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Abstract

Recent years have witnessed a significant interest in the “generative adversarial networks” (GANs) due to their ability to
generate high-fidelity data. Many models of GANs have been proposed for a diverse range of domains ranging from natural
language processing to image processing. GANs have a high compute and memory requirements. Also, since they involve
both convolution and deconvolution operation, they do not map well to the conventional accelerators designed for convolution
operations. Evidently, there is a need of customized accelerators for achieving high efficiency with GANs. In this work, we
present a survey of techniques and architectures for accelerating GANs. We organize the works on key parameters to bring
out their differences and similarities. Finally, we present research challenges that are worthy of attention in near future. More
than summarizing the state-of-art, this survey seeks to spark further research in the field of GAN accelerators.
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1 INTRODUCTION

Artificial intelligence has now pervaded all fields of human endeavor. Most of the artificial intelligence models are based
on supervised machine learning models. However, supervised models require a large dataset with millions of labels. This
requirement prevents the deployment of supervised models in domains where labels are costly or difficult to collect. A
promising solution to this issue is the automatic generation of the dataset by unsupervised and semi-supervised learning
models. “Generative adversarial networks” or GANs [1] is one of the most popular and effective unsupervised generative
models for generating realistic-looking fake data. The key advantage of using GAN is that it can easily learn patterns or
regularities of a complicated input dataset. Once trained, the model can be used for the generation of new artificial realistic
samples which share similar features as the original data. GANs have been successfully used in various applications, such
as autonomous driving [2], video prediction [3], image super-resolution [4], image synthesis, text-to-image conversion [5],
style transfer [6], providing robots that can learn automatically from the surrounding without any human intervention,
and so forth.

A crucial challenge in the use of GANs, however, is that their network structure is quite complex. In GAN training,
two competing neural networks, viz., generator and discriminator, are trained alternatively. In GAN, there is a symmetry
between the generator and the discriminator, and they are trained alternatively. The training of the generator aims at
producing fake samples, whereas the discriminator’s training is done using both real and fake data samples. Due to this,
the execution latency of a GAN is much higher than that of a conventional CNN. Facilitating the collaboration between
them requires transferring a huge amount of data between them. These factors underscore the need for the hardware
acceleration of GANs.

Hardware acceleration of GANs presents challenges of its own. The existing hardware accelerators are aimed
at discriminative CNNs. However, the generator network uses an “up-sampling fractionally-strided CNN” which is
significantly different. A GAN accelerator needs to be generic enough to be able to accelerate both the generative and
discriminative networks. For example, it needs to optimize the data-reuse in both a regular CONV and a DeCONV.
Further, GAN computations involve irregular data dependencies, which lead to a high amount of bandwidth pressure [7].
Further, the DeCONV operation performs up-sampling of the input feature map using either zero-insertion or nearest-
neighbor-based approach. However, the zero-insertion strategy leads to a large number of ineffective computations. With
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4 × 4 input and a stride of 2, nearly 87% computations are redundant, and with 16 × 16 input and a stride of 32, 99.8%
computations become redundant [8]. The nearest-neighbor-based upsampling involves repeated multiplications. Evidently,
the design of GAN accelerators presents unique challenges beyond those posed in the design of CNN accelerators. Several
recent works have sought to address these challenges.

Contributions: In this paper, we present a survey of hardware architectures and optimization techniques for GANs.
Figure 1 presents an overview of this paper. Section 2 provides a background on important concepts. It also classifies the
works on key parameters. Section 3 reviews the research works in terms of their architectures and Section 4 looks at them
in terms of the optimization techniques used by them. In these sections, we review a technique in a single section only,
even though many of the research works belong to multiple categories. Since different works use different experimental
platforms and workloads, we only discuss their key ideas and do not present their quantitative results. Section 5 discusses
future research challenges that are worthy of attention from researchers. Finally, Section 6 concludes this paper.
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Fig. 1. Organization of the paper

Following acronyms are used frequently in this paper: 3D data wire connection unit (3DDC), backward/forward
propagation phase (BWP/FWP), convolution (CONV), convolutional/deep neural network (CNN/DNN), deconvolution
(DeCONV), fast Fourier transform (FFT), Fermat number transform (FNT), input/output feature map (ifmap/ofmap),
long stort term memory (LSTM), look-up table (LUT), matrix multiplication (MM), matrix vector multiplication (MVM),
memristive crossbar array (MCA), multi-level cell (MLC), multiple/single instruction multiple data (MIMD/SIMD),
multiply-accumulate (MAC), processing element (PE), processing-in-memory (PIM), “resistive RAM” (ReRAM), “spin orbit
torque RAM” (SOT-RAM), sub-crossbar tensor (SCBT), transposed convolution (TrCONV), vector-matrix multiplication
engine (VMME)

2 BACKGROUND AND MOTIVATION

In this section, we first present some preliminary ideas about GANs (Section 2.1). This is followed by an introduction to
some operations performed by a GAN (Section 2.2). Finally, we present a classification of research works (Section 2.3).

2.1 Preliminaries
A GAN has two competitive neural networks: A “generator” and a “discriminator”. These neural networks compete with
each other to learn a high-dimensional data distribution. The generator comprises a “deconvolutional neural network”
(DeCNN) whereas a discriminator comprises a CNN. The former is used for artificial data generation, and the latter is
used for distinguishing the synthetic data from the actual data. The aim of the training procedure of GANs is to acquire
a generator that can generate nearly identical artificial data and a discriminator that can effectively extract features and
distinguish between the real and artificially generated data.

Figure 2 presents a high-level representation of a GAN design. The error calculation block calculates the error between
the artificial data and the real data. This error is propagated back to both the neural networks, and weights are updated
accordingly. In the training phase, the discriminator and generator are trained alternately, which leads to a high requirement
of memory and computational resources.

2.2 Types of Operations
We now discuss and distinguish different types of operations performed by a GAN.

2.2.1 Strided CONV
Strided CONV (no zero-insertion): Figure 3(a) presents a strided convolution operation which is a basic convolution
operation with a stride of 2. As the kernel is skipped by the stride of 2, half of the CONV operations from both the vertical
and horizontal directions are skipped. This process generates a quarter-sized ofmap.
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Fig. 2. Deep convolutional generative adversarial network. Generator is used for the generation of the artificial data and the discriminator learns to
differentiate between the real data and the artifically generated data. [9]

2.2.2 Transposed CONV

Transposed convolutions (TrCONV) are also known as “fractionally strided convolutions” or “up convolutions”. A
TrCONV does not ensure recovering the input since, mathematically, it is not the inverse of the CONV. Instead, it just
outputs a fmap having the same dimension as the input fmap. It performs the regular CONV, but it reverts its spatial
transformation. It gracefully combines the process of up-scaling an image and convolution, which proves to be very
helpful in the encoder-decoder-based architectures. For performing upsampling, zeros are inserted between the non-zero
inputs as well as around the image border. Figure 3(b) presents the TrCONV process.

It is crucial to highlight that the DeCONV is mathematically defined as the inverse of a convolution. Hence, a transposed
CONV is not exactly the same as a DeCONV. Still, most papers use them interchangeably. Following these works, we use
these terms interchangeably.

2.2.3 Dilated CONV

The dilated convolution is also known as an atrous convolution. In dilation convolution, zeros are inserted only in the
kernels, which leads to dilated kernels with an enlarged receptive field [10]. The dilated CONV uses a parameter called
dilation rate, which shows the spacing between the weights in the kernel. A 3 × 3 kernel with a “dilation rate” of 2 has
similar “field of view” as a 5× 5 kernel. Figure 3(c) presents the Dilated CONV process.

5 x 5
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12 x 12

4 x 4

8 x 8

12 x 12

5 x 55 x 5

12 x 12

8 x 8

= = =** *

(c)(b)

Fig. 3. Different types of operations: (a) Traditional (direct) CONV with a stride of 2, called strided-CONV (no zero-insertion) (b) Transposed CONV
(zero-insertion in the input) (c) Dilated CONV (Zero-insertion in kernel)

Table 1 distinguishes transposed CONV from dilated CONV [11–14].

TABLE 1
Difference between transposed CONV and dilated CONV

Zero-insertion in
Input Kernel

Transposed CONV (also called fractionally strided CONV, upconvolution or deconvolution) Yes No
Dilated CONV (also called atrous CONV) No Yes

2.3 Classification

Table 2 classifies the research works based on the machine-learning phase they target, optimization metric, their workload
and datasets.

3 ACCELERATOR ARCHITECTURES

We now discuss the architectures of GAN accelerators. Section 3.1 reviews processing in ReRAM and Section 3.2 reviews
processing in SOT-RAM. Section 3.3 discusses strategies for matching computation-pattern to the accelerator architecture
and Section 3.4 reviews interconnect architectures. An architecture for handling nearest-neighbor upsampling strategy is
reviewed in Section 3.5 and one for handling “instance normalization layers” is discussed in Section 3.6. Architectures for
dilated CONV and 3D DeCONV are discussed in Sections 3.7 and 3.8, respectively. Finally, architectures for training a GAN
are discussed in Section 3.9.

Table 3 classifies the works based on their architectures and computing platforms.
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TABLE 2
A classification of research works

Machine learning phase training [9, 15–20], inference [10, 15, 17, 21–26]
Optimization metric Energy [8, 16, 17, 19–21, 21, 22, 24, 26–41], performance or accuracy (nearly all)
Benchmarks DCGAN [8, 10, 19, 20, 22–24, 26–28, 31–34, 37, 40–44], ArtGAN [19, 27, 28, 32, 37, 41, 42, 44], DiscoGAN

[19, 28, 32, 33, 37, 41, 42] , GP-GAN [19, 22, 28, 32, 41, 42, 44], MAGAN [19, 28, 41] EB-GAN [42],
3D-GAN [19, 22, 27, 28, 41, 42], 3D-ED-GAN [42], V-Net [22] UP-GAN [26], U-Net [29, 36, 37, 39, 43],
E-Net [30, 31], C-GAN [10, 20, 26], DN-GAN [26], iGAN [27] SNGAN [8, 24, 44] cGAN [19], fully-
convolutional network [8, 24, 30, 35, 37], FSRCNN [25, 37, 43, 45], super-resolution network [35], MDE
[44], FST [44] style-transferGAN [21, 35], CycleGAN [21], DeblurGAN [21], StarGAN [33], WGAN-CP
[18, 34], WGAN-GP [18, 34], DeepLabv3+ [30]

Dataset MNIST [9, 17, 19, 20, 23, 34], CIFAR-10 [8, 17–19, 24, 31, 34, 44], CIFAR-100 [10], CelebA [30, 34, 43, 44],
STL-10 [8, 18, 34], Cityscapes [24, 31, 36], KITTI [24], PASCAL VOC [8, 24], Fashion-MNIST [34], Set5,
Set14, and B100 [45], transient attributes [44], FSP [30], RH [30], LSUN [8, 17, 24]

TABLE 3
A classification of algorithms, architectures and computing platforms

Algorithm type
DeCONV (transposed CONV) [10, 16, 17, 19–43, 45–47]
Dilated CONV [10, 29–31]

Hybrid architecture
CONV-DeCONV [20, 21, 24, 25, 31, 33, 35–37, 39, 41, 43, 46, 47]
DeCONV-dilated CONV [10, 30, 31, 37]
DeCONV-CONV-dilated CONV [31]

Method for accelerating DeCONV operation
Zero skipping/removal [17, 19, 20, 24, 28, 30, 31, 40, 41]
TDC (transforming DeCONV into CONV) [10, 23, 25, 27, 29, 32, 43, 44]
Reverse Looping [48]
FNT [33]
Kernel based Operations Conversion [35, 37, 39, 47], Decomposition [10, 23, 25, 27, 29, 32, 43, 44]

Hardware architecture
FPGA [20–23, 25, 26, 28, 29, 32, 36–38, 40, 42, 43, 45–48]
ASIC [9, 18, 24, 33, 39, 41]
Edge TPU [44]
PIM-based ReRAM [8, 9, 16–19, 27, 34], SOT-RAM [18]
Comparison with CPU [10, 20, 22, 26, 27], GPU [10, 16–20, 22, 26–29, 34, 37], FPGA [17, 19, 23, 25, 32, 33, 36–

38, 40, 43, 46], ASIC [9, 18, 24, 27, 33–35, 39, 41], PIM-based [19, 27]

3.1 Architectures using Processing in Resistive RAM (ReRAM)

TrCONV involves augmenting a low-dimension ifmap to a high-dimension fmap. In the first step, multiple zeros are
inserted in the input data, and in the second step, CONV is performed on the expanded fmap. These zeros are responsible
for upwards of 60% computations, and hence, the execution of GANs on traditional DNN architectures is highly inefficient.

Chen et al. [27] propose a PIM-based ReRAM architecture for accelerating GAN computations. Consider the example of
TrCONV between 4×4 input and 5×5 kernel shown in Figure 4(a). They note that the CONV can have only four different
valid patterns, which are shown by various colors. The elements in odd and even rows of output are computed from the
odd and even (respectively) rows of the weight matrix. Based on this, they separate the weight matrix into several subsets
and perform CONV only among suitable subsets of the weight kernel and the original input. This is shown in Figure 4(b).
This approach is used in both FWP and BWP phases.
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Fig. 4. (a) 2D TrCONV for a 4× 4 input and a 5× 5 kernel. (b) Their proposed dataflow for executing 2D TrCONV [27]

Let Pw and Ph be the padding on width and height, respectively, and Sw and Sh be the stride on width and height,
respectively. In general, Sw > (Pw + 1) and Sh > (Ph + 1). They partition the kernels in Sw × Sh subgroups. In the FWP
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phase, the CONV between expanded ifmap and kernel can be obtained by CONV between original ifmap and multiple
kernel subgroups. By properly arranging these ofmaps, the final ofmap can be obtained. In the error propagation phase,
the error for layer L − 1 is obtained simply by convolving the error matrix with the suitable subgroup of weight matrix
since an element in ofmap of layer L is computed only from selected subgroups of the kernel. During CONV, ineffectual
computations due to zero operand are skipped by the scheduler.

As for the mapping of matrix multiplication to memristive crossbar array (MCA), they note that a coarse-grain mapping
leads to different computation latency for different kernel subgroups. For instance, Figure 5(a) presents the mapping of
kernel matrix of layers L1 and L2 on an MCA. Due to the differences in the ofmaps of these layers, the computation
latencies of these layers are different. This precludes the use of pipelining and also leads to an unbalanced load. To avoid
this, they perform fine-grain mapping where multiple (say Q) copies of small-size MM are mapped on the “vector-matrix
multiplication engine” (VMME). Figure 5(b) shows this with an example of Q=2 and Q=3, respectively. This leads to
balanced computation latency and also enables pipelining of GAN training.
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Fig. 5. Mapping matrix multiplication (MM) onto “vector matix multiplication engines” (VMMEs) using (a) coarse-grain approach (b) fine-grain
approach [27]

Their overall architecture is shown in Figure 6. Their compute engine has ReRAM memory for storing inputs and
outputs, and multiple PEs connected through the on-chip mesh, as shown in Figure 6(a). Every PE has multiple VMMEs
(Figure 6(b)), a ReRAM buffer for caching intermediate output, activation units and output registers, etc. Every VMME has
multiple ReRAM crossbar arrays (Figure 6(c)), of which only one array is activated at a time for performing processing
in memory. For example, one PE has 4 VMMEs, each of which has 8 ReRAM crossbar arrays. To enable mapping of
large-matrices, a shift-and-add unit is also used, which enables the accumulation of partial sums. They also use other
units for performing various computations of GAN. To reduce the overhead of “digital-to-analog convertor” (DAC), its
functionality is achieved with an inverter. Also, to reduce the overhead of “analog-to-digital convertor” (ADC), one ADC
is shared between 8 ReRAM crossbar arrays.
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Fig. 6. (a) In the technique of Chen et al. [27], every node has ReRAM memory for storage, a mapper for mapping the dataflow to the PEs, and a
scheduler for controlling the computation flow. Multiple PEs are connected through an on-chip mesh. (b) Every PE has many VMMEs, a buffer for
caching temporal data, and a register for aggregating the output. (c) Every VMME has a few MCAs that share the ADC, a few 1b DACs, etc. MCAs
in the VMME have a common driver. Only one MCA can be active at a time. A bitline MUX is used for selecting the results.

Overall, their technique benefits from achieving PIM execution [49, 50] and pipelining and avoiding computations on
zero operands. Their technique achieves 146× speedup over an E5-2630 v3 CPU and 7.6× speedup over a Geforce GTX
1080 GPU. Also, it achieves higher performance and energy efficiency than both ReRAM [16] and CMOS-based [24, 41]
DNN accelerators, for example, the speedup and energy efficiency improvement over ReGAN [16] are 1.15× and 1.5×,
respectively. Further, by virtue of using 3D ReRAM, it achieves a lifetime of 3.4 years under continuous training, whereas
ReGAN has a lifetime of 5 months only.

Fan et al. [8] note that the non-padding DeCONV strategy requires additional circuitry in ReRAM-based accelerators
for performing addition and cropping operations. Further, while the output of zero-padding DeCONV is produced in
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M columns (M=number of output channels), the non-padding DeCONV needs M × KH × KW columns on a crossbar.
Since the bitline/wordline driving power rises quadratically with the number of columns, the non-padding DeCONV
consumes much higher power than zero-padding DeCONV. Figure 7(a) and 7(b) show padded and padding-free DeCONV
operations, respectively.
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Fig. 7. ReRAM-based DeCONV which (a) requires padding and (b) does not require padding [8]

They propose architectural techniques for mitigating this inefficiency. Their overall architecture is shown in Figure
8(a). Their design uses KH × KW sub-crossbars of size C ×M , and thus, a sub-crossbar has C inputs and M outputs.
To mitigate the redundancy due to zero-padding, they use pixel-level mapping, shown in Figure 8(b). The combination
of sub-crossbars produces a “sub-crossbar tensor” (SCBT) of dimension C × M × KH × KW . In pixel-level mapping,
SCBT [c,m, i ∗KW + j] = W [i, j, c,m], where [i, j] show the position of the weight in every filter, c shows the channel-
index and m shows the index of weight filter.
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Fig. 8. (a) In the technique of Fan et al. [8], DeCONV is run by KH ×KW sub-crossbars, each of size C ×M . Only non-zero pixels are taken for
forming the input vector. The partial outputs from the subcrossbars are accumulated to obtain the output pixels. For every ofmap, multiple pixels are
generated in parallel. (b) pixel-level mapping. A kernel of size KH ×KW × C ×M is mapped to KH ×KW sub-crossbars, each of size C ×M .

In a CONV operation with a 3x3 kernel and a stride of 2, due to the high sparsity of expanded input, the CONV
operation has only four distinct computation patterns, which are shown in Figure 9(a)-(d). Also, the weights involved in
these patterns are also exclusive. A kernel of size KH ×KW × C ×M is mapped to KH ×KW sub-crossbars (SCB). On
completion of one computation cycle in SCBs, the output from the corresponding SCBs is added for obtaining the final
DeCONV result. The ReRAM accelerator design already enables efficient vertical summation, and hence, additional circuits
are not required for realizing the add operations.

They further present a dataflow that avoids computations on zero pixels. It is shown in Figure 9(e). For a 3× 3 kernel,
they use 9 SCBs. The output vectors which are generated from the SCBs which are located on the same row are summed
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Fig. 9. (a)-(d) Four compute patterns in DeCONV for a kernel size of 3× 3 and stride of 2 [8] (e) zero-skipping data flow (SCB =sub-crossbar, Q =
output)

up together, and the same input is provided to the SCBs on the same column. Let In(x, y) be the input vector. Since their
dataflow skips padded zeros, they have even numbers as x and y index on the padded image.

In cycle 1, the inputs go as follows: In(0; 0) to SCB1, In(2; 0) to SCB2 and SCB3, In(0; 2) to SCB4 and SCB7, and In(2;
2) to SCB5, SCB6, SCB8 and SCB9. All 9 SCBs work simultaneously and their outputs are combined. In cycle 2, the next
group of non-zero pixels are used, viz., In(0; 2), In(0; 4), In(2; 2) and In(2; 4). As compared to the zero-padding DeCONV,
this dataflow improves parallelism by 4×.

The acceleration brought by their technique increases with the number of compute-patterns, which equals the square
of the stride. However, with increasing stride, the number of SCBs required is also increased, which leads to area penalty.
Based on this tradeoff, they decide the number of SCBs. Also, they add zeros to the input vector for reducing the number
of SCBs to half of its original value. In comparison to the zero-padding architecture, their architecture attains a 3.7×-31.1×
speedup for different benchmarks by virtue of lowering the array and periphery latency. The energy savings are between
8% to 88%. In comparison to the zero-padding design, their technique lowers the array latency since it uses output vectors
of smaller size.

Liu et al. [17] present a ReRAM-based accelerator for GAN. The accelerator has blocks for discriminator, generator,
difference and control. The discriminator and generator blocks perform the functionality of discriminator and generator,
respectively. They have multiple ReRAM-based CNN and DeCNN units, respectively. The difference block is designed
with two ReRAM-based LUTs, adders and memory units, and it calculates the gradients of generator and discriminator
blocks. The size of the memory-unit depends on the batch-size. The control unit orchestrates the dataflow. Figure 10 shows
the working of their design. 1 : The real data y is supplied to the discriminator for computing D(y). 2 : Fake data x is
supplied to the generator for obtaining artificial samples G(z). 3 : G(x) is sent to the discriminator for computing D(G(x)).

4 : D(y) and D(G(x)) are sent to the difference block. The weights of discriminator 5 , and generator 6 are updated based
on the gradient computed by the difference block. Steps 1 - 4 are part of the FWP phase and 5 - 6 are part of the BWP
phase.

Discriminator 

block 
Difference 

block

Generator 

Block

Real 

data

Noise

1

2

3

4

5

6

Fig. 10. In the technique of Liu et al. [17], the discriminator block computes D(x) and D(G(z)) for stochastic gradient descent computation. The
generator block computes G(z) for generating the artificial samples for calculating the stochastic gradient in the update of generator weight. The
difference block calculates the gradients of the discriminator and generator blocks.

They find that updating the generator and discriminator takes most of the time. Also, the generator and discriminator
can work independently except in steps 2 and 3 and when weight update has not finished. Based on these, they develop
a pipelined execution schematic which allows the generator and discriminator to work in parallel as much as possible. For
example, steps 1 and 2 are executed in parallel. Since step 2 takes more time than step 1 , the result of step 1 is
stored in a memory block in the difference unit. Similarly, steps 5 and 6 run in parallel. Step 5 finishes before step 6 ,
which allows the next training iteration of the discriminator to begin asynchronously without the need of extra memory
in the discriminator block. The training of generator and discriminator is synchronized again before step 3 is executed in
the next iteration. Their pipelining technique improves resource utilization and reduces latency.

They propose an architecture that has units for updating weights, computing errors and performing CONV/DeCONV
operations. It is based on the ReRAM crossbar and has a parallel FWP phase and a memory-free BWP phase. It can act
as a discriminator or a generator using suitable initial weights programmed on the DeCONV/CONV units. The initial
or updated weights are programmed to the crossbar of the CONV (or DeCONV) computing engine, and the results are
supplied to the difference block.
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During the BWP phase, the weights are updated according to the gradient from the difference block. The transpose
of weights are loaded from the operation units in FWP and applied to the crossbar of the “error computation units”. The
output of every layer in FWP is mapped to the crossbar of the “weight updating units”. Their design does not need memory
for storing the updated weights or inter-layer signals due to the PIM capability. The updated weights are programmed to
the CNN computing units and inter-layer signals are mapped to the “weight updating units”. The LUTs in difference block
perform function ∇ logD(y) and ∇ log(1 − D(G(x))). From these, the value of error for discriminator and generator
are obtained. For Lsun/bedroom dataset, their technique provides 6.1× energy reduction and 2.8× improvement in
performance over a Geforce GTX 1080 GPU. Also, it provides 1.4× energy reduction and 5.5× improvement in performance
over the FPGA implementation of the technique of Song et al. [20].

3.2 Architectures using Processing in Spin Orbit Torque RAM (SOT-RAM)
Rakin et al. [18] propose an efficient GAN training algorithm using ternary weights (-1,0,1). In the proposed method
of GAN training, initially, statistical weight training and the weight ternalization (i.e. -1,0,1) are done. The loss-function
ternary weight-based inference is deduced, which is backpropagated to update the full-precision weights. This reduces the
computational complexity. The digital processing unit ternarizes the weights, as shown in Figure 11. These weights are
then mapped to the sub-array, supporting flexible addition/subtract operations.

Fig. 11. The accelerator proposed by Rakin et al. [18] consists of image and kernel banks, a digital processing unit which includes four supporting
units (loss function, batch normalization, activation function, ternarizer) and a SOT-MRAM based computational sub-array.

Due to ternarization, computationally intensive CONV and DeCONV are converted to subtract/addition operations.
These operations are realized using a spin-orbit torque RAM-based processing-in-memory approach. Their overall
approach is shown in the Figure 11. In step 1 digital processing unit maps the ternarized weights to the computational
sub-array. In 2 combining is performed in the sub-array. In the next step 3 parallel computation is performed. Finally,
in step 4 activated sub-arrays produces final ofmap. Their technique performs the two important steps: combination and
parallel computation. For performing combination operation, the input‘s sign-bit is changed according to the kernel as
shown in the Figure 12(a). They map this aggregate batch to the sub-arrays. In Figure 12(b), the 16 sub-arrays are divided
into four mats. The generated aggregate batch of four channels is mapped to these four mats. These sub-arrays operate in
parallel and use the addition/subtraction operations to produce the ofmaps. Their technique achieves 22× speedup and
25.6× better energy efficiency than the GPU platform.

3.3 Architectures for Mapping Computations to PEs
Yan et al. [35] propose an architecture that can support the CONV layer, DeCONV layer, and residual blocks. In the CONV
operation with 7×7 input, 3×3 kernel, the output size is 5×5, and computing each output requires 9 multiplications. Based
on this, for the CONV operation, they use the ‘output-oriented mapping’, whereby one PE is responsible for computing one
output element. For a DeCONV operation with 3×3 input, 3×3 kernel, the output size is 3×3, but different outputs need
different numbers of multiplications due to the zero-padding. On using one PE for computing a single output, different PEs
have a different number of computations. They note that, in the DeCONV operation, the number of operations performed
on each input is the same. Hence, for DeCONV operation, they use ‘input-oriented mapping’, which maps each input
processing task to a single PE.

They further note that the residual block consists of the elementwise additions and the CONV layers. However,
elementwise additions have a much smaller operation density than the CONV. This leads to high memory requirements
and a poor PE utilization. To deal with this issue, they design a cross-layer dataflow for the residual block. They select the
size of each tile such that there is no overflow in the input buffer. This tile is stored in the cold buffer. Then, two consecutive
CONVs are performed on this data. The first CONV gives a part of the output, and then this part is sent to the second
CONV. Finally, element-wise addition is performed in the accumulator between the cold buffer data and the convolved
data. This process does not require any off-chip memory access.
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Fig. 12. (a) Combining operation: for combination, the sign-bit of the input is changed according to the kernel’s value. (b) parallel computation: the
aggregate batch computed in parallel on the sub-arrays [18] (FA/FS = full adder/subtractor, S#1 = sub-array 1, etc)

Their overall architecture is shown in the Figure 13. The computation core consists of four parallel CONV engines, each
with 8 × 8 PEs. For the intra-PE processing, precision adaptive PEs are designed, which can support flexible bitwidth.
Moreover, buffer bandwidth can reconfigure to either 256 or 128 bits, according to the computation mode of the PEs. Here,
the computation mode refers to the use of different bitwidths such as 8 bit, 16 bit, etc. First, the kernel and the activation
values are loaded into the CONV engine. During computations, the CONV engine receives data from the same rows but
from the different channels. The partial sums are reused till the accumulation of the tiled output maps completes. Finally,
the ofmaps are saved in the output buffer. A cold-buffer is used to store the overlaps, tiling results, and input data for
the element-wise addition in the residual blocks. The coordinator module computes the coordinates of the output and
arranges them in the ofmap. Their technique achieves 61 % higher PE usage than other traditional GAN accelerators.
Proposed scheme achieves 2.05 TOPS/W energy efficiency.
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Controller
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Fig. 13. The accelerator proposed by Yan et al. [35]. The convolution core performs CONV/DeCONV with four convolution engines which consists
of (8× 8) PE array. The cold buffer stores overlapping results, tiling results, and the input data for performing elementwise addition.

3.4 Interconnect Architectures

Complex dataflow in GAN and zero-insertion in the training phase degrades the performance of the GAN accelerator.
Mao et al. [19] present a technique, termed zero-skipping data organization (ZSDO), which has two schemes: one for
TrCONV operations and another for Weight-CONV of strided-CONV. Weight-CONV is different from both TrCONV and
strided-CONV.

(1) First scheme: To convert CONV into matrix-vector multiplication (MVM), they reorganize kernel weights into
vectors by extracting weights that are multiplied with the non-zero inputs. There are 512 kernels of size Wh = Ww = 5 and
Wh = 1024. Four kernel weights that multiply with the non-zero input element are extracted to create 4 × 1024 = 4096
elements. All the 512 weight kernels are reorganized into a similar way to create a 512×4096 matrix. They are then
multiplied with the correcponding 4096 inputs, which gives 512 results. Then, the kernel weight is slided by the stride
of one which changes the weights used for multiplication. When kernels slide on the edge of ifmap or inside the ifmap,
reshaped weight matrices get reused. They store 25 types of reorganized weight matrices.
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(2) Second scheme: This scheme bears similarity with the first scheme. For the weight-CONV, zeros are removed from
∇output. Then, it is reshaped as weight and CONV is performed on the input map for obtaining ∇weight. Both the
schemes have three types of reorganizations: corner, edge and inside. The reuse of weights is higher in the “inside” than
in the “edge”, whereas there is no reuse in the “corner”. Due to this, the execution and transmission latency of inside-
reorganization is higher than that of corner-reorganization. To balance these latencies, they create multiple copies of edge-
and inside-reorganizations.

They further note that GAN accelerators have inefficient I/O interconnection. Previous CNN accelerators use H-tree
routing for handling high number of memory accesses. However, since GANs have a more complex dataflow, training a
GAN by implementing the phases to H-tree connection leads to many long routings. Further, strategies for simplifying the
interconnection harms the performance of GAN. To mitigate this issue, they present a 3D PIM based efficient dataflow.
They note that although multi-level cell (MLC) has high density, it has high write latency since it requires multiple rounds
of program-and-verify operations. Due to this, weight update process becomes inefficient. They propose an approximate
writing scheme, whereby the SET operations are avoided whenever the value to be written need not be precise but can
stay within a certain range.

In their architecture, a 3D connected PIM is designed to adapt the dataflows. It can be better illustrated using a binary
tree. Wires are added between two nodes which are having different parent nodes in the same layer. Then, three banks are
piled up and wires are added between vertically-adjacent nodes. The nodes in middle-bank can connect with nodes in both
upper and lower banks. Thus, a node is connected to its parent, horizontal neighbor and upper and/or lower neighbor.
This technique removes the bottleneck of long data movement.

Each node also has an adder which may be bypassed. This 3D data wire connection unit (3DDC) can work in
either computing mode or memory mode. In computing mode, the connections are configured dynamically based on
the dataflows, whereas in the memory mode, the connections are statically composed in the H-tree style. Two 3DDCs can
be connected using horizontal connections. They map generator to one or more 3DDCs and the discriminator to the 3DCUs
connected to the generator. To achieve this, they split kernel weights and store them in multiple nodes. To further increase
the parallelism, they duplicate weights in multiple nodes of a bank. This, however, leads to storage overhead.

Based on these techniques, a ReRAM based 3D connected accelerator is designed. Their overall approach is shown in
Figure 14. A layer-by-layer network description is done in the program phase. The interface realizes zero-skipping data
organization. The compiler maps the reshaped data. Then, the compiler’s information is recorded by the memory controller.
ReRAM based PIM communicates with the memory controller. Their technique provides higher performance than GPU
and FPGA-based GAN implementations and a ReRAM-based neural network accelerator. Authors used NVIDIA Titan X
GPU and Xilinx VCU118 board for the implementaion. It acheives 21.42×, 47.2× and 7.46× speedup as compared to GPU
platform, FPGA-based accelerator, and ReRAM- based neural network. It also acheives 10.75×, 1.34× and 13.65× energy
saving as compared to PRIME, FPGA-based and GPU-based accelerators, respectively.
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Fig. 14. The overall approach of Mao et al. [19]. The design is comprised of five main parts: Program, interface, compiler, memory controller and
ReRAM-based PIM.

3.5 Architectures for Nearest-Neighbor Upsampling Strategy
Figure 15(a) shows the up-sampling approach. After performing upsampling, CONV is performed between the upsampled
ifmap and the kernel to obtain the ofmap. A common approach for up-sampling is zero-insertion. Among other methods,
the nearest-neighbor based upsampling is widely used. The zero-insertion strategy leads to checkerboard artifacts in the
generated images, whereas the nearest-neighbor strategy does not have this issue. Figure 15(b) presents both zero-insertion
based and nearest-neighbor based up-sampling methods.

Yu et al. [37] propose an accelerator that can perform both traditional CONV and TrCONV with two up-sampling
strategies (zero-insertion and nearest-neighbor based). They note that the upsampling need not be actually performed in
the hardware since the upsampled ifmap can be deduced from the original ifmap. At the software-level, their technique
eliminates the ineffectual operations and unifies the computational pattern of different CONVs. Authors also generate a
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Fig. 15. (a) TrCONV process with padding (b) two upsampling strategies: zero-insertion and nearest-neighbor based [37]

compilation flow, which analyses the inefficiency in any TrCONV layer, and generates an efficient acceleration schedule
based on the throughput optimization, computation reformulation, and scheduling. Based on the result of architecture
parser, computation reformation decides the type of the CONV. The layers of the standard CONV are directly sent to
the address constraint extraction. For TrCONV, up-sampling is done, but for nearest-neighbor strategy, up-sampling is
preceded by kernel conversion. In the nearest-neighbor strategy, applying the kernel on a single ifmap window requires
9 multiplications and 8 additions. To reduce the number of multiplications, in the offline stage, they add up the kernel
weights getting multiplied with the same ifmap value. For example, in Figure 15(b) (upper-part), f1 is getting multiplied
with w1, w2, w4 and w5. Hence, instead of separately multiplying f1 with four values, a simple rearrangment can be done
to reduce the number of operations. f1 can multiplied with (w1 + w2 + w4 + w5), which is the new kernel weight w1′.
Similar rearrangements can be done for obtaining the other weight values as well. This is referred to as kernel-conversion.
Address constraint extraction transforms CONVs into the same computation pattern. The final reformulated network is
sent to the scheduling optimizer, which fits the current network into the hardware architecture. It is also responsible for
scheduling and network slicing required for the hardware mapping.

The overview of the accelerator is shown in the Figure 16. At the hardware level, it deals with channel level parallelism.
It seeks to fit each layer in the hardware processor to improve the throughput, while accounting for the limitations of
block-RAM. To achieve this, in each layer, they perform both channel slicing and feature map slicing. Each layer is sliced
into blocks. They evaluate their technique on Xilinx Zynq FPGA. For the nearest neighbor up-sampling, their technique
achieves 1.63× latency reduction and 12.43× better power efficiency compared with Titan Xp GPU. For zero-TCONV, their
technique achieves 1.90× latency reduction and 15.04× better power efficiency compared with Titan Xp GPU.
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3.6 Architectures for Instance Normalization Layer

Apart from CONV and DeCONV, GANs also have “instance normalization” layers, which focus on instance-specific
information. They are computed after CONV/DeCONV layers. Xu et al. [21] present a hardware accelerator that supports
various operations of generative networks such as CONV, DeCONV, and especially instance normalization. Instance
normalization comprises various complicated, time-consuming operations, such as computing the variance, which is square
of standard deviation. Let the dataset be of size HW where W and H represent the weight and height of the ofmap. A
naive computation of variance requires 3HW operations. They note that the standard deviation can be computed simply
by computing the mean value, and the “root mean square” value of the output values. This simplification reduces the
operation-count to just HW −1, thus reducing the operation-count and memory latency to just one-third. They decompose
the addition of output neurons into several MAC operations, which allows the reuse of the output of CONV and DeCONV
operations and of the filter weights.
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Since the computation of standard deviation and mean depends only on the output neurons, they use output stationary
dataflow for computation of instance normalization. Here, the output neurons are pinned to specific PEs, and they are
immediately used by the subsequent instance normalization layers. The output stationary dataflow can be used with either
a single ofmap channel or multiple ofmap channels, depending on how many ofmap planes are processed at a time.
Of these, they choose a single ofmap channel since it leverages the data-reuse between CONV/DeCONV and instance
normalization. It keeps the data of one ofmap channel on-chip and exploits its reuse. By contrast, processing multiple
ofmap channels would lead to exceeding the capacity of the on-chip buffer.

The architecture of the accelerator is divided into three domains: storage, computing, and control. The control domain
comprises the controller, while the storage domain deals with DMA and global buffer. The computing domain comprises
a 2D PE-array, adder tree, vector processing unit, scaler processing unit, and register file. The vector processing unit
and the scaler processing unit are responsible for computing instance normalization layers by calculating shift-scale and
mean-variance, respectively.

The “instance normalization layer” works in three steps: addition, calculation of the normalized parameters, and
normalization. The addition includes element-wise squaring using a PE. It also includes the addition of the output neurons
and the addition of the square of the output neurons. Calculation of the normalized parameters is composed of various
operations such as division, square root operations, and subtraction. Normalization is performed parallely using a vector
processing unit.

The CONV operations is shown in Figure 17(a). The dataflow for CONV operations is shown in Figure 17(b). In the
first cycle, the weight is broadcast to PEs, computations are performed, and the results are stored in the PE register. In the
next cycle, the neurons are shifted between neighboring PEs for data reuse. After 3 × 3 cycles, all the output neurons are
computed.

Fig. 17. (a) CONV operation (b) Dataflow for CONV operation (c) DeCONV operations and (d) Dataflow for DeCONV operation [21]

For performing the DeCONV operation, the weights are decomposed into four weight patterns, as shown in Figure 17(c).
In the first cycle, the first pattern is broadcast, which leads to the computation of four output neurons. In the next two cycles,
the next weight patterns are sent to PE serially, and the other output neurons are computed, as shown in Figure 17(d). The
authors move the instance normalization layer out of the critical path resulting in increased performance. With the proposed
methodology, all these operations except the scale and shift can be performed simultaneously with CONV/DeCONV
operation. Thus, a two-stage pipeline between CONV/DeCONV and scale-shift is created. Their technique improves the
speedup and power efficiency by 4.56 × and 29× respectively, as compared to prior baseline GAN accelerators.

3.7 Architectures for Dilated CONV

Im et. al [30] propose an accelerator for transposed and dilated CONVs. They deploy their accelerator for the ENet network
[51], which is used for the image segmentation based on region-of-interest. They note that the segmentation accuracy is
degraded by the “region-of-interest-based segmentation” as the pre-trained “dilation rates” are optimized for the original
image resolution. To solve this, the authors propose an algorithm for “dilation rate adjustment” that regulates the “dilation
rate” based on the resolution of the region-of-interest. The dilation rate controller implements this algorithm.

Their architecture is shown in the Figure 18. The aggregation core gathers all the partial results from the output memory
and thus accumulates and manages the CONV results. The delay cells are used to skip the predicted virtual zeros. The
top-controller uses a flip-flop-based frequency divider to create four frequency modes. The frequency of the main clock
is divided by two, four, and eight to create different frequency modes. The best operating frequency mode is selected
according to the region-of-interest resolution. This helps to lower power consumption. For example, the design requires
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33 ms to segment a 400 × 400 image with 200 MHz frequency. When the image resolution is 128 × 128, the speed can be
maintained even with a 25 MHz frequency. Thus, by decreasing the operating frequency, an 81.2 % reduction in the power
consumption is observed. Thus, the dynamic frequency scaling is performed based on the image resolution.

The previously proposed accelerators skipped zeros but required workload balancing to improve the PE utilization. In
contrast, the authors propose a simpler, highly reconfigurable delay cell logic to skip the redundant zeros. Both the dilated
CONV and TrCONV insert zeros in the kernels and the ifmap. For the ENet, these zeros are predictable and are skipped
using the delay cells, which are located between PEs. These delay cells do not latch the data for a simple CONV operation
but only for the dilated CONV and TrCONV. In the case of the dilated CONV, the non-zero elements of the kernel are
fetched. An element of the ifmap is fetched in the PE row. These are multiplied, and ifmap value gets latched in the delay
cell for a fixed number of cycles before they can reach the next PE row. The number of cycles for the element’s stay in
the delay cell is decided according to the dilation rate. If the “dilation rate” is S, the element stays in the delay cell for
S − 1 cycles, and then it is propagated to the next PE. When the first input element propagates all the way down to the
last PE, all the partial sums are added up by the adder tree. The outputs are then transferred to the aggregation tree. In the
end, all the values of the ofmap are computed, and the result is sent to the memory. The delay cells are also used to skip
computation of the zero-padding in case of the dilated CONV. PEs in the same column is responsible for the computation
of the 1× 3 non-zero kernel elements for a 3× 3 kernel. By not fetching the zeros of the ifmap, multiply-operation with the
lower and upper padded zeros can be avoided. For the left and right padded zeros, the first, third, and fifth elements of
the ifmap are fetched in the first cycle. These are multiplied with the first, second, and third elements of the kernel of size
3× 3 respectively. In the next cycle, the element from the next row of ifmap is fetched.

In the case of the TrCONV, ifmap is added with the zeros. The ifmap with non-zero values is saved in the input memory.
In this case, as the kernel values are non-zero, so the ifmap needs out to be latched. Here, Output features are latched in
the delay cells before they can get added by the adder tree. This enhanced the throughput by 159× and 3.84× in dilated
CONV and transposed CONV, respectively. Delay cells latch the input and can support variable CONV layers. Delay cell
consists of a multiplexer and SIPO registers. The convolution configuration is decided by the multiplexers state table. Their
design incurs 4.66 ms latency and achieves 3.22 TOPS/W throughput.

A
gg

re
ga

tio
n 

Co
re

To
p 

Co
nt

ro
lle

r

Adder 
Tree

PE PE PE PE ×
+

Input Memory (162KB)
External
Gateway

PE Array

Delay Cell #1

PE Row

Delay Cell #0

PE Row

4

PE Row

Kernel 
Memory 
(18KB)

Output Memory (40.5KB)

PE

PEPE Row

Fig. 18. The architecture proposed by Im et al. [30] consists of four PE arrays, a controller along with a “dilation rate” controller and a aggregation
core. A PE array has five columns and three rows along with an adder tree and two delay cells. Aggregation core collects the partial sums and
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3.8 Architectures for 3D DeCONV

Wang et al. [22] present a design for accelerating both 3D and 2D DeCONV on FPGAs. The accelerator uses tiling to
mitigate the limited on-chip memory issue of FPGA [52, 53]. Separate on-chip buffers are used for storing the output,
input, and weight tiles. The compute engine has a Tm array of PEs. In every array, the PEs are arranged in a 3D mesh
organization that has Tn × Tz PEs. All PEs are connected to the input buffer. In a row, only the leftmost PEs are connected
to the weight buffer, and they gather the result of PEs which are located in the same row and supply them to the adder
trees. These adder trees add the results of different ifmaps. Each PE has two register files to buffer the weight and input
activations. It also has 3 overlap FIFOs which store the overlapping values. The non-overlapping values are sent to the local
result FIFO. The multiplier results are added with the data in overlapping FIFOs. When the result of all input channels has
been accumulated, the final ofmaps are sent to the DRAM memory.

They extend the “input-oriented mapping” of Yan et al. [35] to the 3D case, which is shown in Figure 19. The neighboring
activations of the ifmap are mapped to the neighboring PEs. In a PE, every activation is multiplied with a kernel of
dimension K × K × K and produces a result tile of size K × K × K . The outputs are summed to the corresponding
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position of ofmaps. The overlapped portions of neighboring tiles are sent to the PE, which processes a tile, and then
element-wise summation is done. In every tile, the overlapping region has a length of K − S. The relation between OH

and IH is OH = (IH − 1)× S + K and same for OW , IW , OD and ID .

Input 
feature map

Output 
feature map

PE Array

PE PE

PE PE

…

…

…

…

… …

… …

I1 I2

TC

TR
K

K K

S Overlap

Fig. 19. 3D input-oriented mapping [22]. I1 to I3 are neighboring activations of ifmap. They are mapped to neighboring PEs, where they are multiplied
with a 3D kernel and produce a 3D result. These results are aggregated over time. The overlapped results from the PEs that process I2 and I3 are
sent to the PEs that process I1, and the pointwise summation is done.

Figure 20 shows the dataflow of a PE with an example. In step 0, the weights Wt(0,0,0,0,0) and activations In(0,0,0,0)
to In(2,0,0,0) are loaded to the leftmost PEs for multiplication. The overlaps generated from PE1,0-PE2,0 are loaded to their
overlapping vertical-FIFOs. In step 1, activations In(0,1,0,0) to In(2,1,0,0) are sent in the second column of PEs (PE0,1-PE2,1).
Weight Wt(0,0,0,0,0) is also moved to these PEs and is multiplied with the activations. During this time, the leftmost PEs
(PE0,0-PE2,0) perform multiplication with Wt(0,1,0,0,0). The overlaps generated by PE0,1-PE2,1 are sent to their horizontal-
FIFOs and those generated by PE1,0-PE1,2 are sent to their vertical-FIFOs.

Fig. 20. Dataflow of a PE proposed by Wang et al. [22]

Their accelerator can support both 2D and 3D DeCONV operations. Implementing their technique on a VC709 FPGA
platform provides up to 3 TOPS and achieves more than 90% resource utilization. The performance is higher for 3D
DeCONV than for 2D DeCONV since 3D DeCONV has higher sparsity and a larger amount of data transfer. Also,
their technique provides 22.7×-63.3× speedup over CPU and 3.3×-8.3× higher performance per watt than a GPU-based
technique. For 2D DeCONV, GPU outperforms their technique, whereas, for the 3D DeCONV, their technique provides
higher performance than the GPU.

3.9 Architectures for Training

Song et al. [20] present a hardware architecture for accelerating the training process of GANs. They highlight three key
challenges. (1) The synchronization for loss calculation of a mini-batch restricts optimizations and requires a large amount
of memory. The loss function that is commonly used for the discriminator, as well as for the generator, involves averaging
over all the samples in a mini-batch. Therefore, the backward pass cannot begin until the loss for all the samples has
been computed. Moreover, the intermediate outputs are required for computing the gradients. Therefore, they need to be
buffered, which results in high memory requirements. (2) The large number of different computing phases involved in
GAN training creates a tradeoff between a generic uniform design and a per-phase customized design. The discriminator
update process has four computing phases: generator forward pass (Gf ), discriminator forward pass (Df ), discriminator
backward error propagation (Dbe) and discriminator weight update (Dw). The generator update adds two more computing
phases: generator backward error propagation (Gbe) and generator weight update (Gw). With a large number of computing
phases, a per-phase design becomes very costly to implement on a single chip due to large compute and memory resource
requirements. Therefore, the tradeoff needs to be investigated to find an effective and cost-efficient solution. (3) The
unconventional convolution operations involved in GAN training, i.e., strided convolution, transposed convolution, and
convolution for weight update, make traditional CNN hardware accelerators inefficient.
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To overcome the aforementioned challenges, they propose an algorithmic modification and a specialized hardware
architecture. At the algorithm-level, they exploit the linear averaging in the loss function to defer the synchronization
to the end of mini-batch processing, i.e., to the weight update stage, instead of the loss computation stage. This enables
starting the backward error propagation phase of each sample right after its forward pass is complete, which significantly
reduces the memory requirements for larger batch sizes. At the architecture-level, they propose two microarchitectures that
are time-multiplexed to perform all the computing phases involved in each iteration of GAN training. Specifically, the zero-
skipping output-stationary (ZeSOS) microarchitecture is designed for forward pass computations (i.e., Df and Gf ) and
backward error propagation (i.e., Dbe and Gbe). Further, the zero-skipping weight-stationary (ZeSWS) microarchitecture
is designed for updating the weights (i.e., Dw and Gw). As most of the computing phases are handled by the ZeSOS
architecture, the pipeline bubbles are eliminated by adjusting the computing resources in the two microarchitectures.

The ZeSOS microarchitecture is shown in Figure 21(a). It is a unified architecture designed to perform strided and
transposed convolutions and thereby handles the complete forward pass and the backward error propagation. It is based
on the output-stationary dataflow. ZeSOS is composed of an inpute register file and a PE array. The PE array contains
4 × 4 PEs, where each PE has a MAC unit for the computation of partial sum and a register to store it for the subsequent
MAC operation. The input activations are fed to the PEs through the register file that is composed of 4x6 registers. The
registers highlighted in gray in Figure 21(a) are connected to their corresponding PEs in the array, e.g., R1,1 is connected
to PE1,1 and R1,2 is connected to PE1,2. The additional register columns are used to enable temporal reuse of the fetched
activations. The weights are broadcasted sequentially in a “type-oriented manner” to the PE array, where they are shared
spatially by all the PEs. The type-orientation here refers to the arrangement of values on the basis of their column and row
indexes being odd or even in the corresponding tensor. The values that belong to even rows and even columns are placed
in the even-even category, while others are arranged in “odd-even”, “odd-odd” and “even-odd” categories, based on their
respective row and column indexes. The weights belonging to the even-even category are fed to the PE array first, followed
by the ones belonging to odd-even, odd-odd, and even-odd categories for computing the outputs. This type-orientation-
based scheduling helps avoid multiplication with zero operations by skipping the categories that have only zeros and thus,
enables efficient implementation of strided and transposed convolutions.

Fig. 21. (a) Zero-skipping output-stationary (ZeSOS) microarchitecture. (b) Zero-skipping weight-stationary (ZeSWS) microarchitecture. [20]

The ZeSWS microarchitecture is shown in Figure 21(b). It is designed to handle the convolutions for weight update in
the discriminator as well as in the generator, i.e., Dw and Gw. The architecture is based on weight stationary dataflow. For
computations using ZeSWS, the loops related to kernel weights are unrolled and mapped on the PEs, where one weight
is mapped on one PE at a time. All the PEs perform computations related to a particular output at a time, and the results
are accumulated using the adder tree. To exploit temporal reuse of the input values, ZeSWS has a similar input register
file as ZeSOS architecture. Therefore, it supports similar dataflows as ZeSOS, which helps in skipping zeros inserted in the
kernels of Dw and in the input data of Gw.

Figure 22 shows the complete accelerator design. Note that the architecture uses multiple instances of ZeSOS and
ZeSWS microarchitectures to speedup the computations. For ZeSOS, the loop related to output feature maps is unrolled so
that the same register file can be shared by all the ZeSOS PE arrays. Similarly, for ZeSWS, the loop related to the number
of filters is unrolled. Their accelerator contains four types of buffers. The input&output buffer is responsible for storing the
inputs and outputs of the ZeSOS architecture. The Data and Error buffers are responsible for storing all the intermediate
outputs and errors that are required for computing the weight update. The weight buffer is required to store partial ∆W
values for the ZeSWS microarchitecture and weights for the ZeSOS microarchitecture. Note that the number of PEs in a
single block of both the microarchitectures is defined to be 4× 4, based on the size of the smallest ofmap and the minimum
kernel size in DCGAN [54]. Moreover, to avoid bubbles in the pipeline, the number of ZeSOS blocks is set to be 2.5× the
number of ZeSWS blocks.

As for conventional architecture, they find that using output stationary for Dw and Gw and no-local-reuse for the
remaining computations provides the best performance. Their ZeSOS-ZeSWS architecture provides an even higher speedup
than this. They implement their design on a VCU118 board which has an Ultrascale+ XCVU9P FPGA. Compared to
i7-6850K, their design has an 8.3× speedup and 45× better energy-efficiency. Also, it achieves 5.2× energy-efficiency
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Fig. 22. Overall design of Song et al. [20]. ZeSWS computes Dw and Gw. ZeSOS does all the other computations. Both ZeSWS and ZeSOS have
4× 4 PEs. The following four types of buffers are used. The first layer’s data are loaded into one of the in/out buffers. The output of ZeSOS is stored
in another in/out buffer, which becomes the input buffer for the next layer. Dw and Gw require data from the FWP and error from BWP, and they are
stored in the data buffer and error buffer, respectively. The computation of OW is done by ZeSWS. When the kernel size is greater than the size of
unrolled kernel weights, partial results are generated for OW . They are stored in OW buffer.

improvement over K20 GPU.
Hanif et al. [40] propose an on-chip memory architecture for efficient utilization of ZeSOS microarchitecture proposed

by Song et al. [20]. The ZeSOS microarchitecture is based on output stationary dataflow. It is responsible for performing
strided and transposed convolution operations, which are the two key operations involved in the GAN training process.
For processing using ZeSOS, data is fed to the PE array in a type-oriented format, i.e., computations related to the even-
even category are performed first, followed by computations related to even-odd, odd-even, and finally odd-odd category.
This type-orientation-based processing allows to easily skip multiplication with zero operations and thereby improves the
computational efficiency.

To operate the PE array at its full potential, it requires a maximum of twenty-four data points to be stored in the register
file in a type-oriented format in a single clock cycle from the on-chip memory. The conventional on-chip memory stores
data in a linear format and, therefore, cannot provide multiple data points in a type-oriented format without fetching
unnecessary data. To overcome this challenge, Hanif et al. [40] propose a distributed memory architecture with scratchpad
memories, each having a single port. Figure 23 shows the distributed memory architecture where the scratchpad memories
are arranged in a 2D grid architecture. The architecture is divided into four blocks and four channels depending on the
number of type-orientations and the number of rows in the register file, respectively. Each block-channel tile contains six
scratchpad memories depending on the column-count of the register file. The even-even input data is stored in Block 0
of the memory, where the six-element rows are distributed in a raster scan order along the channels. Similarly, the “even-
odd”, “odd-even”, and “odd-odd” data are placed in blocks one, two, and three, respectively. Each scratchpad memory
is capable of providing a single data element per clock cycle. Therefore, 24 data elements can be fetched from all the
scratchpad memories in a single Block.
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Fig. 23. Architecture of distributed on-chip memory in the technique of Hanif et al. [40]

They also propose a data arrangement controller for arranging the data in the required format inside the on-chip
memory while fetching it from the DRAM or while receiving it from the PE array. The controller is responsible for
computing the on-chip memory addresses for the data. For this, it computes input pixel row and column indexes using the
DRAM address of the pixel, the input image dimensions, the number of pixels stored per DRAM location, and the pixel-
index in the DRAM. The available information is then used to compute block and channel indexes, scratchpad memory
index inside the tile, and finally, the scratchpad memory address where the data should be stored. They implement their
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architecture on a Kintex-7 FPGA. Compared to a previous work [20], their technique provides 3.6× higher performance
and about 85% decrement in the read accesses and 75% decrement in the write accesses.

Roohi et al. [34] propose an optimized training algorithm for GAN using binary weights. In the training phase, the first
statistical weight scaling and binarization are done. In binarization, sign bits of the full precision weight are considered,
and then, based on the statistical distribution, the scaling factor is computed. This leads to a vanishing gradient problem. To
avoid this and to achieve a good binarization, binarized representation entropy regularization [55] is used. This is followed
by binary weight-based inference for the loss computation. Finally, backpropagation is done for updating the full precision
weights. Also, to minimize the loss, static gradient descent is considered. The same steps are followed in the next iterations.
Layers that have a higher degree of redundancy are binarized.

The authors design a reconfigurable addition method that uses both precise and approximate addition operations.
Figure 24(a) shows the binary CONV in their technique. In this first step, four channeled input is convolved with binary
weights, and the output batch is mapped to a sub-array. After this, addition/subtraction is done using a inexact computing
unit [56], which consists of an inexact adder and an exact adder. To reduce error and increase accuracy, MSB bits are
computed using the exact adder, while the LSB bits are computed using the inexact adder. This is shown in Figure 24(b).
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Fig. 24. (a) Binary CONV operation [34]. c channels of size kh× kw from the input batch generates the combined batch with respect to the kernel
batch. (b) partial inexact computing, which computes 3 LSBs using an imprecise adder and remaining bits of the 32b ofmap using a precise adder.

Their in-memory accelerator is based on a memristive computational sub-array, and it is presented in Figure 25. The
original ifmaps and weights are stored in kernel and image sub-arrays, respectively. These are distributed across memory-
banks. The external processing unit comprises five computational sub-modules. The memristive computational sub-array
can perform bit-width operations which are parallel and flexible. In step 1 , the binarizer performs binary kernel processing
by altering the sign-bit of input with respect to the kernel data. Thereafter in step 2 , the transpose of the channels of the
combined batch is computed. Moreover, the transposed batch is mapped to the sub-arrays. In step 3 , the computational
subarray performs parallel processing, then the batches are processed using EPU’s shared components. Finally, in step

4 , the final ofmap is generated for the next layer. A parallel in-memory circuit is designed to accelerate the multi-bit
operations.

KernelsImages

SubarraysController

KernelsImages

Ctrl

…

G
lo

b
a
l 

R
o
w

 D
e
co

d
e
r

1

External Processing Unit

Ctrl

Compute

Subarray

512x256

#1

Ctrl

Compute

Subarray

512x256

#2

Ctrl

… Compute

Subarray

512x256

#N

Connections

Global Row Buffer

Batch 

Norm.
Loss 

Func. 1

Loss 

Func. 2

Binarizer
2

3

Compute Subarrays

Activation 

Function

4

Fig. 25. The in-memory accelerator proposed by Roohi et al. [34].

To further boost the performance, the authors extend the spatial parallelism method in [16] to design a fully-pipelined
computation mechanism. During training, the input data is processed in the batches of 8/32/64. In fully-pipelined
computation, to achieve pipelining, data is duplicated for the intermediate layers so that the data is readily available.
Moreover, the spatial parallelism method [16] shows that there is no dependence among the training phases of the
discriminator. Hence, they can be executed in parallel. The two training phases utilize separate sub-arrays. The DeCONV
and CONV layers can execute simultaneously. Experiments showed that their technique provides 5.1× speedup and 2.5×
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higher energy efficiency than CMOS-ASIC accelerators [57]. However, it degrades the inception score by 11%.

4 OPTIMIZATION TECHNIQUES

Table 4 highlights the optimization techniques used by different works.

TABLE 4
A classification of optimization techniques

Category References
Algorithm-level

CONV style/imple-
mentation

Winograd [32, 42], Fermat number transform [33], fast FIR scheme [43]

Computing approach casting CONV into a matrix multiplication operation [46] or a matrix-vector multiplication operation
[19], Converting DeCONV to CONV [32, 43, 44], partition every weight filter into 4 smaller filters
[29, 42], skipping up-sampling operation by pre-adding the weights [37]

Others regulating the dilation rate based on RoI resolution [30], delyaing the synchronization to the end of
mini-batch [20], use of instance normalization layer [21], layer-fusion [45]

Hardware-level
Tiling [19, 21–23, 26, 32, 35, 40, 42, 45, 46, 48]
Loop unrolling [33, 46, 48]
Improving parallelism Partitioning the memory into multiple segments for allowing concurrent accesses [42], duplicating

weights to improve parallelism [19], duplicating the data of intermediate layers for achieving full-
pipelining [34]

Parallelism between generator and discriminator [17], CONV and DeCONV layer [34]
Dataflow output stationary [20, 21], weight stationary [20]
Load-balancing [23, 31, 35, 45]
Lowering compute
overhead

approximate adder [34], double MAC scheme for simultaneously computing two narrow multiplications
on a single wide DSP [45], reducing multiplications at the cost of extra additions [43], pruning [23, 58]

Power saving clock gating [33], dynamic frequency scaling [30], reducing ADC overhead by realizing it through an
inverter [27], avoiding SET operations in MLC ReRAM [19]

Double-buffering [29, 33, 37, 39]
Low-precision Ternary GAN [18], binary GAN [34], different bit-widths in inference and training [15], adaptive

precision [35, 36, 48], quantization [15, 22, 28, 36, 37, 45–47]
Pipelining [16–18, 21, 29, 33, 34, 42, 48]
Avoiding computations
on zero-operands

[8, 19, 21, 27, 30–32, 37, 43]

Others use of spatial parallelism idea [16, 18], Huffman encoding [39], systolic array architecture [29]

We now review the optimization techniques used by different works. Sections 4.1 reviews tiling and unrolling, whereas
Section 4.2 discuss use of parallelism. Sections 4.3 and 4.4 review Winograd transform-based and Fermat transform-
based CONV operations, respectively. Section 4.5 reviews sparsity-related techniques such as pruning, avoiding ineffectual
operations and load-balancing. Finally, Sections 4.6 and 4.7 review techniques for handling overlapping sum problem and
irregular memory accesses, respectively.

4.1 Using Tiling and Unrolling
Liu et al. [26] design a hardware accelerator for DeCONV algorithm. They use the DeCONV style proposed by Zhang et al.
[48] which works in four phases (i) multiplying one input pixel with the weight matrix (ii) adding the results of phase (i)
in regions of overlap (iii) repeating (i) and (ii) for all the input items (iv) cropping. In the proposed accelerator, depending
on the values of s and k, a suitable sized register is used for buffering the overlapped data for performing addition. In
every cycle, a data-item is supplied to the k multipliers, where it is multiplied with one column of the weight matrix. The
outputs are sent to a row of registers and shifted in each cycle. For handling the column overlap, the multiplier results are
summed with the data in the last column of the registers before it is fed to the ‘partial result buffer’. The outputs generated
from the k − s adders are summed with the partial outputs before performing accumulation. Thus, the difference from a
CONV accelerator is that their accelerator uses a register array for adding the column overlaps and ‘partial result buffers’
for adding the row overlaps. The accelerator can be instantiated for different values of s, p, and k, where k, s, and p are the
kernel size, stride, and the padding for a given layer, respectively.

In DeCONV, crop operation is required for removing the undesired border pixels and, thus, produce correctly-shaped
output. They implement a hardware-level crop-unit that takes the result of the DeCONV kernel as input. Its design is
presented in Figure 26(a). The location of the pixel in the output shape is found from two counters, viz., ‘line counter’
and ‘row-counter’. These counters are compared with their respective thresholds for ascertaining whether a pixel is to be
retained or cropped (removed). The thresholds can be set at runtime for achieving cropping of arbitrary-shape.

To mitigate the memory-limitations of their accelerator, they use tiling. For this, the ifmaps of dimensions C ×H ×W
are split into tiles of size C × TH × TW . Here, C and H/W are the number of channels and the height/width, respectively.
In the conventional approach, shown in Figure 26(b), all the tiles of a layer are processed sequentially before moving on
to the next layer. Here, the ifmap ‘A’ is split into 9 tiles, and every tile is accessed sequentially for generating the ofmap
‘B’. For the second layer, the ifmap ‘B’ is split into four tiles since ifmap has fewer channels than ‘A’. This tiling scheme is
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Fig. 26. (a) The crop module [26] (here, x and y are the thresholds) (b) traditional tiling approach for CONV and DeCONV where all the tiles of a
layer are processed sequentially, before moving on to the next layer. (c) Proposed tiling approach for DeCONV [26], where every tile is processed
till the last layer to obtain its output tile.

necessary in CONV because the result of the second CONV layer depends on the content of multiple tiles. For instance,
the result of ‘C1’ depends on ‘B1’ and partial data of ‘B2’ to ‘B4’. The conventional tiling approach allows adapting the tile
size for different layers but requires moving a large amount of intermediate data to off-chip.

To avoid these issues, they propose an approach where the biggest tile-size is ascertained first. Thereafter, the total
number of tiles is decided for each layer, and each tile is processed till the last layer for obtaining its output tile. Figure
26(c) shows their proposed tiling approach. Different tiles are processed serially, and thus, the network can be seen as a
group of independent sub-networks. In other words, the removal of dependence between different sub-networks reduces
the need for off-chip memory accesses. The interim data is stored on-chip, and off-chip access is required only for the input,
weights, and output data. Thus, off-chip accesses are reduced at the cost of a higher requirement of on-chip memory. Their
design uses two on-chip buffers, which work in a ping-pong manner for achieving double-buffering. They implement their
accelerator on an XC7Z045 FPGA. Compared to the accelerator that uses conventional tiling, their proposed accelerator has
a 2.3× speedup. Also, their technique provides 30× to 90× speedup compared to i7-950 CPU and 8× to 108× improvement
in energy efficiency over Titan X GPU.

Zhang et al. [48] propose an approach which allows using a CONV accelerator for executing DeCONV operation. They
note that summing up the overlapped regions leads to overhead and is especially inefficient on FPGAs. This is because
FPGAs require separate hardware blocks to create overhead or to communicate with the host processor. This ultimately
increases the latency of the system.

To avoid it, their technique finds which input blocks need to be deconvolved for obtaining different output blocks. Let
the size of input be Ih × Iw, and that of output be Oh × Ow. In the baseline implementation, there are loops on Ih and
Iw. They recast these loops to those on Oh and Ow. They also examine the impact of different bitwidths on the inference
quality of the generative network and, from this, find the optimal bitwidth. Further, they perform roofline analysis to
increase the throughput by intelligently choosing the width/height and channel size of the output and input tile. They
perform loop unrolling and pipelining to improve concurrency. Finally, they insert registers for improving local memory
bandwidth. They implement their design on FPGA, although it can also be implemented on an ASIC. Their technique
achieves high-performance density. Also, the visual quality of generated images with 12b is similar to that with 32b.

Bai et al. [46] propose an unified hardware architecture for the CONV and DeCONV operations. To optimize CONV
operation, the innermost kernel loop is fully unrolled. Also, to reduce the number of data transfers and partial sums, partial
unrolling of the outer loops of the input and output channel is done. This also reduces the number of multipliers used
in the hardware implementation. Loop tiling decides the partition of the fmap. It is done on the depth of the ifmap. The
partition size ultimately decides the on-chip memory size.

The basic steps of the DeCONV process consist of padding the ifmap, followed by applying CONV on the padded
ifmap. In this method, multiplication with zeros leads to ineffectual operations. To overcome this limitation, the authors
propose that after padding the ifmap, scanning of the ifmap should be done using a 2× 2 sliding window. This is followed
by the DeCONV operation for each patch, as presented in Figure 27.

The hardware accelerator comprises a line buffer that reorganizes the input image, performs zero-padding required for
the CONV, and converts the CONV into a matrix multiplication operation. Only a part of the ifmap is loaded into the
ifmap buffer to utilize the on-chip memory efficiently. This is followed by a PE array, where each PE has an adder tree and
a nine-multiplier array. The PE multiplies the input image with the kernel weights. This array structure is reused for both
CONV and DeCONV operations. Thereafter, batch-normalization, activation, and max-pooling are done. In the end, the
generated ofmap is stored in the ofmap buffer. The authors implement this architecture in ZC706 FPGA and achieve 151.5
and 94.3 GOPS for CONV and DeCONV, respectively.

4.2 Exploiting Parallelism
Hsiao et al. [39] propose an accelerator that supports various operations such as LSTM, CONV, DeCONV, depthwise CONV,
point-wise CONV, fully-connected, pooling, and batch normalization. Their design exploits four types of parallelism. The
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Fig. 27. Optimization of DeCONV [46] for a 2× 2 feature map. Most of the redundant multiplication can be avoided.

depthwise CONV exploits output window parallelism and kernel weight parallelism. The first layer of CONV utilizes
output channel parallelism and kernel weight parallelism. The CONV layers are other than the first layer leverage output
channel parallelism and input channel parallelism.

The architecture is shown in Figure 28(a). To reduce the energy and the data transfer time, 2-symbol Huffman coding
is used. The encoder consists of zero detectors, an index buffer that stores the flag of non-zero/zero bit, and 8 FIFOs. The
non-zero data is moved to the FIFO, and the non-zero/zero flag is recorded in the index buffer. Each PE is composed of
a multiply-adder tree with 8 multipliers followed by the adder. The index buffer in the encoder-decoder unit reduces the
data computation power for zero data, which disables zero data multiplication. The extra processing unit is responsible
for the computation of non-linear functions required by the LSTM. To implement the streaming process, double buffering
is used. Figure 28(b) shows the overall functional block of the architecture. Various blocks are activated according to the
type of operation. During LSTM computation, line buffer, temp buffer, batch normalization layer, activation, and pooling
layer are bypassed. For the convolution operation, the line buffer is bypassed. Input data and weight are loaded in the
SRAM A and SRAM B, respectively. In order to reduce the SRAM access time, the input is also stored in the temp buffer.
This helps in accessing the overlapped inputs in the case of the 3× 3 convolution. For the point-wise convolution, there is
no issue of overlapping. Therefore, both the line and the temp buffers are bypassed, and the data is directly fed into the
PE. For the deconvolution operation, only the line buffer and LSTM block are bypassed. Moreover, input data from the
SRAM A are fed directly to PE’s multiple-adder tree. The output is saved in the temp buffer, which then sends the inputs
to the accumulator. For the fully connected layer, line buffer, pooling, LSTM block, and temp buffer are bypassed. Their
proposed technique reduces the power consumption of arithmetic computations and memory accesses and also improves
performance.
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Fig. 28. (a) The overall architecture of Hsiao et al. [39]. The two SRAM supports streaming process with external memory access and overlapped
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Perri et al. [38] propose an efficient hardware accelerator for 2D DeCONV. The accelerator’s top-level architecture is
presented in Figure 29(a). Figure 29(b) shows the design of their accelerator. It parallely operates on TN ifmaps and TM
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kernels to produce TM ofmaps. If the size of the ifmap or kernel exceeds these limits, then the computation happens
in multiple iterations. The kernel buffer has a register file for storing the coefficients. In every cycle, it receives the
corresponding ifmap values packed in a single word. This reduces the latency of uploading the kernel coefficients processed
by the DeCONV engine.
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Fig. 29. (a) PE used for DeCONV layer [38] (b) Architecture of DeCONV engine (c) Architecture of DeCONV Unit (DU)

The distribution logic supplies the coefficients to the DeCONV engine. The DeCONV engine has TN × TM DeCONV
units working in parallel. Every DeCONV unit deconvolves multiple nearby input pixels with the corresponding kernel
coefficients for computing the ofmap. For managing the overlapping rows/columns between the nearby blocks of products,
the DUs are architected, as presented in Figure 29(c). The total number of DSP units in a row decides the degree of
parallelism. FIFO buffers are used for aligning the overlapping products. They did an FPGA implementation of the
proposed work. It reduces the resource and power consumption while enhancing the computational speed compared
to state-of-the-art architectures.

Shi et al. [10] propose a generative model engine for performing edge computing. It is used for executing both the
transposed and dilated CONVs by decomposing the kernels. The algorithm consists of the initial decomposition of the
kernel, followed by untangling the kernels and input matrix multiplication. In the end, the results are dispatched and
combined in the output tensor. Their technique reduces both memory access latency and computation overhead. When the
input tensor is zero inserted with stride 2, the kernel of a transposed CONV can be decomposed into four possible patterns
such that non-zero elements of kernel meet non-zero elements of the tensor, as shown in Figure 30. This helps in learning
the relation between the indices of non-zero elements of the fmap and the decomposed kernel. This allows easy removal
of zeros. This leads to smaller standard CONVs on the input tensors.
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Fig. 30. Kernel decomposition in the technique of Shi et al. [10]

Furthermore, the decomposed TrCONV patterns are untangled into 1 × 1 CONVs. This improves the arithmetic
computations’ parallelism. The authors propose a strategy to untangle the decomposed pattern to a set of 1× 1 CONV. For
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standard CONV, untangling is done, as shown in Figure 31. Let us consider zero removed N decomposed kernels of size
m × n × C . These kernels are regrouped by accumulating N columns along the dimension C from each kernel position.
This forms a new matrix of size N × C . Corresponding receptive field of size (H − m + 1)(W − n + 1) × C is fetched
from the input tensor of size H ×W × C . This configuration is considered as a 1× 1 CONV with ‘N ’ 1× 1 kernels. Then,
the results are accumulated and sent to the corresponding positions in the output tensor. Similarly, the dilated CONV is
also untangled with a larger sliding step on the input tensor, and the receptive field reduces with the strides’ multiple.
Moreover, untangling the transpose kernel improves parallelism.
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Xu et al. [44] propose a technique for efficiently implementing DeCONV on the existing processors. DeCONV is
converted to independent CONV operations by first expanding the size of the filter if it is not divisible by the stride.
The DeCONV filters are expanded by inserting zeros in the left and top sides of the original filter. This ensures that the
kernel size remains the same when the DeCONV is converted to the multiple CONV operations. Thereafter, the expanded
DeCONV filter is split into smaller CONV filters by performing 180-degree rotation and sampling. This ensures that the
computation is correct. Moreover, these steps are done in the offline stage with the software approach. This process is done
once, and the resultant smaller CONV filters are reused. Each DeCONV is divided into s2 CONV operations, where s is
the stride. This is known as the split CONV. Split CONV is done with the stride of 1.

This is followed by the online stage performed on the CNN processor, where the padded input convolves with the
smaller filters. Padding is done in the ifmap so that boundry pixels are also included in the computation. Finally, the
generated outputs from the split CONVs are reorganized to form the final deconvolved output. To enhance the efficiency
of the output reorganization, CONV output data is stored in the channel-major layout. On commodity neural processors,
their technique achieves higher performance than the conventional zero-padding DeCONV.

4.3 Using Winograd-based CONV

Chang et al. [32] propose a Winograd-based DeCONV accelerator. Their overall approach is shown in Figure 32(a). First,
using the “Transforming DeCONV to CONV” method, a M × N DeCONV layer is converted to a s2 ×M × N CONV
layer, where M and N are the numbers of ofmaps and ifmaps, respectively. These s2 convolutional filters and input tiles
are transformed to the ‘Winograd domain’ by using transform matrices ‘G’ and ‘B’, respectively.

The Winograd algorithm transforms the 2D CONVs into the element-wise multiplication. The element-wise multiplica-
tion is done on the transformed tiles and the filter except for the positions where filter weights are zero. A channel-wise
summation follows this. The inverse transform is done with the help of the transformation matrix ‘A’. Each filter generates
a S × S output block, and simultaneously it also generates a m×m output tile, thus generating a mS ×mS output block.

Let the size of the input tile be n×n, that of the output tile be m×m, and that of the filter be r×r. Then, the spatial CONV
requires m2×n2 multiplications, whereas the Winograd method requires only n2 multiplications. The authors also explore
the dataflow optimization to enhance efficiency and exploit the sparse multiplication pattern. The Winograd dataflow is
shown in Figure 33. Each transformed filter has zeros in different ratios. Input tiles and Winograd filters are reorganized
into n2 × N sized matrix and M matrices of size n2 × N , respectively. If the filters have a vector-level sparsity pattern,
performance can be improved by reducing the accelerator’s idle cycles and skipping the zero-valued multiplications. For
the filter having no sparsity, no performance benefit is obtained.

The hardware architecture consists of several PE, input line, and output line buffers as shown in Figure 32(b). On-chip
memory cannot store all the intermediate outputs and fmaps. To solve this problem, they use a line buffer. It also helps
in overlapping the data transfer time between the PEs and the computation latency between filters and the inputs. The
architecture consists of a pre-PE, compute-PE, and post-PE. The pre-PE first collects and then changes the input tiles. It
also rearranges them with the transformed filters. These reordered inputs and filters are moved to the compute-PE in the
acceleration engine, from where they are moved to the post-PE. In the post-PE, these outputs are again transformed into the
spatial domain using ‘sparse inverse transform’. The authors show that the proposed accelerator achieves 1.78 × ∼ 8.38×
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higher throughput as compared to other accelerators. An improvement of 1.74 × in energy consumption is observed as
compared to the DeCONV methods based on the TDC [25].

Di et al. [42] present an architecture for implementing the TrCONV on an FPGA. They note that the CONV of a 5×5
filter with 6×6 padded input can be broken into a CONV with 4 sub-filters, which have a different number of non-zero
elements. They rearrange these sub-filters into 3×3 shape, and thus, one TrCONV with 5×5 filter can be split into four
CONV operations between 3×3 filters and suitably padded ifmap. Notably, all the ineffectual operations are removed.
This operation is termed decomposition. Then, these four CONV operations are implemented using the Winograd fast
algorithm. Reduction of the sub-filter size to 3×3 ensures that the Winograd fast algorithm can be used.

Figure 34 shows the overview of their proposed technique. The stages S2 to S4 perform the Winograd algorithm, which
includes transformation to Winograd domain, element-wise multiplication, and transformation back to the spatial domain.
Stage 1 performs decomposition, and stage 5 performs rearrangement. In the rearrangement stage, four intermediate output
patterns generated from stage 4 are rearranged into a single ofmap.
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Their architecture has an array of PEs, each of which executes the TrCONV operation on a tile of ifmap. A PE executes
6 stages mentioned above and is implemented on the DSP or LUT-registers of an FPGA. They leverage both inter-PE and
intra-PE level parallelism. As for inter-PE parallelism, every PE processes the data from one channel of an ifmap to one
channel of an ofmap. Since each PU operates on four pairs of data (viz., sub-tile, Winograd-filter, etc.), they process them in
parallel to achieve intra-PE parallelism. On FPGA, DSPs are required only for performing element-wise multiplication. The
remaining steps are performed using programmable logic resources. To improve memory access efficiency, they partition
the memory into multiple segments that can be concurrently accessed. On a ZCU102 FPGA platform, their technique
achieves 639 GOPS. Also, compared to a CONV-accelerator, their design provides an 8.6× speedup.

4.4 Using Fermat Number Transform Based CONV
While the Winograd transform only works with a fixed filter dimension, the Fast Fourier Transform(FFT) incurs a high
transform overhead. To overcome their limitations, Xu et al. [33] utilize the Fermat number transform (“FNT”). The
computation flow of the Fermat number transform is nearly similar to that of the FFT method. Yet, it incurs a lower
transform overhead, has lower complexity, and offers a bigger design space. The Fermat number transform uses a real
transform kernel in the finite field and stores only the unsigned integers. This reduces the requirement of intermediate
memory. Also, the multiplications are replaced with shifts and additions.

They propose two algorithms based on the FNT: a 2D overlap-and-save algorithm for performing fast CONV and a
1D overlap-and-save algorithm for performing the TrCONV. For performing the 2D overlap-and-save for the CONV, the
first tiles of the filters and the ifmaps are transformed into a ‘finite field’ by performing 2D FNT. The transformed values
are then multiplied element-wise for each channel. Finally, the inverse FNT is performed to obtain the output tiles. This is
shown in Figure 35.

The 2D overlap-and-save method can be used to find the TrCONV also. The difference is before transforming the values
into the finite field, we need to first do the zero-padding in the ifmap. These extra padded zeros cause redundancy and lead
to poor off-chip memory bandwidth. As a result, the 2D overlap-and-save method is not a preferred choice for the TrCONV.
The zero-padded TrCONV comes with the drawback of high complexity and high bandwidth requirement. For perfroming
a fast TrCONV, the authors introduced the 1D overlap-and-save. As shown in Figure 36, 2×(K−P −1)+(H−1)×(S−1)
rows are added in the ifmap. The image border comprises of 2× (K−P −1) rows of zero, where the filter is of size K×K ,
S is the stride, P are the padding size, and the TrCONV accepts the ifmap of size H ×W . Instead of processing the whole
ifmap, only H non-zero rows of the ifmap is processed. The 1D FNT is performed only on the non-zero rows, followed by
the element-wise multiplication between the fmaps and filters. Finally, the inverse FNT is performed to get the final ofmap.
To further enhance the computing efficiency, batching is used. The algorithms reduced the computational complexity and
provided a large improvement in performance.

Figure 37 shows the fast FNT kernel, which can perform both 1-D and 2-D FNT. The pipelined register relaxes the
critical path. For performing 1D FNT, column FNT and transpose matrix are bypassed.
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Their hardware accelerator is shown in Figure 38. The accelerator comprises five 2-D FNT modules. A 2D FNT module
is used in between the input buffer and the input-output interface. Moreover, the 2D FNT of filters is enlarged by the factor
of (N/K)2 where the output is of size N ×N and the filter is of size K ×K . To reduce the off-chip memory bandwidth,
the on-chip processing of the filter is done. The four 2D FNT modules are used in a 4-way 2D FNT module to process the
weights. To avoid any data stalls, the global buffer uses a double buffering technique. The computing element (CE) array
performs element-wise multiplication and accumulation on the FNTs. Each CE row shares the same data and realizes the
parallel execution by unrolling the output channel loop. The work results in a power dissipation of 805 mW. Their design
achieves the energy efficiency of 12.5× and 275.3× in the GTX 1080 Ti GPU and the i7-7700 CPU, respectively. Also, as
compared to the existing accelerators, a speed-up of atleast 1.7× is achieved.
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4.5 Using Sparsity-Related Techniques

Chen et al. [31] propose a sparsity-based accelerator for GANs. In their design, the PE comprises a FIFO group, an
accumulator, a zero-removing unit, and a dual-channel register group. The authors propose an ineffectual data removing
method, which eliminates both regular sparsity and irregular sparsity. For the irregular sparsity, zeros are filtered out
using the zero-removing unit. After this, the effectual data is delivered to the FIFO with the least amount of data. This
is shown in Figure 39. From there, the data is passed to the ‘dual-channel accumulation’ path. An accumulator performs
the ‘dual-channel accumulation’, which is based on the time-division multiplexing. The ineffectual data removing method
causes load imbalance as the PE processing the maximum number of non-zero operands becomes a bottleneck. To avoid
this, they propose a load-balancing mechanism. In this mechanism, filters are first sorted in descending order based on the
sparsity value. Then filter groups are created. In the case of the 16 filters, four filter groups are created. These groups are
assigned to a PE cluster. Again, filters are sorted in a PE cluster. The filters with the highest and lowest sparsity are sent
to PE in the first column, while the other filters are sent to PE in the second column. In the inter-tile level, the ifmap is
assumed to be divided into 4 blocks. The first block and the last block are sent to the PEs in the first row. The rest are send
to the second row PE. Their technique achieves a high energy efficiency of 3.72-TOPs/W at 50.1 mW.

Fig. 39. Dataflow in the technique of Chen et al. [31]. At cycle 0 first four activations and weights are fetched and supplied to the “zero-removal unit”
which filters out the ineffectual data. Effectual data is send to FIFO0 and FIFO1. Cycle 1 is simlar to the cycle 0, effectual data is send to FIFO2 and
FIFO3. FIFO with the largest amount of data, transfers the data to the “dual-channel accumulation”.

Yazdanbakhsh et al. [28] present an architecture for accelerating GANs on FPGA. Consider TrCONV between a 4 × 4
input and 5 × 5 filter (padding=2 and stride=1). In TrCONV, the input is enlarged from 4x4 to 11x11, as shown in Figure
40(a). Figure 40(b) shows the architecture of a conventional CONV accelerator for producing rows 2 to 5. Every PE
multiplies a row of input with a row of the filter. The filter rows are vertically reused across the PEs, however, if an input
row is zero, the corresponding filter row is not utilized for computing the output. Evidently, the presence of zeros leads to
resource-idling, ineffectual computations, and challenges in exploiting data-reuse along the filter rows.

To mitigate these limitations, they propose changing the dataflow. They note that there are only two different
computation-styles, which are used by odd and even rows. Based on this, they first reorder output rows to keep all
the even rows together. This is shown in Figure 40(c). Then, they reorder the filter rows so that different rows feed only
selected output rows. The final organization is shown in Figure 40(d). These optimizations improve data-reuse and increase
resource utilization from 50% to 100%. While the original architecture needed 5 cycles to horizontally accumulate the partial
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Fig. 40. (a) Zero-insertion step in TranConv operation for a 4x4 input and the transformed input. The white-colored squares represent zero values
in the transformed input. (b) Using convolution dataflow for performing TranConv operations [28]. The flow of data after applying (c) output row
reorganizaton and (d) filter row reorganization. The combination of these flow optimizations reduces the idle (white) operations and improves the
resource utilization.

sums, their technique brings this latency to two and three cycles for even and odd (respectively) numbered rows.
They note that in the traditional CONV, the computation pattern of different sliding windows is the same, and hence,

a SIMD-style execution works well. However, in TrCONV, the computation-pattern of different windows is not uniform,
which leads to irregular memory accesses. Still, some patterns repeat, and they are organized in two subsets with the
above optimizations. They use MIMD execution across the rows and SIMD execution across PEs in a row. Thus, they
exploit the best of both SIMD and MIMD. In their architecture, PEs are organized in a 2D array. Each PE has one unit for
performing memory accesses and another unit for performing operations such as summation, multiplication, and MAC. A
global instruction buffer is shared by all the PEs, and a horizontal group of PEs shares a local instruction buffer. A bit in
the instruction decides whether the accelerator works in SIMD or MIMD-SIMD mode in any cycle. In SIMD mode, all PEs
execute the instruction from the global instruction buffer. In the MIMD-SIMD mode, all PEs in a row execute the instruction
fetched by their local instruction buffer.

The data-fetching engines generate the addresses for the output, input, and weight buffers. The data-processing engine
operates on the data stored in input/weight buffers and saves the output data in the output buffer. The instruction stream
for data-processing engines mentions only the kind of computation to be done and has no field to specify the operand
addresses. This allows reusing the instructions over many cycles since the instructions in different sliding windows have a
similarity. It also reduces the storage overhead of instruction buffers. To reduce the requirement of on-chip memory, they
design an ISA which has separate instructions for data-fetching and data-processing. They also propose an algorithm for
finding the number of rows and columns of PEs that the accelerator should have for minimizing the execution latency.
They implement their accelerator on an FPGA. It provides a 2.2× speedup over an optimized traditional CONV accelerator.
Further, it provides 2.6× higher performance-per-watt compared to Titan X GPU. However, the performance of GPU is
higher than their technique due to its higher frequency and compute resources.

Chang et al. [45] present a DeCONV accelerator for image super-resolution application. On using a KD ×KD filter, a
KC×KC input block produces a S×S output block. To deal with the issue of the overlapping sum in DeCONV operation,
they find the number of input pixels required for generating a non-overlapping output block. Let No show the number
of vertical or horizontal neighboring blocks that overlap within b(KD/2)c. In up-scaling, S > 1 and the input elements
mapped to the ofmap have a spacing of S. Also, an output block may overlap with neighboring output blocks in the range
of b(KD/2)c. Hence, No = b(KD/2)c × 1/S. The amount of overlap is determined by the fractional part of No. Based on
this, they find the size of input block KC ×KC that can generate non-overlapping output.

Their technique computes S × S pixels of the output block in parallel. For their DeCONV-to-CONV transformation
approach, they find the coefficients of the filter in the CONV layer. From each DeCONV filter of size K2

D, S2 sparse CONV
filters of size K2

C are obtained, e.g., when S = 2, four CONV filters are obtained. These filters have a different number of
non-zero weights. To mitigate this load-imbalance, they rearrange these filters in the offline phase such that they have the
nearly same number of non-zero weights. This is shown in Figure 41(a). Thus, their technique leverages sparsity in both
weights and inputs. They also parallelize the ifmaps and ofmaps using loop optimization strategies.

As for the hardware architecture, they perform tiling and layer-fusion. A single CONV-layer engine executes all the
layers for a single tile completely. Multiple such CONV-layer engines are used for achieving parallel execution between the
tiles. The tile-size is found by comparing the execution latency of every CONV-layer engine with the data-transfer latency
of pixel data from the “display driver” or CONV-layer engine. To enable the reuse of the data sent by the “display driver”,
they use a line buffer since the data is transferred at the granularity of a line. The line buffer is architected as a block-RAM,
with two ports for allowing simultaneous read-write operations. To reduce the requirement of block-RAMs, they perform
quantization, whereby the weights, input pixels, and partial sums are quantized from 32b floating-point to 13b fixed-point.
Going below 13b leads to a sharp reduction in PSNR.

They further note that a DSP48 block in Xilinx FPGA can do up to a 25×18-bit multiplication. To ensure optimal
utilization of DSP48 resources with 13×13-bit multiplication, they utilize the double MAC scheme [59]. In this scheme,
two multiplications can be simultaneously performed if they share one operand, for example, A×B and A×C. They
divide a 13×13-bit multiplication into three parts: 8×8-bit, 5×8-bit, and 13×5-bit and finally add the partial results. In
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CNNs, multiple operations are iteratively executed on the same ifmap, and hence, the “double MAC” scheme is effective.
They evaluate their technique for the “Light FSRCNN” benchmark on a Kintex-7 XC7K410T FPGA. At super-resolution
factors of 2 and 4, their technique achieves 145 GOPS/W and 500 GOPS/W, respectively. Their method provides better
throughput and power efficiency as compared to conventional CONV/DeCONV accelerators. Also, for restoring high-
resolution images to a higher quality, their technique needs less parameters and works with lower data-width than the
traditional super-resolution techniques.

Chang et al. [23] highlight that although transforming a DeCONV layer to a CONV layer reduces the computational
complexity over the conventional DeCONV operation, and it has a drawback of increasing the number of output feature
maps, as it transforms each DeCONV filter into four CONV filters (each belonging to a different kind). To overcome this
issue and further increase the computational efficiency of a DeCONV neural network, they propose a four-step method,
which is shown in Figure 41(b). They first transform DeCONV operation into CONV operation. Then, they employ both
filter pruning and weight pruning methods to decrease the number of feature maps and weights. Finally, they encode the
sparse matrices in the “compressed sparse column” format.

Then, to efficiently process the generated sparse DeCONV neural networks, they modify the conventional dataflow
to process different kinds of filters separately. This helps in balancing the load among PEs, as different kinds of filters
have different average sparsity levels. Finally, they propose a hardware accelerator for FPGAs that receives tiled data and
implements each type of filter separately for computing the output. They evaluate their technique on Virtex-7 485T FPGA.
Their technique provides 2.6× speedup over a previous DeCONV accelerator [25].

4.6 Handling Overlapping Sum Problem

Mao et al. [43] propose a method to convert DeCONV to CONV operation. DeCONV can be converted to CONV after
zero insertion in the original ifmaps. Multiplication of the weight elements with the zero-valued activation lowers the
computational efficiency. If the weight elements of the DeCONV kernel, which are multiplied with the zero value activation,
are removed, the kernel gets divided into subkernels. For a DeCONV kernel of size Kd×Kd, the maximum and minimum
sizes of the subkernels can be computed according to the DeCONV stride Sd. The maximum size of the subkernels, KMax

c

is dKd/Sde, while the minimum size, KMin
c , is bKd/Sdc. There are three cases based on the sizes of the subkernels.

Case 1: Here, Kd mod Sd = 0 and hence, the sizes of all the subkernels are equal. Figure 42(a), where Kd = 4 and
Sd = 2 illustrates a simple DeCONV operation. Figure 42 (b) presents the condition when the DeCONV kernel is divided
and simplied into four subkernels. For transforming kernel into subkernels, those weights are eliminated which were going
to be multiplied with the zero-valued intput. Figure 42(c) presents the final fine-grained DeCONV method. The final output
activation for each subkernel is achieved by directly convolving subkernels with the original ifmap. In this case, no load
balancing is required.

Case 2: Here, Kd mod Sd 6= 0 and KMax
c ≤ 3. Here, the load of different subkernels is unbalanced. To achieve load-

balancing, the subkernels of dimensions KMax
c × KMax

c and KMin
c × KMax

c are divided into two parts. However, the
subkernels of dimensions KMax

c ×KMin
c and KMin

c ×KMin
c are not divided further. Assuming Kd = 5 and Sd = 2 and

hence, KMax
c = 3 and KMin

c = 2. The subkernels of dimensions 3 × 3 and 2 × 3 are again divided into two subkernels,
whereas those of dimensions 2 × 2 and 3 × 2 are not divided again. This converts the DeCONV into CONV with four
subkernels, while also achieving better load-balance. KMin

c − 1 columns in the results overlap.
Case 3: Here, Kd mod Sd 6= 0 and KMax

c > 3. To achieve load-balancing, the subkernels are redivided until the size of
every subkernel is at most 3.

Figure 43 presents the architecture. Here, the computing element comprises an adder tree and a CONV-DeCONV unit
(CU) array, which is based on the Fast FIR algorithm. Row accumulator consists of an adder array and SRAM banks. Figure
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44 presents the detailed design of the computing element. The fast FIR algorithm reduces the multiplication at the cost of
a few additions. A 2-parallel filter can perform 2× 2 and 1× 1 CONVs. By cascading small FIR filters, a large parallel FIR
filter can be realized. For example, three 2-parallel filters are cascaded for realizing a 4-parallel filter that can perform 4x4
and 3x3 CONVs. This explains the reconfigurable capabilities of the CU.
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They also propose techniques to decrease the number of overlapped columns. They note that in the baseline computing
approach, the outputs’ part that contribute to the same overlapped locations are generated in different cycles. These
results need to be temporarily stored in a buffer. To avoid this, they insert a zero at the beginning of the input row.
This row is fed into the second computing unit, whereas the original row is fed into the first computing unit. With this
approach, the outputs of the two computing units that add up to the same ofmap are produced in the same cycle. In Xilinx
Virtex Ultrascale, the design leads to enhanced computational efficiency and reduced memory requirements with a power
consumption of 3.71 W.

Liu et al. [36] propose a hardware accelerator for executing both the DeCONV and CONV operations for performing
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the ‘semantic segmentation’. The state-of-the-art architecture for DeConv is implemented by adding zero paddings around
or between the ifmap, which leads to poor computation efficiency on FPGA. In contrast to this method, the authors use an
FPGA-friendly method in which a single input pixel is multiplied with the k× k kernel. This is performed for all the input
pixels. Results are summed up wherever the output pixels overlap. In the end, border pixels are removed from the final
ofmap based on the number of zero paddings.

The top-level architecture is shown in Figure 45(a). For the hardware design of DeCONV, the authors stored the
processing data and coefficients of the network in the external memory. The ifmap is read into an input buffer.
Corresponding coefficients are also cached into a coefficient buffer (k × k FIFO). From coefficient buffer, column-wise
k coefficients are read into the coefficient register. A single input data and one column of the coefficient kernel from the
coefficient buffer are then sent to the DeCONV kernel, which performs the DeCONV operation. Finally, outputs are sent
to the output buffers. To process the next filter and to transfer the current filter result to the main memory concurrently,
ping-pong FIFO is used for the output buffer.

Figure 45(b) shows the design of the DeCONV kernel. It can support DeCONV layers of different configurations. If s is
the stride and k is the kernel’s width, there are two scenarios when k = s and s < k. When s < k, k − s columns/rows
overlap, requiring k×(k−s) register array size to deal with the overlap as shown in Figure 45(b). In each cycle, one column
of the kernel coefficients is accessed requiring k coefficient registers for storage. These coeffficients are multiplied by single
input data. This operation requires k multiplications. The results are stored in k× (k− s) array register. The content in the
register array is shifted every cycle. To deal with the row overlap, the results of the first (k − s) adders are also summed
with the partial results then it is transferred to the output buffer. For the column overlap, the result of the multiplies and
the last column of the registers are added before they are send in the buffer. When k = s, no overlap occurs.
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accelerator which supports different parameters of the DeCONV layer.

The authors propose an optimized hardware accelerator for CNN-based image segmentation, integrating both DeCONV
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and CONV computational units. For increasing the throughput of the design, the input buffer is shared between DeCONV
and CONV modules. Still, the input buffer cannot be wide enough to store the complete input map, so the ifmap is divided
into several parts. This reduces communication time.

They completely parallelize the kernel matrix computation for both DeCONV and CONV layers. Moreover, data-
level parallelism is achieved by accessing various inputs in a single cycle, and accordingly, computation kernels are also
replicated. However, filter level parallelism requires replicating both filters and output buffers, limiting the memory and
logic overheads. For further optimization, authors use multiple fixed-point data formats, such as 16b, 24b, or 32b, instead
of floating-point.

The authors further propose a framework for hardware mapping that can generate a low-latency hardware architecture
for any CNN. First of all, the framework finds optimal design parameters. Afterward, a software code is generated to
configure the layers’ parameters. Then, based on the above data, the final Verilog hardware code is generated. This
framework improves the design quality and enhances the designer’s productivity.

Finally, the authors propose an optimized U-Net architecture, which improves hardware efficiency as compared to the
previous implementation. To decrease the total number of computations, the number of filters is reduced, and, to maintain
a simple hardware design, padded (and not unpadded) CONVs are done for each layer. They evaluate their technique on
semantic segmentation task on the cityscapes dataset using Zynq board with a power consumption of only 9.6 W. Their
optimizations reduce the operations from 30 giga-operations to 5.92 giga-operations but reduce the pixel-level accuracy
from 68% to 60.8%.

4.7 Handling Irregular Memory Accesses
Xia et al. [29] propose an FPGA-based inference accelerator for complex CONV operations such as DeCONV, dilated
CONV, CONV with upsampling, etc. Their accelerator has multiple pipelines with CONV units and post-processing units.
Their post-processing units implement operations such as activation, pooling, etc. The input, weight, and output are stored
in respective buffers. These buffers can support different dataflows. Irregular access is supported in the buffer and the
off-chip memory, and this is helpful for assembling ofmap in DeCONV. Since the data-access granularity is already large,
irregular accesses do not significantly degrade the throughput. Different pipelines can work separately on different CONV
operations using their buffers, or they can work on a single CONV such that its data is spread across the buffers.

The core computing pattern of the CONV engine is a ‘vector dot-product’ unit. It is realized using either cascaded
DSP blocks or by using a LUT-based multipliers followed by an adder tree. To achieve high data-reuse, both broadcast
and systolic array schemes are used. The systolic array allows the reuse of both inputs and weights. For reducing the
propagation delay, the dot-product units are split into multiple systolic arrays, and the input and weights are broadcast to
multiple arrays. They use a compiler for performing optimizations such as quantization, reconstruction of DeCONV, etc.
Depending on the network characteristics and FPGA resources, a suitable parallelism level is chosen in the channel and
ofmap dimensions.

To avoid ineffectual computations in the execution of DeCONV, they reconstruct DeCONV in a compiler and implement
it on the CONV architecture itself. They partition every weight filter into 4 smaller filters. Then, CONV is performed
between the original ifmap (without padding) and these 4 filters. The pixels of the 4 ofmaps thus produced are not
contiguous, and hence, they perform concatenation operation for combining them, as shown in Figure 46(a). Figure 46(b)
focuses on a specific sequence of operations. As shown in Figure 46(c), concatenation is implemented without additional
overhead through storing the ofmap and loading the ifmap. For this, the ofmap is stored in a non-contiguous fashion at
memory location such that CONV1 and CONV2 together finally take contiguous memory region (Figure 46(c)). Further,
when CONV3 is processed, the ifmap is loaded in a non-contiguous manner from this contiguous memory (Figure 46(c)).
Their technique on FPGA achieves higher throughput and consumes lower energy than a GPU-based technique. For
example, for U-Net, an FP32 implementation on NVIDIA P4 GPU reaches 99 FPS and 1.3 FPS per watt, whereas an INT16
implementation of their technique on Xilinx KU115 reaches 105 FPS and 2.1 FPS per watt.

5 OPEN RESEARCH CHALLENGES AND FUTURE ROADMAP

Accelerators for Advanced GANs: Over the past few years, the field of GANs has progressed a lot, and along the way,
many variants of GANs have emerged. Although most of the core operations are the same across the variants, there
are some core differences that lead to underutilization of the available computational resources in hardware accelerators,
thereby leading to higher latency, lower throughput, and less energy efficiency. For example, CycleGAN [60] is one of the
variants mainly popular for image-to-image translation applications. It includes two generators and two discriminators,
and apart from the adversarial losses, the objective includes cycle-consistency loss term. Therefore, the same accelerators
that are designed for conventional GANs, such as DCGAN, may not offer optimal performance and resource efficiency
for CycleGANs. Some other examples include StackGAN [61], which uses two stages of GANs, and GANs used for high-
quality text-to-image translation applications [62], requiring LSTM cells. Thus, to support the rapid progress in GANs, there
is a need to shift the focus towards building tools and frameworks that make use of the hardware architectures proposed
so far to construct specialized accelerators for advanced GANs based on an abstract description. Moreover, reconfigurable
hardware can be used with these frameworks to significantly reduce the time to market. FlexiGAN [28] is one such solution
that receives a GAN’s high-level description and target specifications and generates synthesizable Verilog code for FPGA.
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Fig. 46. (a) Achieving DeCONV by dividing it into four CONV operations and then, concatenating the results (b) The sequence of operations (c)
storing ifmap1 and ifmap2 in non-contiguous locations to achieve concatenation operation without additional overhead [29]

Reconfigurability: To accommodate changing GAN algorithms and evolution, it is imperative to devise specialized
GAN hardware that support adaptability / reconfigurability without any changes to the underlying compute fabric.
However, the level of reconfigurability affects the efficiency. Therefore, it is important to study the commonalities between
given GAN architectures and offer only the required level of reconfigurability to preserve the efficiency benefits.

Data and Memory Management: An off-chip memory (i.e., DRAM) access costs orders of magnitude higher energy
and latency compared to a MAC operation. Most of the dataflow schemes are designed to increase local data reuse and
avoiding redundant DRAM accesses. SmartShuttle [63] proposed an adaptive data partitioning and scheduling scheme for
reducing DRAM accesses in CNN accelerators. Similar studies are required for GANs, specifically for optimizing the off-
chip memory accesses during the training process. These studies can further be combined with design space exploration for
optimal on-chip memory size and organization, as the availability of sufficient on-chip memory helps increase data locality
and thus, reduce off-chip memory accesses. CPUs are invariably present in all systems and are especially prominent
in accelerating AI algorithms in mobile-systems [64]. Also, they incorporate advanced data and memory-management
techniques. Hence, optimization of GANs on CPUs is vital to deploy them on a wide range of usage scenarios.

Reliability of GAN Hardware: GAN hardware architectures (e.g., on-chip memories and PE arrays) are exposed
to various reliability threats like soft errors [65], aging, thermal issues, and manufacturing defects. Moreover, off-chip
memories can also exhibit different types of faults due to manufacturing defects or longer refresh rate intervals for
increasing DRAM energy efficiency. Towards this, systematic fault-resilience studies need to be conducted to study the
impact of various types of faults on the application-level accuracy of GANs. These studies can help in designing low-cost
fault-mitigation techniques. Moreover, the effectiveness of conventional fault-aware training approaches that are designed
for CNNs and recurrent neural networks (RNNs) [66] must be evaluated for GANs, and customized approaches should be
designed considering the difficulty of GAN training.

Security of GAN Hardware: AI models are a crucial IP for any company and hence, there is an increasing concern for
ensuring their security against a range of attacks such as Trojan attack, side-channel attack and fault-injection attack [67].
Going forward, security needs to be taken as a first principle in the design of GAN accelerators.

Processing-in-memory: To avoid the large number of expensive memory accesses required during training and
inference of a DNN, physical attributes of resistive memory devices, in which memory cells are arranged in the form
of crossbar arrays, can be used to efficiently perform computations in place in a “non-von Neumann” manner [49]. Most
of the works that make use of these attributes assume ideal device behavior and do not discuss the associated challenges
in detail. One of the crucial issues is the inability to alter the resistance/conductance of the memory cells at a finer
granularity in a reliable manner and write precise values. This leads to imprecise computations, which eventually affects
the application-level accuracy. For example, a customized mixed-precision training technique is proposed by Gallo et
al. [68] to overcome the challenges. Their evaluation shows that, even with a customized training approach and for less
complex problems such as MNIST handwritten digit classification, the achieved application-level accuracy is always less
than the same DNN architecture trained and evaluated using digital circuitry. Other key problems associated with resistive
crossbar-based in-memory computing include voltage drop in wires and device variations [69]. As all these factors cannot
be ignored from the practicality perspective, the architectures that make use of resistive crossbars for computations should
be evaluated considering state-of-the-art non-ideal device models to clearly show the impact on accuracy. Moreover, there
is a need to focus on developing techniques that can overcome the non-idealities of these devices without significantly
affecting their benefits.

Optimization and approximation for GANs to improve Energy-Efficiency: Similar to the case of DNN optimiza-
tion [70, 71], different types of software and hardware approximations can also be employed in GAN systems, covering
both the hardware architecture and the GAN model compression. Some example ideas could be hardware-aware network
compression, conjoint network compression and quantization, voltage scaling to near-threshold voltage level [72], and
exploiting functional approximations in processing elements for higher area and energy efficiency. Combinations of
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these techniques can also be investigated to achieve higher benefits. Recent works, such as GAN Compression [73] and
QGAN [74] have shown that conventional techniques that are designed for CNNs and RNNs cannot be directly employed
due to the difficulty of GAN training and underrepresentation of original values. Therefore, tailored approaches are
required that can offer a better accuracy-efficiency tradeoff. Alongside on-device analytics, distributed machine learning is
also gaining a lot of attention due to its wide scope in IoT-related use cases. Towards this, dedicated hardware/software
co-design frameworks that jointly optimize hardware, DNNs, and communication requirements are required for unlocking
highly energy-efficient systems.

Specialized Hardware for Private Inference: The increase in cloud-based machine learning applications has given rise
to privacy concerns. Over the past few years, various techniques have been proposed to ensure private inference, i.e., data
processing without disclosing inputs. These techniques incorporate additional concepts from cryptographic techniques to
ensure privacy [75]. However, the additional functionality results in significant overheads. Optimization techniques have
been proposed to design neural architectures that incur lower overheads while ensuring high accuracy. These techniques
can be complemented with specialized hardware to enable the use of high accuracy models in real-world systems while
ensuring data privacy.

AI Frameworks for Designing Hardware: The success of machine learning and artificial intelligence in computer vision
and language processing has led to their adoption in many other fields. Recently, researchers from Google have shown
that AI can be used to design hardware that offers comparable or better results than the designs made by experts, and it
requires only a few hours to generate such designs compared to weeks/months of time required by human experts [76].
As this results in a significant reduction in the design cost, the use of AI for designing efficient hardware is going to be one
of the prominent areas of research in the coming years.

6 CONCLUSION

In this work, we presented a comprehensive survey of hardware accelerators for GANs. We organized the works based
on key metrics to bring out their differences as well as similarities. We have also presented some future research problems
in the field of GAN architectures. We believe that this survey will help both experts and novice in the area of artificial
intelligence, computer architecture and chip-design.
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