
Modeling Dynamic (De)Allocations of Local Memory for
Translation Validation
ABHISHEK ROSE, Indian Institute of Technology Delhi, India

SORAV BANSAL, Indian Institute of Technology Delhi, India

End-to-End Translation Validation is the problem of verifying the executable code generated by a compiler

against the corresponding input source code for a single compilation. This becomes particularly hard in

the presence of dynamically-allocated local memory where addresses of local memory may be observed by

the program. In the context of validating the translation of a C procedure to executable code, a validator

needs to tackle constant-length local arrays, address-taken local variables, address-taken formal parameters,

variable-length local arrays, procedure-call arguments (including variadic arguments), and the alloca()
operator. We provide an execution model, a definition of refinement, and an algorithm to soundly convert a

refinement check into first-order logic queries that an off-the-shelf SMT solver can handle efficiently. In our

experiments, we perform blackbox translation validation of C procedures (with up to 100+ SLOC), involving

these local memory allocation constructs, against their corresponding assembly implementations (with up to

200+ instructions) generated by an optimizing compiler with complex loop and vectorizing transformations.

CCS Concepts: • Software and its engineering→ Formal software verification; Compilers.

Additional Key Words and Phrases: Translation validation, Equivalence checking, Certified compilation

ACM Reference Format:
Abhishek Rose and Sorav Bansal. 2024. Modeling Dynamic (De)Allocations of Local Memory for Translation

Validation. Proc. ACM Program. Lang. 8, OOPSLA1, Article 146 (April 2024), 30 pages. https://doi.org/10.1145/
3649863

1 INTRODUCTION
Compiler bugs can be catastrophic, especially for safety-critical applications. End-to-End Translation

Validation (TV for short) checks a single compilation to ascertain if the machine executable code

generated by a compiler agrees with the input source program. In our work, we validate translations

from unoptimized IR of a C program to optimized executable (or assembly) code, which forms an

overwhelming majority of the complexity in an end-to-end compilation pipeline. In this setting,

the presence of dynamic allocations and deallocations due to local variables and procedure-call

arguments in the IR program presents a special challenge — in these cases, the identification and

modeling of relations between a local variable (or a procedure-call argument) in IR and its stack

address in assembly is often required to complete the validation proof.

Unlike IR-to-assembly, modeling dynamic local memory allocations is significantly simpler

for IR-to-IR TV [Kasampalis et al. 2021; Lopes et al. 2021; Menendez et al. 2016; Namjoshi and

Zuck 2013; Necula 2000; Stepp et al. 2011; Tristan et al. 2011; Zhao et al. 2012, 2013]. For example,

(pseudo)register-allocation of local variables can be tackled by identifying relational invariants that

equate the value contained in a local variable’s memory region (in the original program) with the

value in the corresponding pseudo-register (in the transformed program) [Kang et al. 2018]. If the

Authors’ addresses: Abhishek Rose, Indian Institute of Technology Delhi, New Delhi, India, abhishek.rose@cse.iitd.ac.in;

Sorav Bansal, Indian Institute of Technology Delhi, New Delhi, India, sbansal@iitd.ac.in.

Publication rights licensed to ACM. ACM acknowledges that this contribution was authored or co-authored by an employee,

contractor or affiliate of a national government. As such, the Government retains a nonexclusive, royalty-free right to

publish or reproduce this article, or to allow others to do so, for Government purposes only. Request permissions from

owner/author(s).

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2475-1421/2024/4-ART146

https://doi.org/10.1145/3649863

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

HTTPS://ORCID.ORG/0009-0002-2222-8906
HTTPS://ORCID.ORG/0009-0004-2006-9635
https://doi.org/10.1145/3649863
https://doi.org/10.1145/3649863
https://orcid.org/0009-0002-2222-8906
https://orcid.org/0009-0004-2006-9635
https://doi.org/10.1145/3649863

146:2 Abhishek Rose and Sorav Bansal

address of a local variable is observable by the C program (e.g., for an address-taken local variable),

we need to additionally relate the variable addresses across both programs. These address correla-

tions can be achieved by first correlating the corresponding allocation statements in both programs

(e.g., through their names) and then assuming that their return values are equal. Provenance-

based syntactic pointer analyses, that show separation between distinct variables [Andersen 1994;

Steensgaard 1996], thus suffice for translation validation across IR-to-IR transformations.

An IR-to-assembly transformation involves the lowering of a memory allocation (deallocation) IR

instruction to a stackpointer decrement (increment) instruction in assembly. Further, the stack space

in assembly is shared by multiple local variables, procedure-call arguments, and by the potential

intermediate values generated by the compiler, e.g., pseudo-register spills. Provenance-based pointer

analyses are thus inadequate for showing separation in assembly.

Prior work on IR-to-assembly and assembly-to-assembly TV [Churchill et al. 2019; Gupta et al.

2020; Sewell et al. 2013; Sharma et al. 2013] assumes that local variables are either absent or their

addresses are not observed in the program and so they are removed through (pseudo)register-

allocation. Similarly, these prior works assume that variadic parameters (and other cases of address-

taken parameters) are absent in the program.

Prior work on certified compilation, embodied in CompCert [Leroy 2006], validates its own

transformation passes from IR to assembly, and supports both address-taken local variables and

variadic parameters. However, CompCert sidesteps the task of having to model dynamic allocations

by ensuring that the generated assembly code preallocates the space for all local variables and
procedure-call arguments at the beginning of a procedure’s body. Because preallocation is not

possible if the size of an allocation is not known at compile time, CompCert does not support

variable-sized local variables or alloca(). Moreover, preallocation is prone to stack space wastage.

In contrast to a certified compiler, TV needs to validate the compilation of a third-party compiler,

and thus needs to support an arbitrary (potentially dynamic) allocation strategy.

Example: Consider a C and a 32-bit x86 assembly program in fig. 1. The fib procedure in fig. 1a

accepts two integers n and m, allocates a variable-length array (VLA) v of n+2 elements, computes

the first m+1 fibonacci numbers in v, calls printf(), and returns the𝑚𝑡ℎ
fibonacci number. Notice

that for an execution free of Undefined Behaviour (UB), both n and m must be non-negative and m
must be less than (n+2). Note that the memory for local variables (v and i) and procedure-call

arguments (for the call to printf) is allocated dynamically through the alloc instruction in the IR

program (fig. 1b). In the assembly program (fig. 1c), memory is allocated through instructions that

manipulate the stackpointer register esp.
If the IR program uses an address, say 𝛼 , of a local variable (e.g., 𝛼 ∈ {𝑝I1, 𝑝I2}) or a procedure-call

argument (e.g., 𝛼 ∈ {𝑝I7, 𝑝I8}) in its computation (e.g., for pointer arithmetic at lines I3 and I5, or
for accessing the variadic argument at 𝑝I8 within printf), validation requires a relation between 𝛼

and its corresponding stack address in assembly (e.g., 𝑝I7 = esp at line A14).
Contributions: We formalize IR and assembly execution semantics in the presence of dynamically

(de)allocated memory for local variables and procedure-call arguments, define a notion of correct

translation, and provide an algorithm that converts the correctness check to first-order logic queries

over bitvectors, arrays, and uninterpreted functions. Almost all production compilers (e.g., GCC)

generate assembly code to dynamically allocate stack space for procedure-call arguments at the

callsite, e.g., in fig. 1c, the arguments to printf are allocated at line A13. Ours is perhaps the first
effort to enable validation of this common allocation strategy. Further, our work enables translation

validation for programs with dynamically-allocated fixed-length and variable-length local variables

for a wide set of allocation strategies used by a compiler including stack merging, stack reallocation

(if the order of allocations is preserved), and intermittent register allocation.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

Modeling Dynamic (De)Allocations of Local Memory for Translation Validation 146:3

C0: int fib(int n, int m) {

C1: int v[n+2];

C2: v[0]=0; v[1]=1;

C3: for(int i=2; i<=m; i++)

C4: v[i]=v[i-1]+v[i-2];

C5: printf("fib(%d)␣=␣%d", m, v[m]);

C6: return v[m];

C7: }

(a) C Program with VLA.

I0: int fib(int* n, int* m):

I1: i=𝑝I1=alloc 1,int,4;

I2: v=𝑝I2=alloc *n+2,int,4;

I3: v[0]=0; v[1]=1; *i=2;

I4: if(*i >𝑠 *m) goto I7;

I5: v[*i]=v[*i-1]+v[*i-2];

I6: (*i)++; goto I4;

I7: 𝑝I7=alloc 1,char*,4;

I8: 𝑝I8=alloc 1,struct{int; int;},4;

I9: *𝑝I7=__S__; *𝑝I8=*m; *(𝑝I8 + 4)=v[*m];
I10: t=call int printf(𝑝I7, 𝑝I8);

I11: dealloc 𝑝I7;

I12: dealloc 𝑝I8;

I13: r=v[*m];

I14: dealloc 𝑝I2;

I15: dealloc 𝑝I1;

I16: ret r;

(b) (Abstracted) IR.

A0: fib:

A1: push ebp; ebp = esp;

A2: push {edi, esi, ebx}; esp = esp-12;

A3: eax = mem4[ebp+8]; ebx = mem4[ebp+12];

A4: esp = esp-(0xFFFFFFF0 & (4*(eax+2)+15));

A4.1: vI1 = alloc𝑣 4,4,I1;
A4.2: alloc𝑠 esp,4*(eax+2),4,I2;
A5: esi = ((esp+3)/4)*4;

A6: mem4[esi] = 0; mem4[esi+4] = 1;

A7: if(ebx ≤𝑠 1) jmp A12;

A8: edi = 0; edx = 1; eax = 2;

A9: ecx = edx+edi; edi = edx; edx = ecx;

A10: mem4[esi+4*eax] = ecx; eax = eax+1;

A11: if(eax ≤𝑠 ebx) jmp A9;

A12: edi = mem4[esi+4*ebx]; esp = esp-4;

A13: push {edi, ebx, __S__}; //__S__ is ptr to format string

A13.1: alloc𝑠 esp, 4,4,I7;
A13.2: alloc𝑠 esp+4,8,4,I8;
A14: call int printf(<char*> esp, <struct{int; int;}> esp+4)

𝐺 ∪ {ℎ𝑝, 𝑐𝑙, I7, I8}𝐺 ∪ {ℎ𝑝, 𝑐𝑙, I7, I8}𝐺 ∪ {ℎ𝑝, 𝑐𝑙, I7, I8};
A14.1: dealloc𝑠 I7;
A14.2: dealloc𝑠 I8;
A15: eax = edi;

A15.1: dealloc𝑠 I2;
A15.2: dealloc𝑣 I1;
A16: esp = ebp-12; pop {ebx, esi, edi, ebp};

A17: ret;

(c) (Abstracted) 32-bit x86 Assembly Code.

Fig. 1. Example program with VLA and its lowerings to IR and assembly. Subscripts 𝑠 and 𝑢 denote signed
and unsigned comparison respectively. Bold font (parts of) instructions are added by our algorithm.

2 EXECUTION SEMANTICS AND NOTION OF CORRECT TRANSLATION
We are interested in showing that an x86 assembly program A is a correct translation of the unopti-

mized IR representation of a C program C. Prior TV efforts identify a lockstep correlation between

(potentially unrolled) iterations of loops in the two programs to show equivalence [Churchill et al.

2019]. These correlations can be represented through a product program that executes C and A in

lockstep, using a careful choice of program path correlations, to keep the machine states of both

programs related at the ends of correlated paths [Gupta et al. 2020; Zaks and Pnueli 2008].

Our TV algorithm additionally attempts to identify a lockstep correlation between the dynamic

(de)allocation events and procedure-call events performed in both programs, i.e., we require the

order and values of these execution events to be identical in both programs. To identify a lockstep

correlation, our algorithm annotates A with (de)allocation instructions and procedure-call argu-

ments. Our key insight is to define a refinement relation between C and A through the existence of

an annotation in A. We also generalize the definition of a product program so it can be used to

witness refinement in the presence of non-determinism due to addresses of dynamically-allocated

local memory, UB, and stack overflow.

Overview through example: In C, an alloc instruction returns a non-deterministic address of

the newly allocated region with non-deterministic contents, e.g., in fig. 1b, the address (𝑝I2) and

initial contents of VLA v allocated at I2 are non-deterministic. In fig. 1c, our algorithm annotates

an alloc𝑠 instruction at A4.2 to correlate in lockstep with I2, so that 𝑝I2’s determinized value is

identified through its first operand (esp). An alloc𝑠 instruction allocates a contiguous address

interval from the stack, starting at esp in this case, to a local variable. The second (4*(eax+2)),
third (4), and fourth (I2) operands of alloc𝑠 specify the allocation size in bytes, required alignment,

and the PC of the correlated allocation instruction in C (which also identifies the local variable)

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

146:4 Abhishek Rose and Sorav Bansal

respectively. The determinized values of the initial contents of VLA v at I2 are identified to be equal
to the contents of the stack region [esp,esp+4*(eax+2)-1] at A4.1. A corresponding dealloc𝑠
instruction, that correlates in lockstep with I14, is annotated at A15.1 to free the memory allocated

by A4.2 (both have operand I2) and return it to stack.

A procedure call appears as an x86 call instruction and we annotate the actual arguments as its

operands in A. In fig. 1c, the two operands (esp and esp+4) annotated at A14 are the determinized

values of 𝑝I7 and 𝑝I8, as obtained through x86 calling conventions. The last annotation at A14 is the
set of memory regions (e.g.,𝐺 , ℎ𝑝 , 𝑐𝑙 , . . . , as described in section 2.2.2) observable by printf in A —

this is equal to the set of memory regions observable by printf in C, as obtained through an over-

approximate points-to analysis. Annotations of alloc𝑠 at A13.{1,2} and dealloc𝑠 at A14.{1,2}
identify the memory regions occupied by printf’s parameters during printf’s execution.
Consider the local variable i, allocated at I1, with address 𝑝I1 in fig. 1b. Because i’s address is

never taken in the source program, a correlation of 𝑝I1 with its determinized value in A’s stack
is not necessarily required. Further, the compiler may register-allocate i in which case no stack

address exists for i, e.g., i lives in eax at A8-A11 in fig. 1c. The alloc𝑣 instruction annotated at

A4.1 performs a “virtual allocation” for variable i in lockstep with I1. The first (4), second (4),
and third (I1) operands of alloc𝑣 indicate the allocation size, required alignment, and the PC of

the correlated allocation in C respectively. The corresponding dealloc𝑣 instruction, annotated at

A15.2, correlates in lockstep with I15. The address and initial contents of the memory allocated

by alloc𝑣 are chosen non-deterministically in A, and are assumed to be equal to the address

and initial contents of memory allocated by a correlated alloc in C, e.g., vI1 = 𝑝I1 at A4.1. A
“virtually-allocated region” is never used byA. We introduce the (de)alloc𝑠,𝑣 instructions formally

in section 2.4.

Consider the memory access v[*i] at I5 in fig. 1b, and assume we identify a lockstep correlation

of this memory access with the assembly program’s access mem4[esi+4*eax] at A10 in fig. 1c, with

value relations esi=v and eax=*i. We need to cater to the possibility where *i>𝑠*n+2 (equivalently,
eax >𝑠 mem4[ebp+12]+2), which would trigger UB in C, and may go out of variable bounds in stack

in assembly. Our product program encodes the necessary UB semantics that allow anything to

happen in assembly (including out of bound stack access) if UB is triggered in C.
Finally, consider the stackpointer decrement instruction at A4 in fig. 1c. If eax (which corresponds

to *n) is too large, this instruction at A4 may potentially overflow the stack space. Our product

program encodes the assumption that an assembly program will have the necessary stack space

required for execution, which is necessary to be able to validate a translation from IR to assembly.

Thus, we are interested in identifying legal annotations of (de)alloc𝑠,𝑣 instructions and operands
of procedure-call instructions in A, such that the execution behaviours of A can be shown to refine

the execution behaviours of C, assuming A has the required stack space for execution. We show

refinement separately for each procedure 𝐶 in C and its corresponding implementation 𝐴 in A.
Thereafter, a coinductive argument shows refinement for full programs C and A starting at the

main() procedure. We do not support inter-procedural transformations.

Paper organization: Sections 2.1 to 2.3 describe a procedure’s execution semantics for both IR

and assembly representations. Refinement, through annotations, is defined in section 2.4. Section 3

defines a product program and its associated requirements such that refinement can be witnessed,

and section 4 provides an algorithm to automatically construct such a product program.

2.1 Intermediate and Assembly Representations
2.1.1 IR. The unoptimized IR used to represent C is mostly a subset of LLVM — it supports all the

primitive types (integer, float, code labels) and the derived types (pointer, array, struct, procedure)

of LLVM. Being unoptimized, our IR does not need to support LLVM’s undef and poison values,

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

Modeling Dynamic (De)Allocations of Local Memory for Translation Validation 146:5

va_start(ap, 𝑙𝑎𝑠𝑡)
𝑎 B va_start_ptr
store void∗, 4, 𝑎, ⟨|𝑎𝑝 ⟨|

va_arg(ap, 𝜏)
𝑎 B load void∗, 4, ⟨|𝑎𝑝 ⟨|
𝑟𝑒𝑠𝑢𝑙𝑡 B load ⟨|𝜏 ⟨| , ⟨|alignof(𝜏) ⟨| , 𝑎
𝑎′ B 𝑎 + ⟨|roundup4 (sizeof(𝜏)) ⟨|
store void∗, 4, 𝑎′, ⟨|𝑎𝑝 ⟨|

va_copy(aq, ap)
𝑎 B load void∗, 4, ⟨|𝑎𝑝 ⟨|
store void∗, 4, 𝑎, ⟨|𝑎𝑞 ⟨|

va_end(ap)
store void∗, 4, 0, ⟨|𝑎𝑝 ⟨|

Fig. 2. Translation of C’s variadic macros to LLVM𝑑 instructions. roundup4 (𝑎) returns the closest multiple of
4 greater than or equal to 𝑎.

it instead treats all error conditions as UB. Syntactic conversion of C to LLVM IR entails the

usual conversion of types/operators. A global variable name 𝑔 or a parameter name 𝑦 appearing

in a C procedure body is translated to the variable’s start address in IR, denoted lb.𝑔 and lb.𝑦

respectively
1
. A local variable declaration or a call to C’s alloca() operator is converted to LLVM’s

alloca instruction, and to distinguish the two, we henceforth refer to the latter as the “alloc”
instruction. Unlike LLVM, our IR also supports a dealloc instruction that deallocates a variable at

the end of its scope — we use LLVM’s stack{save,restore} intrinsics (that maintain equivalent

scope information for a different purpose) to introduce explicit dealloc instructions in our IR.

Henceforth, we refer to our IR as LLVM𝑑 (for LLVM + dealloc).
We discuss our logical model in the context of compilation to 32-bit x86 for the relative simplicity

of the calling conventions in 32-bit mode. Like LLVM, a procedure definition in LLVM𝑑 can only

return a scalar value — aggregate return value is passed in memory. Unlike LLVM which allocates

memory for a parameter only if its address is taken, LLVM𝑑 allocates memory for all parameters —

LLVM𝑑 thus takes all parameters through pointers, e.g., both n and m are passed through pointers in

fig. 1b. This makes the translation of a procedure-call from C to LLVM𝑑 slightly more verbose, as

explicit instructions to (de)allocate memory for the arguments are required. An example of this

translation is shown in fig. 1 where a call to printf at C5 of fig. 1a translates to instructions I7-I12
in fig. 1b: the LLVM𝑑 program performs two allocations, one for the format string, and another for

the variable argument list; the latter represented as an object of “struct” type containing two ints.
The call instruction takes the pointers returned by these allocations as operands.

Figure 2 shows the C-to-LLVM𝑑 translations for variadic macros. The translation rules have

template holes marked by ⟨| ⟨| for types and variables of C which are populated at the time of

translation with appropriate LLVM𝑑 entities. LLVM𝑑 ’s va_start_ptr instruction returns the first

address of the current procedure’s variable argument list.

2.1.2 Assembly. Broadly, an assembly program A consists of a code section (with a sequence of

assembly instructions), a data section (with read-only and read-write global variables), and a symbol

table that maps string symbols to memory addresses in code and data sections. The validator checks

that the regions specified by the symbol table are well-aligned and non-overlapping, and uses it to

relate a global variable or procedure in C to its address or implementation in A.
We assume that the OS guarantees the caller-side contract of the ABI calling conventions for

the entry procedure, main(). For 32-bit x86, this means that at the start of program execution, the

stackpointer is available in register esp, and the return address and input parameters (argc,argv)
to main() are available in the stack region just above the stackpointer. For other procedure-calls,

the validator verifies the adherence to calling conventions at a callsite (in the caller) and assumes

adherence at procedure entry (in the callee). Heap allocation procedures like malloc() are left

uninterpreted, and so, the only compiler-visible way to allocate (and deallocate) memory in A is

through the decrement (and increment) of the stackpointer stored in register esp.

2.1.3 Allocation and Deallocation. Allocation and deallocation instructions appear only in C, and
do not appear in A. Let 𝐶 represent a procedure in program C.

1
As we will also see later, lb.𝑣 denotes the lower bound of the memory addresses occupied by variable with name 𝑣.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

146:6 Abhishek Rose and Sorav Bansal

An LLVM𝑑 instruction “𝑝𝑎
𝐶
: v B alloc n, 𝜏, align” allocates a contiguous region of local

memory with space for n elements of type 𝜏 aligned by align, and returns its start address in

v. The PC, 𝑝𝑎
𝐶
, of an alloc instruction is also called an allocation site (denoted by 𝑧), and let the

set of allocation sites in 𝐶 be 𝑍 . During conversion of the C program to LLVM𝑑 , we distinguish
between allocation sites due to the declaration of a local variable (or a procedure-call argument)

and allocation sites due to a call to alloca() — we use 𝑍𝑙 for the former and 𝑍𝑎 for the latter, so

that 𝑍 = 𝑍𝑙 ∪ 𝑍𝑎 .

The address of an allocated region is non-deterministic, but is subject to twoWell-Formedness
(WF) constraints: (1) the newly allocated memory region should be separate from all currently

allocated memory regions, i.e., there should be no overlap; and (2) the address of the newly allocated

memory region should be aligned by align.
An LLVM𝑑 instruction “𝑝𝑑

𝐶
: dealloc 𝑧” deallocates all local memory regions allocated due to

the execution of allocation site 𝑧 ∈ 𝑍 .

2.2 Transition Graph Representation
An LLVM𝑑 or assembly instruction may mutate the machine state, transfer control, perform I/O,

or terminate the execution. We represent a C procedure, 𝐶 , as a transition graph, 𝐶 = (N𝐶 , E𝐶),
with a finite set of nodes N𝐶 = {𝑛𝑠 = 𝑛1, 𝑛2, . . . , 𝑛𝑚}, and a finite set of labeled directed edges E𝐶 .
A unique node 𝑛𝑠 represents the start node or entry point of 𝐶 , and every other node 𝑛 𝑗 must be

reachable from 𝑛𝑠 . A node with no outgoing edges is a terminating node. A variable in𝐶 is identified

by its scope-resolved unique name. The machine state of 𝐶 consists of the set of input parameters

#‰𝑦 , set of temporary variables
#‰
𝑡 , and an explicit array variable𝑀𝐶 denoting the current state of

memory. We use i𝑁 to denote a bitvector type of size 𝑁 > 0.𝑀𝐶 is of type T(𝑀𝐶) = i32 → i8.
An assembly implementation of the C procedure 𝐶 , identified through the symbol table, is the

assembly procedure 𝐴. The machine state of 𝐴 consists of its hardware registers
‰𝑟𝑒𝑔𝑠 and memory

𝑀𝐴. Similarly to 𝐶 , 𝐴 = (N𝐴, E𝐴) is also represented as a transition graph.

Let 𝑃 ∈ {𝐶,𝐴}. In addition to the memory (data) state𝑀𝑃 , we also need to track the allocation

state, i.e., the set of intervals of addresses that have been allocated by the procedure. We use

𝛼 (potentially with a subscript) to denote a memory address of bitvector type. Let 𝑖 = [𝛼𝑏, 𝛼𝑒]
represent an address interval starting at 𝛼𝑏 and ending at 𝛼𝑒 (both inclusive), such that 𝛼𝑏 ≤𝑢 𝛼𝑒
(where ≤𝑢 is unsigned comparison operator). Let [𝛼]𝑤 be a shorthand for the address interval

[𝛼, 𝛼 +𝑤 − 1i32], where 𝑛i32 is the two’s complement representation of integer 𝑛 using 32 bits.

2.2.1 Address set. Let Σ (potentially with a sub- or superscript) represent a set of addresses, or an

address set. An empty address set is represented by ∅, and an address set of contiguous addresses

is an interval 𝑖 . Two address sets overlap, written ov(Σ1, Σ2), iff Σ1 ∩ Σ2 ≠ ∅. Extended to𝑚 ≥ 2

sets, ov(Σ1, Σ2, . . . , Σ𝑚) ⇔ ∃1≤ 𝑗1< 𝑗2≤𝑚ov(Σ 𝑗1 , Σ 𝑗2). |Σ| represents the number of distinct addresses

in Σ. For a non-empty address set, lb(Σ) and ub(Σ) represent the smallest and largest address

respectively in Σ. comp(Σ) represents the complement of Σ, so that: ∀𝛼 : (𝛼 ∈ Σ) ⇔ (𝛼 ∉ comp(Σ)).
2.2.2 Memory regions. To support dynamic (de)allocation, an executionmodel needs to individually

track regions of memory belonging to each variable, heap, stack, etc. We next describe the memory

regions tracked by our model.

(1) Let 𝐺 be the set of names of all global variables in C. For each global variable 𝑔 ∈ 𝐺 , we track
the memory region belonging to that variable. We use the name of a global variable 𝑔 ∈ 𝐺 as its

region identifier to identify the region belonging to 𝑔 in both 𝐶 and 𝐴.

(2) For a procedure 𝐶 , let 𝑌 be the set of names of formal parameters, including the variadic

parameter, if present. We use the special name vrdc for the variadic parameter. The memory

region belonging to a parameter 𝑦 ∈ 𝑌 is called 𝑦 in both 𝐶 and 𝐴.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

Modeling Dynamic (De)Allocations of Local Memory for Translation Validation 146:7

(3) The memory region allocated by allocation site 𝑧 ∈ 𝑍 is called 𝑧 in 𝐶 . In 𝐴, our algorithm

potentially annotates allocation instructions corresponding to an allocation site 𝑧 in 𝐶 .

(4) ℎ𝑝 denotes the region belonging to the program heap (managed by the OS) in both 𝐶 and 𝐴.

(5) Local variables and actual arguments may be allocated by the call chain of a procedure (caller,

caller’s caller, and so on). This is denoted by region 𝑐𝑙 , or callers’ locals, in both 𝐶 and 𝐴.

(6) In procedure𝐴, stack memory can be allocated and deallocated through stackpointer decrement

and increment. The addresses belonging to the stack frame of 𝐴 (but not to a local variable

𝑧 ∈ 𝑍 or a parameter 𝑦 ∈ 𝑌) belong to the 𝑠𝑡𝑘 (stack) region in 𝐴. The 𝑠𝑡𝑘 region is absent in 𝐶 .

(7) Similarly, in 𝐴, we use 𝑐𝑠 (callers’ stack) to identify the region that belongs to the stack space

(but not to 𝑐𝑙) of the call-chain of procedure 𝐴. 𝑐𝑠 is absent in 𝐶 .

(8) Program A may use more global memory than C, e.g., to store pre-computed constants to

implement vectorizing transformations. Let 𝐹 be the set of names of all assembly-only global
variables in A. For each 𝑓 ∈ 𝐹 , its memory region in 𝐴 is identified by 𝑓 .

(9) The region free denotes the free space, that does not belong to any of the aforementioned

regions, in both 𝐶 and 𝐴,

Let 𝑅 = 𝐺∪𝑌 ∪𝑍∪𝐹∪{ℎ𝑝, 𝑐𝑙, 𝑠𝑡𝑘, 𝑐𝑠, free} represent all region identifiers; 𝐵 = 𝐺∪𝑌 ∪𝑍∪{ℎ𝑝, 𝑐𝑙}
denote the regions in both 𝐶 and 𝐴; and 𝑆 = {𝑠𝑡𝑘, 𝑐𝑠} denote the stack regions in 𝐴.

Let 𝐺𝑟 ⊆ 𝐺 be the set of read-only global variables in C; and, let 𝐺𝑤 = 𝐺 \𝐺𝑟 denote the set of

read-write global variables. We define 𝐹𝑟 ⊆ 𝐹 and 𝐹𝑤 = 𝐹 \ 𝐹𝑟 analogously.
For each non-free region 𝑟 ∈ (𝑅 \ {free}), the machine state of a procedure 𝑃 includes a unique

variable Σ𝑟
𝑃
that tracks region 𝑟 ’s address set as 𝑃 executes. If Σ𝑟

𝑃
is a contiguous non-empty interval,

we also refer to it as 𝑖𝑟
𝑃
. For 𝑟 ∈ 𝐺 ∪ 𝑌 ∪ 𝐹 ∪ {ℎ𝑝, 𝑐𝑙, 𝑐𝑠}, Σ𝑟

𝑃
remains constant throughout 𝑃 ’s

execution. For
#‰𝑟 ⊆ 𝑅, we define an expression Σ

#‰𝑟
𝑃

=
⋃

𝑟 ∈ #‰𝑟 Σ𝑟
𝑃
. Because 𝐶 does not have a stack or

an assembly-only global variable, Σ𝐹∪𝑆
𝐶

= ∅ holds throughout 𝐶’s execution. At any point in 𝑃 ’s

execution, the free space can be computed as Σfree
𝑃

= comp(Σ𝐵∪𝐹∪𝑆
𝑃

). Notice that we do not use an

explicit variable to track Σfree
𝑃

.

2.2.3 Ghost variables. Our validator introduces ghost variables in a procedure’s execution semantics,

i.e., variables that were not originally present in 𝑃 . We use 𝑥 to indicate that 𝑥 is a ghost variable.

For each region 𝑟 ∈ 𝐺 ∪ 𝑌 ∪ 𝑍 (𝑟 ∈ 𝐹), we introduce em.𝑟 , lb.𝑟 , and ub.𝑟 in 𝐶 (𝐴) to track the

emptiness (whether the region is empty), lower bound (smallest address), and upper bound (largest
address) of Σ𝑟

𝐶
(Σ𝑟

𝐴
) respectively; for 𝑟 ∈ 𝐺 ∪ 𝑌 (𝑟 ∈ 𝐹), sz.𝑟 tracks the size of Σ𝑟

𝐶
(Σ𝑟

𝐴
), and for

𝑧 ∈ 𝑍 , lstSz.𝑧 tracks the size of last allocation due to allocation-site 𝑧. Σrd
𝑃

and Σwr
𝑃

track the set of

addresses read and written by 𝑃 respectively. Let + be the set of all ghost variables.

2.2.4 Error codes. Execution of 𝐶 or 𝐴 may terminate successfully, may never terminate, or may

terminate with an error. We support two error codes to distinguish between two categories of

errors:𝒰 and𝒲. In 𝐶:𝒰 represents an occurrence of UB, and𝒲 represents a violation of a WF

constraint that needs to be ensured either by the compiler or the OS (both external to the program

itself). In 𝐴:𝒰 represents UB or a translation error, and𝒲 represents occurrence of a condition

that can be assumed to never occur, e.g., if the OS ensures that it never occurs. In summary, for a

procedure 𝑃 ,𝒲 represents an error condition that 𝑃 can assume to be absent (because the external

environment ensures it), while 𝒰 represents an error that 𝑃 must ensure to be absent.

2.2.5 Outside world and observable trace. Let Ω𝑃 be a state of the outside world (OS/hardware) for

𝑃 that supplies external inputs whenever 𝑃 reads from it, and consumes external outputs generated

by 𝑃 . Ω𝑃 is assumed to mutate arbitrarily but deterministically based on the values consumed or

produced due to the I/O operations performed by 𝑃 during execution. Let𝑇𝑃 be a potentially-infinite

sequence of observable trace events generated by an execution of 𝑃 .

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

146:8 Abhishek Rose and Sorav Bansal

2.2.6 Expressions. Let variable 𝑣 and variables
#‰𝑣 or

#‰𝑥 be drawn from Vars = (#‰
𝑡 , # ‰𝑟𝑒𝑔𝑠, 𝑀𝑃 , Σ

𝑟
𝑃
,

+) (for all 𝑃 ∈ {𝐶,𝐴} and for all 𝑟 ∈ (𝑅 \ {free})); 𝑒 (#‰𝑥) be an expression over
#‰𝑥 , and 𝐸 (#‰𝑥)

be a list of expressions over
#‰𝑥 . An expression 𝑒 (#‰𝑥) is a well-formed combination of constants,

variables
#‰𝑥 , and arithmetic, logical, relational, memory access, and address set operators. For

memory reads and writes, select (sel for short) and store (st for short) operations are used to

access and modify𝑀𝑃 at a given address 𝛼 . Further, the sel and st operators are associated with

a sz parameter: selsz(arr,𝛼) returns a little-endian concatenation of sz bytes starting at 𝛼 in

the array arr. Similarly, stsz(arr,𝛼,data) returns a new array that has contents identical to arr
except for the sz bytes starting at 𝛼 which have been replaced by data in little-endian format. To

encode reads/writes to a region of memory, we define projection and updation operations.

Definition 2.1. 𝜋Σ (𝑀𝑃) denotes the projection of𝑀𝑃 on addresses in Σ, i.e., if𝑀 ′
𝑃
= 𝜋Σ (𝑀𝑃), then

∀𝛼 ∈ Σ : sel1 (𝑀 ′𝑃 , 𝛼) = sel1 (𝑀𝑃 , 𝛼) and ∀𝛼 ∉ Σ : sel1 (𝑀 ′𝑃 , 𝛼) = 0. The sentinel value 0 is used for

the addresses outside Σ. We use𝑀𝑃1 =Σ 𝑀𝑃2 as shorthand for (𝜋Σ (𝑀𝑃1) = 𝜋Σ (𝑀𝑃2)).

Definition 2.2. updΣ (𝑀𝑃 , 𝑀) denotes the updation of𝑀𝑃 on addresses in Σ using the values in𝑀 .

If𝑀 ′
𝑃
= updΣ (𝑀𝑃 , 𝑀), then𝑀 ′

𝑃
=Σ 𝑀 and𝑀 ′

𝑃
=comp(Σ) 𝑀𝑃 hold.

2.2.7 Instructions. Each edge 𝑒𝑃 ∈ E𝑃 is labeled with one of the following graph instructions:
(1) A simultaneous assignment of the form #‰𝑣 B 𝐸 (#‰𝑥). Because variables #‰𝑣 and

#‰𝑥 may include𝑀𝑃 ,

an assignment suffices for encoding memory loads and stores. Similarly, because the variables

may be drawn from Σ𝑧
𝑃
(for an allocation site 𝑧), an assignment is also used to encode the

allocation of an interval 𝑖new (Σ
𝑧
𝑃
B Σ𝑧

𝑃
∪ 𝑖new) and the deallocation of all addresses allocated

due to 𝑧 (Σ𝑧
𝑃
B ∅). Stack allocation and deallocation in 𝐴 can be similarly represented as

Σ𝑠𝑡𝑘
𝐴
B Σ𝑠𝑡𝑘

𝐴
∪ 𝑖new and Σ𝑠𝑡𝑘

𝐴
B Σ𝑠𝑡𝑘

𝐴
\ 𝑖new respectively.

(2) A guard instruction, 𝑒 (#‰𝑥)?, indicates that when execution reaches its head, the edge is taken iff

its edge condition 𝑒 (#‰𝑥) evaluates to true. For every other instruction, the edge is always taken

upon reaching its head, i.e., its edge condition is true. For a non-terminating node 𝑛𝑃 ∈ N𝑃 ,

the guards of all edges departing from 𝑛𝑃 must be mutually exclusive, and their disjunction

must evaluate to true.
(3) A type-parametric choose instruction 𝜃 (#‰𝜏). Instruction #‰𝑣 B 𝜃 (#‰𝜏) non-deterministically

chooses values of types
#‰𝜏 and assigns them to variables

#‰𝑣 , e.g., amemorywith non-deterministic

contents is obtained by using 𝜃 (i32 → i8).
(4) A read (rd) or write (wr) I/O instruction. A read instruction

#‰𝑣 B rd(#‰𝜏) reads values of types
#‰𝜏 from the outside world into variables

#‰𝑣 , e.g., an address set is read using Σ B rd(2i32).
A write instruction wr(𝑉 (𝐸 (#‰𝑥))) writes the value constructed by value constructor 𝑉 using

𝐸 (#‰𝑥) to the outside world. A value constructor is defined for each type of observable event. For

a procedure-call, fcall(𝜌, #‰𝑣 , #‰𝑟 , 𝑀) represents value constructed for a procedure-call to callee

with name (or address) 𝜌 , the actual arguments
#‰𝑣 , callee-observable regions #‰𝑟 , and memory𝑀 .

Similarly, ret(𝐸 (#‰𝑥)) is a value constructed during procedure return that captures observable

values computed through 𝐸 (#‰𝑥). Local (de)allocation events have their own value constructors,

allocBegin(𝑧,𝑤), allocEnd(𝑧, 𝑖, 𝑀), and dealloc(𝑧), which represent (de)allocation due to

allocation site 𝑧 with the associated observables𝑤 (size), 𝑖 (interval), and𝑀 (memory).

A read or write instruction mutates Ω𝑃 arbitrarily based on the read and written values. Further,

the data items read or written are appended to the observable trace 𝑇𝑃 . Let read #‰𝜏 (Ω𝑃) be
an uninterpreted function that reads values of types

#‰𝜏 from Ω𝑃 ; and io(Ω𝑃 ,
#‰𝑣 , rw) be an

uninterpreted function that returns an updated state of Ω𝑃 after an I/O operation of type

rw ∈ {r, w} (read or write) with values
#‰𝑣 . Thus, in its explicit syntax,

#‰𝑣 B rd(#‰𝜏) translates to
a sequence of instructions:

#‰𝑣 B read #‰𝜏 (Ω𝑃); Ω𝑃 B io(Ω𝑃 ,
#‰𝑣 , r); 𝑇𝑃 B 𝑇𝑃 · #‰𝑣 , where · is the

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

Modeling Dynamic (De)Allocations of Local Memory for Translation Validation 146:9

Operator Definition

sz(𝜏) Returns the size (in bytes) of type 𝜏 . For example, sz(i32) = 4, sz(i8∗) = 4, and sz([80 x i8]) = 80.

T(𝑎) Returns the type 𝜏 of 𝑎 where 𝑎 can be a global variable, a parameter, or a register. For example, T(eax) = i32 .
△𝜏 (eax, edx) A macro operator which derives the return value of an assembly procedure with return type 𝜏 from input registers eax

and edx using the calling conventions, e.g., △i8 (eax, edx) = extract7,0 (eax) , △i32 (eax, edx) = eax, △i64 (eax, edx) =
concat(edx, eax) , where extractℎ,𝑙 (𝑎) extracts bitsℎ down to 𝑙 from 𝑎 and concat(𝑎,𝑏) returns the bitvector concate-
nation of 𝑎 and 𝑏 where 𝑏 takes the less significant position.

▽𝜏 (𝑣) Inverse of △𝜏 (eax, edx) . Distributes the packed bitvector 𝑣 of type 𝜏 into two bitvectors of 32 bit-width each, setting the

bits not covered by 𝑣 to some non-deterministic value.

ROM𝑟
𝑃
(𝑖) Returns a memory array containing the contents of read-only global variable named 𝑟 in 𝑃 . The contents are mapped at

the addresses in the provided interval 𝑖 .

addrSets𝐹 () Returns the address sets of the assembly-only global variables 𝐹 using the symbol table in A.

Predicate Definition

aligned𝑛 (𝑎) Bitvector 𝑎 is at least 𝑛 bytes aligned. Equivalent to: 𝑎%𝑛 = 0, where % is remainder operator.

isAlignedIntrvl𝑎 (𝑝, 𝑤) A 𝑤-sized sequence of addresses starting at 𝑝 is aligned by 𝑎 and does not wraparound. Equivalent to:

aligned𝑎 (𝑝) ∧ (𝑝 ≤𝑢 𝑝 + 𝑤 − 1i
32
) .

accessIsSafeC𝜏,𝑎 (𝑝, Σ) Equivalent to: isAlignedIntrvlalign(𝑎) (𝑝, sz(𝜏)) ∧ ([𝑝]sz(𝜏) ⊆ Σ) .
addrSetsAreWF(Σℎ𝑝

𝑃
, Σ𝑐𝑙

𝑃
,

. . . , 𝑖
𝑔

𝑃
, . . . , Σ

𝑓

𝑃
, . . . , 𝑖

𝑦

𝑃
,

. . . , Σvrdc
𝑃
)

The address sets passed as parameter are well-formed with respect to C semantics. Equivalent to:

(0i
32

∉ Σ
𝐺∪𝐹∪𝑌∪{ℎ𝑝,𝑐𝑙 }
𝑃

) ∧ ¬ov(Σℎ𝑝
𝑃

, Σ𝑐𝑙
𝑃
, . . . , 𝑖

𝑔

𝑃
, . . . , Σ

𝑓

𝑃
, . . . , 𝑖

𝑦

𝑃
, . . . , Σvrdc

𝑃
) ∧ (Σvrdc

𝑃
≠ ∅ ⇒

isInterval(Σvrdc
𝑃
)) ∧ ∀𝑟∈𝐺∪(𝑌 \vrdc)∪𝐹 (|𝑖𝑟𝑃 | = sz(T(𝑟)) ∧ alignedalgnmnt(𝑟) (lb(𝑖𝑟𝑃))) , where

isInterval(Σvrdc
𝑃
) holds iff the address set Σvrdc

𝑃
is an interval, algnmnt(𝑟) returns the alignment of

variable 𝑟 .

intrvlInSet(𝛼𝑏 , 𝛼𝑒 , Σ) The pair (𝛼𝑏 , 𝛼𝑒) forms a valid interval inside the address set Σ. Equivalent to: (𝛼𝑏 ≠ 0i
32
) ∧ (𝛼𝑏 ≤𝑢

𝛼𝑒) ∧ ([𝛼𝑏 , 𝛼𝑒] ⊆ Σ)
intrvlInSet𝑎 (𝛼𝑏 , 𝛼𝑒 , Σ) Equivalent to: aligned𝑎 (𝛼𝑏) ∧ intrvlInSet(𝛼𝑏 , 𝛼𝑒 , Σ)
obeyCC(𝑒esp, #‰𝜏 , #‰𝑥) Pointers

#‰𝑥 match the expected addresses of arguments for a procedure-call in assembly. Based on the calling

conventions, obeyCC uses the value of the current stackpointer (𝑒esp) and parameter types (
#‰𝜏) to obtain the

expected addresses of the arguments. For example, obeyCC(esp, (i8, i32), (esp, esp + 4i
32
)) holds.

overflow𝑚𝑢𝑙 (𝑎,𝑏) Signed multiplication of bitvectors 𝑎, 𝑏 overflows. E.g., overflow𝑚𝑢𝑙 (2147483647i
32
, 2i

32
) holds.

stkIsWF(esp, stk𝑒 , cs𝑒 , #‰𝜏 ,

Σ
ℎ𝑝

𝐴
, Σ𝑐𝑙

𝐴
, Σ𝐺∪𝐹

𝐴
, . . . , 𝑖

𝑦

𝐴
, . . . ,

Σvrdc
𝐴
)

The pairs (esp, stk𝑒) , (stk𝑒 , cs𝑒) represent well-formed intervals for initial 𝑠𝑡𝑘 and 𝑐𝑠 regions with

respect to parameter types
#‰𝜏 and other (input) address sets in 𝐴. Equivalent to: aligned

16
(esp + 4i

32
)

∧ (esp ≤𝑢 esp + 4i
32
) ∧ ¬ov([esp]4i

32

, Σ
𝐺∪𝐹∪𝑌∪{ℎ𝑝,𝑐𝑙 }
𝐴

) ∧ obeyCC(esp + 4i
32
, #‰𝜏 , . . . , lb(𝑖𝑦

𝐴
), . . .) ∧

(stk𝑒 <𝑢 cs𝑒) ∧ ¬ov([stk𝑒 + 1i
32
, cs𝑒], Σ𝐺∪𝐹∪{ℎ𝑝}𝐴

) ∧ Σ𝑐𝑙
𝐴
⊆ [stk𝑒 + 1i

32
, cs𝑒]

UB𝑃 (op, #‰𝑥) Application of operation op of procedure𝑃 on arguments
#‰𝑥 triggers UB. E.g., UB𝐶 (udiv, (1i

32
, 0i

32
)) holds.

Table 1. Definitions of operators and predicates used in translations in figs. 3 to 6

trace concatenation operator. Similarly, wr(𝑉 (𝐸 (#‰𝑥))) translates to: Ω𝑃 B io(Ω𝑃 ,𝑉 (𝐸 (#‰𝑥)), w);
𝑇𝑃 B 𝑇𝑃 ·𝑉 (𝐸 (#‰𝑥)). Henceforth, we only use the implicit syntax for brevity.

(5) An error-free and error-indicating halt instruction that terminates execution. halt(∅) indicates
termination without error, and halt(𝓇) indicates termination with error code 𝓇 ∈ {𝒰,𝒲}.
Upon termination without error, a special exit event is appended to observable trace 𝑇𝑃 . Upon

termination with error, the error code is appended to 𝑇𝑃 . Thus, the destination of an edge with

a halt instruction is a terminating node. We create a unique terminating node for an error-free

exit. We also create a unique terminating node for each error code, also called an error node; an
edge terminating at an error node is called an error edge. 𝒰𝑃 and 𝒲𝑃 represent error nodes in 𝑃

for error𝒰 and𝒲 respectively. Execution transfers to an error node upon encountering the

corresponding error. Let NHH𝑈𝑊
𝑃

= N𝑃 \ {𝒰𝑃 ,𝒲𝑃 } be the set of non-error nodes in 𝑃 .

In addition to the observable trace events generated by rd, wr, and halt instructions, the execution
of every instruction in 𝑃 also appends an observable silent trace event, denoted ⊥, to𝑇𝑃 . Silent trace
events count the number of executed instructions as a proxy for observing the passage of time.

2.3 Translations of 𝐶 and 𝐴 to their Graph Representations
Figures 3 and 4 (and figs. 5 and 6 later) present the key translation rules from LLVM𝑑 and (abstracted)

assembly instructions to graph instructions. Each rule is composed of three parts separated by

a horizontal line segment: on the left is the name of the rule, above the line segment is the

LLVM𝑑 /assembly instruction, and below the line segment is the graph instructions listing. We

describe the operators and predicates used in the rules in table 1. As an example, the top right

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

146:10 Abhishek Rose and Sorav Bansal

(Entry𝐶)
𝑝
𝑗

𝐶
: def𝐶 (#‰𝜏)

Σ
ℎ𝑝

𝐶
, Σ𝑐𝑙𝐶 , . . . , 𝑖

𝑔

𝐶
, . . . , 𝑖

𝑦

𝐶
, . . . , Σvrdc𝐶 B rd(2i32 , 2i32 , . . . , 2i32) ;

Σ𝑠𝑡𝑘𝐶 , Σ𝑐𝑠𝐶 , . . . , Σ
𝑓

𝐶
, . . . , Σ𝑧𝐶 , . . . , Σrd

𝐶
, Σwr

𝐶
B ∅, ∅, . . . , ∅;

if (¬addrSetsAreWF(Σℎ𝑝
𝐶

, Σ𝑐𝑙𝐶 , . . . , 𝑖
𝑔

𝐶
, . . . , Σ

𝑓

𝐶
, . . . , 𝑖

𝑦

𝐶
, . . . , Σvrdc𝐶))

halt(𝒲);
𝑀𝐶 B 𝜃 (i32 → i8) ; 𝑀𝐶 B upd

Σ𝐵
𝐶
(𝑀𝐶 , rd(i32 → i8)) ;

for 𝑔 in𝐺𝑟 { 𝑀𝐶 B upd
𝑖
𝑔

𝐶
(𝑀𝐶 , ROM

𝑔

𝐶
(𝑖𝑔
𝐶
)) ; }

for 𝑧 in 𝑍 { em.𝑧 B true; 𝛽𝑀 (𝑧) B ∅; }
for 𝑟 in𝐺 ∪𝑌 ∪ {ℎ𝑝, 𝑐𝑙 } { 𝛽𝑀 (𝑟) B 𝐺 ∪ {ℎ𝑝, 𝑐𝑙 }; }
for 𝑟 in𝐺 ∪𝑌 { sz.𝑟 , em.𝑟 B |Σ𝑟𝐶 |, (|Σ

𝑟
𝐶 | = 0i

32
) ;

if(¬ em.𝑟) { lb.𝑟 , ub.𝑟 B lb(Σ𝑟𝐶), ub(Σ
𝑟
𝐶) ; } 𝛽 (lb.𝑟) B {𝑟 };

}

(Alloc)

𝑧 : 𝑣 B alloc 𝑛, 𝜏, 𝑎

IF{𝑧 ∈ 𝑍𝑙 }{ if (𝑛 ≤𝑠 0i
32
∨ overflow𝑚𝑢𝑙 (𝑛, sz(𝜏))) halt(𝒰); }

wr(allocBegin(𝑧,𝑛∗sz(𝜏))) ;
𝛼𝑏 B 𝜃 (i32) ; 𝛼𝑒 B 𝛼𝑏 + 𝑛∗sz(𝜏) − 1i

32
;

if (¬intrvlInSet𝑎 (𝛼𝑏 , 𝛼𝑒 , Σfree𝐶)) halt(𝒲);
Σ𝑧𝐶 B Σ𝑧𝐶 ∪ [𝛼𝑏 , 𝛼𝑒]; 𝑀𝐶 B upd[𝛼𝑏,𝛼𝑒] (𝑀𝐶 , 𝜃 (i32 → i8)) ;
lb.𝑧 B em.𝑧 ? 𝛼𝑏 : min(lb.𝑧 , 𝛼𝑏) ; lstSz.𝑧 B 𝑛∗sz(𝜏) ;
ub.𝑧 B em.𝑧 ? 𝛼𝑒 : max(ub.𝑧 , 𝛼𝑒) ; em.𝑧 B false;
𝑣 B 𝛼𝑏 ; 𝛽 (𝑣) B {𝑧 };
wr(allocEnd(𝑧, [𝛼𝑏 , 𝛼𝑒], 𝜋 [𝛼𝑏,𝛼𝑒] (𝑀𝐶))) ;

(Op)

𝑝
𝑗

𝐶
: 𝑣 B op(#‰𝑥)

if (UB𝐶 (op, #‰𝑥)) halt(𝒰);
𝑣 B op(#‰𝑥) ; 𝛽 (𝑣) B 𝛽op (𝛽 (#‰𝑥)) ;

(RetV)

𝑝
𝑗

𝐶
: ret void

wr(ret(𝜋
Σ𝐵
𝐶
(𝑀𝐶))) ;

halt(∅);

(Ret𝐶)
𝑝
𝑗

𝐶
: ret 𝑣

wr(ret(𝑣, 𝜋
Σ𝐵
𝐶
(𝑀𝐶))) ;

halt(∅);

(AssignConst)

𝑝
𝑗

𝐶
: 𝑣 B 𝑐

𝑣 B 𝑐 ; 𝛽 (𝑣) B ∅;

(Dealloc)

𝑝
𝑗

𝐶
: dealloc 𝑧

Σ𝑧𝐶 B ∅; em.𝑧 B true;
wr(dealloc(𝑧)) ;

(VaStartPtr)

𝑝
𝑗

𝐶
: 𝑝 B va_start_ptr

if (Σvrdc𝐶 = ∅) {
𝑝 B 0i

32
; 𝛽 (𝑝) B ∅;

} else {
𝑝 B lb.vrdc ; 𝛽 (𝑝) B {vrdc};
}

(Load𝐶)
𝑝
𝑗

𝐶
: 𝑣 B load 𝜏, 𝑎, 𝑝

if (¬accessIsSafeC𝜏,𝑎 (𝑝, Σ𝛽 (𝑝)𝐶
)) halt(𝒰);

𝑣 B selsz(𝜏) (𝑀𝐶 , 𝑝) ;
𝛽 (𝑣) B 𝛽𝑀 (𝛽 (𝑝)) ; Σrd

𝐶
B Σrd

𝐶
∪ [𝑝]sz(𝜏) ;

(Store𝐶)
𝑝
𝑗

𝐶
: store 𝜏, 𝑎, 𝑣, 𝑝

if (¬accessIsSafeC𝜏,𝑎 (𝑝, Σ𝛽 (𝑝)\𝐺𝑟
𝐶

)) halt(𝒰);
𝑀𝐶 B stsz(𝜏) (𝑀𝐶 , 𝑝, 𝑣) ;
𝛽𝑀 (𝛽 (𝑝)) B 𝛽𝑀 (𝛽 (𝑝)) ∪ 𝛽 (𝑣) ; Σwr

𝐶
B Σwr

𝐶
∪ [𝑝]sz(𝜏) ;

(CallV)

𝑝
𝑗

𝐶
: call void 𝜌 (#‰𝜏 #‰𝑥)

𝛽∗ B 𝛽∗𝑀 (
⋃
𝑥∈ #‰𝑥

𝛽 (𝑥) ∪𝐺 ∪ {ℎ𝑝 }) ;

wr(fcall(𝜌, #‰𝑥 , 𝛽∗, 𝜋
Σ
𝛽∗
𝐶

(𝑀𝐶))) ;

𝑀𝐶 B upd
Σ
𝛽∗\𝐺𝑟
𝐶

(𝑀𝐶 , rd(i32 → i8)) ;

𝛽𝑀 (𝛽∗ \𝐺𝑟) B 𝛽∗;

(Call𝐶)
𝑝
𝑗

𝐶
: 𝑣 B call𝛾 𝜌 (#‰𝜏 #‰𝑥) 𝛾 ≠ void

𝛽∗ B 𝛽∗𝑀 (
⋃
𝑥∈ #‰𝑥

𝛽 (𝑥) ∪𝐺 ∪ {ℎ𝑝 }) ;

wr(fcall(𝜌, #‰𝑥 , 𝛽∗, 𝜋
Σ
𝛽∗
𝐶

(𝑀𝐶))) ;

𝑀𝐶 B upd
Σ
𝛽∗\𝐺𝑟
𝐶

(𝑀𝐶 , rd(i32 → i8)) ;

𝑣 B rd(𝛾) ; 𝛽 (𝑣), 𝛽𝑀 (𝛽∗ \𝐺𝑟) B 𝛽∗, 𝛽∗;

Fig. 3. Translation rules for converting LLVM𝑑 instructions to graph instructions.

corner of fig. 3 shows the parametric (Op) rule which gives the translation of an operation using

arithmetic/logical/relational operator op in LLVM𝑑 to corresponding graph instructions. We use

C-like constructs in graph instructions as syntactic sugar for brevity, e.g. ‘;’ is used for sequencing,

‘?:’ is used for conditional assignment, and if, else, and for are used for control flow transfer. We

highlight the read and write I/O instructions with a shaded background, and use bold, colored
fonts for halt instructions. We use macros IF and ELSE to choose translations based on a boolean

condition on the input syntax.

2.3.1 Translation of 𝐶 . Figure 3 shows the translation rules for converting LLVM𝑑 instructions

to graph instructions. The (Entry𝐶) rule presents the initialization performed at the entry of a

procedure 𝐶 . The address sets and memory state of 𝐶 are initialized using reads from the outside

world Ω𝐶 . The address sets that are read are checked for well-formedness with respect to C

semantics, or else error 𝒲 is triggered. The ghost variables are also appropriately initialized.

The (Alloc) and (Dealloc) rules provide semantics for the allocation and deallocation of

local memory at allocation site 𝑧 — if 𝑧 ∈ 𝑍𝑙 , 𝑛 (the number of elements allocated) has additional

constraints for a UB-free execution. A (de)allocation instruction generates observable traces using

the wr instruction at the beginning and end of each execution of that instruction. We will later use

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

Modeling Dynamic (De)Allocations of Local Memory for Translation Validation 146:11

these traces to identify a lockstep correlation of (de)allocation events between 𝐶 and 𝐴, towards

validating a translation.

In (Op), an application of op may trigger UB for certain inputs, as abstracted through the

UB𝐶 (op, #‰𝑥) operation. While there are many UBs in the C standard, we model only the ones that

we have seen getting exploited by the compiler for optimization. These include the UB associated

with a logical or arithmetic shift operation (second operand should be bounded by a limit which

is determined by the size of the first operand), address computation (no over- and under-flow),

and division operation (second operand should be non-zero). In (Load𝐶) and (Store𝐶), a UB-free
execution requires the dereferenced pointer 𝑝 to be non-NULL (≠ 0i32 in our modeling), aligned by

𝑎, and have its access interval belong to the regions which 𝑝 may point to, or 𝑝 may be based on
(§6.5.6𝑝8 of the C17 standard).

To identify the regions a pointer 𝑝 may point to, we define two maps: (1) 𝛽 : Vars→ 2
𝑅
, so that

for a (pointer) variable 𝑥 ∈ Vars, 𝛽 (𝑥) returns the set of regions 𝑥 may point to; and (2) 𝛽𝑀 : 𝑅 → 2
𝑅
,

so that for a region 𝑟 ∈ 𝑅, 𝛽𝑀 (𝑟) returns the set of regions that some (pointer) value stored in

𝜋Σ𝑟
𝐶
(𝑀𝐶) may point to. 𝛽 (#‰𝑥) is equivalent to⋃𝑥 ∈ #‰𝑥 𝛽 (𝑥), and 𝛽𝑀 (#‰𝑟) is equivalent to⋃𝑟 ∈ #‰𝑟 𝛽𝑀 (𝑟).

Similarly, 𝛽𝑀 (#‰𝑟1) B #‰𝑟2 is equivalent to ‘for 𝑟1 in
#‰𝑟1 { 𝛽𝑀 (𝑟1) B #‰𝑟2 ; }’. The initialization and

updation of 𝛽 and 𝛽𝑀 due to each LLVM𝑑 instruction can be seen in fig. 3. For an operation op,
𝛽op : 2

𝑅 → 2
𝑅
represents the over-approximate abstract transfer function for 𝑣 B op(#‰𝑥), that

takes as input 𝛽 (#‰𝑥) and returns 𝛽 (𝑣). We use 𝛽op (#‰𝑟) = #‰𝑟 if op is bitwise complement and unary

negation. We use 𝛽op (#‰𝑟1, . . . ,
‰𝑟𝑚) =

⋃
1≤ 𝑗≤𝑚

#‰𝑟 𝑗 if op is bitvector addition, subtraction, shift, bitwise-

{and,or}, extraction, or concatenation. We use 𝛽op (#‰𝑟) = ∅ if op is bitvector multiplication, division,

logical, relational or any other remaining operator.

The translation of an LLVM𝑑 procedure-call is given by the rules (CallV) and (Call𝐶) and
involves producing non-silent observable trace events using the wr instruction for the callee

name/address, arguments, and callee-accessible regions and memory state. To model return values

and side-effects to the memory state due to a callee, rd instructions are used. A callee may access a

memory region iff it is transitively reachable from a global variable 𝑔 ∈ 𝐺 , the heap ℎ𝑝 , or one of the

arguments 𝑥 ∈ #‰𝑥 . The transitively reachable memory regions are over-approximately computed

through a reflexive-transitive closure of 𝛽𝑀 , denoted 𝛽∗
𝑀
.

A rd instruction clobbers the callee-observable state elements arbitrarily. Thus, if a callee proce-

dure terminates, wr and rd instructions over-approximately model the execution of a procedure-call.

Later, our definition of refinement (section 2.4) caters to the case when a callee procedure may not

terminate.

2.3.2 Translation of 𝐴. The translation rules for converting assembly instructions to graph in-

structions are shown in fig. 4. The assembly opcodes are abstracted to an IR-like syntax for ease of

exposition. For example, in (Load𝐴), a memory read operation is represented by a load instruction
which is annotated with address 𝑝 , access size 𝑤 (in bytes), and required alignment 𝑎 (in bytes).

Similarly, in (Store𝐴), a memory write operation is represented by a store instruction with similar

operands. Both (Load𝐴) and (Store𝐴) translations update the ghost address sets Σrd
𝐴

and Σwr
𝐴
,

in the same manner as done in 𝐶 . Exceptions like division-by-zero or memory-access errors are

modeled as UB in A through UB𝐴 (rules (Op-esp) and (Op-Nesp))
(Op-esp) shows the translation of an instruction that updates the stackpointer. Assignment to

the stackpointer register esp may indicate allocation (push) or deallocation (pop) of stack space. A

stackpointer assignment which corresponds to a stackpointer decrement (push) is identified through

predicate isPush(𝑝 𝑗

𝐴
, 𝜄𝑏, 𝜄𝑎) where 𝜄𝑏 and 𝜄𝑎 are the values of esp before and after the execution of

the instruction. We use isPush(𝑝 𝑗

𝐴
, 𝜄𝑏, 𝜄𝑎) ⇔ (𝜄𝑏 >𝑢 𝜄𝑎). While this choice of isPush suffices for

most TV settings, we show in our technical report [Rose and Bansal 2024b] that if the translation is

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

146:12 Abhishek Rose and Sorav Bansal

(Op-esp)

𝑝
𝑗

𝐴
: esp B op(#‰𝑥)

if (UB𝐴 (op, #‰𝑥)) halt(𝒰);
𝑡 B op(#‰𝑥) ;
if (isPush(𝑝 𝑗

𝐴
, esp, 𝑡)) {

if (¬intrvlInSet(𝑡, esp − 1i
32
, Σfree𝐴)) halt(𝒲);

Σ𝑠𝑡𝑘𝐴 B Σ𝑠𝑡𝑘𝐴 ∪ [𝑡, esp − 1i
32
];

𝑀𝐴 B upd[𝑡,esp−1i
32
] (𝑀𝐴, 𝜃 (i32 → i8)) ;

} else if (𝑡 ≠ esp) {
if (¬intrvlInSet(esp, 𝑡 − 1i

32
, Σ𝑠𝑡𝑘𝐴)) halt(𝒰);

Σ𝑠𝑡𝑘𝐴 B Σ𝑠𝑡𝑘𝐴 \ [esp, 𝑡 − 1i
32
];

}
esp B 𝑡 ; sp.𝑝

𝑗
𝐴
B 𝑡 ;

(Load𝐴)
𝑝
𝑗

𝐴
: 𝑣 B load 𝑤, 𝑎, 𝑝

if (¬isAlignedIntrvl𝑎 (𝑝, 𝑤)
∨ ov([𝑝]𝑤 , Σfree𝐴)) halt(𝒰);

𝑣 B sel𝑤 (𝑀𝐴, 𝑝) ;
Σrd
𝐴
B Σrd

𝐴
∪ [𝑝]𝑤 ;

(Store𝐴)
𝑝
𝑗

𝐴
: store 𝑤, 𝑎, 𝑝, 𝑣

if (¬isAlignedIntrvl𝑎 (𝑝, 𝑤)
∨ ov([𝑝]𝑤 , Σ{free}∪𝐺𝑟 ∪𝐹𝑟

𝐴
))

halt(𝒰);
𝑀𝐴 B st𝑤 (𝑀𝐴, 𝑝, 𝑣) ;
Σwr
𝐴
B Σwr

𝐴
∪ [𝑝]𝑤 ;

(Entry𝐴)
𝑝
𝑗

𝐴
: def𝐴(#‰𝜏)

Σ
ℎ𝑝

𝐴
, Σ𝑐𝑙𝐴 , . . . , 𝑖

𝑔

𝐴
, . . . , 𝑖

𝑦

𝐴
, . . . , Σvrdc𝐴 B rd(2i32 , 2i32 , . . . , 2i32) ;

. . . , Σ
𝑓

𝐶
, . . . B addrSets𝐹 () ; . . . , Σ𝑧𝐴, . . . B . . . , ∅, . . . ;

if (¬addrSetsAreWF(Σℎ𝑝
𝐴

, Σ𝑐𝑙𝐴 , . . . , 𝑖
𝑔

𝐴
, . . . , Σ

𝑓

𝐴
, . . . , 𝑖

𝑦

𝐴
, . . . , Σvrdc𝐴))

halt(𝒲);
𝑀𝐴 B 𝜃 (i32 → i8) ; 𝑀𝐴 B upd

Σ𝐵
𝐴
(𝑀𝐴, rd(i32 → i8)) ;

for 𝑟 in𝐺𝑟 ∪ 𝐹𝑟 { 𝑀𝐴 B upd𝑖𝑟
𝐴
(𝑀𝐴, ROM

𝑟
𝐴 (𝑖

𝑟
𝐴)) ; }

for 𝑟 in # ‰𝑟𝑒𝑔𝑠 { 𝑟 B 𝜃 (T(𝑟)) ; }
stk𝑒 B Σ𝑌𝐴 ≠ ∅ ? ub(Σ𝑌𝐴) : esp + 3i32 ; cs𝑒 B 𝜃 (i32) ;
if (¬stkIsWF(esp, stk𝑒 , cs𝑒 , #‰𝜏 , Σ

ℎ𝑝

𝐴
, Σ𝑐𝑙𝐴 , Σ𝐺∪𝐹𝐴 , . . . , 𝑖

𝑦

𝐴
, . . . , Σvrdc𝐴))

halt(𝒲);

Σ𝑠𝑡𝑘𝐴 B [esp, stk𝑒] \ Σ𝑌𝐴 ; Σ𝑐𝑠𝐴 B [stk𝑒 + 1i32 , cs𝑒] \ Σ𝑐𝑙𝐴 ;

sp.𝑒𝑛𝑡𝑟𝑦 B esp; 𝑀𝑐𝑠 B 𝜋Σ𝑐𝑠
𝐴
(𝑀𝐴) ; Σrd

𝐴
, Σwr

𝐴
B ∅, ∅;

𝑒𝑏𝑝 , 𝑒𝑠𝑖 , 𝑒𝑑𝑖 , 𝑒𝑏𝑥 , 𝑒𝑖𝑝 B ebp, esi, edi, ebx, sel4 (𝑀𝐴, esp) ;
for 𝑓 in 𝐹 { sz.𝑓 , em.𝑓 , lb.𝑓 , ub.𝑓 B |Σ𝑓

𝐴
|, |Σ𝑓

𝐴
| = 0i

32
, lb(Σ𝑓

𝐴
), ub(Σ𝑓

𝐴
) ; }

(Op-Nesp)

𝑝
𝑗

𝐴
: 𝑟 B op(#‰𝑥) 𝑟 ≠ esp

if (UB𝐴 (op, #‰𝑥)) halt(𝒰);
𝑟 B op(#‰𝑥) ;

(Ret𝐴)
𝑝
𝑗

𝐴
: ret 𝜏

if (sp.𝑒𝑛𝑡𝑟𝑦 ≠ esp

∨ 𝑒𝑏𝑝 ≠ ebp ∨ 𝑒𝑠𝑖 ≠ esi

∨ 𝑒𝑑𝑖 ≠ edi ∨ 𝑒𝑏𝑥 ≠ ebx
∨ 𝑒𝑖𝑝 ≠ sel4 (𝑀𝐴, esp)
∨ ¬(𝑀𝑐𝑠 =Σ𝑐𝑠

𝐴
𝑀𝐴)) halt(𝒰);

IF{𝜏 = void}{ wr(𝜋
Σ𝐵
𝐴
(𝑀𝐴)) ; }

ELSE{
wr(ret(△𝜏 (eax, edx), 𝜋Σ𝐵

𝐴
(𝑀𝐴))) ;

}
halt(∅);

Fig. 4. Translation rules for converting pseudo-assembly instructions to graph instructions.

performed by an adversarial compiler, discriminating a stack push from a pop is trickier and may

require external trusted guidance from the user. For a stackpointer decrement, a failure to allocate

stack space, either due to wraparound or overlap with other allocated space, triggers𝒲, i.e., we

expect the environment (e.g., OS) to ensure that the required stack space is available to 𝐴. For a

stackpointer increment, it is a translation error if the stackpointer moves out of stack frame bounds

(captured by error code𝒰). The stackpointer value at the end of an assignment instruction at PC

𝑝
𝑗

𝐴
is saved in a ghost variable named sp.𝑝 𝑗

𝐴
. These ghost variables help with inference of invariants

that relate a local variable’s address with stack addresses (discussed in section 4.1). During push,

the initial contents of the newly allocated stack region are chosen non-deterministically using

𝜃 — this admits the possibility of arbitrary clobbering of the unallocated stack region below the

stackpointer due to asynchronous external interrupts, before it is allocated again.

(Entry𝐴) shows the initialization of state elements of procedure 𝐴. For region 𝑟 ∈ 𝐵, the

initialization of Σ𝑟
𝐴
and 𝜋Σ𝑟

𝐴
(𝑀 ¥𝐴) is similar to (Entry𝐶). The address sets of all assembly-only

regions 𝑓 ∈ 𝐹 are initialized using A’s symbol table (addrSets𝐹 ()). The memory contents of

a read-only global variable 𝑟 ∈ 𝐺𝑟 ∪ 𝐹𝑟 are initialized using ROM𝑟
𝐴
(𝑖𝑟
𝐴
) (defined in table 1). The

machine registers are initialized with arbitrary contents (𝜃) — the constraints on the esp register
are checked later, and 𝒲 is generated if a constraint is violated. The x86 stack of an assembly

procedure includes the stack frame Σ𝑠𝑡𝑘
𝐴

of the currently executing procedure 𝐴, the parameters Σ𝑌
𝐴

of 𝐴, and the remaining space which includes caller-stack Σ𝑐𝑠
𝐴
and, possibly, the locals Σ𝑐𝑙

𝐴
defined

in the call chain of 𝐴. Ghost variable sp.𝑒𝑛𝑡𝑟𝑦 holds the esp value at entry of 𝐴. stk𝑒 represents the

largest address in Σ𝑌∪{𝑠𝑡𝑘 }
𝐴

so that at entry, Σ𝑠𝑡𝑘
𝐴

= [sp.𝑒𝑛𝑡𝑟𝑦 , stk𝑒] \ Σ𝑌𝐴. If there are no parameters,

stk𝑒 = esp + 3i32 represents the end of the region that holds the return address. Ghost variable

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

Modeling Dynamic (De)Allocations of Local Memory for Translation Validation 146:13

cs𝑒 holds the largest address in Σ{𝑠𝑡𝑘,𝑐𝑠,𝑐𝑙 }∪𝑌
𝐴

. At entry, due to the calling conventions, we assume

(through stkIsWF()) that: (1) the parameters are laid out at addresses above the stackpointer as

per calling conventions (obeyCC); (2) the value esp + 4i32 is 16-byte aligned; and (3) the caller stack

is above 𝐴’s stack frame Σ𝑠𝑡𝑘
𝐴

. A violation of these conditions trigger 𝒲.

Upon return (rule (Ret𝐴)), we require that the callee-save registers, caller stack, and the return

address remain preserved — a violation of these conditions trigger𝒰. For simplicity, we only tackle

scalar return values, and ignore aggregate return values that need to be passed in memory.

2.4 Observable traces and Refinement Definition
Recall that a procedure execution yields an observable trace containing silent and non-silent events.

The error code of a trace𝑇 , written 𝑒 (𝑇), is either ∅ (indicating either non-termination or error-free

termination), or one of 𝓇 ∈ {𝒰,𝒲} (indicating termination with error code 𝓇). The non-error part

of a trace 𝑇 , written 𝑒 (𝑇), is 𝑇 when 𝑒 (𝑇) = ∅, and 𝑇 ′ such that 𝑇 = 𝑇 ′ · 𝑒 (𝑇) otherwise.

Definition 2.3. 𝑃 ↓Ω 𝑇 denotes the condition that for an initial outside world Ω , the execution of

a procedure 𝑃 may produce an observable trace𝑇 (for some sequence of non-deterministic choices).

Definition 2.4. Traces 𝑇 and 𝑇 ′ are stuttering equivalent, written 𝑇 =𝑠𝑡 𝑇
′
, iff they differ only by

finite sequences of silent events ⊥. A trace 𝑇 is a stuttering prefix of trace 𝑇 ′, written 𝑇 ≤𝑠𝑡 𝑇 ′, iff
(𝑇 ′ =𝑠𝑡 𝑇) ∨ (∃𝑇 r

: 𝑇 ′ =𝑠𝑡 (𝑇 ·𝑇 r)).

Definition 2.5. 𝑈 Ω,𝑇𝐴
pre (𝐶) denotes the condition: ∃𝑇𝐶 : (𝐶 ↓Ω 𝑇𝐶 ·𝒰) ∧ (𝑇𝐶 ≤𝑠𝑡 𝑇𝐴).

Definition 2.6. 𝑊 Ω,𝑇𝐴
pre (𝐶) denotes the condition: 𝑒 (𝑇𝐴) = 𝒲∧(∃𝑇𝐶 : (𝐶 ↓Ω 𝑇𝐶) ∧ (𝑒 (𝑇𝐴) ≤𝑠𝑡 𝑇𝐶))

Definition 2.7. 𝐶 ⊒ 𝐴, read 𝐴 refines 𝐶 (or 𝐶 is refined by 𝐴), iff:

∀Ω : (𝐴 ↓Ω 𝑇𝐴) ⇒ (𝑊 Ω,𝑇𝐴
pre (𝐶) ∨𝑈 Ω,𝑇𝐴

pre (𝐶) ∨ (∃𝑇𝐶 : (𝐶 ↓Ω 𝑇𝐶) ∧ (𝑇𝐴 =𝑠𝑡 𝑇𝐶)))

The𝑊
Ω,𝑇𝐴
pre (𝐶) and 𝑈 Ω,𝑇𝐴

pre (𝐶) conditions cater to the cases where 𝐴 triggers 𝒲 and 𝐶 triggers

𝒰 respectively; the constituent ≤𝑠𝑡 conditions ensure that a procedure call in 𝐴 has identical

termination behaviour to a procedure-call in 𝐶 before an error is triggered. If neither 𝐴 triggers

𝒲 nor 𝐶 triggers 𝒰, 𝑇𝐴 =𝑠𝑡 𝑇𝐶 ensures that 𝐴 and 𝐶 produce identical non-silent events at similar

speeds. In the absence of local variables and procedure-calls in𝐶 ,𝐶 ⊒ 𝐴 implies a correct translation

from 𝐶 to 𝐴.

2.4.1 Refinement definition in the presence of local variables and procedure-calls when all local
variables are allocated on the stack in𝐴. For each local variable (de)allocation and for each procedure-
call, our execution semantics generate a wr trace event in𝐶 (fig. 3). Thus, to reason about refinement,

we require correlated and equivalent trace events to be generated in 𝐴. For this, we annotate 𝐴

with two types of annotations to obtain ¤𝐴:
(1) alloc𝑠 and dealloc𝑠 instructions are added to explicitly indicate the (de)allocation of a local

variable 𝑧 ∈ 𝑍 , e.g., a stack region may be marked as belonging to 𝑧 through these annotations.

(2) A procedure-call, direct or indirect, is annotated with the types and addresses of the arguments

and the set of memory regions observable by the callee.

These annotations are intended to encode the correlations with the corresponding allocation,

deallocation, and procedure-call events in the source procedure 𝐶 . For now, we assume that the

locations and values of these annotations in ¤𝐴 are coming from an oracle — later in section 4, we

present an algorithm to identify these annotations automatically in a best-effort manner.

Figure 5 presents three new instructions in ¤𝐴 — alloc𝑠 , dealloc𝑠 , and call — and their transla-

tions to graph instructions.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

146:14 Abhishek Rose and Sorav Bansal

(AllocS)

𝑝
𝑗

¤𝐴 : alloc𝑠 𝑒𝑣 , 𝑒𝑤 , 𝑎, 𝑧

wr(allocBegin(𝑧, 𝑒𝑤)) ; 𝑣, 𝑤 B 𝑒𝑣 , 𝑒𝑤 ;

if (¬intrvlInSet𝑎 (𝑣, 𝑣 + 𝑤 − 1i
32
, Σ𝑠𝑡𝑘¤𝐴)) halt(𝒰);

Σ𝑠𝑡𝑘¤𝐴 , Σ𝑧¤𝐴 B Σ𝑠𝑡𝑘¤𝐴 \ [𝑣]𝑤 , Σ𝑧¤𝐴 ∪ [𝑣]𝑤 ;

wr(allocEnd(𝑧, [𝑣]𝑤 , 𝜋 [𝑣]𝑤 (𝑀 ¤𝐴))) ;

(DeallocS)

𝑝
𝑗

¤𝐴 : dealloc𝑠 𝑧

Σ𝑧¤𝐴, Σ
𝑠𝑡𝑘
¤𝐴 B ∅, Σ𝑠𝑡𝑘¤𝐴 ∪ Σ𝑧¤𝐴 ;

wr(dealloc(𝑧)) ;

(Call ¤𝐴)
𝑝
𝑗

¤𝐴 : call 𝛾 𝜌 (#‰𝜏 #‰𝑥) 𝛽∗

if (¬aligned
16
(esp) ∨ ¬obeyCC(esp, #‰𝜏 , #‰𝑥))

halt(𝒰);

wr(fcall(𝜌, #‰𝑥 , 𝛽∗, 𝜋
Σ
𝛽∗
¤𝐴
(𝑀 ¤𝐴))) ;

𝑀 ¤𝐴 B upd
Σ
𝛽∗\𝐺𝑟
¤𝐴

(𝑀 ¤𝐴, rd(i32 → i8)) ;

ecx B 𝜃 (i32) ;
IF{𝛾 = void}{ eax, edx B 𝜃 (i32, i32) ; }
ELSE{ eax, edx B ▽𝛾 (rd(𝛾)) ; }

Fig. 5. Additional translation rules for converting pseudo-assembly instructions to graph instructions for
procedures with only stack-allocated locals.

An instruction ‘𝑝
𝑗

¤𝐴 : alloc𝑠 𝑒𝑣, 𝑒𝑤, 𝑎, 𝑧’ represents the stack allocation of a local variable

identified by allocation site 𝑧. 𝑒𝑣 is the expression for start address, 𝑒𝑤 is the expression for allocation

size, and 𝑎 is the required alignment of the start address. During stack allocation of a local variable

(AllocS), the allocated address must satisfy the required alignment and separation constraints, or

else 𝒰 is triggered. An allocation removes an address interval from Σ𝑠𝑡𝑘¤𝐴 and adds it to Σ𝑧¤𝐴.

A ‘𝑝
𝑗

¤𝐴 : dealloc𝑠 𝑧’ instruction represents the deallocation of 𝑧 and empties the address set Σ𝑧¤𝐴,

adding the removed addresses to Σ𝑠𝑡𝑘¤𝐴 (DeallocS).
For procedure-calls (Call ¤𝐴), we annotate the call instruction in assembly to explicitly specify

the start addresses of the address regions belonging to the arguments (shown as
#‰𝑥 in fig. 5). The

address region of an argument should have previously been demarcated using an alloc𝑠 instruction.
Additionally, these address regions should satisfy the constraints imposed by the calling conventions

(obeyCC). The calling conventions also require the esp value to be 16-byte aligned. A procedure-call

is recorded as an observable event, along with the observation of the callee name (or address), the

addresses of the arguments, callee-observable regions and their memory contents. The returned

values, modeled through rd(i32 → i8) and rd(𝛾), include the contents of the callee-observable
memory regions and the scalar values returned by the callee (in registers eax, edx). The callee
additionally clobbers the caller-save registers using 𝜃 .

Definition 2.8 (Refinement in the presence of only stack-allocated locals). 𝐶 ⋗𝐴 iff: ∃ ¤𝐴 : 𝐶 ⊒ ¤𝐴
𝐶 ⋗𝐴 encodes the property that it is possible to annotate 𝐴 to obtain ¤𝐴 so that the local variable

(de)allocation and procedure-call events of 𝐶 and the annotated ¤𝐴 can be correlated in lockstep.

In the presence of stack-allocated local variables and procedure-calls, 𝐶 ⋗ 𝐴 implies a correct

translation from 𝐶 to 𝐴. In the absence of local variables and procedure calls, 𝐶 ⋗ 𝐴 reduces to

𝐶 ⊒ 𝐴 with ¤𝐴 = 𝐴.

2.4.2 Capabilities and limitations of 𝐶 ⋗ 𝐴. 𝐶 ⋗ 𝐴 requires that for allocations and procedure

calls that reuse the same stack space, their relative order remains preserved. This requirement is

sound but may be too strict for certain (arguably rare) compiler transformations that may reorder

the (de)allocation instructions that reuse the same stack space. Our refinement definition admits

intermittent register-allocation of (parts of) a local variable.

𝐶 ⋗𝐴 supports merging of multiple allocations into a single stackpointer decrement instruction.

Let 𝑝𝑠
𝐴
be the PC of a single stackpointer decrement instruction that implements multiple allocations.

Merging can be encoded by adding multiple alloc𝑠 instructions to 𝐴, in the same order as they

appear in𝐶 , to obtain ¤𝐴, so that these alloc𝑠 instructions execute only after 𝑝𝑠
𝐴
executes; similarly,

the corresponding dealloc𝑠 instructions must execute before a stackpointer increment instruction

deallocates this stack space.

CompCert’s preallocation is a special case of merging where stack space for all local variables is

allocated in the assembly procedure’s prologue and deallocated in the epilogue (with no reuse of

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

Modeling Dynamic (De)Allocations of Local Memory for Translation Validation 146:15

(AllocV)

𝑝
𝑗

¥𝐴 : 𝑣 B alloc𝑣 𝑒𝑤 , 𝑎, 𝑧𝑙

wr(allocBegin(𝑧𝑙, 𝑒𝑤)) ; 𝑣, 𝑤 B 𝜃 (i32), 𝑒𝑤 ;

if (¬intrvlInSet𝑎 (𝑣, 𝑣 + 𝑤 − 1i
32
, comp(Σ𝐵¥𝐴))) halt(𝒲);

Σ𝑧𝑙¥𝐴 |
𝑣 B Σ𝑧𝑙¥𝐴 |

𝑣 ∪ [𝑣]𝑤 ;

wr(allocEnd(𝑧𝑙, [𝑣]𝑤 , 𝜋 [𝑣]𝑤 (𝑀 ¥𝐴))) ;

(AllocS’)

𝑝
𝑗

¥𝐴 : alloc𝑠 𝑒𝑣 , 𝑒𝑤 , 𝑎, 𝑧

. . .

if (ov([𝑣]𝑤 , Σ
𝑍𝑙
¥𝐴 |

𝑣)) halt(𝒲);

if (¬intrvlInSet𝑎 (𝑣, 𝑣 + 𝑤 − 1i
32
, Σ𝑠𝑡𝑘¤𝐴)) halt(𝒰);

Σ𝑠𝑡𝑘¤𝐴 , Σ𝑧¤𝐴 B Σ𝑠𝑡𝑘¤𝐴 \ [𝑣]𝑤 , Σ𝑧¤𝐴 ∪ [𝑣]𝑤 ;

IF{𝑧 ∈ 𝑍𝑙 } { Σ𝑠𝑡𝑘¥𝐴 , Σ𝑧¥𝐴 |
𝑠 B Σ𝑠𝑡𝑘¥𝐴 \ [𝑣]𝑤 , Σ𝑧¥𝐴 |

𝑠 ∪ [𝑣]𝑤 ; }
ELSE { Σ𝑠𝑡𝑘¥𝐴 , Σ𝑧¥𝐴 B Σ𝑠𝑡𝑘¥𝐴 \ [𝑣]𝑤 , Σ𝑧¥𝐴 ∪ [𝑣]𝑤 ; }
. . .

(Op-esp’)

𝑝
𝑗

¥𝐴 : esp B op(#‰𝑥)
. . .

intrvlInSet(𝑡, esp − 1i
32
, Σfree¥𝐴 ∪Σ𝑍𝑙¥𝐴 |

𝑣)
. . .

(DeallocV)

𝑝
𝑗

¥𝐴 : dealloc𝑣 𝑧𝑙

Σ𝑧𝑙¥𝐴 |
𝑣 B ∅;

wr(dealloc(𝑧𝑙)) ;

(Entry ¥𝐴)
𝑝
𝑗

¥𝐴 : def ¥𝐴(#‰𝜏)
. . .

(same as fig. 4)
. . .

for 𝑧 in 𝑍𝑙 { Σ𝑧¥𝐴 |
𝑠 , Σ𝑧¥𝐴 |

𝑣 B ∅, ∅; }

(Load ¥𝐴)
𝑝
𝑗

¥𝐴 : 𝑣 B load 𝑤 𝑎 𝑝

. . .

ov([𝑝]𝑤 , Σfree¥𝐴 ∪((Σ𝑍𝑙¥𝐴 |
𝑣) \ Σ𝐹∪𝑆¥𝐴))

. . .

(Store ¥𝐴)
𝑝
𝑗

¥𝐴 : store 𝑤 𝑎 𝑝 𝑣

. . .

ov([𝑝]𝑤 , Σ{free}∪𝐺𝑟 ∪𝐹𝑟
¥𝐴 ∪((Σ𝑍𝑙¥𝐴 |

𝑣) \ Σ𝐹𝑤∪𝑆¥𝐴))
. . .

Fig. 6. Additional and revised translation rules for converting pseudo-assembly instructions to graph
instructions for procedures with both stack and register allocated (or eliminated) locals.

stack space). In this case, our approach annotates 𝐴 with (de)alloc𝑠 instructions, potentially in

the middle of the procedure body, such that they execute in lockstep with the (de)allocations in 𝐶 .

A compiler may reallocate stack space by reusing the same space for two or more local vari-

ables with non-overlapping lifetimes (potentially without an intervening stackpointer increment

instruction). If the relative order of (de)allocations is preserved, reallocation can be encoded by

annotating ¤𝐴 with a dealloc𝑠 instruction (for deallocating the first variable) immediately followed

by an alloc𝑠 instruction, such that the allocated region potentially overlaps with the previously

deallocated region. Our refinement definition may not be able to cater to a translation that changes

the relative order of (de)allocation instructions during reallocation.

Because our execution model observes each (de)allocation event (due to the wr instruction), a
successful refinement check ensures that the allocation states of ¤𝐴 and 𝐶 are identical at every

correlated callsite. An inductive argument over C and A is thus used to show that the address set

for region identifier 𝑐𝑙 is identical at the beginning of each correlated pair of procedures𝐶 and𝐴 (as

modeled through identical reads from the outside world in (Entry𝑃) (𝑃 ∈ {𝐶,𝐴}) of figs. 3 and 4).

2.4.3 Refinement definition in the presence of potentially register-allocated or eliminated local
variables in 𝐴. If a local variable 𝑧𝑙 ∈ 𝑍𝑙 is either register-allocated or eliminated in 𝐴, there exists

no stack region in 𝐴 that can be associated with 𝑧𝑙 . However, recall that our execution model

observes each allocation event in 𝐶 through the wr instruction. Thus, for a successful refinement

check, a correlated allocation event still needs to be annotated in 𝐴. We pretend that a correlated

allocation occurs in 𝐴 by introducing the notion of a virtual allocation instruction, called alloc𝑣 ,
in 𝐴. Figure 6 shows the virtual (de)allocation instructions, alloc𝑣 and dealloc𝑣 , and the revised

translations of procedure-entry and alloc𝑠 , dealloc𝑠 , load, store, and esp-modifying instructions.

Instead of reproducing the full translations, we only show the changes with appropriate context.

The additions have a highlighted background and deletions are striked out. We update and annotate

𝐴 with the translations and instructions in figs. 5 and 6 to obtain ¥𝐴.
A ‘𝑝

𝑗

¥𝐴 : v B alloc𝑣 𝑒𝑤, 𝑎, 𝑧’ instruction non-deterministically chooses the start address (using

𝜃 (i32)) of a local variable 𝑧 of size 𝑒𝑤 and alignment 𝑎, performs a virtual allocation, and returns

the start address in v. The chosen start address is assumed to satisfy the desired WF constraints,

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

146:16 Abhishek Rose and Sorav Bansal

such as separation (non-overlap) and alignment; error𝒲 is triggered otherwise. Notice that this

is in contrast to alloc𝑠 where error 𝒰 is triggered on WF violation to indicate that it is the

compiler’s responsibility to ensure the satisfaction of WF constraints. Unlike a stack allocation

where the compiler chooses the allocated region (and the validator identifies it through an alloc𝑠
annotation), a virtual allocation is only a validation construct (the compiler is not involved) that is

used only to enforce a lockstep correlation of allocation events. By triggering𝒲 on a failure during

a virtual allocation, we effectively assume that allocation through alloc𝑣 satisfies the required WF

conditions.

For simplicity, we support virtual allocations only for a variable declaration 𝑧𝑙 ∈ 𝑍𝑙 . Thus, we

expect a call to alloca() at 𝑧𝑎 ∈ 𝑍𝑎 to always be stack-allocated in ¥𝐴. In ¥𝐴, we replace the single
variable Σ𝑧𝑙¥𝐴 with two variables Σ𝑧𝑙¥𝐴 |

𝑠
and Σ𝑧𝑙¥𝐴 |

𝑣
that represent the address sets corresponding to the

stack and virtual-allocations due to allocation-site 𝑧𝑙 respectively. We compute Σ𝑧𝑙¥𝐴 = Σ𝑧𝑙¥𝐴 |
𝑠 ∪ Σ𝑧𝑙¥𝐴 |

𝑣

(but we do not maintain a separate variable Σ𝑧𝑙¥𝐴). We also assume that a single variable declaration

𝑧𝑙 in𝐶 may either correlate with only stack-allocations (through alloc𝑠) or only virtual-allocations
(through alloc𝑣) in ¥𝐴2

, i.e., Σ𝑧𝑙¥𝐴 |
𝑠 ∩ Σ𝑧𝑙¥𝐴 |

𝑣 = ∅ holds at all times. For convenience, we define

Σ𝑍𝑙

¥𝐴 |
𝑣 =

⋃
𝑧𝑙 ∈𝑍𝑙
(Σ𝑧𝑙¥𝐴 |

𝑣).
Importantly, a virtual allocation must be separate from other 𝐶 allocated regions (𝐵) but may

overlap with assembly-only regions (𝐹 ∪ 𝑆). Thus, in the revised semantics of (Op-esp’), a stack
push is allowed to overstep a virtually-allocated region.

The revised semantics of the alloc𝑠 instruction (AllocS’) assume that stack-allocated local

memory is separate from virtually-allocated regions. The revised semantics of memory access

instructions ((Load ¥𝐴) and (Store ¥𝐴)) enforce that a virtually-allocated region must never be

accessed in ¥𝐴, unless it also happens to belong to the assembly-only regions (𝐹 ∪ 𝑆).
Effectively, a lockstep correlation of virtual allocations in ¥𝐴 with allocations in 𝐶 ensures that

the allocation states of both procedures always agree for regions 𝑟 ∈ 𝐵.

Definition 2.9 (Refinement with stack and virtually-allocated locals). 𝐶 ⋑ 𝐴 iff: ∃ ¥𝐴 : 𝐶 ⊒ ¥𝐴

Recall that 𝐶 ⊒ ¥𝐴 requires that for all non-deterministic choices of a virtually allocated local

variable address in ¥𝐴 (𝑣 in (AllocV)), there exists a non-deterministic choice for the correlated

local variable address in 𝐶 (𝑣 in (Alloc) in fig. 3) such that: if ¥𝐴’s execution is well-formed (does

not trigger 𝒲), and 𝐶’s execution is UB-free (does not trigger 𝒰), then the two allocated intervals

are identical (the observable values created through allocBegin and allocEnd must be equal).

In the presence of potentially register-allocated and eliminated local variables, 𝐶 ⋑ 𝐴 implies a

correct translation from 𝐶 to 𝐴. If all local variables are allocated in stack, 𝐶 ⋑ 𝐴 reduces to 𝐶 ⋗𝐴
with ¥𝐴 = ¤𝐴. Figure 1c is an example of an annotated ¥𝐴.

3 WITNESSING REFINEMENT THROUGH A DETERMINIZED CROSS-PRODUCT ¥𝐴⊠𝐶
We first introduce program paths and their properties. Let 𝑃 ∈ {𝐶, ¥𝐴}. Let 𝑒𝑃 = (𝑛𝑃 → 𝑛𝑡

𝑃
) ∈ E𝑃

represent an edge from node 𝑛𝑃 to node 𝑛𝑡
𝑃
, both drawn fromN𝑃 . A path 𝜉𝑃 from 𝑛𝑃 to 𝑛𝑡

𝑃
, written

𝜉𝑃 = 𝑛𝑃 ↠ 𝑛𝑡
𝑃
, is a sequence of𝑚 ≥ 0 edges (𝑒1

𝑃
, 𝑒2

𝑃
, . . . , 𝑒𝑚

𝑃
) with ∀1≤ 𝑗≤𝑚 : 𝑒

𝑗

𝑃
= (𝑛𝑓 , 𝑗

𝑃
→ 𝑛

𝑡, 𝑗

𝑃
) ∈ E𝑃 ,

such that 𝑛
𝑓 ,1

𝑃
= 𝑛𝑃 , 𝑛

𝑡,𝑚

𝑃
= 𝑛𝑡

𝑃
, and

𝑚−1∧
𝑗=1

(𝑛𝑡, 𝑗
𝑃

= 𝑛
𝑓 , 𝑗+1
𝑃
). Nodes 𝑛𝑃 and 𝑛𝑡

𝑃
are called the source and

sink nodes of 𝜉𝑃 respectively. Edge 𝑒
𝑗

𝑃
(for some 1 ≤ 𝑗 ≤ 𝑚) is said to be present in 𝜉𝑃 , written

𝑒
𝑗

𝑃
∈ 𝜉𝑃 . An empty sequence, written 𝜖 , represents the empty path. The path condition of a path

2
For simplicity, we do not tackle path-specializing transformations that may require, for a single variable declaration 𝑧𝑙 , a

stack-allocation on one assembly path and a virtual-allocation on another. Such transformations are arguably rare.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

Modeling Dynamic (De)Allocations of Local Memory for Translation Validation 146:17

𝜉𝑃 = 𝑛𝑃 ↠ 𝑛𝑡
𝑃
, written 𝑝𝑎𝑡ℎ𝑐𝑜𝑛𝑑 (𝜉𝑃), is a conjunction of the edge conditions of the constituent

edges. Starting at 𝑛𝑃 , 𝑝𝑎𝑡ℎ𝑐𝑜𝑛𝑑 (𝜉𝑃) represents the condition that 𝜉𝑃 executes to completion.

A sequence of edges corresponding to a shaded statement in the translations (figs. 3 to 6) is

distinguished and identified as an I/O path. An I/O path must contain either a single rd or a single wr
instruction. For example, the sequence of edges corresponding to “wr(fcall(𝜌, #‰𝑥 , 𝛽∗, 𝜋 (Σ𝛽

∗
𝐶

(𝑀𝐶)))”
and “𝑀𝐶 B upd

Σ
𝛽∗\𝐺𝑟
𝐶

(𝑀𝐶 , rd(i32 → i8))” in (Call𝐶) (fig. 3) refer to two separate I/O paths. A

path without any rd or wr instructions is called an I/O-free path.

3.1 Determinized product graph as a transition graph
A product program, represented as a determinized product graph, also called a comparison graph or a

cross-product,𝑋 = ¥𝐴⊠𝐶 = (N𝑋 , E𝑋 ,D𝑋), is a directed multigraph with finite sets of nodesN𝑋 and

edges E𝑋 , and a deterministic choice map D𝑋 . 𝑋 is used to encode a lockstep execution of ¥𝐴 and 𝐶 ,

such thatN𝑋 ⊆ N ¥𝐴×N𝐶 . The start node of𝑋 is𝑛𝑠
𝑋
= (𝑛𝑠¥𝐴, 𝑛

𝑠
𝐶
) and all nodes inN𝑋 must be reachable

from 𝑛𝑠
𝑋
. A node 𝑛𝑋 = (𝑛 ¥𝐴, 𝑛𝐶) is an error node iff either 𝑛 ¥𝐴 or 𝑛𝐶 is an error node. NHH𝑈𝑊

𝑋
denotes

the set of non-error nodes in 𝑋 , such that 𝑛𝑋 = (𝑛 ¥𝐴, 𝑛𝐶) ∈ N
HH𝑈𝑊
𝑋
⇔ (𝑛 ¥𝐴 ∈ N

HH𝑈𝑊
¥𝐴 ∧ 𝑛𝐶 ∈ NHH𝑈𝑊

𝐶
).

Let 𝑛𝑋 = (𝑛 ¥𝐴, 𝑛𝐶) and 𝑛𝑡
𝑋
= (𝑛𝑡¥𝐴, 𝑛

𝑡
𝐶
) be nodes in N𝑋 ; let 𝜉 ¥𝐴 = 𝑛 ¥𝐴 ↠ 𝑛𝑡¥𝐴 be a finite path in ¥𝐴;

and let 𝜉𝐶 = 𝑛𝐶 ↠ 𝑛𝑡
𝐶
be a finite path in 𝐶 . Each edge, 𝑒𝑋 = (𝑛𝑋 𝜉 ¥𝐴 ; 𝜉𝐶−−−−→𝑛𝑡

𝑋
) ∈ E𝑋 , is defined as a

sequential execution of 𝜉 ¥𝐴 followed by 𝜉𝐶 . The execution of 𝑒𝑋 thus transfers control of 𝑋 from 𝑛𝑋
to 𝑛𝑡

𝑋
. The machine state of 𝑋 is the concatenation of the machine states of ¥𝐴 and 𝐶 . The outside

world of 𝑋 , written Ω𝑋 , is a pair of the outside worlds of
¥𝐴 and 𝐶 , i.e., Ω𝑋 = (Ω ¥𝐴,Ω𝐶). Similarly,

the trace generated by 𝑋 , written𝑇𝑋 , is a pair of the traces generated by ¥𝐴 and𝐶 , i.e.,𝑇𝑋 = (𝑇 ¥𝐴,𝑇𝐶).
During an execution of 𝑒𝑋 = (𝑛𝑋 𝜉 ¥𝐴 ; 𝜉𝐶−−−−→𝑛𝑡

𝑋
) ∈ E𝑋 , let #‰𝑥 ¥𝐴 be variables in ¥𝐴 just at the end of

the execution of path 𝜉 ¥𝐴 (at 𝑛𝑡¥𝐴) but before the execution of path 𝜉𝐶 (recall, 𝜉 ¥𝐴 executes before 𝜉𝐶).

D𝑋 : ((E𝑋 × E𝐶 × N) → ExprList), called a deterministic choice map, is a partial function that

maps edge 𝑒𝑋 ∈ E𝑋 , and the 𝑛𝑡ℎ (for 𝑛 ∈ N) occurrence of an edge ‘𝑒𝜃
𝐶
∈ 𝜉𝐶 ’ labeled with instruction

#‰𝑣 B 𝜃 (#‰𝜏) to a list of expressions 𝐸 (#‰𝑥 ¥𝐴). The semantics of D𝑋 are such that, if D𝑋 (𝑒𝑋 , 𝑒𝜃𝐶 , 𝑛) is
defined, then during an execution of 𝑒𝑋 , an execution of the 𝑛𝑡ℎ occurrence of edge 𝑒𝜃

𝐶
∈ 𝜉𝐶 labeled

with
#‰𝑣 B 𝜃 (#‰𝜏) is semantically equivalent to an execution of

#‰𝑣 B D𝑋 (𝑒𝑋 , 𝑒𝜃𝐶 , 𝑛); otherwise, the
original non-deterministic semantics of 𝜃 are used.

D𝑋 determinizes (or refines) the non-deterministic choices in𝐶 . For example, in a product graph

𝑋 that correlates the programs in fig. 1b and fig. 1c, let 𝑒2
𝑋
∈ E𝑋 correlate single instructions I2

and A4.2. Let 𝑒I2,𝜃𝑎
𝐶

represent the edge labeled with 𝛼𝑏 B 𝜃 (i32) as a part of the translation of

the alloc instruction at I2, as seen in (Alloc). Then, D𝑋 (𝑒2𝑋 , 𝑒
I2,𝜃𝑎
𝐶

, 1) = esp is identified by the

first operand of the annotated alloc𝑠 instruction at A4.2. Similarly, if another edge 𝑒
I2,𝜃𝑚
𝐶

(in the

translation of alloc at I2) is labeled with 𝜃 (i32 → i8) (due to𝑀𝐶 B upd[𝛼𝑏 ,𝛼𝑒] (𝑀𝐶 , 𝜃 (i32 → i8))),
then D𝑋 (𝑒2𝑋 , 𝑒

I2,𝜃𝑚
𝐶

, 1) = 𝑀 ¥𝐴, i.e., the initial contents of the newly-allocated region in 𝐶 are based

on the contents of the correlated uninitialized stack region in ¥𝐴. Similarly, let 𝑒1
𝑋
∈ E𝑋 correlate

single instructions I1 and A4.1 so that D𝑋 (𝑒1𝑋 , 𝑒
I1,𝜃𝑎
𝐶

, 1) = vI1 and D𝑋 (𝑒1𝑋 , 𝑒
I1,𝜃𝑚
𝐶

, 1) = 𝑀 ¥𝐴.
For a path 𝜉𝐶 in 𝐶 , [𝜉𝐶]𝑒𝑋D𝑋

denotes a determinized path that is identical to 𝜉𝐶 except that: if

D𝑋 (𝑒𝑋 , 𝑒𝜃𝐶 , 𝑛) is defined, then the 𝑛𝑡ℎ occurrence of edge 𝑒𝜃
𝐶
∈ 𝜉𝐶 , labeled with

#‰𝑣 B 𝜃 (#‰𝜏), is
replaced with a new edge 𝑒

𝜃 ′𝑛
𝐶

labeled with
#‰𝑣 B D𝑋 (𝑒𝑋 , 𝑒𝜃𝐶 , 𝑛).

Execution of a product graph𝑋 must begin at node 𝑛𝑠
𝑋
in an initial machine state where Ω ¥𝐴 = Ω𝐶

and 𝑇 ¥𝐴 =𝑠𝑡 𝑇𝐶 hold. Thus, 𝑋 is a transition graph with its execution semantics derived from the

semantics of ¥𝐴 and 𝐶 , and the map D𝑋 .

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

146:18 Abhishek Rose and Sorav Bansal

3.2 Analysis of the determinized product graph
Let 𝑋 = ¥𝐴 ⊠𝐶 = (N𝑋 , E𝑋 ,D𝑋) be a determinized product graph. At each non-error node 𝑛𝑋 ∈
NHH𝑈𝑊

𝑋
, we infer a node invariant, 𝜙𝑛𝑋 , which is a first-order logic predicate over state elements of

𝑋 at node 𝑛𝑋 that holds for all possible executions of 𝑋 . A node invariant 𝜙𝑛𝑋 relates the values of

state elements of 𝐶 and ¥𝐴 that can be observed at 𝑛𝑋 .

Definition 3.1 (Hoare Triple). Let 𝑛𝑋 = (𝑛 ¥𝐴, 𝑛𝐶) ∈ N
HH𝑈𝑊
𝑋

. Let 𝜉 ¥𝐴 = 𝑛 ¥𝐴 ↠ 𝑛𝑡¥𝐴 and 𝜉𝐶 = 𝑛𝐶 ↠ 𝑛𝑡
𝐶

be paths in ¥𝐴 and𝐶 . A Hoare triple, written {𝑝𝑟𝑒}(𝜉 ¥𝐴; 𝜉𝐶){𝑝𝑜𝑠𝑡}, denotes the statement: if execution

starts at node 𝑛𝑋 in state 𝜎 such that predicate 𝑝𝑟𝑒 (𝜎) holds, and if paths 𝜉 ¥𝐴; 𝜉𝐶 are executed in

sequence to completion finishing in state 𝜎 ′, then predicate 𝑝𝑜𝑠𝑡 (𝜎 ′) holds.
Definition 3.2 (Path cover). At a node 𝑛𝑋 = (𝑛 ¥𝐴, 𝑛𝐶) ∈ N𝑋 , for a path 𝜉 ¥𝐴 = 𝑛 ¥𝐴 ↠ 𝑛𝑡¥𝐴, let ∀1≤ 𝑗≤𝑚 :

𝑒
𝑗

𝑋
= 𝑛𝑋

𝜉 ¥𝐴 ; 𝜉
𝑗

𝐶−−−−→𝑛
𝑡 𝑗

𝑋
be all edges in E𝑋 , such that 𝑛

𝑡 𝑗

𝑋
= (𝑛𝑡¥𝐴, 𝑛

𝑡 𝑗

𝐶
). The set of edges {𝑒1

𝑋
, 𝑒2

𝑋
, . . . , 𝑒𝑚

𝑋
}

covers path 𝜉 ¥𝐴, written {𝑒1𝑋 , 𝑒2𝑋 , . . . , 𝑒𝑚𝑋 }⟨D𝑋 , 𝜉 ¥𝐴⟩, iff {𝜙𝑛𝑋 }(𝜉 ¥𝐴; 𝜖){
𝑚∨
𝑗=1

𝑝𝑎𝑡ℎ𝑐𝑜𝑛𝑑 ([𝜉 𝑗
𝐶
]𝑒

𝑗

𝑋

D𝑋
)} holds.

Definition 3.3 (Path infeasibility). At a node 𝑛𝑋 = (𝑛 ¥𝐴, 𝑛𝐶) ∈ N𝑋 , a path 𝜉 ¥𝐴 = 𝑛 ¥𝐴 ↠ 𝑛𝑡¥𝐴 is

infeasible at 𝑛𝑋 iff {𝜙𝑛𝑋 }(𝜉 ¥𝐴; 𝜖){false} holds.
Definition 3.4 (Mutually exclusive paths). Two paths, 𝜉1

𝑃
= 𝑛𝑃 ↠ 𝑛

𝑡1
𝑃
and 𝜉2

𝑃
= 𝑛𝑃 ↠ 𝑛

𝑡2
𝑃
, both

originating at node 𝑛𝑃 are mutually-exclusive, written 𝜉1
𝑃
≎ 𝜉2

𝑃
, iff neither is a prefix of the other.

Definition 3.5. A pathset ⟨𝜉⟩𝑃 is a set of pairwise mutually-exclusive paths ⟨𝜉⟩𝑃 = {𝜉1
𝑃
, 𝜉2

𝑃
, . . . , 𝜉𝑚

𝑃
}

originating at the same node 𝑛𝑃 , i.e., ∀1≤ 𝑗≤𝑚 : 𝜉
𝑗

𝑃
= 𝑛𝑃 ↠ 𝑛

𝑗

𝑃
and ∀1≤ 𝑗1< 𝑗2≤𝑚 : (𝜉 𝑗1

𝑃
≎ 𝜉

𝑗2
𝑃
).

3.2.1 𝑋 requirements. The following requirements on 𝑋 help witness 𝐶 ⊒ ¥𝐴:

1. (Mutex ¥𝐴): For each node𝑛𝑋 with all outgoing edges {𝑒1
𝑋
, 𝑒2

𝑋
, . . . , 𝑒𝑚

𝑋
} such that 𝑒 𝑗

𝑋
= (𝑛𝑋

𝜉
𝑗

¥𝐴 ; 𝜉
𝑗

𝐶−−−−→𝑛
𝑗

𝑋
)

(for 1 ≤ 𝑗 ≤ 𝑚), the following holds: ∀1≤ 𝑗1, 𝑗2≤𝑚 : ((𝜉 𝑗1¥𝐴 = 𝜉
𝑗2
¥𝐴) ∨ (𝜉

𝑗1
¥𝐴 ≎ 𝜉

𝑗2
¥𝐴)).

2. (Mutex𝐶): At each node 𝑛𝑋 , for a path 𝜉 ¥𝐴, let {𝑒1𝑋 , 𝑒2𝑋 , . . . , 𝑒𝑚𝑋 } be a set of all outgoing edges such

that 𝑒
𝑗

𝑋
= 𝑛𝑋

𝜉 ¥𝐴 ; 𝜉
𝑗

𝐶−−−−→𝑛𝑡
𝑋
(for 1 ≤ 𝑗 ≤ 𝑚). Then, the set {𝜉1

𝐶
, 𝜉2

𝐶
, . . . , 𝜉𝑚

𝐶
} must be a pathset.

3. (Termination) For each non-error node 𝑛𝑋 = (𝑛 ¥𝐴, 𝑛𝐶) ∈ N
HH𝑈𝑊
𝑋

, 𝑛 ¥𝐴 is a terminating node iff 𝑛𝐶
is a terminating node.

4. (SingleIO): For each edge 𝑒𝑋 = (𝑛𝑋 𝜉 ¥𝐴 ; 𝜉𝐶−−−−→𝑛𝑡
𝑋
) ∈ E𝑋 , either both 𝜉 ¥𝐴 and 𝜉𝐶 are I/O paths, or both

𝜉 ¥𝐴 and 𝜉𝐶 are I/O-free.

5. (Well-formedness): If a node of the form 𝑛𝑋 = (_,𝒲𝐶) exists inN𝑋 , then 𝑛𝑋 must be (𝒲¥𝐴,𝒲𝐶).
6. (Safety): If a node of the form 𝑛𝑋 = (𝒰 ¥𝐴, _) exists in N𝑋 , then 𝑛𝑋 must be (𝒰 ¥𝐴,𝒰𝐶).

7. (Similar-speed): Let (𝑒1
𝑋
, 𝑒2

𝑋
, . . . , 𝑒𝑚

𝑋
) be a cyclic path, so that∀1≤ 𝑗≤𝑚 : 𝑒

𝑗

𝑋
= (𝑛𝑓 , 𝑗

𝑋

𝜉
𝑗

¥𝐴 ; 𝜉
𝑗

𝐶−−−−→𝑛
𝑡, 𝑗

𝑋
) ∈ E𝑋 ;

𝑛
𝑓 ,1

𝑋
= 𝑛

𝑡,𝑚

𝑋
; and

𝑚−1∧
𝑗=1

(𝑛𝑡, 𝑗
𝑋

= 𝑛
𝑓 , 𝑗+1
𝑋
). For each cyclic path, (¬

𝑚∧
𝑗=1

(𝜉 𝑗¥𝐴 = 𝜖)) ∧ (¬
𝑚∧
𝑗=1

(𝜉 𝑗
𝐶
= 𝜖)) holds.

8. (Coverage ¥𝐴): For each non-error node 𝑛𝑋 = (𝑛 ¥𝐴, 𝑛𝐶) ∈ N
HH𝑈𝑊
𝑋

and for each possible outgoing

path 𝜉𝑜¥𝐴 = 𝑛 ¥𝐴 ↠ 𝑛𝑜¥𝐴, either 𝜉
𝑜
¥𝐴 is infeasible at 𝑛𝑋 , or there exists 𝑒𝑋 = (𝑛𝑋 𝜉 ¥𝐴 ; 𝜉𝐶−−−−→𝑛𝑡

𝑋
) ∈ E𝑋 such

that either 𝜉 ¥𝐴 is a prefix of 𝜉𝑜¥𝐴 or 𝜉𝑜¥𝐴 is a prefix of 𝜉 ¥𝐴.

9. (Coverage𝐶): At node 𝑛𝑋 , for some 𝜉 ¥𝐴, let {𝑒1𝑋 , 𝑒2𝑋 , . . . , 𝑒𝑚𝑋 } be the set of all outgoing edges such

that 𝑒
𝑗

𝑋
= 𝑛𝑋

𝜉 ¥𝐴 ; 𝜉
𝑗

𝐶−−−−→(𝑛𝑡¥𝐴, 𝑛
𝑡 𝑗

𝐶
) (for 1 ≤ 𝑗 ≤ 𝑚). Then, {𝑒1

𝑋
, 𝑒2

𝑋
, . . . , 𝑒𝑚

𝑋
}⟨D𝑋 , 𝜉 ¥𝐴⟩ holds.

10. (Inductive): For each non-error edge 𝑒𝑋 = (𝑛𝑋 𝜉 ¥𝐴 ; 𝜉𝐶−−−−→𝑛𝑡
𝑋
) ∈ E𝑋 , {𝜙𝑛𝑋 }(𝜉 ¥𝐴; [𝜉𝐶]

𝑒𝑋
D𝑋
){𝜙𝑛𝑡

𝑋
} holds.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

Modeling Dynamic (De)Allocations of Local Memory for Translation Validation 146:19

11. (Equivalence): For each non-error node 𝑛𝑋 = (𝑛 ¥𝐴, 𝑛𝐶) ∈ N
HH𝑈𝑊
𝑋

, Ω ¥𝐴 = Ω𝐶 must belong to 𝜙𝑛𝑋 .

12. (Memory Access Correspondence) or (MAC): For each edge 𝑒𝑋 = (𝑛𝑋 𝜉 ¥𝐴 ; 𝜉𝐶−−−−→𝑛𝑡
𝑋
) ∈ E𝑋 , such that

𝑛𝑡
𝑋
≠ (_,𝒰𝐶), {𝜙𝑛𝑋 ∧ (Σrd¥𝐴 = Σrd

𝐶
= ∅)}(𝜉 ¥𝐴; [𝜉𝐶]

𝑒𝑋
D𝑋
){(Σrd¥𝐴 \ Σrd

𝐶
) ⊆ Σ𝐺∪𝐹¥𝐴 ∪ [esp, stk𝑒]} and

{𝜙𝑛𝑋 ∧ (Σwr¥𝐴 = Σwr
𝐶

= ∅)}(𝜉 ¥𝐴; [𝜉𝐶]
𝑒𝑋
D𝑋
){(Σwr¥𝐴 \ Σwr

𝐶
) ⊆ Σ𝐺𝑤∪𝐹𝑤

¥𝐴 ∪ [esp, stk𝑒]} hold.
13. (MemEq): For each non-error node 𝑛𝑋 ∈ NHH𝑈𝑊

𝑋
,𝑀 ¥𝐴 =

Σ𝐵¥𝐴\(Σ
𝑍𝑙
¥𝐴 |

𝑣) 𝑀𝐶 must belong to 𝜙𝑛𝑋 .

(MAC) effectively requires that for every access on path 𝜉 ¥𝐴 to an address 𝛼 belonging to region

𝑟 ∈ {ℎ𝑝, 𝑐𝑙}, there exists an access to𝛼 of the same read/write type on path [𝜉𝐶]𝑒𝑋D𝑋
. This requirement

allows us to soundly over-approximate the set of addresses belonging to ℎ𝑝 and 𝑐𝑙 for a faster SMT

encoding (theorem 3.7 and section 4.2.3). For (MAC) to be meaningful, Σrd¥𝐴,𝐶
and Σwr¥𝐴,𝐶

must not be

included in 𝑋 ’s state elements over which a node invariant 𝜙𝑛𝑋 is inferred.

The first seven are structural requirements (constraints on the graph structure of 𝑋) and the

remaining six are semantic requirements (require discharge of proof obligations). The first eleven are

soundness requirements (required for theorem 3.6), the first twelve are fast-encoding requirements,
and all thirteen are search-algorithm requirements (required for search optimizations). Excluding

(Coverage ¥𝐴) and (Coverage𝐶), the remaining eleven are called non-coverage requirements.

Theorem 3.6. If there exists 𝑋 = ¥𝐴 ⊠𝐶 that satisfies the soundness requirements, then𝐶 ⊒ ¥𝐴 holds.

Proof sketch. (Coverage ¥𝐴) and (Coverage𝐶) ensure the coverage of ¥𝐴’s and 𝐶’s traces in 𝑋 .

For an error-free execution of 𝑋 , (Equivalence) and (Similar-speed) ensure that the generated traces

are stuttering equivalent; for executions terminating in an error, (SingleIO), (Well-formedness), and

(Safety) ensure that𝐶 ⊒ ¥𝐴 holds by definition. See our technical report [Rose and Bansal 2024b] for

the coinductive proof. □

3.2.2 Safety-relaxed semantics. Construct 𝐴′ from 𝐴 by using new safety-relaxed semantics for the
assembly procedure such that: (1) a 𝜑𝑙 = ov([𝑝]𝑤, Σfree

¥𝐴 ∪ ((Σ𝑍𝑙

¥𝐴 |
𝑣) \Σ𝐹∪𝑆

¥𝐴)) check in (Load ¥𝐴) in𝐴 is

replaced with 𝜑 ′
𝑙
= ov([𝑝]𝑤, (Σ𝑍𝑙

¥𝐴 |
𝑣) \ (Σ𝐹

¥𝐴 ∪ [esp, cs𝑒])) in 𝐴′; (2) a 𝜑𝑠 = ov([𝑝]𝑤, Σ{free}∪𝐺𝑟∪𝐹𝑟
¥𝐴 ∪

((Σ𝑍𝑙

¥𝐴 |
𝑣) \ Σ𝐹𝑤∪𝑆

¥𝐴)) check in (Store ¥𝐴) in 𝐴 is replaced with 𝜑 ′𝑠 = ov([𝑝]𝑤, (Σ𝑍𝑙

¥𝐴 |
𝑣) \ (Σ𝐹𝑤

¥𝐴 ∪
[esp, cs𝑒])) in𝐴′; and (3) a𝜑𝑟 = ¬(𝑀𝑐𝑠 =Σ𝑐𝑠

𝐴
𝑀𝐴) check in (Ret𝐴) in𝐴 is replaced with𝜑 ′𝑟 = false

in 𝐴′. Let ¥𝐴′ be obtained by annotating 𝐴′ using instructions described in section 2.4.3. Let ¥𝐴 be

the annotated version of 𝐴, such that the annotations made in ¥𝐴 and ¥𝐴′ are identical.

Theorem 3.7. Given 𝑋 ′ = ¥𝐴′ ⊠ 𝐶 that satisfies the fast-encoding requirements, it is possible to
construct 𝑋 = ¥𝐴 ⊠𝐶 that also satisfies the fast-encoding requirements.

Proof sketch. Start by constructing 𝑋 = 𝑋 ′. Because 𝜑 ′
𝑙,𝑠,𝑟
⇒ 𝜑𝑙,𝑠,𝑟 ,

¥𝐴 may include more

executions of a path of form 𝜉 ¥𝐴 = 𝑛 ¥𝐴 ↠ 𝒰 ¥𝐴. Add new edges to E𝑋 , where each new edge correlates

𝜉 ¥𝐴 with some 𝜉𝐶 = 𝑛𝐶 ↠ 𝒰𝐶 . Because 𝑋
′
satisfies (MAC), the addition of such new edges will

ensure that 𝑋 satisfies (Coverage𝐶). See our technical report [Rose and Bansal 2024b] for the

proof. □

Using theorem 3.7, hereafter, we will use only the safety-relaxed semantics of the assembly

procedure. We will continue to refer to the assembly procedure with the safety-relaxed semantics

as 𝐴, and the corresponding annotated procedure ¥𝐴.
4 AUTOMATIC CONSTRUCTION OF A CROSS-PRODUCT
We now describe Dynamo, an algorithm that takes as input, the transition graphs corresponding

to procedures 𝐶 and 𝐴, and an unroll factor 𝜇, and returns as output, annotated ¥𝐴 and product

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

146:20 Abhishek Rose and Sorav Bansal

graph 𝑋 = ¥𝐴 ⊠𝐶 = (N𝑋 , E𝑋 ,D𝑋), such that all thirteen search-algorithm requirements are met.

It identifies an inductive invariant network 𝜙𝑋 that maps each non-error node 𝑛𝑋 ∈ NHH𝑈𝑊
𝑋

to

its node invariant 𝜙𝑛𝑋 . Given enough computational time, Dynamo is guaranteed to find the

required (¥𝐴,𝑋) if: (a) 𝐴 is a translation of 𝐶 through bisimilar transformations up to a maximum

unrolling of 𝜇; (b) for two or more allocations or procedure calls that reuse stack space in 𝐴, their

relative order in 𝐶 is preserved in 𝐴; (c) the desired annotation to ¥𝐴 is identifiable either through

search heuristics or through compiler hints; and (d) our invariant inference procedure is able to

identify the required invariant network 𝜙𝑋 that captures the compiler transformations across

𝐶 and 𝐴. Dynamo constructs the solution incrementally, by relying on the property that for a

non-coverage requirement to hold for fully-annotated ¥𝐴 and fully-constructed 𝑋 , it must also hold

for partially-annotated ¥𝐴 and a partially-constructed subgraph of 𝑋 rooted at its entry node 𝑛𝑠
𝑋
.

Dynamo is presented in algorithm 1. It assumes the availability of a chooseFrom operator, such

that 𝜌 ← [chooseFrom #‰𝜌 chooses a quantity 𝜌 from a finite set
#‰𝜌 , such that Dynamo is able to

complete the refinement proof, if such a choice exists. If the search space is limited, an exhaustive

search could be used to implement chooseFrom. Otherwise, a counterexample-guided best-first

search procedure (described later) is employed to approximate chooseFrom.

io(𝑛𝑃) evaluates to true iff 𝑛𝑃 is either a source or sink node of an I/O path. term(𝑛𝑃) evaluates
to true iff 𝑛𝑃 is a terminating node. Dynamo first identifies an ordered set of nodes 𝑄𝑃 ⊆ N𝑃 ,

called the cut points in procedure 𝑃 (getCutPointsInRPO), such that 𝑄𝑃 ⊇ {𝑛𝑃 : 𝑛𝑃 ∈ N𝑃 ∧ (𝑛𝑃 =

𝑛𝑠
𝑃
∨ io(𝑛𝑃) ∨ term(𝑛𝑃))} and the maximum length of a path between two nodes in 𝑄𝑃 (not

containing any other intermediate node that belongs to 𝑄𝑃) is finite.

The algorithm to identify 𝑄𝑃 first initializes 𝑄𝑃 B {𝑛𝑃 : 𝑛𝑃 ∈ N𝑃 ∧ (𝑛𝑃 = 𝑛𝑠
𝑃
∨ io(𝑛𝑃) ∨

term(𝑛𝑃))}, and then identifies all cycles in the transition graph that do not already contain a cut

point; for each such cycle, the first node belonging to that cycle in reverse postorder is added to𝑄𝑃 .

In fig. 1c, 𝑄 ¥𝐴 includes constituent nodes of assembly instructions at A1, A9, A14, and exit, where
exit is the destination node of the error-free halt instruction due to the procedure return at A17.

A simple path 𝑞𝑃 ↠ 𝑞𝑡
𝑃
is a path connecting two cut points 𝑞𝑃 , 𝑞

𝑡
𝑃
∈ 𝑄𝑃 , and not containing any

other cut point as an intermediate node; 𝑞𝑡
𝑃
is called a cut-point successor of 𝑞𝑃 . By definition, a

simple path must be finite. The cutPointSuccessors() function takes a cut point 𝑞𝑃 and returns all its

cut-point successors in reverse postorder. In our example, the cut-point successors of a node at in-

struction A9 are (constituent nodes of) A9, A14,𝒰 ¥𝐴, and𝒲¥𝐴. getAllSimplePathsBetweenCutPoints(𝑞𝑃 ,
𝑞𝑡
𝑃
, 𝑃) returns all simple paths of the form 𝑞𝑃 ↠ 𝑞𝑡

𝑃
, for 𝑞𝑃 , 𝑞

𝑡
𝑃
∈ 𝑄𝑃 . Given a simple path 𝜉 ¥𝐴,

pathIsInfeasible(𝜉 ¥𝐴, 𝑞 ¥𝐴,N𝑋 , 𝜙𝑋) returns true iff 𝜉 ¥𝐴 is infeasible at every node 𝑛𝑋 = (𝑞 ¥𝐴, _) ∈ N𝑋 ;

our algorithm ensures there can be at most one 𝑛𝑋 = (𝑞 ¥𝐴, _) ∈ N𝑋 for each 𝑞 ¥𝐴 ∈ 𝑄 ¥𝐴.

correlatedPathsInCOptions(). correlatedPathsInCOptions(𝜉 ¥𝐴, . . .) identifies options for candidate
pathsets [⟨𝜉⟩𝐶], that can potentially be correlated with 𝜉 ¥𝐴 = 𝑞 ¥𝐴 ↠ 𝑞𝑡¥𝐴, and the chooseFrom
operator chooses a pathset ⟨𝜉⟩𝐶 from it. A path 𝜉𝐶 ∈ ⟨𝜉⟩𝐶 need not be a simple path, and can visit

any node 𝑛𝐶 ∈ N𝐶 up to 𝜇 times. All paths in ⟨𝜉⟩𝐶 must originate at a unique cut-point 𝑞𝐶 such

that (𝑞 ¥𝐴, 𝑞𝐶) ∈ N𝑋 . By construction, there will be exactly one such (𝑞 ¥𝐴, 𝑞𝐶) in N𝑋 . Paths in ⟨𝜉⟩𝐶
may have different end points however. For example, ⟨𝜉⟩𝐶 = {𝜖} and ⟨𝜉⟩𝐶 = {I3→I4→I7, I3→
𝒰𝐶 , I3→I4→𝒰𝐶 } may be potential candidates for 𝜉 ¥𝐴=A9→A10→A11→A9 in fig. 1.

If 𝑞𝑡¥𝐴 ∉ {𝒰 ¥𝐴,𝒲¥𝐴}, correlatedPathsInCOptions() returns candidates, where a candidate pathset
⟨𝜉⟩𝐶 is a maximal set such that each path 𝜉𝐶 ∈ ⟨𝜉⟩𝐶 either (a) ends at a unique non-error destination

cut-point node, say 𝑞𝑡
𝐶
(i.e., all paths 𝜉𝐶 ∈ ⟨𝜉⟩𝐶 ending at a non-error node end at 𝑞𝑡

𝐶
), or (b) ends

at error node𝒰𝐶 . This path enumeration strategy is the same as the one used in Counter [Gupta

et al. 2020]; this strategy supports path specializing compiler transformations like loop peeling,

unrolling, splitting, unswitching, etc., but does not support a path de-specializing transformation

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

Modeling Dynamic (De)Allocations of Local Memory for Translation Validation 146:21

1 Function Dynamo(𝐴,𝐶 , 𝜇)
2 ¥𝐴←[𝐴; N𝑋 ←[{(𝑛𝑠¥𝐴, 𝑛

𝑠
𝐶
) }; E𝑋 ←[{}; D𝑋 ←[∅;

3 𝜙𝑋 ←[{(𝑛𝑠¥𝐴, 𝑛
𝑠
𝐶
) ↦→ (Ω ¥𝐴 = Ω𝐶) }; 𝑄 ¥𝐴 ←[getCutPointsInRPO(¥𝐴);

4 foreach 𝑞 ¥𝐴 in 𝑄 ¥𝐴 do
5 foreach 𝑞𝑡¥𝐴 in cutPointSuccessors(𝑞 ¥𝐴,𝑄 ¥𝐴, ¥𝐴) do
6 foreach 𝜉 ¥𝐴 in getAllSimplePathsBetweenCutPoints(𝑞 ¥𝐴, 𝑞𝑡¥𝐴,

¥𝐴) do
7 if pathIsInfeasible(𝜉 ¥𝐴, 𝑞 ¥𝐴,N𝑋 , 𝜙𝑋) then
8 continue
9 end

10 foreach 𝜉𝐶 in chooseFrom correlatedPathsInCOptions(𝜉 ¥𝐴, 𝜇,N𝑋 , E𝑋 ,D𝑋 , 𝜙𝑋 , ¥𝐴,𝐶) do
11 (¥𝐴, #‰

𝜉 ′¥𝐴) ←[chooseFrom asmAnnotOptions(𝜉 ¥𝐴 , 𝜉𝐶 , N𝑋 , E𝑋 , D𝑋 , 𝜙𝑋 , ¥𝐴,𝐶);
12

#‰

𝜉 ′
𝐶
←[breakIntoSingleIOPaths(𝜉𝐶);

13 if ¬haveSimilarStructure(#‰

𝜉 ′¥𝐴,
#‰

𝜉 ′
𝐶
) then

14 return Failure

15 end
16 foreach (𝜉′¥𝐴 = (𝑛 ¥𝐴 ↠ 𝑛𝑡¥𝐴)), (𝜉

′
𝐶

= (𝑛𝐶 ↠ 𝑛𝑡
𝐶
)) in zip(#‰

𝜉 ′¥𝐴,
#‰

𝜉 ′
𝐶
) do

17 N𝑋 ←[N𝑋 ∪ {(𝑛𝑡¥𝐴, 𝑛
𝑡
𝐶
) }; //unlike E𝑋 , N𝑋 may not grow on each iteration

18 𝑒𝑋 ← [(𝜉′¥𝐴 ; 𝜉
′
𝐶
) ; E𝑋 ← [E𝑋 ∪ {𝑒𝑋 }; D𝑋 ←[addDetMappings (𝑒𝑋);

19 𝜙𝑋 ←[inferInvariantsAndCounterexamples(N𝑋 , E𝑋 , D𝑋 , 𝜙𝑋 , ¥𝐴,𝐶);
20 if ¬checkSemanticRequirementsExceptCoverage(N𝑋 , E𝑋 ,D𝑋 , 𝜙𝑋 , ¥𝐴,𝐶) then
21 return Failure

22 end
23 end
24 end
25 end
26 end
27 end
28 if ¬checkCoverageRequirements(N𝑋 , E𝑋 , D𝑋 , 𝜙𝑋 , ¥𝐴,𝐶) then
29 return Failure

30 end
31 return Success(¥𝐴,N𝑋 , E𝑋 ,D𝑋 , 𝜙𝑋)
32 end

Algorithm 1: Automatic construction of 𝑋 .

like loop re-rolling. If 𝑞𝑡¥𝐴 = 𝒰 ¥𝐴, correlatedPathsInCOptions() returns candidates, where a candidate
pathset ⟨𝜉⟩𝐶 is a maximal set such that each path 𝜉𝐶 ∈ ⟨𝜉⟩𝐶 ends at𝒰𝐶 . The algorithm identifies

a correlation for a path 𝜉 ¥𝐴 = 𝑞 ¥𝐴 ↠ 𝒲¥𝐴 only after correlations for all other paths of the form

𝜉��𝒲¥𝐴 = 𝑞 ¥𝐴 ↠ 𝑞��𝒲¥𝐴 (for 𝑞��𝒲¥𝐴 ≠ 𝒲¥𝐴) have been identified: a pathset candidate ⟨𝜉⟩𝐶 that has already

been correlated with some other path 𝜉��𝒲¥𝐴 is then prioritized for correlation with 𝜉 ¥𝐴.
For example, in fig. 1c, for a cyclic path 𝜉 ¥𝐴 from a node at A9 to itself, one of the candidate

pathsets, ⟨𝜉⟩𝐶 , returned by this procedure (at 𝜇 = 1) contains eleven paths originating at I4 in

fig. 1b: one that cycles back to I4 and ten that terminate at𝒰𝐶 (for each of the ten memory accesses

in the path). For example, to evaluate the expression v[*i], two memory loads are required, one at

address i and another at &v[*i], and each such load may potentially transition to𝒰𝐶 due to the

accessIsSafeC𝜏,𝑎 check evaluating to false in (Load𝐶). A path that terminates at𝒰𝐶 represents

correlated transitions from node (A9,I4) in 𝑋 such that ¥𝐴 remains error-free (to end at A9) but
𝐶 triggers 𝒰, e.g., if the memory access mem4[esi+4*eax] in ¥𝐴 (corresponding to v[*i] in 𝐶)

overshoots the stack space corresponding to variable v but still lies within the stack region 𝑠𝑡𝑘 .

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

146:22 Abhishek Rose and Sorav Bansal

asmAnnotOptions(). For each simple path 𝜉 ¥𝐴, and each (potentially non-simple) path 𝜉𝐶 in ⟨𝜉⟩𝐶 3
,

asmAnnotOptions() enumerates the options for annotating 𝜉 ¥𝐴 with alloc𝑠,𝑣 , dealloc𝑠,𝑣 instructions
and operands for call instructions, and the chooseFrom operator chooses one.

An annotation option includes the positions and the operands of the (de)allocation instructions

(allocation site, alignment, address, and size). For a procedure-call, an annotation option also

includes the arguments’ types and values, and the set of callee-observable regions. The annotations

for the callee name/address and the (de)allocations of procedure-call arguments in 𝜉 ¥𝐴 are uniquely

identified using the number and type of arguments in the candidate correlated path 𝜉𝐶 using the

calling conventions. Similarly, the annotation of callee-observable regions follows from the regions

observable by the correlated procedure call in 𝜉𝐶 .

These annotations thus update 𝐴 to incrementally construct ¥𝐴. If untrusted compiler hints are

available, they are used to precisely identify these annotations. In a blackbox setting, where no

compiler hints are available, we reduce the search space for annotations (at the cost of reduced

generality) using the following three restrictions: (1) An alloc𝑠,𝑣 (dealloc𝑠,𝑣) annotation is an-

notated in 𝜉 ¥𝐴 only if an alloc (dealloc) instruction is present in 𝜉𝐶 ; (2) an alloc𝑠,𝑣 (dealloc𝑠,𝑣)
annotation is added only after (before) an instruction that updates esp; moreover, for alloc𝑠 , esp
is used as the local variable’s address expression; (3) for a single allocation site in 𝐶 , at most one

alloc𝑠,𝑣 instruction (but potentially multiple dealloc𝑠,𝑣 instructions) is added to ¥𝐴. Thus, in a

blackbox setting, due to the third restriction, a refinement proof may fail if the compiler specializes

a path containing a local variable allocation. Due to the second restriction, a refinement proof

may fail for certain (arguably rare) types of order-preserving stack reallocation and stack merging

performed by the compiler. Note that these limitations hold only for the blackbox setting.

After annotations, 𝜉 ¥𝐴 may become a non-simple path due to the extra I/O instructions introduced

by the annotations. asmAnnotOptions therefore additionally returns

#‰

𝜉 ′¥𝐴, which is a sequence of the

simple paths constituting 𝜉 ¥𝐴. The (potentially non-simple) path 𝜉𝐶 is then broken into a sequence

of constituent paths

#‰

𝜉 ′
𝐶
(breakIntoSingleIOPaths) so that each I/O path appears by itself (and not

as a sub-path of a longer constituent path) in

#‰

𝜉 ′
𝐶
— this caters to the (SingleIO) requirement. A

failure is returned if the sequences

#‰

𝜉 ′¥𝐴 and

#‰

𝜉 ′
𝐶
do not have similar structures (haveSimilarStructure).

Let pos(𝜉, #‰

𝜉) represent the position of path 𝜉 in a sequence of paths

#‰

𝜉 . haveSimilarStructure(
#‰

𝜉 ′¥𝐴,
#‰

𝜉 ′
𝐶
) returns true iff

#‰

𝜉 ′¥𝐴 and

#‰

𝜉 ′
𝐶
are of the same size, and for paths 𝜉 ′

𝐶
∈ #‰

𝜉 ′
𝐶
and 𝜉 ′¥𝐴 ∈

#‰

𝜉 ′¥𝐴, if

pos(𝜉 ′
𝐶
,

#‰

𝜉 ′
𝐶
) = pos(𝜉 ′¥𝐴,

#‰

𝜉 ′¥𝐴), then either both 𝜉 ′
𝐶
and 𝜉 ′¥𝐴 are I/O paths of same structure (i.e., they

are either both reads or both writes for the same type of value) or both are I/O free.

Incremental construction of (¥𝐴,𝑋). For each simple path 𝜉 ′¥𝐴 in

#‰

𝜉 ′¥𝐴 enumerated in execution

order, Dynamo correlates it with 𝜉 ′
𝐶
, such that pos(𝜉 ′

𝐶
,

#‰

𝜉 ′
𝐶
) = pos(𝜉 ′¥𝐴,

#‰

𝜉 ′¥𝐴) (through zip in algo-

rithm 1). This candidate correlation (𝜉 ′¥𝐴; 𝜉
′
𝐶
) is added as an edge 𝑒𝑋 to E𝑋 , adding the destination

node to N𝑋 if not already present.

If 𝜉 ′
𝐶
represents a path between wr(allocBegin(. . .)) and wr(allocEnd(. . .)) for an alloc

instruction in 𝐶 , and 𝜉 ′¥𝐴 is a corresponding path due to an alloc𝑠,𝑣 instruction, and edges 𝑒
𝜃𝑎
𝐶

and

𝑒
𝜃𝑚
𝐶

in 𝜉 ′
𝐶
are labeled with instructions 𝛼𝑏 B 𝜃 (i32) and 𝜃 (i32 → i8) respectively due to (Alloc),

we add mappings D𝑋 (𝑒𝑋 , 𝑒𝜃𝑎 , 1) = 𝑣 and D𝑋 (𝑒𝑋 , 𝑒𝜃𝑚 , 1) = 𝑀 ¥𝐴, where 𝑣 is the address defined in

𝜉 ′¥𝐴 due to either (AllocS) or (AllocV) (addDetMappings (𝑒𝑋)). Notice that our algorithm only

populates D𝑋 (𝑒𝑋 , 𝑒𝜃𝐶 , 𝑛) for 𝑛 = 1, even though section 3.1 defines D𝑋 more generally.

3
The number of paths can be exponential in procedure size, and so our implementation represents a pathset using a

series-parallel digraph [Gupta et al. 2020] and annotates a pathset in ¥𝐴 in a single step. Similarly, a pathset in ¥𝐴 is correlated

with a pathset in𝐶 in a single step. For easier exposition, the presented algorithm correlates each path individually.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

Modeling Dynamic (De)Allocations of Local Memory for Translation Validation 146:23

affine
∑

𝑖 𝑐𝑖 𝑣𝑖 = 𝑐 ineqC ±𝑣 ≤𝑠 2
𝑐 ineq 𝑣1 ⊙ 𝑣2 spOrd sp.𝑝

𝑗
1

¥𝐴 ≤𝑢 (sp.𝑝 𝑗
2

¥𝐴 − 𝑣)
AllocEq ∀𝑟∈𝐵Σ𝑟𝐶 = Σ𝑟¥𝐴

MemEq 𝑀𝐶 =
Σ𝐵¥𝐴\(Σ

𝑍𝑙
¥𝐴 |

𝑣)
𝑀 ¥𝐴 zEmpty {Σ𝑧

𝐶
, Σ𝑧¥𝐴 |

𝑠 , Σ𝑧¥𝐴 |
𝑣 } {=,≠} ∅

spzBd em.𝑧 ∨ (sp.𝑝 𝑗
¥𝐴 ⊙ { lb.𝑧 , ub.𝑧 }) spzBd’ em.𝑧 ∨ (sp.𝑝 𝑗

¥𝐴 ≤𝑢 (lb.𝑧 − lstSz.𝑧))

gfySz ∀𝑟∈𝐺∪𝐹∪𝑌 \{vrdc} (sz.𝑟 = sz(T(𝑟))) vrdcSz (em.vrdc ⇔ sz.vrdc = 0) Empty ∀𝑟∈𝐺∪𝐹∪𝑌∪𝑍 (Σ𝑟𝐶 = ∅ ⇔ em.𝑟)
gfyIntvl ∀𝑟∈𝐺∪𝐹∪𝑌 ((sz.𝑟 = 0) ∨ ((lb.𝑟 ≤𝑢 ub.𝑟) ∧ (ub.𝑟 = lb.𝑟 + sz.𝑟 − 1i32) ∧ ([lb.𝑟 , ub.𝑟] = Σ𝑟¥𝐴)))
zlIntvl em.𝑧𝑙 ∨ ((lb.𝑧𝑙 ≤𝑢 ub.𝑧𝑙) ∧ (lb.𝑧𝑙 + lstSz.𝑧𝑙 − 1i32 = ub.𝑧𝑙) ∧ ([lb.𝑧𝑙 , lb.𝑧𝑙] = Σ𝑧𝑙

𝐶
)))

zaBd em.𝑧𝑎 ∨ ((lb.𝑧𝑎 ≤𝑢 ub.𝑧𝑎) ∧ (lb.𝑧𝑎 + lstSz.𝑧𝑎 − 1i32 ≤𝑢 ub.𝑧𝑎) ∧ (lb.𝑧𝑎 = lb(Σ𝑧𝑎
𝐶
) ∧ ub.𝑧𝑎 = ub(Σ𝑧𝑎

𝐶
)))

StkBd Σ{𝑠𝑡𝑘}∪𝑌¥𝐴 ∪ (Σ𝑍¥𝐴 \ (Σ
𝑍𝑙
¥𝐴 |

𝑣)) = [esp, stk𝑒] 𝑐𝑠Bd Σ{𝑐𝑠,𝑐𝑙 }¥𝐴 = [stk𝑒 + 1, cs𝑒]
NoOverlap𝐶 ¬ov(Σℎ𝑝¥𝐴 , Σ𝑐𝑙¥𝐴 , Σvrdc¥𝐴 , . . . , 𝑖

𝑔

¥𝐴, . . . , 𝑖
𝑦

¥𝐴, . . . , Σ
𝑧
¥𝐴) ROM𝐶 ∀𝑟∈𝐺𝑟𝑀𝐶 =𝑖𝑟

𝐶
ROM𝑟

𝐶
(𝑖𝑟
𝐶
)

NoOverlap𝐴 ¬ov(Σ{ℎ𝑝,𝑐𝑙 }∪𝐺∪𝑌¥𝐴 , . . . , Σ𝑧¥𝐴 |
𝑠 , . . . , Σ𝑠𝑡𝑘¥𝐴 , Σ𝑐𝑠¥𝐴 , Σ𝐹¥𝐴) ROM𝐴 ∀𝑟∈𝐹𝑟𝑀 ¥𝐴 =𝑖𝑟¥𝐴

ROM𝑟¥𝐴 (𝑖
𝑟
¥𝐴)

Fig. 7. Predicate grammar for constructing candidate invariants. 𝑣 represents a bitvector variable (registers,
stack slots, and ghost variables), 𝑐 represents a bitvector constant. ⊙ ∈ {≤𝑠,𝑢 , <𝑠,𝑢 , >𝑠,𝑢 , ≥𝑠,𝑢 }.

If the destination node is not an error node, then the inferInvariantsAndCounterexamples()
procedure updates the invariant network 𝜙𝑋 due to the addition of this new edge. The non-coverage

requirements are checked after invariant inference (checkSemanticRequirementsExceptCoverage)
and a candidate is discarded if the check fails.

When all simple paths between the cut points of ¥𝐴 are exhausted, the (Coverage ¥𝐴) requirement

must be satisfied by construction. checkCoverageRequirements() further checks the satisfaction of

(Coverage𝐶) before returning Success. Dynamo is sound because it returns Success only if all the

thirteen search-algorithm requirements are satisfied.

The chooseFrom operator must attempt to maximize the chances of returning Success, even if

only a fraction of the search space has been explored. Dynamo uses the counterexamples generated

when a proof obligation is falsified (e.g., during invariant inference) to guide the search towards the

more promising options. A counterexample is a proxy for the machine states of 𝐶 and ¥𝐴 that may

appear at a node 𝑛𝑋 during the lockstep execution encoded by 𝑋 . Thus, if at any step during the

construction of 𝑋 , the execution of a counterexample for a candidate partial solution (¥𝐴,𝑋) results
in the violation of a non-coverage requirement, that candidate is discarded. Further, counterexample

execution opportunistically weakens the node invariants in 𝑋 . Like Counter, we use the number

of live registers in ¥𝐴 related through the current invariants in 𝜙𝑋 to rank the enumerated partial

candidate solutions to implement a best-first search.

4.1 Invariant Inference
We use a counterexample-guided inference algorithm to identify node invariants [Gupta et al. 2020].

Candidate invariants at a node 𝑛𝑋 of a partial product-graph are formed by conjuncting predicates

drawn from the grammar shown in fig. 7. Apart from affine (affine) and inequality relations (ineq

and ineqC) for relating values across 𝐶 and ¥𝐴, the guesses attempt to equate the allocation and

memory state of common regions across the two procedures (AllocEq and MemEq).

Recall that we save stackpointer value at the boundary of a stackpointer updating instruction

at PC 𝑝
𝑗

¥𝐴 in ghost variable sp.𝑝 𝑗

¥𝐴 ((Op-esp) in fig. 4). To prove separation between different local

variables, we require invariants that lower-bound the gap between two ghost variables, say sp.𝑝
𝑗
1

¥𝐴

and sp.𝑝
𝑗
2

¥𝐴 , by some value 𝑣 that depends on the allocation size operand of an alloc𝑠 instruction

(spOrd). To capture the various relations between lower bounds, upper bounds, region sizes, and

sp.𝑝 𝑗

¥𝐴 , the guessing grammar includes shapes spzBd and spzBd’ that are of the form: “either a local

variable region is empty or its bounds are related to sp.𝑝 𝑗

¥𝐴 in these possible ways”. zEmpty tracks

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

146:24 Abhishek Rose and Sorav Bansal

the emptiness of the address-set of a local region. Together, these predicate shapes (along with

affine and ineq relations between sp.𝑝 𝑗

¥𝐴) enable disambiguation between stack writes involving

spilled pseudo-registers and stack-allocated locals.

The predicate shapes listed below the dividing line segment in fig. 7 encode the global invariants
that hold by construction (due to our execution semantics) at every non-error product-graph node

𝑛𝑋 . gfySz , vrdcSz , and gfyIntvl together encode the fact that the ghost variables associated with

a region 𝑟 ∈ 𝐺 ∪ 𝐹 ∪ 𝑌 track its bounds, size, and that the address set of 𝑟 is an interval. Empty

encodes that the ghost variable em.𝑟 for 𝑟 ∈ 𝐺 ∪ 𝐹 ∪ 𝑌 ∪ 𝑍 tracks the emptiness of the region 𝑟 .

zlIntvl captures the property that a local variable region 𝑧𝑙 , if non-empty, must be an interval of

size lstSz.𝑧𝑙 . zaBd captures a weaker property for a local region 𝑧𝑎 (allocated using alloca()):
if non-empty, this region must be bounded by its ghost variables and the region must be at least

lstSz.𝑧𝑎 bytes large. StkBd encodes the invariant that the interval [esp, stk𝑒] represents the union
of the address sets of 𝑠𝑡𝑘 , regions in 𝑌 , and stack-allocated local regions (Σ𝑍¥𝐴 \ (Σ

𝑍𝑙

¥𝐴 |
𝑣)); 𝑐𝑠Bd is

similarly shaped and encodes that the interval [stk𝑒 + 1, cs𝑒] represents the union of the address

sets of regions 𝑐𝑠 and 𝑐𝑙 . NoOverlap𝐶 encodes the disjointedness of all regions 𝑟 ∈ 𝐵. NoOverlap𝐴

encodes the disjointedness of all regions in ¥𝐴 except virtually-allocated regions. Finally, ROM𝐶 and

ROM𝐴 encode the preservation of memory contents of read-only regions in 𝐶 and ¥𝐴.
A dataflow analysis [Andersen 1994] computes the possible states of 𝛽 () and 𝛽𝑀 () maps at each

𝑛𝐶 ∈ N𝐶 , and the over-approximate solution is added to 𝜙𝑛𝑋 for each 𝑛𝑋 = (_, 𝑛𝐶).

4.2 SMT Encoding
At a non-error node 𝑛𝑋 , a proof obligation is represented as a first-order logic predicate over

the state elements at 𝑛𝑋 and discharged using an SMT solver. The machine states of 𝐶 and ¥𝐴
are represented using bitvectors (for a register/variable), arrays (for memory), and uninterpreted

functions (for read #‰𝜏 (Ω𝑃) and io(Ω𝑃 ,
#‰𝑣 , rw)). For address sets, we encode the set-membership

predicate 𝛼 ∈ Σ𝑟
𝑃
for an arbitrary address 𝛼 , region identifier 𝑟 , and procedure 𝑃 ∈ {𝐶, ¥𝐴}. All other

address set operations can be expressed in terms of the set-membership predicate. To simplify the

encodings, we rely on the correct-by-construction invariants in fig. 7 and assume that 𝜙𝑛𝑋 satisfies

the (Equivalence), (MAC), and (MemEq) requirements. Notice that (Equivalence) implies AllocEq .

Recall that for 𝑧 ∈ 𝑍𝑙 , at a node 𝑛𝑋 ∈ N𝑋 , Σ
𝑧
¥𝐴 |
𝑠
and Σ𝑧¥𝐴 |

𝑣
represent the address sets corresponding

to the stack and virtual allocations performed in ¥𝐴 for 𝑧. Let 𝑍𝑙𝑠 = {𝑧 | 𝑧 ∈ 𝑍𝑙 ∧ Σ𝑧¥𝐴 |
𝑠 ≠ ∅} and

𝑍𝑙𝑣 = {𝑧 | 𝑧 ∈ 𝑍𝑙 ∧ Σ𝑧¥𝐴 |
𝑣 ≠ ∅} represent the set of stack-allocated locals and virtually-allocated

at 𝑛𝑋 respectively. Recall that we restrict ourselves to only those compiler transformations that

ensure the validity of 𝑍𝑙𝑠 ∩ 𝑍𝑙𝑣 = ∅ at each 𝑛𝑋 (section 2.4.3).

4.2.1 Representing address-sets using allocation state array. Let L𝑃 : i32 → 𝑅 be an allocation
state array that maps an address to a region identifier in procedure 𝑃 . For 𝑟 ∉ 𝑍𝑙𝑣 , 𝛼 ∈ Σ𝑟

𝑃
is

encoded as sel1 (L𝑃 , 𝛼) = 𝑟 . Allocation of an address 𝛼 to region 𝑟 (Σ𝑟
𝑃
B Σ𝑟

𝑃
∪ {𝛼}) is encoded as

L𝑃 B st1 (L𝑃 , 𝛼, 𝑟). Similarly, deallocation (Σ𝑟
𝑃
B Σ𝑟

𝑃
\ {𝛼}) is encoded as L𝑃 B st1 (L𝑃 , 𝛼, free).

For 𝑧𝑙𝑣 ∈ 𝑍𝑙𝑣 , both 𝛼 ∈ Σ𝑧𝑙𝑣
𝐶

and 𝛼 ∈ Σ𝑧𝑙𝑣¥𝐴 are encoded as sel1 (L𝐶 , 𝛼) = 𝑧𝑙𝑣 , i.e., the set-

membership encodings for both procedures use L𝐶 for virtually-allocated locals (by relying on

the AllocEq invariant at 𝑛𝑋). In other words, L ¥𝐴 is not used to track the virtually-allocated locals;

instead, an address belonging to a virtually allocated-region maps to one of {free, 𝑠𝑡𝑘, 𝑐𝑠} ∪ 𝐹

regions in L ¥𝐴. Consequently, the (de)allocation instructions Σ𝑧𝑙𝑣¥𝐴 |
𝑣 B Σ𝑧𝑙𝑣¥𝐴 |

𝑣 ∪ [𝑣]𝑤 and Σ𝑧𝑙𝑣¥𝐴 |
𝑣 B ∅

are vacuous in ¥𝐴, i.e., they do not change any state element in ¥𝐴 (fig. 6).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

Modeling Dynamic (De)Allocations of Local Memory for Translation Validation 146:25

𝛼 ∈ Σ𝑟
𝑃

Full-array encoding

Partial-interval encoding (Σ𝑍𝑎
𝑃

≠ ∅) Full-interval encoding (Σ𝑍𝑎
𝑃

= ∅)
𝑃 = 𝐶 𝑃 = 𝐴

𝑟 = ℎ𝑝 𝛼 ∉ (Σ𝐺∪𝐹¥𝐴 ∪ 𝑍𝑙𝑣𝑈 (𝜉 ¥𝐴) ∪ [𝑆𝑃𝑚𝑖𝑛 (𝜉 ¥𝐴), cs𝑒])
𝑟 = 𝑐𝑙 sel1 (L𝐶 , 𝛼) = 𝑟 𝛼 ∈ [stk𝑒 + 1, cs𝑒] ∧ 𝛼 ∉ 𝑍𝑙𝑣𝑈 (𝜉 ¥𝐴)
𝑟 ∈ 𝐺 ∪ 𝑍𝑙𝑣
𝑟 ∈ 𝑌 ∪𝑍𝑎∪𝑍𝑙𝑠 ¬ em.𝑟 ∧ (lb.𝑟 ≤𝑢 𝛼 ≤𝑢 ub.𝑟)
𝑟 ∈ 𝐹
𝑟 = 𝑐𝑠 false 𝛼 ∈ [stk𝑒 + 1, cs𝑒] ∧ 𝛼 ∈ 𝑍𝑙𝑣𝑈 (𝜉 ¥𝐴)
𝑟 = 𝑠𝑡𝑘 sel1 (L ¥𝐴, 𝛼) = 𝑟 𝛼 ∈ [𝑆𝑃𝑚𝑖𝑛 (𝜉 ¥𝐴), stk𝑒] ∧

∧
𝑟∈𝑌∪𝑍𝑙𝑠 (𝛼 ∉ Σ𝑟¥𝐴)

Table 2. SMT encoding of 𝛼 ∈ Σ𝑟
𝑃
for Dynamo’s proof obligation 𝑂 with outgoing assembly path 𝜉 ¥𝐴 .

This encoding, based on allocation state arrays L𝐶 and L ¥𝐴, is called the full-array encod-
ing. The second and third columns of table 2 describe the full-array encoding for 𝑃 = 𝐶 and

𝑃 = ¥𝐴. In the table, we use AllocEq to replace sel1 (L ¥𝐴, 𝛼) with sel1 (L𝐶 , 𝛼) for 𝑟 ∈ 𝐵. For

example, in the full-array encoding, the (MemEq) requirement 𝑀𝐶 =
Σ𝐵¥𝐴\(Σ

𝑍𝑙
¥𝐴 |

𝑣) 𝑀 ¥𝐴 becomes

∀𝛼 : ((sel1 (L𝐶 , 𝛼) ∈ 𝐺 ∪ {ℎ𝑝, 𝑐𝑙} ∪ 𝑌 ∪ 𝑍𝑙𝑠 ∪ 𝑍𝑎) ⇒ (sel1 (𝑀𝐶 , 𝛼) = sel1 (𝑀 ¥𝐴, 𝛼))).

4.2.2 Interval encodings for 𝑟 ∈ 𝐺 ∪ 𝐹 ∪ 𝑌 ∪ 𝑍𝑙 ∪ {𝑠𝑡𝑘}. We use gfyIntvl , zlIntvl , and AllocEq

invariants for a more efficient interval encoding: for 𝑟 ∈ 𝐺 ∪ 𝐹 ∪ 𝑌 ∪ 𝑍𝑙 , we encode 𝛼 ∈ Σ𝑟
𝑃
as

¬ em.𝑟 ∧ (lb.𝑟 ≤𝑢 𝛼 ≤𝑢 ub.𝑟). Moreover, if there are no local variables allocated due to the alloca()

operator (i.e., Σ𝑍𝑎

𝑃
= ∅), then all local variables are contiguous, and so, due to StkBd , the 𝑠𝑡𝑘 region

can be identified as [esp, stk𝑒] \ Σ𝑌∪𝑍𝑙𝑠¥𝐴 — the corresponding interval encoding is shown in the

right-most cell of 𝑟 = 𝑠𝑡𝑘 row in table 2.

4.2.3 Interval encodings for 𝑟 ∈ {ℎ𝑝, 𝑐𝑙, 𝑐𝑠}. Even though ℎ𝑝, 𝑐𝑙, 𝑐𝑠 can be discontiguous regions

in general, we over-approximate these regions to their contiguous covers to be able to soundly

encode them using intervals. At a node 𝑛𝑋 = (𝑛 ¥𝐴, 𝑛𝐶), Dynamo may generate a proof obligation 𝑂

of the form {𝑝𝑟𝑒}(𝜉 ¥𝐴; [𝜉𝐶]
𝑒𝑋
D𝑋
){𝑝𝑜𝑠𝑡} — recall that path-cover and path-infeasibility conditions are

also represented as Hoare triples with 𝜉𝐶 = 𝜖 . If 𝜉 ¥𝐴 is an I/O path, its execution interacts with the

outside world, and so an over-approximation of an externally-visible address set is unsound. We

thus restrict our attention to an I/O-free 𝜉 ¥𝐴 for interval encoding.

Let 𝑛1¥𝐴, 𝑛
2

¥𝐴, . . . , 𝑛
𝑚
¥𝐴 be the nodes on path 𝜉 ¥𝐴 = (𝑛 ¥𝐴 ↠ 𝑛𝑡¥𝐴), such that 𝑛1¥𝐴 = 𝑛 ¥𝐴 and 𝑛𝑚¥𝐴 = 𝑛𝑡¥𝐴. Let

𝑆𝑃𝑚𝑖𝑛 (𝜉 ¥𝐴) represent the the minimum value of esp observed at any node 𝑛
𝑗

¥𝐴 (1 ≤ 𝑗 ≤ 𝑚) visited

during the execution of path 𝜉 ¥𝐴. Similarly, let 𝑍𝑙𝑣𝑈 (𝜉 ¥𝐴) be the union of the values of set Σ𝑍𝑙𝑣¥𝐴
observed at any 𝑛

𝑗

¥𝐴 (1 ≤ 𝑗 ≤ 𝑚) visited during 𝜉 ¥𝐴’s execution.

Let𝐻𝑃 (𝜉 ¥𝐴) = comp(Σ𝐺∪𝐹¥𝐴 ∪𝑍𝑙𝑣𝑈 (𝜉 ¥𝐴)∪ [𝑆𝑃𝑚𝑖𝑛 (𝜉 ¥𝐴), cs𝑒]),𝐶𝐿(𝜉 ¥𝐴) = [stk𝑒 +1i32 , cs𝑒] \𝑍𝑙𝑣𝑈 (𝜉 ¥𝐴),
and 𝐶𝑆 (𝜉 ¥𝐴) = [stk𝑒 + 1i32 , cs𝑒] ∩ 𝑍𝑙𝑣𝑈 (𝜉 ¥𝐴).

Theorem 4.1. Let 𝑂 = {𝑝𝑟𝑒}(𝜉 ¥𝐴; [𝜉𝐶]
𝑒𝑋
D𝑋
){𝑝𝑜𝑠𝑡} be a proof obligation generated by Dynamo. Let

𝑂 ′ be obtained from𝑂 by strengthening precondition 𝑝𝑟𝑒 to 𝑝𝑟𝑒 ′ = (𝑝𝑟𝑒 ∧ ((Σℎ𝑝¥𝐴 = 𝐻𝑃 (𝜉 ¥𝐴)) ∧ (Σ𝑐𝑙¥𝐴 =

𝐶𝐿(𝜉 ¥𝐴)) ∧ (Σ𝑐𝑠¥𝐴 = 𝐶𝑆 (𝜉 ¥𝐴))). If 𝜉 ¥𝐴 is I/O-free, 𝑂 ⇔ 𝑂 ′ holds.

Proof sketch. 𝑂 ⇒ 𝑂 ′ is trivial. The proof for 𝑂 ′⇒ 𝑂 , available in [Rose and Bansal 2024b],

relies on the limited shapes of predicates that may appear in 𝑝𝑟𝑒 , 𝑝𝑜𝑠𝑡 — for I/O-free 𝜉 ¥𝐴, these
shapes are limited by our invariant grammar (fig. 7), and the edge conditions appearing in our

execution semantics (figs. 3 to 6). The proof holds only if the safety-relaxed semantics are used. □

Using theorem 4.1, we rewrite 𝛼 ∈ Σ
ℎ𝑝

𝑃
to 𝛼 ∈ 𝐻𝑃 (𝜉 ¥𝐴), 𝛼 ∈ Σ𝑐𝑙

𝑃
to 𝛼 ∈ 𝐶𝐿(𝜉 ¥𝐴), and 𝛼 ∈ Σ𝑐𝑠

𝑃
to

𝛼 ∈ 𝐶𝑆 (𝜉 ¥𝐴) in proof obligation𝑂 . As shown in table 2, if Σ𝑍𝑎

𝑃
= ∅ holds at𝑛𝑋 , we encode all non-free

regions using intervals (called full-interval encoding); else, we encode regions in𝑌 ∪𝑍𝑎∪𝑍𝑙𝑠∪{𝑠𝑡𝑘}

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

146:26 Abhishek Rose and Sorav Bansal

Name Programming pattern

ats Address-taken local scalar int ats() { int ret; foo(&ret); return ret; }

atc Address taken conditionally int atc(int* p) { int x; if (!p) p = &x; foo(p); return *p }

ata Local array int ata() { char ret[8]; foo(ret); return bar(ret, 0, 16); }

vwl Variadic procedure int vwl(int n, ...) { va_list a; va_start(a, n); for(...){ va_arg(a,int) ... } }

as GCC alloca() int as(int n){...int* p=alloca(n*sizeof(n)); for(...){/*write to p*/}...}

vsl VLA with loop int vsl(int n){... int v[n]; for(...){/*write to v*/}...}

vcu VLA conditional use int vcu(int n,int k){ int a[n]; if (...) { /*rd/wr to a*/}...}

min minprintf procedure from K&R [Kernighan and Ritchie 1988]

ac alloca() conditional use int ac(char*a) {..if (!a) a=alloca(n); for(...)/*r/w to a*/}

all

alloca() in a loop
to form a linked list

all(){..hd=NULL; for(...){..n=alloca(..);..n->nxt=hd; hd=n;}
while(...){/* traverse the list starting at hd */}}

atail Local array alloc. in loop int atail(..){..for(..){ char a[4096]; f(a..); b(a..);...}...}

vil𝑁 𝑁 VLA(s) in a loop int vil𝑁 (..){..for(i=1;i<n;++i){ int v1[4*i], ... v𝑁 [4*i]; foo𝑁 (...); ..}.. }

vilcc VLA in loop with continue int vilcc(..){..while(i<n){ char v[i];...if(..) continue;..}..}

fib Program from fig. 1

vilce VLA in loop with break int vilce(..){..while(i<n){ char v[i];...if(..) break;..}..}

rod A local char array initialized using string; a VLA; a for loop Available in [Rose and Bansal 2024b].

Table 3. Benchmarks and their programming patterns. 𝑁 in vil𝑁 is substituted to obtain vil1, vil2, and
vil3. Program listings available in [Rose and Bansal 2024b].

using an allocation state array, and𝐺 ∪ 𝐹 ∪ 𝑍𝑙𝑣 ∪ {ℎ𝑝, 𝑐𝑙, 𝑐𝑠} using intervals (called partial-interval
encoding).

5 EXPERIMENTS
Dynamo uses four SMT solvers running in parallel for discharging proof obligations: z3-4.8.7,
z3-4.8.14, Yices2-45e38fc, and cvc4-1.7. Unless otherwise specified, we use 𝜇 = 64, a timeout

of ten minutes for an SMT query, and a timeout of eight hours for a refinement check.

Before checking refinement, if the address of a local variable 𝑙 is never taken in𝐶 , we transform𝐶

to register-allocate 𝑙 (LLVM’s mem2reg). This reduces the proof effort, at the cost of having to trust

the pseudo-register allocation logic. mem2reg does not register-allocate local arrays and structs

in LLVM𝑑 , even though an optimizing compiler may register-allocate them in assembly — virtual

allocations help validate such translations.

We first evaluate the efficacy of our implementation to handle the diverse programming patterns

seen with local allocations (table 3). These include variadic procedures, VLAs allocated in loops,

alloca() in loops, etc. Figure 8a shows the results of our experiments for these 18 programming

patterns from table 3 and three compilers, namely Clang/LLVM v12.0.0, GCC v8.4.0, and ICC

v2021.8.0, to generate 32-bit x86 executables at -O3 optimization with inter-procedural analyses

disabled using the compilers’ command-line flags. The X-axis lists the benchmarks and the Y-

axis represents the total time taken in seconds (log scale) for a refinement check — to study the

performance implications, we run a check with all three encodings for these benchmarks. The filled

and empty bars represent the time taken with full-interval and partial-interval SMT encodings

respectively. The figure does not show the results for the full-array encoding. A missing bar

represents a failure to compute the proof. Of 54 procedure pairs, our implementation is able to

check refinement for 45, 43, and 37 pairs while using full-interval, partial-interval, and full-array

encodings respectively. For benchmarks where a refinement check succeeds for all encodings, the

full-interval encoding performs 1.7-2.2x and 3.5-4.9x faster on average (for each compiler) than

the partial-interval and full-array encodings respectively. The reasons for nine failures are: (a)

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

Modeling Dynamic (De)Allocations of Local Memory for Translation Validation 146:27

ats atc ata vw
l
min vcuata

il vsl as all vilc
c fib vil1vilc

e ac vil2 vil3 rod
100

101

102

103

104

EQ
 ti

m
e

in
 se

cs

CLANG
GCC
ICC

(a) Comparison of running times with full- (filled
bars) and partial- (empty bars) interval encoding.

s12
2
s25

1
s12

21s12
1
s00

0vp
v
s11

2
s45

3
s11

12s24
3
s22

44s12
7vtvs17

3
vp

vts
vp

vp
v

s12
81
s12

51
vp

vtvs45
2
vtv

tv
s13

51
vd

otr
100

101

102

103

EQ
 ti

m
e

in
 se

cs

with locals
with globals

(b) Comparison of running times of benchmarks with
exactly same code modulo allocation.

Fig. 8. Experiments with procedures in table 3 and TSVC. Y-axis is logarithmically scaled.

Name SLOC ALOC #𝑎𝑙 #𝑙𝑜𝑜𝑝 #𝑓 𝑐𝑎𝑙𝑙 D eqT Nodes Edges EXP BT #𝑞 Avg. qT

generateMTFValues 76 144 1 6 1 2 4k 14 30 60 16 3860 0.56

recvDecodingTables 70 199 2 14 10 3 3k 38 66 102 15 5611 0.21

undoReversible-
Transformation_fast

116 221 1 7 6 2 2k 21 34 43 6 2998 0.23

Table 4. Statistics obtained by running Dynamo on procedures in the bzip2 program.

limitation of the blackbox annotation algorithm for one procedure-pair; (b) incompleteness of

invariant inference for six procedure-pairs (e.g., requirement of non-affine invariants, choice of

program variables); and (c) SMT solver timeouts for two procedure-pairs. vilcc and vilce require

multiple dealloc𝑠 instructions to be added to 𝐴 for a single dealloc in 𝐶 . An alloc𝑣 annotation
is required for the ‘va_list a’ variable in the GCC and ICC compilations of vwl (see table 3) —
while GCC and ICC register-allocate a, it is allocated in memory using alloc in LLVM𝑑 (even after

mem2reg). The average number of best-first search backtrackings across all benchmarks is 2.8. The

time spent in constructing the correct product graph forms around 70-80% of the total search time.

We next evaluate Dynamo on the TSVC suite of vectorization benchmarks with arrays and loops

[Maleki et al. 2011], also used in previous work [Churchill et al. 2019; Gupta et al. 2020]. We use two

versions of these benchmarks: (1) ‘globals’ where global variables are used for storing the output

array values, and (2) ‘locals’ where local array variables are used for storing the output values

and a procedure call is added at the end of the procedure body to print the contents of the local

array variables. The compiler performs the same vectorizing transformations on both versions.

Unlike globals, locals additionally requires the automatic identification of required annotations.

Figure 8b shows the execution times of Dynamo for validating the compilations produced

by Clang/LLVM v12.0.0 (at -O3) for these two versions of the TSVC benchmarks. Dynamo can

successfully validate these compilations. Compared to globals, refinement checks are 2.5x slower

for locals (on average) due to the extra overhead of identifying the required annotations.

Our third experiment is on SPEC CPU2000’s bzip2[Henning 2000] program compiled using

Clang/LLVM v12.0.0 at three optimization levels: O1, O2, and O1-. O1- is a custom optimization

level configured by us that enables all optimizations at O1 except (a) merging of multiple procedure

calls on different paths into a single call, (b) early-CSE (common subexpression elimination), (c)

loop-invariant code motion at both LLVM IR and Machine IR, (d) dead-argument elimination,

(e) inter-procedural sparse conditional constant propagation, and (f) dead-code elimination of

procedure calls. bzip2 runs 2% slower with O1- than with O1; this is still 5% faster than the

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

146:28 Abhishek Rose and Sorav Bansal

executable produced by CompCert, for example. Of all 72 procedures in bzip2, Dynamo successfully

validates the translations for 64, 60, and 54 procedures at O1-, O1, and O2 respectively at 𝜇 = 1. At

O1-, Dynamo takes around four CPU hours to compute refinement proofs for the 64 procedures.

Dynamo times out for the remaining eight procedures, all of which are bigger than 190 ALOC.

Three of bzip2’s procedures for which refinement proofs are successfully computed at both

O1- and O1 contain at least one local array, and table 4 presents statistics for the O1- validation

experiments for these procedures. For each procedure, we show the number of source lines of

code in 𝐶 (SLOC), the number of assembly instructions in 𝐴 (ALOC), the number of local variables

(#𝑎𝑙), the number of loops (#𝑙𝑜𝑜𝑝), the number of procedure calls (#𝑓 𝑐𝑎𝑙𝑙), and the maximum loop

nest depth (D). The eqT column shows the validation times (in seconds). The Nodes and Edges

columns show the number of nodes and edges in the final product graph, and BT and EXP is the
number of backtrackings and the number of (partial) candidate product graphs explored by Dynamo

respectively. #𝑞 is the total number of SMT queries discharged, and Avg. qT is the average time

taken by an SMT query in seconds for the refinement check.

In a separate experiment, we split the large procedures in bzip2 into smaller procedures, so

that Dynamo successfully validates the O1- compilation of the full modified bzip2 program: the

splitting disables some compiler transformations and also reduces the correlation search space.

Through our experiments, we uncovered and reported a bug in recent versions of z3, including
z3-4.8.14 and z3-4.12.5, where for an input satisfiability query Ψ, the SMT solver returns an

unsound model (counterexample) that evaluates Ψ to false [z3b 2024]. When a modern SMT solver

is used to validate compilations produced by a mature compiler, a bug may be found on either side.

6 RELATEDWORK AND CONCLUSIONS
CoVaC [Zaks and Pnueli 2008] automatically identifies a product program that demonstrates

observable equivalence for deterministic programs. Counter [Gupta et al. 2020] extends CoVaC to

support path-specializing transformations, such as loop unrolling, through counterexample-guided

search heuristics. We extend these prior works to support refinement between programs performing

dynamic allocations with non-deterministic addresses for local variables and stack.

Recent work on bounded TV [Lee et al. 2021] models allocations through separate blocks, so
a pointer is represented as a combination of a block-ID and an offset into a block. While this

suffices for the bounded TV setting, our problem setting requires a more general representation of

a dynamically-allocated variable (e.g., allocation-site) and a more general SMT encoding.

CompCert provides axiomatic semantics for memory (de)allocation in the source Clight program,

and proves their preservation along the compilation pipeline [Leroy and Blazy 2008]. They restrict

their proof method to CompCert’s preallocation strategy for local variables, possibly to avoid

the manual effort required to write mechanized proofs for a more general allocation strategy.

Preallocation of local variables has also been used in prior work on TV for a verified OS kernel

[Sewell et al. 2013]. Preallocation can be space inefficient and cannot support VLAs and alloca().
Further, TV for a third-party compiler cannot assume a particular allocation strategy.

We provide a semantic model, refinement definition, and an algorithm to determine the correct-

ness of a third-party translation from an unoptimized high-level representation of a C program

to an optimized assembly program in the presence of dynamically-allocated local memory. Our

semantic model and definition of refinement require that for allocations and procedure calls that

reuse stack space, their relative order is preserved in both programs. While our experiments show

that this suffices in practice, a more general definition of refinement, that admits transformations

that may reorder (de)allocations while reusing stack space, is perhaps a good candidate for future

work.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

Modeling Dynamic (De)Allocations of Local Memory for Translation Validation 146:29

DATA-AVAILABILITY STATEMENT
The Dynamo tool that supports section 5 is available on Zenodo [Rose and Bansal 2024a] with

instructions for complete reproducibility of the presented results.

ACKNOWLEDGMENTS
We thank Shubhani Gupta for contributing towards scalability improvements of the translation

validation tool. We thank Abhishek Dang for carefully reading previous drafts of the paper, and

pointing out several errors, and making important suggestions that improved the paper significantly.

REFERENCES
2024. Z3 bug report for an unsound model. https://github.com/Z3Prover/z3/issues/7132.

Lars Ole Andersen. 1994. Program Analysis and Specialization for the C Programming Language. Technical Report.
Berkeley Churchill, Oded Padon, Rahul Sharma, and Alex Aiken. 2019. Semantic Program Alignment for Equivalence

Checking. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation
(Phoenix, AZ, USA) (PLDI 2019). ACM, New York, NY, USA, 1027–1040. https://doi.org/10.1145/3314221.3314596

Shubhani Gupta, Abhishek Rose, and Sorav Bansal. 2020. Counterexample-Guided Correlation Algorithm for Translation

Validation. Proc. ACM Program. Lang. 4, OOPSLA, Article 221 (Nov. 2020), 29 pages. https://doi.org/10.1145/3428289

John L. Henning. 2000. SPEC CPU2000: Measuring CPU performance in the new millenium. IEEE Computer 33, 7 (July
2000), 28–35.

Jeehoon Kang, Yoonseung Kim, Youngju Song, Juneyoung Lee, Sanghoon Park, Mark Dongyeon Shin, Yonghyun Kim,

Sungkeun Cho, Joonwon Choi, Chung-Kil Hur, and Kwangkeun Yi. 2018. Crellvm: Verified Credible Compilation for

LLVM. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation
(Philadelphia, PA, USA) (PLDI 2018). ACM, New York, NY, USA, 631–645. https://doi.org/10.1145/3192366.3192377

Theodoros Kasampalis, Daejun Park, Zhengyao Lin, Vikram S. Adve, and Grigore Roşu. 2021. Language-Parametric Compiler

Validation with Application to LLVM. In Proceedings of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (Virtual, USA) (ASPLOS 2021). Association for Computing Machinery,

New York, NY, USA, 1004–1019.

Brian W. Kernighan and Dennis M. Ritchie. 1988. The C Programming Language (2nd ed.). Prentice Hall Professional

Technical Reference.

Juneyoung Lee, Dongjoo Kim, Chung-Kil Hur, and Nuno P. Lopes. 2021. An SMT Encoding of LLVM’s Memory Model for

Bounded Translation Validation. In Computer Aided Verification, Alexandra Silva and K. Rustan M. Leino (Eds.). Springer

International Publishing, Cham, 752–776.

Xavier Leroy. 2006. Formal certification of a compiler back-end, or: programming a compiler with a proof assistant. In

33rd ACM symposium on Principles of Programming Languages. ACM Press, 42–54. http://gallium.inria.fr/~xleroy/publi/

compiler-certif.pdf

Xavier Leroy and Sandrine Blazy. 2008. Formal Verification of a C-like Memory Model and Its Uses for Verifying Program

Transformations. J. Autom. Reason. 41, 1 (2008), 1–31. https://doi.org/10.1007/s10817-008-9099-0

Nuno P. Lopes, Juneyoung Lee, Chung-Kil Hur, Zhengyang Liu, and John Regehr. 2021. Alive2: Bounded Translation

Validation for LLVM. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design
and Implementation (Virtual, Canada) (PLDI 2021). Association for Computing Machinery, New York, NY, USA, 65–79.

https://doi.org/10.1145/3453483.3454030

Saeed Maleki, Yaoqing Gao, Maria J. Garzarán, Tommy Wong, and David A. Padua. 2011. An Evaluation of Vectorizing

Compilers. In Proceedings of the 2011 International Conference on Parallel Architectures and Compilation Techniques (PACT
’11). IEEE Computer Society, Washington, DC, USA, 372–382. https://doi.org/10.1109/PACT.2011.68

David Menendez, Santosh Nagarakatte, and Aarti Gupta. 2016. Alive-FP: Automated Verification of Floating Point Based

Peephole Optimizations in LLVM. 317–337. https://doi.org/10.1007/978-3-662-53413-7_16

KedarS. Namjoshi and LenoreD. Zuck. 2013. Witnessing Program Transformations. In Static Analysis, Francesco Logozzo

and Manuel Fähndrich (Eds.). Lecture Notes in Computer Science, Vol. 7935. Springer Berlin Heidelberg, 304–323.

https://doi.org/10.1007/978-3-642-38856-9_17

George C. Necula. 2000. Translation Validation for an Optimizing Compiler. In Proceedings of the ACM SIGPLAN 2000
Conference on Programming Language Design and Implementation (Vancouver, British Columbia, Canada) (PLDI ’00).
ACM, New York, NY, USA, 83–94. https://doi.org/10.1145/349299.349314

Abhishek Rose and Sorav Bansal. 2024a. Artifact for paper "Modeling Dynamic (De)Allocations of Local Memory for Translation
Validation". https://doi.org/10.5281/zenodo.10797459

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

https://github.com/Z3Prover/z3/issues/7132
https://doi.org/10.1145/3314221.3314596
https://doi.org/10.1145/3428289
https://doi.org/10.1145/3192366.3192377
http://gallium.inria.fr/~xleroy/publi/compiler-certif.pdf
http://gallium.inria.fr/~xleroy/publi/compiler-certif.pdf
https://doi.org/10.1007/s10817-008-9099-0
https://doi.org/10.1145/3453483.3454030
https://doi.org/10.1109/PACT.2011.68
https://doi.org/10.1007/978-3-662-53413-7_16
https://doi.org/10.1007/978-3-642-38856-9_17
https://doi.org/10.1145/349299.349314
https://doi.org/10.5281/zenodo.10797459

146:30 Abhishek Rose and Sorav Bansal

Abhishek Rose and Sorav Bansal. 2024b. Modeling Dynamic (De)Allocations of Local Memory for Translation Validation.
Technical Report. IIT Delhi. https://arxiv.org/abs/2403.05302

Thomas Arthur Leck Sewell, Magnus O. Myreen, and Gerwin Klein. 2013. Translation Validation for a Verified OS

Kernel. In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation
(Seattle, Washington, USA) (PLDI ’13). Association for Computing Machinery, New York, NY, USA, 471–482. https:

//doi.org/10.1145/2491956.2462183

Rahul Sharma, Eric Schkufza, Berkeley Churchill, and Alex Aiken. 2013. Data-driven Equivalence Checking. In Proceedings
of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages & Applications
(Indianapolis, Indiana, USA) (OOPSLA ’13). ACM, New York, NY, USA, 391–406. https://doi.org/10.1145/2509136.2509509

Bjarne Steensgaard. 1996. Points-to analysis in almost linear time. In Proceedings of the 23rd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages. 32–41.

Michael Stepp, Ross Tate, and Sorin Lerner. 2011. Equality-based Translation Validator for LLVM. In Proceedings of the 23rd
International Conference on Computer Aided Verification (Snowbird, UT) (CAV’11). Springer-Verlag, Berlin, Heidelberg,
737–742. http://dl.acm.org/citation.cfm?id=2032305.2032364

Jean-Baptiste Tristan, Paul Govereau, and Greg Morrisett. 2011. Evaluating Value-graph Translation Validation for LLVM.

In Proceedings of the 32Nd ACM SIGPLAN Conference on Programming Language Design and Implementation (San Jose,

California, USA) (PLDI ’11). ACM, New York, NY, USA, 295–305. https://doi.org/10.1145/1993498.1993533

Anna Zaks and Amir Pnueli. 2008. CoVaC: Compiler Validation by Program Analysis of the Cross-Product. In Proceedings
of the 15th International Symposium on Formal Methods (Turku, Finland) (FM ’08). Springer-Verlag, Berlin, Heidelberg,
35–51. https://doi.org/10.1007/978-3-540-68237-0_5

Jianzhou Zhao, Santosh Nagarakatte, Milo M.K. Martin, and Steve Zdancewic. 2012. Formalizing the LLVM Intermediate

Representation for Verified Program Transformations. In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages (Philadelphia, PA, USA) (POPL ’12). ACM, New York, NY, USA, 427–440.

https://doi.org/10.1145/2103656.2103709

Jianzhou Zhao, Santosh Nagarakatte, Milo M.K. Martin, and Steve Zdancewic. 2013. Formal Verification of SSA-based

Optimizations for LLVM. In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and
Implementation (Seattle, Washington, USA) (PLDI ’13). ACM, New York, NY, USA, 175–186. https://doi.org/10.1145/

2491956.2462164

Received 21-OCT-2023; accepted 2024-02-24

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

https://arxiv.org/abs/2403.05302
https://doi.org/10.1145/2491956.2462183
https://doi.org/10.1145/2491956.2462183
https://doi.org/10.1145/2509136.2509509
http://dl.acm.org/citation.cfm?id=2032305.2032364
https://doi.org/10.1145/1993498.1993533
https://doi.org/10.1007/978-3-540-68237-0_5
https://doi.org/10.1145/2103656.2103709
https://doi.org/10.1145/2491956.2462164
https://doi.org/10.1145/2491956.2462164

	Abstract
	1 Introduction
	2 Execution Semantics and Notion of Correct Translation
	2.1 Intermediate and Assembly Representations
	2.2 Transition Graph Representation
	2.3 Translations of C and A to their Graph Representations
	2.4 Observable traces and Refinement Definition

	3 Witnessing refinement through a determinized cross-product C
	3.1 Determinized product graph as a transition graph
	3.2 Analysis of the determinized product graph

	4 Automatic construction of a cross-product
	4.1 Invariant Inference
	4.2 SMT Encoding

	5 Experiments
	6 Related work and conclusions
	Acknowledgments
	References

