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ABSTRACT
Energy harvesting devices (EHDs) are becoming extremely preva-
lent in remote and hazardous environments. They sense the ambient
parameters and compute some statistics on them, which are then
sent to a remote server. Due to the resource-constrained nature of
EHDs, it is challenging to perform exact computations on streaming
data; however, if we are willing to tolerate a slight amount of inaccu-
racy, we can leverage the power of sketching algorithms to provide
quick answers with significantly lower energy consumption.

In this paper, we propose a novel hardware architecture called
EHDSktch – a set of IP blocks that can be used to implement most
of the popular sketching algorithms. We demonstrate an energy
savings of 4-10X and a speedup of more than 10X over state-of-
the-art software implementations. Leveraging the temporal locality
further provides us a performance gain of 3-20% in energy and time
and reduces the on-chip memory requirement by at least 50-75%.

CCS CONCEPTS
• Hardware → Hardware accelerators; • Computer systems
organization→ Embedded systems; System on a chip.

KEYWORDS
Streaming algorithms, Hardware for sketching, Approximate com-
puting
ACM Reference Format:
Priyanka Singla, Chandran Goodchild, and Smruti R. Sarangi. 2021. EHDSk-
tch: A Generic Low Power Architecture for Sketching in Energy Harvesting
Devices. In 26th Asia and South Pacific Design Automation Conference (AS-
PDAC ’21), January 18–21, 2021, Tokyo, Japan. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3394885.3431447

1 INTRODUCTION
Energy harvesting devices (EHDs) are low-powered batteryless
devices that harness the ambient energy and create an autonomous
system where correctness is guaranteed by elaborate checkpoint-
restore mechanisms [12]. These devices are used in diverse ar-
eas such as smart homes, hazardous environments, and hard-to-
reach remote locations. Many novel applications are in the fields of
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wildlife monitoring and structural health monitoring. Most of these
applications primarily deal with a large amount of continuously
produced data that needs to be processed in real-time [13]. In partic-
ular, the EHDs sense ambient parameters such as the temperature,
location of animals, and subsequently, either make local decisions
like switching off the air conditioner in the room or analyze the
data locally to compute some simple statistics such as the mean,
median, L2 norm, unique elements, and frequencies of elements, or
detect anomalies. These statistics are used to identify trends and
spot peculiar behavior in the incoming data stream, and are period-
ically transmitted to remote base stations [5]. Efficiently handling
these data streams is challenging due to the limited computational
and memory resources of such devices – around 2KB of SRAM and
64-128KB of FRAM (e.g., TI’s MSP430FR5969).

Typically, computing exact answers for many simple queries is
not feasible on such tiny devices. Hence, we propose to use a family
of algorithms known as sketching algorithms [1, 2, 8] that make a
single pass on the data and compute approximate statistics with a
slight loss in accuracy. Such algorithms are already commonplace
in the theoretical computer science literature and also have seen
diverse implementations in big data systems that typically rely on
FPGAs or manycore processors [7, 11, 16].

It is not trivial to translate an FPGA implementation into an ASIC
implementation [10]. The resource-constrained nature of the EHDs
further exacerbates the issue. FPGAs rely on large block RAMs and
LUTs that can be used for indexing; in comparison, EHDs have
very little memory – a few KBs on-chip. ❶ Hence, we propose a
generic template for designing such sketching systems on ASICs;
it can be further specialized for individual algorithms. This is our
first contribution. ❷ Second, we show a minimum 4X reduction in
energy and a concomitant 10X decrease in execution time vis-a-vis
an optimized software implementation of these sketching algo-
rithms. ❸ Third, we show that it is possible to reduce the on-chip
memory requirements by 50-75%, by including a small, specially de-
signed cache. This supplementary structure can effectively help us
shrink the on-chip SRAM from 2 KB to 1 KB or 512 bytes depending
upon the desired accuracy. ❹ Furthermore, instead of checkpoint-
ing the contents of all the volatile memory structures, including
the SRAM arrays, it is possible to augment this mechanism to sig-
nificantly reduce the amount of state that needs to be periodically
checkpointed.

2 BACKGROUND
Data Streams and SketchingA stream (X ) is a sequence ofN data
values, i.e., X = (x1, x2, . . . xN ). In our setting, the values represent
the readings taken by a sensor. We consider the space of approxi-
mate computing methods on streams, notably sketching. Sketching
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Figure 1: Sketching Algorithms (a) CM and HH and (b) FM

algorithms have the following characteristics: ❶ limited memory
usage by the data structure (known as the sketch of the algorithm),
❷ generally require only a few passes over the data, and ❸ provide
an approximate response to a query very quickly. It is often possible
to make theoretical guarantees with regard to the maximum error.
In this paper, we consider some of the most common sketching
algorithms, namely CountMin (CM)[1], Heavy-Hitters (HH)[2], and
Flajolet-Martin (FM)[8] (summarized in Table 1). Though several
other sophisticated algorithms to compute complex statistics on
sensor-generated streams also exist in the literature, most of these
algorithms use CM, HH, or FM as kernels [7, 14]. The combinations
of these algorithms are sufficient to compute most of the commonly
used statistics – top-k elements, unique elements, and anomalies.

2.1 CountMin (CM)
This algorithm[1] maintains an approximate count of the number
of occurrences of all the stream elements. In its simplest form, the
algorithm uses a hashtable withW buckets, wherein each bucket
stores a counter value. The algorithm maps a stream element, x , to
one of theW buckets. To ensure a uniform mapping, we typically
use a hash function of the form (a · x + b) % p %W, where % is
the modulo operation, p is a prime number, a and b are constants.

Furthermore, to reduce the impact of hash collisions, we use
D pairwise independent hash functions (h0,h1, . . . ,hD−1), where
each hash function hasW buckets of its own. The corresponding
data structure can be viewed as a 2D array of counters withD×W
elements: count[0, 0], . . . , count[D − 1,W − 1] (shown in Fig. 1(a)
- the blue shaded box). When an element x arrives at an EHD, it
initiates an update request. The counters corresponding to all the
D hash functions are incremented; while for a query request, the
counter with the lowest value among these counters is returned as
an estimate (N̂x ) for the count of the element x . These operations
can be summarized as follows:
❶ Update(x): count[i , hi (x )] ← count[i , hi (x )] + 1, ∀i ∈ [0 . . . D − 1]
❷ Query(x): N̂x ← min(count[i , hi (x )]), ∀i ∈ [0 . . . D − 1]

2.2 Heavy-Hitters (HH)
Given a stream of size N , this algorithm[2] determines those ele-
ments whose frequency of occurrence is more than a threshold (T ),
where T = N /(k + 1), k (> 0) being a user-specified parameter.
Similar to CM, it uses a D ×W matrix of buckets; however, unlike
CM, this algorithm maintains multiple counters within each bucket.
In particular, if an element in the input stream is represented by L
bits, then the algorithm maintains L + 1 counters within a bucket:
(CL−1,CL−2, . . . ,C0) – one for each bit, and a global counter, C ,
which keeps track of the total number of updates to the bucket. Thus,

Table 1: Characteristics of different sketching algorithms

Sketch Time per Update Time per Query Space Complexity Error per Query
CM[1] O(D) O(D) O(W.D) 1

N · |Nx − N̂x |

Nx : Actual count of x , N̂x : Estimated count, N : Stream size,W: # of buckets, D: # of hashes
HH[2] O(D.L) O(W.D.L) O(W.D.L) 1

N · |Na − Ne |

Na , Ne : Actual and estimated number of elements with count ≥ N /(k + 1), k: threshold
FM[8] O(L) O(L) O(L) 1

Nd
· |Nd − N̂d |

L: BITMAP size (in bits), Nd ,N̂d : Actual and estimated # of distinct elements

the data structure can be represented as a 3D array of counters with
(D×W×(L+1)) elements: count[0, 0, 0], . . . , count[D−1,W−1, L]
(see Fig. 1(a)). While updating, when a data element x is received,
theD hashes are computed, and for each matching bucket (one per
row), the global counter and the counters corresponding to each
set bit (= 1) in the element’s binary value are incremented. As an
example, consider L to be 8. If the input element is 121 (01111001b ),
then for a particular bucket, the counters C6,C5,C4,C3,C0 and C
will be incremented. The corresponding update(x) operation can
be formally written as:
❶ Update(x): if (bit(x,k) = 1 ∨ k = L),∀k ∈ [0, L], then

count[i,hi (x),k] ← count[i,hi (x),k]+1,∀i ∈ [0 . . .D−1]
Herebit(x,k) returns the value of thekth bit in x , i.e., 1 or 0 (the LSB
is bit 0). In our running example bit(121, 0) = 1 and bit(121, 1) = 0.

In the query operation, we need to find all the stream elements
that have been seen more than T times. We consider each of the
(D ×W) buckets, one after the other. For each bucket, let’s say
w0, in the row belonging to hash function h0, we initially check
if the value of the global counter C exceeds the threshold T . If it
does, then we find all the counters from (CL−1, . . .C0), that exceed
T . The estimate (x̂) of the value of the stream element, x , that
led to these counts is

∑L−1
i=0 2i , ∀Ci ≥ T . For example, assume

that only the counters C0 (LSB) and C2 exceed the threshold, then
x̂ = 3 (101b ). Please note that if for a counter Cj the following
relations hold, (Cj ≥ T) and (C − Cj ≥ T), we ignore the entire
bucket and continue to explore the next bucket. It is because this
condition indicates that there are possibly two elements that exceed
the threshold, and hence the set of counters that exceed T do not
point to a unique element – there is a hash collision here.

Once we have found a candidate x̂ , we need to perform further
checks. For this, we first check if x̂ maps to the bucket under con-
sideration by computing its hash. If it matches (i.e., h0(3) = w0 in
our example), then all the remaining D − 1 hashes are computed,
and the global counters of the corresponding buckets are obtained.
If all the counters are greater than the threshold, then this element
is returned as one of the results of the query operation.

2.3 Flajolet-Martin (FM)
This algorithm[8] counts the number of distinct elements in a data
stream and is based on a hash function that uniformly distributes
the incoming elements (similar to CM). The algorithm uses the
property that within a set of n distinct and uniformly distributed
values, n/2 values will have their least significant bit (LSB, i.e., the
0th bit) set. Generalizing this property: n/2k+1 values will have
their kth bit set (starting from the LSB), with the remaining lower
bits ((k − 1), . . . , 0) being unset (= 0). The algorithm maintains a
bit-vector, BITMAP , of length L (L is the number of bits required to
represent the hashed value), which is updated upon the arrival of
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each stream element as follows:
❶ Update(x): BITMAP[LSB(h(x))] ← 1
Here, LSB(h(x)) returns the index of the least significant set bit in
the hashed value of the input element (x). For example, Fig. 1(b)
shows a BITMAP with L = 8, and the hashed value (00101011)b of
x1 has its 0th bit set, thus BITMAP[0]=1. Similarly, BITMAP[1]=1
and BITMAP[4]=1, since h(x2) and h(xn ) respectively have their
1st and 4th bits set. Upon a query, we first find the least index (κ)
in BITMAP whose value is 0, and then the distinct count estimate
C is computed from κ as follows:
❷ Query(): C ← 2(κ+1)/ϕ,where κ ←min{i |BITMAP[i] = 0}
Here, ϕ ≈ 0.7 (an empirically computed correction factor); this
has been theoretically justified by Flajolet et al.[8]. The accuracy
of FM can be improved by having multiple hash functions and
correspondingly multiple bit-vectors. These hash functions are
divided intoW groups, with each group having D hash functions.
When an element arrives, the BITMAPs of all theW × D hash
functions are updated. Upon a query, the median of the indices (κ)
of individual hash functions are taken from each group, and then
an average value is computed from these indices (overall theW
groups); this is used as the final value of κ used to compute C.

3 RELATEDWORK
Based on accuracy and efficiency, we classify the existing approaches
for handling data streams into two groups:
❶ Traditional Algorithms Using a key-value store is the simplest
approach to handle data streams. However, the space complexity
for a stream with C unique elements is O(C), making key-value
stores an inefficient data structure for space-constrained EHDs. The
complexity can be reduced to O(1) by using sampling and lossy
compression[3], where only a fixed number of elements are stored.
However, these techniques can lead to missing/losing some im-
portant data samples, resulting in a significant accuracy loss. In
contrast, EHDSktch achieves the best of both worlds by maintain-
ing information about all the elements using sub-linear space (see
Table 1 for the space complexity) and yet providing good accuracy.
❷ Sketching Algorithms As described above, sketching-based
algorithms provide good accuracy while handling streams in a
space-efficient manner. Most sketching algorithms have been im-
plemented in software; however, several FPGA-based hardware
implementations have also been proposed [11, 15, 16]. These imple-
mentations have different goals in comparison to our architecture.
Based on the observation that the stream elements have extremely
varying frequencies, Tang et al. [15] propose to use variable-bit
counters. Our architecture can also use this idea; however, it would
complicate our architecture and reduce its generic nature since all
algorithms are not counter-based (e.g., FM). Saavedra et al. [11]
present custom hardware for the HH algorithm, and similar to our
implementation, exploit parallelism. However, their implementa-
tion is not generic. Tong et al. [16] propose a pipelined architecture
aiming to increase the system’s throughput. Unlike us, they do
not emphasize on extending and augmenting the architecture with
supplementary structures for memory and performance gains.

The existing accelerators aim to achieve high throughput and are
primarily designed for big data systems; they are not compatible
with EHDs because their designs are excessively reliant on large

indexes stored in power-hungry LUTs and BRAMs. The dynamic
power consumption of an LUT is around 500 times higher than that
of an ASIC gate, and an FPGA-based implementation consumes, on
average, around 14 times more dynamic power than an equivalent
ASIC implementation [9].

4 SKETCHING ACCELERATORS FOR EHDS
Most of the major sketching algorithms have a similar structure –
they use a set of hashes, perform memory accesses to fetch the data
values and have some application-specific computation. They typi-
cally perform the update and query operations. Thus, it is possible to
create a generic architecture (template) for them. This template can
be realized as a core set of IP blocks that provide specific function-
alities. This template can then be suitably modified and integrated
into any EHD’s SoC (System on Chip) as an accelerator.

4.1 Generic Architecture
To accommodate a diverse set of sketching algorithms, the proposed
architecture (see Fig. 2) has three stages:Hash, Fetch, and Evaluation.
Please ignore the IP block ‘Request Filter’ for now.

Request Resolver

Entry Finder

Update

Query ResultHash Engine

Index 

Finder

Hash Stage

Evaluation Stage

* *

*

State*
Hash 0

Updated Value

Fetch Stage

SRAM

Figure 2: Generic Architecture

4.1.1 Hash Stage. When a sensor input is read from the environ-
ment, it is sent to the hash stage, which has a Hash Engine that
contains a set of D blocks for computing different hash functions.
Each hash function is of the form, (a.x +b)%p, where x is the input,
a and b are randomly generated parameters, and p is a prime num-
ber. A typical software implementation on an EHD with an in-order
pipeline will compute the hashes iteratively. We, however, designed
a reconfigurable architecture where the hash computations can be
parallelized to achieve a speedup depending upon the available am-
bient power. The output hash values from the hash engine are then
fed into the index finder to determine the locations in the sketch
that need to be updated/queried. The index finder component acts
as a stub, which can be populated with the hardware implementing
an application-specific logic. For example, in CM, this component
computes a simple modulo with respect to the width(W) of the
sketch, while in the FM algorithm, this unit scans the BIMTAP
vector and determines the position of the least significant set bit.
This can either be done sequentially or can be accelerated using a
tree-based structure.

4.1.2 Fetch Stage. Once the set of locations has been determined,
we need to access the corresponding data from the on-chip SRAM.
However, due to the extremely small size of the SRAM (2 KB), the re-
quired data might not be available in the SRAM, and hence should
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be first fetched from the external FRAM. We observed that the
SRAM and FRAM accesses become the bottleneck in the sketching
algorithm’s performance. So, instead of using a single port SRAM,
we use a multi-port SRAM: 1 port per bank. Using multi-port mem-
ory increases the per access energy and latency, but we have the
advantage of fetching multiple values in parallel, and thus the over-
all overhead is greatly reduced. The sketch is stored in memory
in column-major order, and a column is striped across the banks.
Thus, the buckets accessed by multiple hash functions are fetched
in parallel. The mapping of the bucket index (from the hash stage)
to its bank is done by a Mapper , which given a memory address,
determines the corresponding bank id. Since multiple requests may
map to the same bank, we maintain per-bank request queues (indi-
cated by B0 Queue, B1 Queue,. . . in Fig. 2), and an Arbiter is used
to decide the issuing order. The Arbiter can merge requests to the
same location.

4.1.3 Evaluation Stage. Once the data is available in the SRAM
(upon a hit or from FRAM after a miss), it is brought into a buffer
(a small memory or a set of registers), and the data is processed
depending upon the request type, i.e., an update or a query, which
is determined using a request resolver .

Update request: Since the fetched data would contain an entire
column of sketch entries, the entry required to be updated (as
per the request) is determined using the entry finder , and then
the application-specific update function (implemented in HW) is
applied on it to obtain the updated value.

Query request: This follows the same path, as the update request,
till the entry finder stage. After this, the value of the entry is read and
stored in a state buffer since other values required for completely
handling the query might not have arrived. E.g., in CM, we compute
theminimum of all the values read from the sketch corresponding to
different hash functions. Hence, the partial comparison results are
stored in the state buffer, and subsequently, when all the required
data is available, the final output is computed by the process state
block (via the subset finder), and the query result is returned.

4.1.4 Subset Finder. This generic IP block can find a subset of
values among a set of values stored in an array of registers (or
memory), which satisfy a certain property. This is implemented
as a binary tree of logic blocks in hardware. The lowest level of
the tree consists of all the elements in the array (original value or
pre-processed). At each level, an internal node (also referred to as
a choice box) reads the values computed by its children, computes a
function on them, and sends the result to its parent.
CM: In this algorithm, we need to find the minimum value of the
counter. We first read the set of counters and store them in a set of
registers. Then the values in these registers are sent to the Subset
Finder. Each choice box receives values from its children, computes
the minimum, and passes on the results to its parent – the root of
the tree stores the minimum.
FM: Here, we need to find the least index in an array of bits that
contains a 0. The same logic is used for computing this index. Each
bit is a leaf in the tree. The bits (and their locations/indexes) are
propagated towards the root. If both the inputs to a choice box are
0 then the one with the lower index is chosen, and if one of them
is a 0, then that input is chosen. The root holds the location of the
lowest index that contains a 0.

HH: In this, we need to iterate through L counters (within a bucket)
and collect all those locations whose counters have a value greater
than a pre-specified threshold. We can aggregate this information
using the Subset Finder that uses an array of comparators.

4.2 Instantiating the Architecture
The described architecture can be used to realize almost all the
sketching algorithms. However, the algorithms might skip some
stages. E.g., in FM, the sketch’s size (BITMAP ) is extremely small
(around 2-16 bytes), so it can be stored in a dedicated register, and
the data fetch stage can be avoided. Further, different components in
various stages can have different sketch-specific implementations.
For example, in FM, the index finder in the hash stage determines
the index of the least significant set bit, while in CM, it determines
the bucket containing the data item. Similarly, there can be other
components that can be instantiated with a sketch-specific imple-
mentation. Hence, we provided a generic architecture with different
hardware components, which can be reused or extended by various
algorithms. These components are marked with a * in Fig. 2. We

Table 2: Overheads of components in the Generic Architecture

Block Area (µm2) Power (mW) Time (ns)
CM HH FM CM HH FM CM HH FM

Hash Engine 3015 3015 6031 1.8 1.8 3.6 7.8 7.8 7.8
Index Finder 1680 8697 17 0.5 2.5 0.002 5.6 34 0.9
Mapper 176 176 N.A* 0.03 0.03 N.A* 0.8 0.8 N.A*
Arbiter 1167 3022 N.A* 0.11 0.22 N.A* 15.35 16.42 N.A*

Req. Resolver 0.7 0.7 0.7 0.0001 0.0001 0.0001 0.04 0.04 0.04
Entry Finder 82 156 N.A* 0.012 0.024 N.A* 0.22 7.2 N.A*

Update 1019 1019 533 0.12 0.12 0.05 2.3 2.3 4.6
Process State 373 574 1033 0.07 0.09 0.3 5 23 16.8

N.A*-Not Applicable for FM, as there is no memory access
SRAM Area CM: 199,756 HH: 199,756 N.A*
Total Area CM: 9,412 HH: 17,486 FM:7,221

designed these hardware components in VHDL and used the Ca-
dence Genus tool to estimate the area, power, and time overheads
(see Table 2). The designs were fabricated with 28nm technology.
Shared Area: CM and HH share around 7,140µm2 of hardware, i.e.,
75.8% of CM’s area and 40.8% of HH’s area. All the three algorithms
share 3015µm2 of the total hardware. This corresponds to 32%,
17.2%, and 41.7% of the areas of CM, HH, and FM, respectively.

4.3 Using a Request Filter
Now, we describe how we can augment our architecture with a
supplementary structure for reducing space and gaining perfor-
mance. We insert a request filter before the hash stage (see Fig. 2).
All the incoming requests are performed on this structure with
the aim of delaying the updates to the sketch. E.g., in CM, an IP
block implementing a constant-sized hash-table can be used as
the request filter. It stores the data elements and their counter val-
ues, thus avoiding the expensive accesses to the sketch in SRAM
and FRAM. The temporal locality in the data stream increases the
benefits manifold.

The read requests, however, become slightly expensive. This is
because the request filter contains the partial counter value (cor-
responding to the input stream element) that should be added to
the value stored in the sketch; else, the read request will result in
a highly inaccurate value. However, since streaming applications
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have a considerably higher frequency of write (update) requests
as compared to read requests, the overall overhead while handling
read requests is quite small. But for certain sketching algorithms,
such as HH, reads are expensive as they require all the entries in
the request filter to be updated in the sketch to avoid an inaccurate
output; this negatively impacts the performance. To reduce this
overhead, we propose two optimizations: (i) update the sketch in
the backend and (ii) update only the most important data. In the
former approach, decisions regarding when to update are taken
considering the variability of the ambient energy. Particularly, the
backend updates can be performed when the amount of harvested
energy is high. In the latter approach, the ‘most important data’ is
updated (it is application specific). E.g., in HH, the data with higher
counter values is more important.

4.3.1 Conceptual Description of the Request Filter. Weuse a constant-
sized key-value store (N entries) where the key is the input stream
element, and the value has several fields. Since there are a fixed
number of entries in the key-value store, an older entry might need
to be evicted upon a new stream element’s arrival. A priority-based
eviction is followed, where the priority is computed using a function
of some of the value fields.
CM: The value is composed of two fields: a counter and a timestamp,
which are updated whenever the corresponding entry is accessed
in the key-value store. The eviction priority is the timestamp.
HH: The value has three fields: a counter, an insertion_timestamp,
and an update_timestamp. The eviction priority is equal to (up-
date_timestamp - insertion_timestamp). The entry with the maxi-
mum difference has the lowest priority, and is evicted. The intuition
behind this is as follows: The frequently updated element in the
request filter would have a stale counter value in the sketch. Thus,
we should refresh the counter value in the sketch with the cor-
responding value in the request filter. So, we evict the frequently
updated entry in the request filter. Such an entry would have a
higher value of the update_timestamp. However, a newly created
entry would also have a high update_timestamp, but we should not
evict it because the divergence of its counter value will be lower.

Stream 

element

(b)

N inputs

Choice 
Box

Figure 3: Implementation of the request filter (a) CAM structure
for searching, (b) Select logic for selecting an element with a given
priority

4.3.2 Implementation of the Request Filter. We primarily need to
implement two functionalities: (i) find the key-value pair (entry)
whose key matches the input stream element, and (ii) find the entry
with minimum priority. The first functionality is implemented with
a content addressable memory (CAM) structure (Fig. 3a), where all
the keys are compared in parallel with the input stream element. To
compute the entry with the minimum priority, we use a select logic
with a tree-based structure (similar to the one used in the Subset

Finder). Given that we have N entries, we need loд2N levels of
choice boxes, with each choice box having two inputs (see Fig. 3(b)).
The input is a function of the value field, which can vary across
different algorithms. For example, CM uses a timestamp, while HH
uses the difference between timestamps. Among the two inputs, the
choice box chooses either the left input or the right input according
to algorithm dependent custom logic. E.g., in the CM algorithm, the
input with the smaller value is chosen, while in HH, a larger-valued
input is chosen. The root of the tree computes the minimum priority
value, and the corresponding entry is evicted. The time complexity
of this select logic is O(loд2N ).
Area Overheads: The area overheads for a 128 and 256-entry re-
quest filter for CM are 3,805µm2 and 7,627µm2, respectively. Simi-
larly, for HH, the total area of a 128 and 256-entry request filter is
18,966µm2 and 33,332µm2, respectively. This corresponds to only
1.8%− 3.6% of CM’s total area, and around 8.7%− 15% of HH’s total
area (including 2KB of SRAM).

5 EXPERIMENTS
5.1 Setup
Software System Configuration: We model a 16-bit, 5-stage in-
order processor on a cycle-accurate architectural simulator, Te-
jas [6], which has been rigorously validated against native hard-
ware. The modeled processor is based on 28nm technology, operates
at a constant frequency of 16MHz, and is equipped with a 2 KB
SRAM and 64 KB FRAM. It has a 32-byte set-associative I-cache
consisting of 4 cache lines, 64 bits each. The power and timing
values of the processors’ components have been computed using
McPat. The energy and latency values for the SRAM and FRAM are
computed using Cacti 6.0, and are in accordance with the values
provided in [12]. We use architectural simulation because our solu-
tion proposes changes to the organization of the memory system
of conventional hardware. Specifically, we model a 4-port SRAM
with 4 banks.
Stream and Sketch Configuration: We consider data streams
that follow a Zipfian distribution with a skew of 0.8 (similar to [4]).
The data element is represented by 16 bits, i.e., for HH, L=16, and for
FM, BITMAP’s size is 2 bytes, and (ii) the counter values are of 32
bits. For CM and HH, we used a depth (D) of 8. A width (W ) of 1024
is chosen for CM, while HH has a width of 64. Similarly, a set of 8
hash functions (D) has been used for FM. All the input signals in
our hardware are 16 bits wide. The memory footprint of EHDSktch
is less than the amount of memory available in most of the devices
used in energy harvesting systems (e.g., TI’s MSP430FR5969).

5.2 Performance Evaluation
Fig. 4 compares the energy consumed and the time taken by the
sketching algorithms when executed in software to that when they
are implemented in hardware. For the software, we considered the
efficient state-of-the-art implementations from the C++ standard
library. Fig. 4(a,b) shows the energy consumed (EPU: energy per
update and EPQ: energy per query) and the time taken (CPU: cycles
per update and CPQ: cycles per query) by S/W implementations
normalized to the hardware implementations. The hardware imple-
mentation of CM consumes around 8−11× (Fig. 4(a)) less energy and
takes around 28 − 34× (Fig. 4(b)) less time than the corresponding
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software implementation. Similarly, the hardware implementation
of HH is around 4 − 6× more energy-efficient and 10 − 18× faster
than the corresponding software implementation. The updates in
FM are around >10K× more energy efficient because the entire
sketch can be stored in a small hardware register, and hence no
SRAM or FRAM accesses are involved. It is also 2K − 13K× faster
than the equivalent software implementation because it uses a fast
and parallel tree-structured implementation to compute the index
of the least significant set bit, while the software implementation
iteratively scans the entire L-bit BITMAP .

(a) (b)

Figure 4: Comparison of S/W sketching to H/W sketching (a) En-
ergy consumed (b) Time taken

5.3 Impact of the Request Filter
Table 3 shows the performance benefits of using the request filter
along with the sketch (stored in 512B or 1KB of SRAM). The table
shows the time and energy values for CM and HH, normalized to
the results obtained by using the straightforward hardware that
has a 2 KB SRAM and no request filter.
Space benefit: Using a request filter with only 16 entries, the CM
gets a 3-6% performance gain and can reduce 50% of SRAM usage.
The SRAM’s size can be reduced by 75%, and the performance can
be increased by 5-8% with 16 additional entries. A similar pattern
is followed by HH. The performance benefit increases with an
increase in the number of entries. However, there is an accuracy-
performance trade-off. The column marked with a † shows the
accuracy obtained in HH by using a request filter normalized to
the case when no request filter is used. The results show that as
the number of entries increases, the achieved accuracy decreases.
This is because the number of evictions is reduced, and the counter
values of the frequent stream elements do not get updated in the
sketch.
Impact of the eviction policy on accuracy: We show the signif-
icance of our eviction policy in HH by comparing it to the least
recently used (minimum update_timestamp) based eviction. The
respective accuracies are shown in the columns marked with † and
‡ in Table 3. The results show that our proposed eviction policy is
4 − 7% more accurate.
Efficient execution of EHDs: There are two benefits: ❶ Due to
space reduction, the checkpoint’s size is significantly reduced. Since
the checkpointing energy is directly proportional to the check-
point’s size [12], a small checkpoint will have lower checkpoint-
restore costs. Though an additional cost will be there due to the
entries of the request filter, that overhead is very small. Further-
more, we do not need to checkpoint the timestamps. ❷ Depending
upon the available energy, the device can choose a memory con-
figuration considering the accuracy-performance trade-off. If the

Table 3: Performance evaluation of the request filter

Normalized Time* Normalized Energy* % Relative
512 Bytes 1024 Bytes 512 Bytes 1024 Bytes Accuracy

# Entries CM HH CM HH CM HH CM HH HH† HH‡
0 0.89 0.95 0.93 0.97 0.89 0.95 0.93 0.97 100 100
8 0.98 0.96 0.99 0.98 0.99 0.96 1.02 0.98 99.9 99.9
16 1.01 0.98 1.03 0.99 1.03 0.98 1.06 0.99 99.8 99.8
32 1.05 1.01 1.07 1.02 1.08 1.00 1.10 1.02 99.6 99.6
64 1.09 1.06 1.11 1.07 1.12 1.06 1.14 1.07 99.3 98.4
128 1.18 1.17 1.20 1.88 1.21 1.17 1.23 1.19 98.3 95.7
256 1.30 1.28 1.32 1.29 1.34 1.28 1.36 1.29 98.2 91.1

* Normalized to the results obtained when no request filter was used.
Eviction policy: †(update_timestamp - insertion_timestamp) based, ‡LRU based.

available energy is high, the device can spend more energy and,
thus, execute in a high-accuracy mode, i.e., the device can use a
request filter with a small number of entries. In contrast, at times of
low available energy, it can use a configuration with a large number
of entries: low power and reduced accuracy.

6 CONCLUSION
We propose a generic architecture for sketching that can be easily
augmented with supplementary structures. These structures lead
to a performance gain of 3-20% and reduce the on-chip memory
requirement by 50-75%. These savings in performance and space
are significantly beneficial for resource-constrained EHDs.
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