
We can only split them based on the value of a given input
feature. For example, the left child may be associated with all
the points whose third feature is less than 4.6, and the rest of
the points are associated with the right child (condition). Once
this is done, we proceed recursively till we reach a certain pre-
specified depth (hyper-parameter of the algorithm), or till the
sum of the MSEs stops decreasing.

To traverse this tree, we keep checking the conditions, and
based on their results we go to either the left child or the right
child. We keep doing this till we reach a leaf node. The output
of the regression algorithm is the predicted value of the leaf
node. A manual analysis of the set of conditions can give us
insights into the structure of the feature space; this can be used
to derive insights.

III. RELATED WORK

TABLE I
Comparison with related work

Year of Model Features Prediction Task
2009 [18] Analytical GPU parameters Execution time Perf. Pred.
2011 [19] Analytical GPU parameters Execution time Perf. Pred.
2011 [22] Pattern Matching Idioms from source code Execution time Perf. Pred.
2011 [20] Analytical CPU code skeleton Performance(Gflops/s) Perf. Pred.
2012 [31] Stepwise Regression GPU parameters Execution time Design space expl.
2012 [21] Analytical GPU parameters Speedup Perf. pred.
2012 [32] Roofline CPU parameters Execution time Perf. pred.
2014 [25] ML Classification CPU parameters Speedup range Classification
2015 [24] Neural network GPU parameters Feature similarity Design space expl.
2015 [23] Stepwise regression CPU parameters Speedup Perf. pred.

A. Why not existing models?

1) Analytical Models: Table I shows a comparative analysis
of different proposals on the basis of the type of model they
use, the input features, and the task they accomplish. Almost
all the proposals either predict the performance on a GPU on
the basis of some features (CPU performance counters, and
architectural parameters of a GPU) or predict a binary value
suggesting if there will be a speedup or not on the GPU. None
of the works explicitly consider the case of multi-application
execution on a GPU. Notably, Hong et al. [18] propose a
detailed analytical model that uses the number of parallel
memory requests and the memory bandwidth of an application
on a GPU to predict the execution time. Similarly, Zhang et

al. [19] characterize the execution phases of a program on the
basis of the most time consuming component: instruction issue
pipeline, shared memory access, or global memory access.
Such a component acts as a performance bottleneck of that
phase. Depending upon the nature of the bottleneck of an
execution phase, they predict the performance. This does not
take multi-application contention into account.

2) Idiom-based Models: Meswani et al. [22] proposed a
performance predictor for HPC applications on generic ac-
celerators. Since these applications have thousands of lines of
code, porting their code to accelerators is difficult. Hence, they
identified commonly occurring patterns of computation and
memory access in the codes. These patterns are called idioms.
Subsequently, they built performance models to predict the
performance of these idioms on a diverse set of accelerators.
The performance model recognizes the presence of idioms
in the test data and predicts their performance on a target
accelerator. Idioms are good predictors for single applications;
however, when multiple applications are executing together
the interaction of different idioms from different applications
needs to be taken into account.

3) ML-based Models: Recent proposals use machine learn-
ing models. Ardalani et al. [23] propose to predict the per-
formance of a code on a GPU by analyzing the perfor-
mance counter data collected by running it on a CPU and
the properties of the code. They develop machine learning
models to predict the execution time on a GPU using this
data. Similarly, Baldini et al. [25] show that fairly accurate
performance classification can be done by using a minimal set
of architecture-independent features. They tackle the problem
by predicting if an application will achieve a speedup or
slowdown on a GPU. In contrast, Jia et al. [31] and Wu et
al. [24] propose to exploit the combination of architecture
dependent and architecture independent features for prediction.
All of these machine learning models perform the prediction
on the basis of features specific to a program or a program-
architecture pair. They are not suited for a bag of tasks.

Our model is different from the proposed approaches in the
sense that we capture the interactions among the applications
in a bag-of-tasks along with their individual architectural
features. We are able to show with our experiments (explained
later in Section VI) that for a more accurate performance
prediction of multi-application concurrency on a GPU, the
architecture independent features are not as important as the
captured interaction among the applications.

IV. MOTIVATION

A. Overview of the Benchmarks

Table II describes the benchmarks used in this study.
These benchmarks are representative kernels used in pop-
ular applications of computer vision. They are inspired by
the MEVBench [35] and SD-VBS [36] suites. We use
OpenCV [37] to generate the basic kernels for the CPU
code for most of these benchmarks. We then use the CUDA
equivalent APIs to get the GPU-compatible codes for each
of them. For SVM, we used the ThunderSVM library [38]
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Fig. 1. CPU performance with multi-
application concurrency

FA
ST

HoG
KNN

OBJR
EC

ORB
SIFT SURF

SVM

FA
CEDET

  
  

  
 G

P
U

 p
e
rf

o
rm

a
n
ce

 
(n

o
rm

a
liz

e
d

 t
o
 1

 i
n
st

a
n

ce
)

Fig. 2. GPU performance with multi-
application concurrency
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Fig. 3. GPU / CPU performance with multi-
application concurrency

Benchmark Description
Sift Extracts those features from an image that are invari-

ant to image orientation, illumination and scaling
Surf Feature extraction [33] with scale invariance.
Fast Extracts corners from an image by using a learning

based technique.
Orb Uses the FAST feature detector and the BRIEF [34]

feature descriptor to extract and categorize features.
HoG Describes a feature on the basis of the number of

gradients in a certain orientation within a window of
the image.

SVM Trains a support vector, which is then used to predict
the class of detected features.

KNN Classifies the features based on the nearest neighbor
algorithm.

ObjRec Object recognition algorithm that uses both feature
extraction and classification to identify the object
present in a scene.

FaceDet Face detection algorithm based on the Haar cascade
classifier.

TABLE II
Benchmarks (derived from MEVBench [35])

and KNN was built on the lines of reference [39]. Both [38]
and [39] come with equivalent CPU and GPU versions of the
codes.

In some cases it was not possible to create the CUDA
codes for some benchmarks without changing the algorithmic
complexity significantly. This would have rendered the CPU
and GPU implementations significantly different from each
other and hence would have caused an algorithmic mismatch
as defined by Ardalani et al. [23]. Hence, these workloads
were omitted.

B. Experimental Setup

We ran all the experiments on a server whose configuration
is shown in Table III. Our 2-socket server has 48 logical
cores (with hyperthreading enabled). For the experiments on
the GPU, we use the latest NVIDIA Turing GPU with MPS
enabled. For each application we choose that configuration
(number of threads) that has the least execution time. Our
experiments indicated that the OpenCV-based benchmarks
performed the best when parallelized with OpenMP [40] as
opposed to Pthreads [41] or Intel TBB [42]. For KNN and
ThunderSVM, the number of parallel threads was specified
in the code. For all the GPU runs, we used NVIDIA CUDA
MPS [16] (explained in Section II) to enable the concurrent
execution of multiple applications. Note that performance is
defined as the reciprocal of the execution time in our case.

TABLE III
Details of the baseline system

Parameter Type/Value
CPU 2 x Intel Xeon Gold 5118 (Skylake)

# of cores 24 physical
Frequency 2.3 GHz

Main memory 128 GB
GPU NVIDIA Tesla T4 (Turing)

CUDA cores 2560
Tensor cores 320

C. Performance Variation of the Workloads with Multi-
application Concurrency

Multi-application concurrency can be of two types: homo-
geneous or heterogeneous. Homogeneous refers to multiple
instances of the same application running concurrently. On
the contrary, heterogeneous refers to different applications
being launched concurrently. In this section, we look at
homogeneous multi-application concurrency. We chose a ho-
mogeneous bag of applications because characterization and
identifying the source of deviation from expected behavior
is much easier. In contrast, a heterogeneous bag has different
concurrent applications and to assess the relative contributions
of different applications is much harder analytically.

Figures 1 and 2 show the performance variation of different
benchmarks with the variation in the number of instances
of the benchmarks on the multicore CPU and the GPU
respectively. Comparing the trends in the two figures, we can
make the following observations: ¶ The performance variation
with multi-application concurrency on a CPU is significantly
different than that on a GPU. For example, for ObjRec, the
performance on a GPU decreases as the number of concurrent
applications increases while it shows a non-deterministic be-
havior with the variation in the number of parallel instances
on a CPU. Similar is the case for other benchmarks like Surf ,
FaceDet, and HoG too. · From Figure 3, we observe that
GPU performance for a single instance is better than the
CPU performance for most of the benchmarks (with some
exceptions: Fast, Orb, SVM), however, it does not scale well
with the number of instances of the application. Despite
superior compute capabilities, the performance degrades on a
GPU with an increasing number of instances. This is because
the applications contend for the shared resources/caches as
a consequence of increased destructive interference. On the
contrary, there are well developed policies to handle con-
tention [43]–[45] in multicore CPUs and hence the scalability
is much better with multi-application concurrency as compared
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to GPUs. ¸ Figure 2 also shows that the trend for the
performance across the benchmarks on a GPU remains roughly
the same for multi-instance runs.

Based on these observations, we can gather the following
insights:

Insights:
¶ The performance of multiple instances on a GPU cannot
be simply correlated with the corresponding performance of
the workload on a CPU.
· Contention in the shared resources plays an important
role when multiple instances of an application are launched
in parallel.
¸ The performance of such a multi-instance workload on a
GPU can be directly correlated with the performance of a
single instance in the case of a GPU.

V. IMPLEMENTATION

Our aim is to predict the performance of a multi-application
bag of tasks on a GPU. As already explained in Section II-B,
the task that fits our problem is a regression task and the algo-
rithm that goes well with our data is a decision tree (accuracy
and explainability). The loss function of the regression task is
defined by the MSE as explained in Section III.

A data point is an input-output pair that is used for training
our machine learning model. The broad overview of our imple-
mentation is as follows: ¶ We first identify the input features
to be used. · We then conduct experiments to collect all the
training data. Each experiment/program execution corresponds
to a single data point. ¸ These data points are then fed to the
learning model after being divided into two sets: training and
test data. ¹ The model formed after training is used to predict
the output for the test data points.

A. Defining the Features

Defining the representative features for the data points that
could be learned and used later for accurate predictions is
the most important step of building any machine learning
model. The chosen features should be characteristic of the
benchmarks’ behavior and the features should be correlated
with the predicted quantity.

Particularly for GPUs there is no accepted methodology for
defining features that determine the final performance [23],
[25]. We start with the list of features that have been proven
to work well for GPU performance prediction and we define
a few additional features based on our observed insights.

Based on Insight ·, we define fairness as one of the fea-
tures because we are dealing with a multi-application scenario.
It quantifies the slowdown in an environment with resource
contention [46]. The equation for the fairness, fairnessT , of
a bag-of-task, T , is given by the following equation, where i
and j are tasks in the bag.

fairnessT = min

(
IPCshared

i

IPCalone
i

/IPCshared
j

IPCalone
j

)
(2)

For each task we find its slowdown when it is running
in a shared environment as compared to when it is running
in isolation. The fairness is the minimum slowdown by the
maximum slowdown across all pairs of tasks. The intuition
behind using this metric is that since fairness captures the
slowdown ratio in a multi-application scenario, it can directly
capture the effect of contention as mentioned in Insight ·.
We show in Section VI that fairness plays an important role in
reducing the prediction error. It also contributes significantly
to the way the decision tree is constructed.

Based on Insight ¸, we define GPU execution time for
running a single benchmark as one of the features. The single-
instance performance on a GPU can be very well utilized to
predict the application’s behavior in a multi-application case.
For most programs this is very easy to measure. Table IV
shows the list of features that we consider. The instruction mix
and CPU execution time have been used in prior work to make
different predictions. Our novelty is in combining them, and
in introducing two additional features: single-instance GPU
execution time and fairness (shaded rows in the table).

TABLE IV
List of features

Num Feature Description
1 CPU time Execution time of the benchmark on a CPU
2 GPU time Execution time of the benchmark on a GPU
3 SSE % of SSE instructions
4 ALU % of arithmetic instructions
5 MEM % of load/store instructions
6 FP % of floating point instructions
7 Stack % of stack push/pop instructions
8 String % of string operations
9 Shift % of multiply/shift operations
10 Control % of control/branch instructions
11 Fairness Fairness of concurrent multi-application execution

1) Handling Variable Sized Feature Vectors: Recall that
we consider both homogeneous and heterogeneous bags of
applications in our multi-application concurrency experiments.
When a homogeneous bag of applications is run concurrently,
they share the same set of features. On the contrary, for
a heterogeneous bag, the features for each application are
different. Hence, the feature vector for a homogeneous bag
can be completely represented by one set of features while for
the heterogeneous case, it can be as large as the number of
concurrent applications. Thus, the length of the feature vector
varies across the data points.

When there are multiple applications, we replicate the
feature vector. Nevertheless, using a variable sized feature
vector makes learning very difficult. We thus limit the number
of concurrent applications to two for our experiments. Making
the learning process to scale in terms of the number of
applications is an open problem. This is because we need
to generate a lot of additional training data that considers
all possible interactions between applications and ensure the
uniform length of the feature vector across the data points. The
other open problem is to consider all kinds of variations in
the number of threads. Currently, we take the best performing
configuration (in terms of the number of threads) for each
application.
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B. Creating the Data Points

The predictor model is trained on a set of training data
points, which is an input-output pair. The input is the feature
vector of the data point and the output is its multi-application
performance on a GPU. Thus, to create a data point, we
need to have equivalent CPU and GPU implementations of
the benchmarks (also explained in Section IV-A). Since the
number of benchmarks is limited, we are limited by the
number of data points and this could easily lead to over-
fitting. Thus, we increased the number of data points by using
5 different inputs for each benchmark. This is a standard
approach to increase the number of data points [23], [25].
The standard input to each of our benchmarks is a batch of
20 images, which is increased to 40, 80, 160, and 320 images
to generate five different data points out of each benchmark.
The number of images in a batch (batch size) is determined
empirically. We chose the batch size that is representative of
the behavior of the benchmark. Any change in the input of the
benchmark changes its execution time and hence the feature
vector and can be considered a new data point [23].

As explained in Section IV-C, a heterogeneous multi-
application concurrency scenario is the one that allows mul-
tiple benchmarks to run concurrently. Another method of
increasing the data points is by permuting the combinations of
benchmarks to generate different multi-application scenarios.
In total, we examine 91 runs including both homogeneous and
heterogeneous workloads with different combinations of batch
sizes. In general, such applications of machine learning in
computer architecture have small size of the training data. This
is because it is limited by the number of unique benchmarks
and their input combinations. For example, Baldini et al. [25]
use 48 unique data points for training. Similarly, Ardalani et
al. [23] generate 122 data points for training by combining
benchmarks from six different benchmark suites and applying
the standard technique of increasing the number of data points
as described in the previous paragraph.

C. Collection of Features

We collect the feature values for the feature vector by
instrumenting the benchmark codes using the PIN 3.7 [47] and
MICA 1.0 [48] tools to capture the percentages of different
kinds of instructions. The IPC data for different benchmarks in
the bag (to be used in the calculation of fairness) is calculated
using the Linux Perf tool. All the time values (GPU time and
CPU time) in the feature vector are normalized with respect to
the range (maximum−minimum) of the CPU time feature
in the training data.

D. Predictor Model

We used the open-source machine learning library Scikit-
learn [49] to implement the regression models for our pre-
diction task. As explained in Section II-B, linear regression
is used when the features of the data points are completely
independent. This is not the case in our features, so we chose
the decision tree and SVR regression algorithms. Upon further
analysis, it was found that the sparsity of our data points

does not allow SVR to learn a unique hyperplane. This also
appeared in the prediction error: it was 10X more in SVR as
compared to that in the decision tree.

Next, we define the methodology used for collecting the
training data, test data and to perform cross validation.

9%

Fig. 4. Relative error for leave-one-out cross validation (LOOCV)

1) Cross-validation: Before we test our trained model on
unseen test data, there is a need to validate the model. It is
a standard way to test how well a model generalizes. The
standard procedure for cross-validation is to split the training
dataset into two disjoint sets: training and validation sets. We
use the training set for building the model and the validation
set for evaluating the accuracy of the model. To get a more
accurate idea of the generalizability of the model, we perform
multiple rounds of cross-validation with different splits of
the dataset each time. We use leave-one-out cross-validation
(LOOCV) [25] to test the robustness of our model. The basic
idea is to leave one data point from the entire dataset for
testing and using other data points for training. In our case, we
have multiple data points corresponding to a benchmark. Thus,
to perform LOOCV for a particular benchmark (experiments
in Figure 4), we leave all the data points corresponding to
that benchmark for testing and use the rest for training. This
ensures that the validation data is unseen. Figure 4 shows
the cross-validation error for each benchmark. We observe a
9% relative error (mean) for predicting the execution time of
running multiple applications on the GPU. Here each x-axis
label denotes the benchmark that was left out in the LOOCV.

2) Test Data: We partition the entire dataset into two
disjoint sets, one for training (80%) and other for testing
(20%). The test data is not seen by the model at any time
during the training. It is used only during the evaluation to
evaluate the accuracy and the relative error in our predictions.

VI. RESULTS AND ANALYSIS

There are two different kinds of bags used in our evaluation:
homogeneous and heterogeneous. In a homogeneous bag the
concurrently running applications are the same: code, input
size, and threads. A heterogeneous bag is formed by all
possible combinations of different benchmarks. We evaluate
the bags for a concurrency of two. We compare the schemes
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on the basis of the relative error, which is defined similar
to [23]:
Error =| (trueval − predictedval)/trueval | ×100

Insmix ([33])
Insmix+CPUtime
Insmix+CPUtime+Fairness
Full

Fig. 5. Comparison with related work (used their features for the multi-
application concurrency scenario)

A. Comparison with Related Work

Figure 5 shows the comparison of four different schemes on
the basis of their relative errors in the prediction. The schemes
primarily differ in the kind of features used in the machine
learning model. The first scheme uses insmix (instruction mix);
these set of features were also used by Baldini et al. [25].
Though they achieved significant accuracy for predicting the
range of GPU speedups of a single application, the scheme
does not capture the interactions among the applications in
a multi-application concurrency scenario. Hence, it has large
errors (144.6%) as shown in Figure 5. Another comparison
that we make is with a combination of insmix and CPU time
as features in the feature vector. These features provide a better
prediction than just the instruction mix (57.05% error). This is
because the CPU time of a benchmark is positively correlated
(correlation=0.95) with the multi-application performance on
a GPU.

The third comparison is with the CPU time, fairness and in-
smix as the features in the feature vector. This scheme performs
significantly better than the first two approaches (89.55%
and 19.32% better respectively) because both CPU time and
fairness are able to capture the performance degradation in
a bag-of-task. Additionally, fairness is also intuitively a good
predictor of the performance of multi-application concurrency
because it is able to capture the contention at the shared
resource in the presence of multiple applications (see Equa-
tion 2). Lastly, we compare with the scheme that has all
of the above metrics along with the GPU time. Since the
GPU time of an application is the most correlated with its
multi-application execution time (Insight ¸), the prediction
error reduced further (9.05%). We do not eliminate the instruc-
tion mix from the feature vector in this experiment because it
improves the prediction accuracy when used in combination
with CPU time and fairness (as observed in the previous
experiment). To summarize, we improve the error rate by
135.55% over the state-of-the-art machine learning model [25]

for GPU performance prediction (reference work by Baldini
et al. [25] which is the left-most bar).

B. Sensitivity of the Prediction Error w.r.t the Features

1) Effect of CPU time: Figure 6 shows the effect of the
CPU time feature on the prediction error. The x-axis labels
represent the features used in the prediction. It can be ob-
served that for any feature combination (x-axis labels), the
prediction error decreases with the introduction of CPU time
in the combination. Thus, a general insight is that having
the CPU execution time (for running a single instance of the
benchmark) in the feature vector leads to better splitting in
the decision tree used to predict the performance of multi-
application concurrency on a GPU. Additionally, it can be
observed that the relative error of prediction increases when
fairness is combined with the instruction mix in the absence
of CPU time (89.54% to 98.17%), while the introduction
of CPU time to this combination reduces the error to only
37.73%.

Another observation is that arithmetic+sse+fairness per-
forms worse than mem+fairness implying that the percentage
of memory instructions in a benchmark is a better indicator
of GPU performance as compared to the compute (arith-
metic+sse) instructions. However, this relationship reverses
with the introduction of the CPU time. This is because
CPU time in combination with the compute (arithmetic+sse)
instructions and fairness ratio can accurately predict the per-
formance degradation on a GPU.

2) Effect of the GPU time: Figure 7 shows the effect of the
GPU time feature on the prediction error. It can be observed
that for any feature combinations (x-axis labels), the prediction
error decreases with the introduction of the GPU time in
the feature combination except the arithmetic+sse+fairness
combination of features. This reduction in error is even
more pronounced than that achieved by the introduction of
CPU time as shown in Figure 6. This was also evident in the
insights in Section IV, where we concluded that CPU time
alone cannot be a good feature for prediction while GPU time
is positively correlated with the multi-instance GPU perfor-
mance. Furthermore, we observe that the prediction error
increases when fairness is combined with the instruction mix
and increases further when the instruction mix consists of only
the compute instructions. This makes the case for considering
a diverse set of instruction types in the instruction mix.

3) Effect of the Instruction Mix: Figure 8 shows the effect
of the instruction mix on the relative error of prediction. It can
be observed that for some feature combinations the instruction
mix is useful while for others it does not have a sizeable
positive impact. In general, the instruction mix with CPU time
makes the prediction better while it has no positive impact
when it is exclusively combined with the GPU time.

4) Effect of Fairness: Figure 9 shows the importance of
fairness on the quality of prediction. It can be observed that
for any feature combination (x-axis labels), the prediction error
decreases with the introduction of fairness in the combination.
This implies that fairness has a positive effect all the time.
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Feature Combinations

144.6%

57.05%

229.75%

40.7%

89.54%

55.05%

98.17%
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120.5%
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Fig. 6. Effect of CPU time on the prediction error

Feature Combinations

144.6%

11.36%

229.75%

350%

62.5%

10.66%

98.17%

11.51%

89.54%

9.7%

Fig. 7. Effect of GPU time on the prediction error

Feature Combinations

10.5% 11.36% 9.7%
11.51%

62.5%

57.05% 55.05%

37.73%

Fig. 8. Effect of the instruction mix on the prediction error

Feature Combinations

144.6%

98.17%

57.05%

37.73%

53.5% 49.67%

11.5% 9.05%

Fig. 9. Effect of Fairness on the prediction error

Additionally, it can be observed that CPU time in combination
with the instruction mix performs nearly the same as com-
pared to CPU time with memory instructions. However, the
introduction of fairness makes CPU time and instruction mix
a better predictor because it captures a more holistic picture
of the slowdown in a multi-application scenario. This also
makes the case for using a diverse mix of instructions in the
instruction mix.

The summary of our findings are:

¶ CPU time has a positive effect on the prediction error
when combined with the instruction mix.
· Fairness improves the prediction given by a combination
of CPU time and instruction mix.
¸ Fairness, GPU time and CPU time reduce the prediction
error. However, the extent of reduction is different depending
on the already existing features in the feature vector.
¹ The positive effect of GPU time on the prediction error
is more pronounced as compared to the CPU time.

These results corroborate our insights in Section IV.

C. Analysis of the Decision Paths

Based on the observations in Section VI-B, we can conclude
that the features proposed by us reduce the error. In this
section, we perform an even deeper analysis of what features
are actually used in the splitting of the decision nodes. This
would help us understand if some features are redundant and

Fig. 10. Percentage of the test points containing a feature in their decision
path

can be eliminated. We analyzed the decision path for all the
test points. A decision path is the path that contains all the
decision nodes, the features used in making the decisions, the
threshold values used for the comparison in decision making,
the branches and the leaf nodes. Every test data point follows
its own path in the decision tree formed by the training data
points. We answer a few questions based on our analysis.

1) Is fairness more important than the instruction mix?:
The answer to this question is yes. Figure 10 shows the
percentage of test points that utilize a particular feature in
its decision path. We can observe that GPU time occurs in
100% of the test data points to decide one or more splits.
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Fig. 11. Radar plot of the frequency of each feature for different test points

Test data  CPU     GPU mem_rd mem_wr ctrl arith fp stack shift string sse fairness
t1 0 4 0 0 0 1 1 1 0 0 0 1
t2 0 5 0 0 2 2 0 0 0 1 0 0
t3 0 5 1 1 0 0 0 0 0 0 0 1
t4 0 3 1 0 1 0 0 0 0 0 0 0
t5 0 4 0 1 0 0 0 0 0 1 0 0
t6 0 5 0 0 1 0 0 0 0 1 0 1
t7 4 0 0 0 1 0 0 0 0 0
t8 0 5 0 0 0 1 0 0 0 0 0 0
t9 0 4 0 1 0 0 0 0 1
t10 0 4 0 0 0 1 0 0 0 0 0 1
t11 0 4 0 0 0 1 0 0 0 0 0 1
t12 0 4 0 0 0 1 0 0 0 0 0 1
t13 0 4 0 2 1 0 0 0 0 0 0 2
t14 0 5 1 0 1 0 0 0 0 0 0 0
t15 1 4 0 0 0 0 0 1 0 1 0 1
t16 0 3 1 0 0 0 0 1 0 0 0 0
t17 0 3 0 1 0 0 0 0 0 0 0 0
t18 0 4 0 2 1 0 0 0 0 0 0 2
t19 1 4 0 0 0 0 0 1 0 1 0 1
t20 0 5 0 0 1 1 1 0 0 0 0 1
t21 0 5 0 0 1 1 1 0 0 0 0 1
t22 0 4 1 1 0 0 0 1 0 0 0 2
t23 4 0 2 1 0 0 0 0 0 0 2
t24 0 5 1 0 0 0 0 1 0 0 0 2
t25 0 5 0 0 0 1 0 0 0 0 1 1
t26 0 4 0 0 0 0 0 1 0 0 0 0

2 1

2

2

2

3

Fig. 12. Snapshot of the heatmap of different features in the test data (the
values indicate the number of times that a feature is used in any decision
node on the decision path of the test point)

Similarly, fairness contributes to the decision path of 65% of
the test points. Since most of the test points rely on GPU time,
and fairness, other metrics have a lesser importance. This
experiment confirms the presence of a feature in the decision
path of the test set, but it does not convey how many times
the same feature has been used at different decision nodes for
predicting the execution time of a test point. Note that a feature
may be used multiple times in one decision path at different
decision nodes present at different depths of the decision tree.
This is answered in the next section.

2) What is the importance of each feature?: Figure 11
shows the number of times a feature is used in the decision
path of a test point. Each concentric circle is a distinct number
that represents the number of times a feature is used in the
decision making of a test data point. The radar plot shows
this result for all the test data points used in our experiments
(test data points generated by LOOCV for every benchmark).
The basic observation is that the decision paths give the
maximum importance to the GPU time; it is used 5-6 times
in the decision path of each test point. The second highest
importance is given to the fairness metric; it is used 1-3 times
in the decision making of 65% of the total test points. The
rest of the features are still important and appear at least 1-2
times in the decision path.

In Figure 11 the basic pattern of the decision making process
is visible; however, it is not possible to infer the details. Thus,
we separately show the data for a set of sample points in
Figure 12. We show the number of times each feature is
used in the decision path of a test point. We can observe that
among the features depicting the instruction mix only control,
arithmetic, stack, load, and store instructions make a sizeable
contribution to the decision making. Surprisingly, CPU time
does not contribute to more than two decision making nodes
in the test points. However, CPU time made a significant
contribution in reducing the prediction error in our sensitivity
analysis. Thus, even though it appears in 1-2 decision nodes,
these decision nodes play a critical role in deciding the correct
splitting of the data points.

VII. CONCLUSION

In this paper we showed that GPUs are not necessarily
faster than CPUs when we consider multiple instances of a
workload, or in a multi-application scenario. This is because
of the contention in shared structures and inadequate support
for virtualization. Hence, there is a need to accurately predict
the performance of such ensemble workloads on a GPU.
Traditionally used metrics such as the execution time on the
CPU, and the instruction mix do not yield a good prediction
accuracy. We noticed that we need to introduce two additional
metrics: execution time of a single instance on a GPU, and
the fairness. They increased the accuracy significantly, and
the mean error was 9%. Competing algorithms that were
originally designed to predict the performance of a single
instance had much larger error rates (in excess of 140%).
Finally, our choice of a simple decision tree based algorithm
as opposed to sophisticated non-linear regression algorithms is
justified by the fact that our error rate is much lower, and we
were able to explain the relative importance of the features
and their contributions by analyzing the learned decision
tree. The problem of predicting the performance when the
number of threads per workload is variable, and the number
of applications is more than 3 or 4 is still open.
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