
COP701: Assignment 3

WebAssembly

1 Introduction

WebAssembly [1] (abbreviated Wasm) is a binary instruction format for a stack-
based virtual machine. Wasm is designed as a portable target for compilation
of high-level languages like C/C++/Rust, enabling deployment on the web for
client and server applications. WebAssembly 1.0 has shipped in 4 major browser
engines: Firefox, Google Chrome, Safari and Microsoft Edge.

WebAssembly offers compact representation, efficient validation and compi-
lation, and safe low to no-overhead execution. WebAssembly is an abstrac-
tion over modern hardware, making it language-, hardware-, and platform-
independent, with use cases beyond just the web.

2 Problem Statement

• Analyzing the Performance of WebAssembly vs. Native Code [2].

• Analyzing the Performance of WebAssembly on modern browsers [3].

• Generating instruction traces from a WebAssembly program.

3 Experimental Setup

Benchmarks: Polybench suite [4]. It consists of 30 numerical programs. The
source code can be downloaded from the cited link. Download the PolyBench/C
4.1 version.
Emscriptem: This program is used to compile a C/C++ program to We-
bAssembly. https://emscripten.org/docs/getting_started/downloads.html
Instrumentation: Wasabi [5] is a tool for dynamically analyzing WebAssem-
bly. It is available at https://github.com/danleh/wasabi.

1



4 Deliverables - Part 1 (20th October)

4.1 WebAssembly vs. Native Code

• Experiment 1 - Relative Execution Time: Run the PolyBench suite
on the native hardware (your system) and note down the runtime. Compile
the PolyBench suite to WebAssembly using Emscriptem. Run it on a web-
browser and note down the runtime. Plot a bar graph showing the relative
execution times for all the benchmarks (similar to [2]).

• Experment 2 - Instruction Mix Analysis: Use the Pin tool [6] to
instrument the native code and obtain the breakup of different types of
instructions. Similarly, use the Wasabi tool [5] to instrument the We-
bAssembly code to obtain the instruction breakup. Types: load, store,
arithmetic/logical-int, arithmetic/logical-float, branch, register transfer,
and nop. Plot a bar graph.

• Experiment 3 - Instruction Count: Plot a bar graph showing the
relative number of dynamic instructions for WebAssembly vis-a-vis Native
Code.

• Experiment 4 - Hot Code: Identify the functions in the code that are
run frequently and plot their dynamic instruction count.

• Repeat the experiments for different compiler optimizations O0, O1, O2
and O3. Report the details of the native hardware: DRAM size, CPU
frequency, and the number of cores. Report the versions of the Operating
System, C compilers, and the web-browser.

4.2 WebAssembly on modern browsers

Repeat all the experiment in Section 4.1 on at least two web-browsers from the
following: Firefox, Google Chrome, Safari and Microsoft Edge

4.3 Report

Comment on the graphs obtained.

5 Deliverables - Part 2 (10th November)

The goal of this part is to generate dynamic instruction traces of a WebAssembly
execution. Each line in the trace file should be of the following format.

< pc > < type > < value >

where,

• pc: program counter of the instruction (decimal format)

2



• type: type of the value

• value: dissemble of the instruction/ address

Type Value Remarks
27 assembly instruction refer to the examples
2 load address address of the load instruction in decimal format
3 store address address of the load instruction in decimal format
4 branch target pc when branch is taken
5 branch target pc when branch is not taken

5.1 Examples

1. Simple instructions:
< pc > 27 < instruction > : 2147500552 27 add a0, a0, a4

2. Load instructions: There will be two lines in the trace corresponding
to a load instruction. First line for the instruction and the second line for
the load address.
< pc > 27 < instruction > : 2147499372 27 lw a5, 0(s8)
< pc > 2 < address > :2147499372 2 4184

3. Store instructions: There will be two lines in the trace corresponding
to a store instruction. First line for the instruction and the second line
for the store address.
< pc > 27 < instruction > : 2147499442 27 sd a0, 32(sp)
< pc > 3 < address > :2147499442 3 2147540416

4. Branch taken instructions: There will be two lines in the trace cor-
responding to a branch instruction. First line for the instruction and the
second line for the branch target value.
< pc > 27 < instruction > : 2147495402 27 j pc + 0x4ae8
< pc > 4 < branch target pc > :2147495402 4 2147514578

5. Branch not-taken instructions: There will be two lines in the trace
corresponding to a branch instruction. First line for the instruction and
the second line for the branch target value.
< pc > 27 < instruction > : 2147499444 27 beqz a5, pc + 12
< pc > 5 < branch target pc > :2147499444 5 2147499456

5.2 Input to your program

./run.sh < trace size > < program name > < program arguments >

• Argument 1: Number of dynamic instructions in the trace (trace size).
Example: 1000, in this case your program should exit after generating a
trace for 1000 dynamic instructions. If the value of this argument is -1
then generate a trace for the whole program.

3



• Argument 2: The path of the program for which the trace has to be
generated, followed by the arguments of this program.

5.3 Output format

Since the size of the trace would be large, your program should directly generate
a compressed trace in a tar.gz format. The name of the output file should be
program name.tar.gz.

5.4 Tools

You can use Wasabi [5] or Pywasm [7] to generate the instruction traces.

5.5 WebAssembly to x86 translator

We need the traces only in the x86 assembly format. You need to translate
each instruction in the WebAssembly into a x86 assembly format. For example:
i64.add in WebAssembly translates to add in x86.

References

[1] Andreas Haas, Andreas Rossberg, Derek L Schuff, Ben L Titzer, Michael
Holman, Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien. Bring-
ing the web up to speed with webassembly. In ACM SIGPLAN Notices,
volume 52, pages 185–200. ACM, 2017.

[2] Abhinav Jangda, Bobby Powers, Emery D Berger, and Arjun Guha. Not so
fast: analyzing the performance of webassembly vs. native code. In 2019
{USENIX} Annual Technical Conference ({USENIX}{ATC} 19), pages
107–120, 2019.

[3] David Herrera, Hangfen Chen, Erick Lavoie, and Laurie Hendren. We-
bassembly and javascript challenge: Numerical program performance using
modern browser technologies and devices. Technical report, Technical Re-
port. Technical report SABLE-TR-2018-2. Montréal, Québec, Canada, 2018.

[4] Polybench benchmark suite. http://web.cse.ohio-state.edu/~pouchet.
2/software/polybench/, 2019.

[5] Daniel Lehmann and Michael Pradel. Wasabi: A framework for dynamically
analyzing webassembly. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Oper-
ating Systems, pages 1045–1058. ACM, 2019.

[6] Pin tool. https://software.intel.com/en-us/articles/

pin-a-dynamic-binary-instrumentation-tool, 2019.

[7] pywasm. https://pypi.org/project/pywasm/, 2019.

4


