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ABSTRACT
Generative models have taken the world by storm – image genera-
tive models such as Stable Diffusion and DALL-E generate photo-
realistic images, whereas image captioning models such as BLIP,
GIT, ClipCap, and ViT-GPT2 generate descriptive and informative
captions. While it may be true that these models produce remark-
able results, their systematic evaluation is missing, making it hard
to advance the research further. Currently, heuristic metrics such as
the Inception Score and the Fréchet Inception Distance are the most
prevalent metrics for the image generation task, while BLEU, CIDEr,
SPICE, METEOR, BERTScore, and CLIPScore are common for the
image captioning task. Unfortunately, these are poorly interpretable
and are not based on the solid user-behavior model that the Infor-
mation Retrieval community has worked towards. In this paper,
we present a novel cross-modal retrieval framework to evaluate
the effectiveness of cross-modal (image-to-text and text-to-image)
generative models using reference text and images. We propose the
use of scoring models based on user behavior, such as Normalized
Discounted Cumulative Gain (nDCG'@K) and Rank-Biased Preci-
sion (RBP'@K) adjusted for incomplete judgments. Experiments
using ECCV Caption and Flickr8k-EXPERTS benchmark datasets
demonstrate the effectiveness of various image captioning and im-
age generation models for the proposed retrieval task. Results also
indicate that the nDCG'@K and RBP'@K scores are consistent with
heuristics-driven metrics, excluding CLIPScore, in model selection.
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1 INTRODUCTION
Cross-modal generative models such as stable-diffusion –and its
many variants– and DALL-E 2 (for text-to-image generation); Clip-
Cap, BLIP, ViT-GPT2, GIT, etc. (for image caption generation), have
become very popular in recent times. All these models are trained
to learn the alignment between image and text [24, 39] over billion-
scale datasets such as LAION5B [44] collected by crawling image-
caption pairs from the internet. While these models have demon-
strated remarkable user experience, their systematic evaluation
is still in its nascent stages. Cross-modal (image-to-text and text-
to-image) generation task is used to answer the question whether
these models are learning meaningful associations between the
two modalities [23]. The evaluation is expected to reveal whether
text-to-image generative models generate a similar image based on
the semantics of textual description, whereas image-to-text gen-
erative models describe the semantic content of the image using
meaningful and descriptive natural language.

Unfortunately, the current systematic evaluation of these models
suffers from a number of critical issues:

Poor Interpretability of Metrics Commonly usedmetrics for
evaluating image-to-text generative models are based on the co-
occurrence frequency of n-grams in the predicted caption and the
human written reference caption [7, 25, 32, 47], or on the text dis-
tance between the generated caption and reference caption [50],
or on the embedding distance between the generated caption and
the input image [15]. Similarly, the text-conditioned image genera-
tion models are either evaluated using the divergence between the
conditional class distribution and the marginal class distribution
of the generated image and generated dataset respectively [8] or
using the difference of two Gaussians fitted to the real-world and
generated image data measured using Fréchet distance [16]. The
quality of these metrics highly depends on the features returned by
the inception net [9]. Moreover, these metrics are not robust to new
words and favor familiar words and the style of the captions. These
issues are illustrated in Figure 1 using an example from the Flickr8k-
EXPERTS dataset. The BLEU-4 score for all the generated captions
in the example is around 0 as there is no 4-gram overlap with the
human-written reference captions. Moreover, the BLIP method and
Stable Diffusion V2 generate the most semantically aligned caption
and image, however, the caption with repeated words and the im-
age with less photorealism receives the highest CLIPScore. Thus, it
becomes difficult to interpret the scores generated by these metrics.

Lack of a User-behavior Model Information retrieval commu-
nity has stressed the importance of having a realistic user-behavior
model while developing evaluation metrics for ranked results [28].
For instance, Discounted Cumulative Gain (DCG) considers the
model of a user who inspects the results in ranked order, with expo-
nentially discounted satisfaction as she goes down the rankings [18].
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Figure 1: Example showing shortcomings of well-known n-gram matching and embedding-based metrics
More recent models such as Rank-Biased Precision (RBP) [28] con-
sider slightly more sophisticated (and realistic) user models. How-
ever, none of the metrics used in the evaluation of cross-modal
retrieval have a well-defined user-behavior model. Similar criticism
on the choice of metrics used by these models has also been made
by Musgrave et al. [30] and Chun et al. [11].

Extremely Shallow Judgments Musgrave et al., [30] also rec-
ommends the use of Mean Average Precision at R (MAP@R) to
compare the ranking of retrieved results. Unfortunately, even this
recommendation (also used by Chun et al. [11]), is fraught with
problems when the human judgments are conducted to a very shal-
low depth leading to the retrieved ranking containing incomplete
judgments [28, 42]. We found that two of the most commonly used
human-judgment datasets,viz., ECCV Caption [11] and Flickr8k-
EXPERTS [17], contain incomplete relevance assessments and very
shallow depth of judgments (average evaluation depth of 12 and 6
on ECCV and Flickr8k-EXPERTS respectively), making the choice
of MAP@R questionable.
1.1 Contributions
In this paper, we investigate whether the heuristics-based metrics
such as CLIPScore, BLEU-4, FID, etc. used for evaluating cross-
modal generative models are consistent with systematic metrics for
ranked retrieval evaluation such as nDCG'@K [43] and RBP'@K [28].
For this purpose, we propose a novel unified cross-modal retrieval
(CMR) framework that computes a ranking of results for a given
query by making use of a cross-modal generative model (Sec-
tion 3). We conduct an experimental evaluation using ECCV Cap-
tion and Flickr8k-EXPERTS benchmarks which contain graded
(albeit shallow) relevance assessments (Section 4). Our results in-
dicate that although CLIPScore score trends seem to be consistent
with nDCG' and RBP' scores for Text-to-Image models, this is not
the case for Image-to-Text (captioning) models. Further, we observe
that there is a bigger spread of CLIPScore values for different cap-
tioning models on the Flickr8k-EXPERTS dataset and FID Scores
for the two image generation models on both the datasets, than
nDCG'@K and RBP'@K scores (Section 5).
2 BACKGROUND
Multimodal learning has grown rapidly in recent years with pre-
trained vision-language models [20, 34]. Image-to-text generation,
also known as image captioning has made significant progress in
generating captions that are indistinguishable from those written
by humans. The task uses an image as input and generates its natu-
ral language description. Some of the captioning models, including
BLIP [24], and GIT [48] are generative unified transformer frame-
works that have been trained on multiple tasks involving different

modalities, whereas others such as ClipCap [29], MAPL [27], and
FROZEN [46] have only been trained on the image captioning task.

Various reference-based, reference-free, and self-retrieval-based
methods are used to evaluate and compare the effectiveness of im-
age captioning models in generating valid and descriptive captions
for a given image. The majority of these reference-based evalu-
ation metrics, such as BLEU [32], CIDEr [47], METEOR [7], and
ROUGE [25], investigate the co-occurrence frequency of n-grams
in the predicted caption in comparison to five human-written ref-
erence captions, whereas methods like SPICE [6] apply a seman-
tic parser to a set of references and compute similarity using the
predicted scene graph. Popular embedding-based metrics, such as
BERTScore [50], employ contextual embeddings to represent tokens
and compute matching using cosine similarity, optionally weighted
with inverse document frequency scores. CLIPScore [15], a popular
reference-free evaluation metric, computes the cosine similarity
between features extracted from the image and candidate caption
using CLIP’s feature extractor. The self-retrieval-based evaluation
ranks the set of original images using the generated caption as the
query to produce a ranked list. It computes the top-k recalls based
on the ranked lists, which is the proportion of images within the
top-k positions of the ranked lists for each query. The top-k recall
is an excellent indicator of how well a model captures distinctive-
ness in its descriptions. Our proposed text-to-image retrieval task
is a combination of reference-based and self-retrieval-based meth-
ods, favoring the generation of semantically relevant and unique
captions in its evaluations.

Text-to-image generation, also known as image generation has
also made significant progress in generating high-quality photo-
realistic images from a given text prompt. These models are mainly
divided into four groups, namely normalizing flows [38], VAE [21],
GAN [14] and diffusion models [36, 39, 40]. The task uses an in-
put text prompt to generate a semantically similar image from the
latent space. Some of the recent models are diffusion-based mod-
els, which include DALL-E[37], DALL-E 2[36], minDALL-E [19],
Stable Diffusion [39], GLIDE [31], Make-A-Scene [13], and IMA-
GEN [40]. To evaluate and compare these implicit image-generative
models, we require an empirical measure. The most common met-
rics used are Inception Score (IS), Fréchet Inception Distance (FID),
and Fréchet Clip Distance (FCD) [9]. The IS uses an Inception-v3
Network pre-trained on ImageNet and calculates a statistic of the
network’s outputs when applied to generated images. FID com-
putes Fréchet Distance between two multivariate Gaussians, fitted
to the features extracted by the inception network at pool3 layer
for real and generated data. As these metrics are based on features
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Figure 2: Cross-modal Retrieval Framework to Evaluate Generative Models.
and scores computed using a pre-trained network on ImageNet
[22] dataset with a particular image size, it is not clear how well
they transfer to other image types and image sizes. In contrast
to the heuristic-based metric, our proposed retrieval task models
the user behavior and judgment of relevant items. It also uses the
pre-trained transformer-based models trained on large-scale data
to provide robustness to different data types and sizes.

3 CMR FRAMEWORK FOR EVALUATION
In this section, we describe the image captioning task and its repre-
sentative models, the image generation task and its representative
models, as well as our proposed cross-modal retrieval framework
for evaluating the cross-modal generative models. The CMR frame-
work, as depicted in Figure 2, consists of a set of human-written
captions and real-world images as ground truth reference queries,
a retrieval system, a set of generated items (captions and images)
as new retrieval set, a generative model for evaluation, an input
retrieval set of images and textual prompt, and a set of evaluation
metrics (nDCG'@K and RBP'@K).

3.1 Caption Generation Models
For a given image 𝑥 ∈ R𝐻×𝑊 ×𝐶 of height H, width W, color chan-
nels C, the captioning task concerns generating a description 𝑦
consisting of words from the vocabulary of natural language. We
use four representative caption generation models BLIP, GIT, Clip-
Cap, and ViT-GPT2 in our experiments. The BLIP model consists of
a transformer encoder [12] to comprehend visual features and an
image-grounded text decoder to generate auto-regressive text. The
GITmodel uses a contrastive pre-trainedmodel as an image encoder
[49] and a transformer text decoder. The ClipCap employs a pre-
trained CLIP [34] network as an image encoder and a pre-trained
language model, GPT-2 [35], as a text generator. A transformer-
based mapping network predicts caption tokens conditioned on
the prefix in an autoregressive manner. We also use the ViT-GPT2
model which uses ViT as an image encoder and GPT2 as a text
decoder. All the models are pre-trained on image-text pairs and
finetuned for the captioning task on the MS-COCO [26] dataset.

3.2 Image Generation Models
For a given natural language description 𝑦, the image generation
task concerns generating an image 𝑥 ∈ R𝐻×𝑊 ×𝐶 of heightH, width
W, color channels C. We use two representative image generation
models, minDALL-E, and Stable Diffusion V2 in our experiments.
MinDALL-E is a small, easily accessible two-stage autoregressive
model based on DALL-E. In stage-1, minDALL-E generates high-
quality image samples using VQGAN, and in stage-2, it uses a
decoder-only sparse transformer trained from scratch on 14 million
image-text pairs from CC3M [45] and CC12M [10]. In addition,
we employ the latent diffusion model known as Stable Diffusion
V2 (SDV2). It consists of a text encoder, a variational autoencoder

(VAE), and a U-Net. The SDV2 model has been pre-trained on the
LAION-5B dataset [44].
3.3 Evaluation of Image Captioning Models
The evaluation of the image captioning model can be framed as a
text-to-image retrieval task as shown on the left side of Figure 2.
This procedure encourages the image captioning model to generate
a semantically similar caption for the input image that not only
describes the image scene but is also unique in its description. A se-
mantically similar caption will be able to rank the human-annotated
relevant images at the top when the ground truth reference caption
is used as the query. First, we feed the set of input images X, one by
one to the caption generation model, say BLIP, to generate a single
caption candidate 𝑦. The generated candidate caption set Y forms
the new retrieval set used as an intermediary for the cross-modal
retrieval task. Then we perform the text-to-image retrieval task,
using the corresponding ground truth reference caption 𝑦𝑥 as the
query to rank the generated caption set Y and its mapped image set
X using cosine similarity score. Finally, we evaluate the ranking of
the top-k images based on the available human-annotated graded
relevance score using nDCG'@K and RBP'@K metrics. The higher
the ranking score, the better the image captioning model.
3.4 Evaluation of Image Generation Models
Figure 2 on the right shows the reverse procedure of the evalua-
tion of the image generative model, framed as an image-to-text
retrieval task. This procedure encourages the image generation
model to generate a semantically similar image that is not only
representative of the input textual prompt but also photo-realistic
and unique. A semantically similar image will be able to rank the
human-annotated relevant textual prompts at the top when the
ground truth real image is used as a query. First, we feed the set
of input textual prompts Y, one by one to the text-conditioned im-
age synthesis model, say minDALL-E, to generate a single image
candidate 𝑥 . The generated candidate image set X forms the new
retrieval set used as an intermediary for the cross-modal retrieval
task. Then we perform the image-to-text retrieval task, using the
corresponding ground truth reference image 𝑥𝑦 as the query to
rank the generated image set X and its mapped textual prompt set
Y using cosine similarity score. Finally, we evaluate the ranking of
the top-k textual prompt based on the available human-annotated
graded relevance score using nDCG'@K and RBP'@K metrics. The
higher the ranking score, the better the image generation model.
4 EXPERIMENTAL SETUP
Datasets: ECCV Caption [11] and Flickr8k-EXPERTS datasets are
extended subsets of the COCO Caption [26] and Flickr-8K datasets
[17] respectively. ECCV Caption includes 1,332 query images and
1,261 query captions, while Flickr8k-EXPERTS includes 1,000 im-
ages and 977 captions. The dataset contains a rating score of image-
caption pairs given by human experts on a scale of 0 to 3, with
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Table 1: Evaluation of Image-to-Text Generative Model on ECCV Caption and Flickr8k-EXPERTS Dataset. Bold fonts and underline indicate
the best performer and the second-best performer respectively. Results marked † are statistically significant (i.e., two-sided t-test with p ≤ 0.05)
over the second-best method.

Dataset Method nDCG'@5 nDCG'@10 nDCG'@15 RBP'@5 RBP'@10 RBP'@15 BLEU-4 ↑ CLIPScore ↑ CLIPRefScore ↑
ECCV Caption ClipCap 80.46 87.96 91.25 1.47 1.87 1.91 33.3 77.6 82.3
ECCV Caption ViT-GPT2 81.11 88.4 91.54 1.48 1.88 1.92 39.2 75.4 81.8
ECCV Caption GIT 81.75 88.74 91.91 1.49 1.88 1.93 37.8 77.9† 83.2
ECCV Caption BLIP 82.35† 89.15† 92.24† 1.5† 1.89† 1.94† 41.7† 77.8 83.4†

Flickr8k-EXPERTS ClipCap 68.38 70.23 70.39 0.84 0.85 0.85 18.69 77.55 79.11
Flickr8k-EXPERTS ViT-GPT2 67.27 69.32 69.45 0.83 0.83 0.83 25.68 78.53† 81.41
Flickr8k-EXPERTS GIT 69.46 71.08 71.23 0.86 0.87 0.87 17.21 71.47 75.22
Flickr8k-EXPERTS BLIP 69.83 71.44 71.51 0.87† 0.88† 0.88† 29.14† 77.81 81.52†

Table 2: Evaluation of Text-to-Image Generative Model on ECCV Caption and Flickr8k-EXPERTS Dataset. Bold fonts indicate the best performer
method. Results marked † are statistically significant (i.e., two-sided t-test with p ≤ 0.05) over the second-best performer.

Dataset Method nDCG'@5 nDCG'@10 nDCG'@15 RBP'@5 RBP'@10 RBP'@15 FID ↓ CLIPScore ↑ FCD ↓
ECCV Caption MinDALL-E 73.93 77.85 83.5 2.10 2.16 2.16 50.61 78.68 20.31
ECCV Caption SDV2 77.9† 81.02† 86.04† 2.22† 2.28† 2.29† 18.31 83.07† 13.59

Flickr8k-EXPERTS MinDALL-E 73 75.02 75.02 0.90 0.90 0.90 99.99 79.66 24.69
Flickr8k-EXPERTS SDV2 75.74† 77.03† 77.03† 0.95† 0.95† 0.95† 63.38 85.88† 14.97

0 indicating that the caption does not describe the image at all, 1
indicating that the caption describes minor aspects of the image but
does not describe the image, 2 indicating that the caption almost
describes the image with minor errors, and 3 indicating that the
caption describes the image.
Implementation Details: For image captioning, we use the open
implementation of ClipCap [2], ViT-GPT2 [5], GIT [3] and BLIP
[1] model. For image generation, we use the open implementa-
tion of Stable Diffusion V2 [4] and minDALL-E [19] as DALL-
E and DALL-E 2 are not freely accessible for research purposes.
All models are taken from the HuggingFace library and Github,
without any further fine-tuning. To extract the image and text
features, we used Swin-Large Transformer Encoder and SBERT
(distilroberta-base) respectively. For a fair comparison, we used
the best sampling settings provided for each model and a seed of
3407 [33] to generate the captions and the images. We used cosine
distance to measure similarity.
Evaluation Metrics:We propose to use user-model-based judg-
ment metrics namely Normalized Discounted Cumulative Gain
(nDCG') [41] and Rank Biased Precision (RBP') [28] adjusted for
incomplete judgments to evaluate our CMR framework. In our
experiments, we used a condensed list in Qrels, and removed all
the unjudged documents from the ranking, to compute nDCG' and
RBP'. The nDCG value for top-K retrieved elements is expressed as
𝑛𝐷𝐶𝐺@𝐾 =

𝐷𝐶𝐺@𝐾
𝐼𝐷𝐶𝐺@𝐾 where DCG and IDCG are the Discounted

Cumulative Gain and Ideal Discounted Cumulative Gain. RBP is
based on the monotonically decreasing values in a geometric se-
quence. It can be expressed as, 𝑅𝐵𝑃 (𝑅, 𝑝) = (1 − 𝑝)∑ |𝑅 |

𝑖=1 𝑟𝑖𝑝
𝑖−1

where p is an abstraction of the user’s searching persistence, ex-
pressed between 0 and 1, R represents the relevance vector to be
evaluated, and 𝑟𝑖 indicates the relevance of the document ranked in
position i within the ranking. We use 𝑝 = 0.5 to account for shallow
judgments as recommended by the authors [28].

5 EXPERIMENTAL RESULTS
We address these two research questions in our experiments:
RQ1:What is the ranking effectiveness of generative models in a
Cross-modal Retrieval (CMR) task?

RQ2: Are heuristics-driven metrics used in generative model eval-
uation consistent with results from user-behavior-driven metrics
such as nDCG'@K and RBP'@K?

In Table 1, nDCG'@K and RBP'@K compare the performance of
image-captioning models on ECCV Caption and Flickr8k-EXPERTS.
The BLIP model gets the highest nDCG'@K and RBP'@K scores
in comparison to other models for both datasets. The same model
also outperforms others in heuristics-driven metrics as well. This
suggests that BLIP captions are not only semantically more similar
to the ground truth reference captions but also can better rank
images in the retrieval task. This is also evident from the example
in Figure 1. With respect to RQ2, we notice that CLIPScore is in-
consistent with ranking metrics for different models – the GIT and
ViT-GPT2 models get the highest CLIPScore on the ECCV Caption
and Flickr8-EXPERTS respectively. It is also interesting to note that
there is a bigger spread of CLIPScore values for different models
on the Flickr8k-EXPERTS dataset, than nDCG'@K and RBP'@K
scores. The images generated by the Stable Diffusion V2 (SDV2) and
minDALL-E models are compared for their ranking effectiveness
in Table 2. The results suggest that the SDV2 model generates a
more similar image for a given text input that is also distinct from
the set of generated images in order to rank textual prompts more
effectively in the retrieval task for both datasets. Also, there is a
huge gap in FID Score for the two models, while it is not the case
with nDCG'@K and RBP'@K scores.
6 CONCLUSION
In this paper, we explored whether heuristics-based metrics used
for evaluating image-to-text and text-to-image generative models
are consistent with models such as nDCG'@K and RBP'@K that are
based on robust user behavior models. We presented a novel unified
cross-modal retrieval framework that uses generative models for
the retrieval task and used it in our comparison of metrics. Empiri-
cally we showed the interpretability challenge with the heuristics
metrics and showed that nDCG'@K and RBP'@K are more suitable
in terms of their interpretability and usability. Further investigation
is needed to use the nDCG'@K and RBP'@K metrics to tune the un-
derlying models, and also to develop better evaluation benchmarks
with graded judgments further deep in rankings.
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