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Abstract

Rapid evolution of graphics processing units (GPUs) into general purpose

computing devices has made them vital to high performance computing clus-

ters. These computing environments consist of multiple nodes connected by

a high speed network such as Infiniband, with each node comprising several

multi-core processors and several many-core accelerators. The difficulty of

programming hybrid CPU-GPU clusters often limits software’s exploitation

of full computational power. This thesis addresses this difficulty and presents

Unicorn – a novel parallel programming model for hybrid CPU-GPU clus-

ters and the design and implementation of its runtime.

In particular, this thesis proves that efficient distributed shared memory style

programing is possible. We also prove that the simplicity of shared memory

style programming can be retained across CPUs and GPUs in a cluster,

minus the frustration of dealing with race conditions. And this can be done

with a unified abstraction, avoiding much of the complication of dealing

with hybrid architectures. This is achieved with the help of transactional

semantics, deferred bulk data synchronization, subtask pipelining and various

communication and computation scheduling optimizations.

Unicorn provides a bulk synchronous programming model with a global ad-

dress space. It schedules concurrent tasks of a program in an architecture

and topology oblivious manner. It hides the network and exposes CPUs and

accelerators loosely as bulk synchronous computing units with logical phases,

respectively, of local computation and communication. Each task is further

decomposed into coarse-grained concurrently executable subtasks that Uni-

corn schedules transparently on to available CPU and GPU devices in the

cluster. Subtasks employ transactional memory semantics to access and syn-

chronize data, i.e., they check out a private view of the global shared memory
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before their local computation phase and check in to the global shared mem-

ory afterwards, optionally resolving conflicting writes in a reduction step.

Unicorn’s main design goals are easy programmability and a deterministic

parallel execution environment. Device, node and cluster management are

completely handled by the runtime and no such API is exposed to the appli-

cation programmer. Load balancing, scheduling and scalability are also fully

transparent to the application code. Application programs do not change

from cluster to cluster to maintain efficiency. Rather, Unicorn adapts the

execution to the set of present devices, the network and their dynamic load.

Application code is oblivious to data placement within the cluster as well as

to changes in network interfaces and data availability pattern. Unicorn’s pro-

gramming model, being deterministic, eliminates data races and deadlocks.

To provide efficiency, Unicorn’s runtime employs several optimizations. These

include prefetching task data and pipelining subtasks in order to overlap their

communication with computations. Unicorn employs pipelining at two levels

– firstly to hide data transfer costs among cluster nodes and secondly to hide

DMA communication costs between CPUs and GPUs on all nodes. Among

other optimizations, Unicorn’s work-stealing based scheduler employs a two-

level victim selection technique to reduce the overhead of steal operations.

Further, it employs special proactive and aggressive stealing mechanism to

prevent the said pipelines from stalling (during a steal operation). To prevent

a subtask (running on a slow device or on a device behind a slow network or

I/O link) from becoming a bottleneck for the entire task, Unicorn reassesses

its scheduling decisions at runtime and schedules a duplicate instance of a

straggling subtask on a potentially faster device. Unicorn also employs a

software LRU cache at every GPU in the cluster to prevent the shared data

between subtasks getting DMA’ed more than once. To further boost GPU

performance, Unicorn makes aggressive use of CUDA streams and schedules

multiple subtasks for simultaneous execution.

To evaluate the design and implementation of Unicorn, we parallelize several

coarse-grained scientific workloads using Unicorn. We study the scalability
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and performance of these benchmarks and also the response of Unicorn’s run-

time by putting it under stress tests like changing the input data availability

of these experiments. We also study the load balancing achieved in these

experiments and the amount of time the runtime spends in communications.

We find that parallelization of coarse-grained applications like matrix mul-

tiplication or 2D FFT using our system requires only about 30 lines of C

code to set up the runtime. The rest of the application code is regular single

CPU/GPU implementation. This indicates the ease of extending sequential

code to a parallel environment. The execution is efficient as well. Using

GPUs only, when multiplying two square matrices of size 65536∗65536, Uni-

corn achieves a peak performance of 7.81 TFlop/s when run over 28 Tesla

M2070 GPUs (1.03 TFlop/s theoretical peak) of our 14-node cluster (with

subtasks of size 4096 ∗ 4096). On the other hand, CUPLAPACK [28], a lin-

ear algebra package specifically coded and optimized from scratch, reports 8

TFlop/s while multiplying two square matrices of size 62000∗62000 using 32

Quadro FX 5800 GPUs (0.624 TFlop/s theoretical peak) of a 16 node cluster

connected via QDR InfiniBand.

Fine-grained applications, however, may not fit into our system as efficiently.

Such applications often require frequent communication of small data. This

is inherently against our bulk synchronous design and more advanced opti-

mizations may be needed to make these applications profitable.



4



Contents

1 Introduction 1

1.1 Application Model . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Global Address Space . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Reducing Steal Overhead . . . . . . . . . . . . . . . . . 7

1.3.2 Handling CPU-GPU Performance Disparity . . . . . . 7

1.4 Performance Optimizations . . . . . . . . . . . . . . . . . . . . 9

1.4.1 Data Transfer Optimizations . . . . . . . . . . . . . . . 10

1.4.1.1 Locality Aware Scheduling . . . . . . . . . . . 10

1.4.1.2 Pipelining . . . . . . . . . . . . . . . . . . . . 11

1.4.1.3 Grouping Communications . . . . . . . . . . . 11

1.4.1.4 Software GPU Caches . . . . . . . . . . . . . 12

1.4.2 Scheduling Optimizations . . . . . . . . . . . . . . . . 12

1.4.3 Address Space Optimizations . . . . . . . . . . . . . . 13

1.5 High Level Abstractions . . . . . . . . . . . . . . . . . . . . . 13

1.6 Epilogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Programming Model 17

2.1 Data Subscriptions and Lazy Memory . . . . . . . . . . . . . . 23



6 CONTENTS

3 Runtime System 25

3.1 Device and Node Management . . . . . . . . . . . . . . . . . . 25

3.1.1 Runtime Internals . . . . . . . . . . . . . . . . . . . . . 27

3.1.2 List of Threads . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Shared Address Spaces . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Network Subsystem . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Pipelining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Scheduling Subsystem . . . . . . . . . . . . . . . . . . . . . . 45

3.5.1 Work Stealing in Unicorn . . . . . . . . . . . . . . . . 46

3.5.1.1 ProSteal . . . . . . . . . . . . . . . . . . . . . 49

3.5.1.2 Locality-aware Scheduling . . . . . . . . . . . 52

3.5.1.2.1 Greedy Scheduling . . . . . . . . . 54

3.5.1.2.2 Locality-aware work stealing . . . 55

3.5.2 Work-Group Calibration . . . . . . . . . . . . . . . . . 55

3.5.3 Multi-Assign . . . . . . . . . . . . . . . . . . . . . . . 57

3.5.3.1 Subtask Cancellation . . . . . . . . . . . . . . 58

3.5.4 Scheduling Across Task Barriers . . . . . . . . . . . . . 59

3.5.5 Scheduling Concurrent Tasks . . . . . . . . . . . . . . 60

3.6 Software GPU Cache . . . . . . . . . . . . . . . . . . . . . . . 60

3.7 Conflict Resolution . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Pseudo Code Samples 65



CONTENTS 7

5 Experimental Evaluation 75

5.1 Unicorn Parallelization of Benchmarks . . . . . . . . . . . . . 78

5.1.1 Characteristics of Benchmarks . . . . . . . . . . . . . . 81

5.2 Performance Scaling . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.1 CPU versus GPU versus CPU+GPU . . . . . . . . . . 85

5.2.2 PageRank . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3.1 Work Stealing . . . . . . . . . . . . . . . . . . . . . . . 90

5.3.1.1 One-level vs. Two-level . . . . . . . . . . . . 91

5.3.1.2 ProSteal . . . . . . . . . . . . . . . . . . . . . 94

5.3.2 Locality-aware Scheduling . . . . . . . . . . . . . . . . 94

5.4 Load Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.5 Stress Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.5.1 Heterogeneous Subtasks . . . . . . . . . . . . . . . . . 103

5.5.2 Input Data Distributions . . . . . . . . . . . . . . . . . 103

5.5.3 Varying Subtask Size . . . . . . . . . . . . . . . . . . . 104

5.6 Unicorn Optimizations . . . . . . . . . . . . . . . . . . . . . . 105

5.6.1 Multi-Assign . . . . . . . . . . . . . . . . . . . . . . . 106

5.6.2 Pipelining . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.6.3 Software cache for GPUs . . . . . . . . . . . . . . . . . 109

5.6.4 Data Compression . . . . . . . . . . . . . . . . . . . . 110



8 CONTENTS

5.7 Overhead Analysis . . . . . . . . . . . . . . . . . . . . . . . . 111

5.7.1 Varying CPU cores . . . . . . . . . . . . . . . . . . . . 112

5.7.2 Unicorn Time versus Application Time . . . . . . . . . 114

5.7.3 Data Transfer Frequency . . . . . . . . . . . . . . . . . 115

5.8 Unicorn versus others . . . . . . . . . . . . . . . . . . . . . . . 116

6 Application Profiling 119

7 Public API 125

8 Related Work 145

9 Conclusions and Future Work 151

Bibliography 153

Appendix 163

10.1 Unicorn’s MapReduce Extension . . . . . . . . . . . . . . . . . 163

10.2 Scratch Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . 164

10.3 Matrix Multiplication Source Code . . . . . . . . . . . . . . . 165

Unicorn Publications 175

Biography 177



List of Illustrations

Figures

2.1 Application program in Unicorn . . . . . . . . . . . . . . . . . 18

2.2 Mapping a BSP superstep to a Unicorn task . . . . . . . . . . 19

2.3 Execution Stages of a Subtask . . . . . . . . . . . . . . . . . . 20

2.4 Hierarchical Reduction - leaf nodes are subtasks, others are

reduced subtasks; dotted lines are inter-node data transfer . . 21

3.1 The design of the Unicorn runtime – Light orange region rep-

resents the instance of the runtime on each node in the cluster 27

3.2 Address Space Ownerships – PD represents Address Space

Ownership Directory, TD represents Temporary Ownership

Directory, x represents non-existent directory, red text repre-

sents changes from last state and cells in light blue background

represent directory changes via explicit ownership update mes-

sages; Node 1 is the address space master node. . . . . . . . . 37

3.3 Loss in victim’s pipeline due to work stealing . . . . . . . . . . 50

5.1 Characteristics of various benchmarks . . . . . . . . . . . . . . 82

5.2 Performance analysis of various benchmarks . . . . . . . . . . 83

5.3 Scaling with increasing problem size . . . . . . . . . . . . . . . 85

5.4 Image Convolution – GPU vs. CPU+GPU . . . . . . . . . . . 86



10 CONTENTS

5.5 Matrix Multiplication – GPU vs. CPU+GPU . . . . . . . . . 86

5.6 2D FFT – GPU vs. CPU+GPU . . . . . . . . . . . . . . . . . 87

5.7 Experiments with matrices of size 32768×32768 (lower is better) 88

5.8 Page Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.9 Centralized scheduling versus Unicorn – 14 nodes . . . . . . . 90

5.10 One-level versus two-level work stealing . . . . . . . . . . . . . 92

5.11 Work Stealing – with and without ProSteal . . . . . . . . . . . 93

5.12 Locality aware scheduling . . . . . . . . . . . . . . . . . . . . 96

5.13 Locality aware scheduling (Contd.) . . . . . . . . . . . . . . . 97

5.14 Image Convolution: Locality aware work-stealing (Derived Affin-

ity) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.15 Matrix Multiplication: Locality aware work-stealing (Derived

Affinity) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.16 Load Balancing (Image Convolution) – W denotes a CPU work

group and G denotes a GPU device – Block random data dis-

tribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.17 Load Balancing (Page Rank) – W denotes a CPU work group

and G denotes a GPU device . . . . . . . . . . . . . . . . . . . 102

5.18 Load Balancing (Matrix Multiplication) – 32768× 32768 ma-

trices – Centralized data distribution . . . . . . . . . . . . . . 102

5.19 Load Balancing (Heterogeneous Subtasks) – W denotes a CPU

work group and G denotes a GPU device . . . . . . . . . . . . 103

5.20 Impact of initial data distribution pattern . . . . . . . . . . . 104



CONTENTS 11

5.21 Subtask size (N ×N) – experiments executed on 14 nodes . . 105

5.22 Multi-Assign (no external load) . . . . . . . . . . . . . . . . . 106

5.23 Multi-assign under external load (Image Convolution) – 4 nodes106

5.24 Pipelining (Image Convolution) . . . . . . . . . . . . . . . . . 108

5.25 Matrix Multiplication – GPU Cache Eviction Strategies . . . . 109

5.26 PageRank data compression (250 million web pages) . . . . . 111

5.27 Varying CPU cores used in subtask computation . . . . . . . . 112

5.28 Matrix Multiplication – Varying CPU core affinity . . . . . . . 113

5.29 Library time versus application time . . . . . . . . . . . . . . 114

5.30 Data Transfer Frequency . . . . . . . . . . . . . . . . . . . . . 115

5.31 Unicorn versus StarPU . . . . . . . . . . . . . . . . . . . . . . 117

5.32 Unicorn versus SUMMA . . . . . . . . . . . . . . . . . . . . . 117

6.1 Sample Unicorn Logs (part 1) . . . . . . . . . . . . . . . . . . 119

6.2 Sample Unicorn Logs (part 2) . . . . . . . . . . . . . . . . . . 120

6.3 Sample Unicorn Logs (part 3) . . . . . . . . . . . . . . . . . . 121

6.4 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.5 Load Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.6 Compute Communication Overlap . . . . . . . . . . . . . . . . 124

6.7 Event Timeline . . . . . . . . . . . . . . . . . . . . . . . . . . 124



Codes

4.1 Unicorn program for square matrix multiplication . . . . . . . 66

4.2 Unicorn callbacks for square matrix multiplication . . . . . . . 68

4.3 Unicorn program for 2D-FFT . . . . . . . . . . . . . . . . . . 70

4.4 Unicorn callbacks for 2D-FFT . . . . . . . . . . . . . . . . . . 72

7.1 Unicorn Header: pmPublicDefinitions.h . . . . . . . . . . . . . 125

7.2 Unicorn Header: pmPublicUtilities.h . . . . . . . . . . . . . . 142

10.1 File matmul.h . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

10.2 File matmul.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . 166

10.3 File matmul.cu . . . . . . . . . . . . . . . . . . . . . . . . . . 172



Chapter 1

Introduction

High performance computing environments consist of multiple nodes con-

nected by a network. Each node may comprise multi-core processors (CPUs)

and possibly many-core accelerators like graphics processing units (GPUs).

Attractive performance per-$ and per-watt of such accelerators have rendered

them mainstream in scientific and other domains. Nonetheless, writing effi-

cient programs employing both CPUs and GPUs across a network remains

challenging.

Traditionally, two major parallel programming paradigms have been pro-

posed – the first is a shared memory approach while the second is based

upon message passing. Shared memory programming [19] is considered in-

tuitive and familiar, but it quickly becomes inefficient as the shared memory

gets distributed (DSM) across a network [45, 3, 49, 52]. This is because DSM

systems generally employ complex memory consistency protocols (often re-

quiring application specific knowledge) resulting in high coherence overheads.

On the other hand, message passing alternatives like MPI [36] generally re-

quire transfer of not only data but also some control and program state in-

formation. With a large number of small data transfers, the latency quickly

becomes a bottleneck. Also, maintaining the additional baggage of control

and state information complicates MPI programs.

Our system uses the best of these two worlds by exposing a DSM style model
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to the programmer but behind the scenes employs shared memory (within

a node) and message passing (across nodes) for data transfers. Deferred

data exchanges in bulk amortize message passing overheads. Bulk synchro-

nization also eliminates race conditions and provides determinism, signifi-

cantly simplifying programming effort. Our work concludes that efficiency

can indeed be achieved with bulk-synchronous distributed shared memory.

In particular, we demonstrate that the traditional inefficiency of the shared

memory approach can be offset by hiding communication latency behind

coarse-grained computation and batching communication using ideas from

transactional memory: the application operates on local views of the global

shared memory and inter-view conflict is resolved lazily.

GPUs are discrete off-chip devices with exclusive memory and user must of-

ten explicitly copy the data from the host CPU. Once data is copied to the

device, the GPU works independently and after finishing the computation,

the user synchronizes the results back into the host memory. The explicit

placement and retrieval of data in GPU memory and the SIMD execution

of thousands of hardware threads in lock-step makes GPU programming a

lot more complex than traditional CPU programming. As such, it is desir-

able not to further complicate this when designing programming models for

GPU clusters. Our choice of abstracting the simplicity of distributed shared

memory style programming is a step in that direction.

Our programming model is based on the theoretical Bulk Synchronous Par-

allel computing model (BSP) [57] and thus complete. This thesis belies the

conventional wisdom that BSP is only a bridging model and too inefficient to

act as a real programming model. The thesis shows that with balanced load
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and other well targetted optimizations, coarse-grained parallel applications

can indeed be efficient in this model on a CPU/GPU cluster. A motivating

factor for choosing BSP is that the GPU architecture is the most efficient

with bulk-synchronous computation. Extending this bulk-synchronization

allows application programs to naturally generalize from one GPU to multi-

ple and from one node to a cluster of GPU nodes. Our system extends this

generalization to CPU cores as well, which are also individually viewed as

bulk synchronous devices. This uniformity allows us to simplify application

programs and much of the complexity in parallelism management, load distri-

bution, communication and scalability remains confined within the runtime.

As a result, most application programmers are left to deal only with the core

logic of the application. We now introduce the important components of our

programming environment.

1.1 Application Model

The application in our framework consists of a set of interdependent tasks

and can be thought of logically as BSP super-steps. It may create address

spaces (section 1.2) as well as pass them from task to task. Tasks may also

hierarchically spawn other tasks. A task is ready to be scheduled at the

completion of all tasks it depends on. The task hierarchy is abstract and

a program-time decision. It is independent of the cluster topology and is

dynamically mapped to and executed on any given cluster by our runtime.

A task may request any number of concurrent work-sharing subtasks, which is

a data-parallel work-sharing construct of a task, and is individually scheduled

by our runtime on any available CPU or GPU in the cluster. Each subtask
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executes an application-provided “kernel function,” which must determine

its share of work based on its subtask id and any task-wide parameters.

Unicorn schedules subtasks on devices (CPU or GPU), in a load-balanced

manner while also accounting for the location of their data.

Unlike many other distributed programming models (section 8), we do not

expect our applications to provide a dependency graph comprising all schedu-

lable entities (subtasks in our case). Rather, Unicorn based applications

specify dependencies only among tasks. These dependencies are implicit and

inferred by Unicorn from associated address spaces and their specified usage

(read-only, write-only, read-write). Subtasks of a task are concurrent with

no inter-dependencies. This has two advantages. First, it is natural to think

of an application as a graph of tasks (as opposed to a graph of subtasks).

Second, this reduces the size and processing time of dependency graph and

lets us perform several optimizations among subtasks. These optimizations

include out-of-order subtask execution, arbitrary grouping of subtasks, freely

migrating subtasks across cluster nodes, etc.

1.2 Global Address Space

Our runtime supports allocation of global shared memory regions called ad-

dress spaces. Usually a task’s input and output are stored here. While an

address space is logically shared, it may be physically distributed across mul-

tiple machines and devices by our runtime. The task registers callbacks to

indicate input data distribution and access patterns, the subtask logic and

the logic to combine, i.e., reduce, subtask-local output into the shared space.
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The subtask code operates only on its local copy of the data. Its memory

writes are visible only to its dependent tasks, implying that any computation

requiring this output must either be in the same subtask or in a subsequent

task. We have chosen to omit any ‘flush’ or global read/write primitive and

the address space is updated only at the end of each task. The nature of

programming simplifies significantly because of that choice. We demonstrate

later that this style of programming is still efficient and powerful enough for

many coarse-grained scientific applications.

Our address spaces are inspired by the idea of transactional memory. Each

subtask logically checks-out its local view from global shared address space

and after operating on it, the subtask checks-in its private view back to the

shared address space. These private views with deferred synchronization

lead to sequential consistency trivially. This also avoids several data haz-

ards and deadlocks among subtasks, which again simplifies the application

code. Thirdly, this helps Unicorn perform a special scheduling optimization,

called multi-assign (section 3.5.3), where several independent instances of a

straggling subtask are started in the cluster. Because of the transactional

design of our address spaces all private views of one but all subtasks get

trivially discarded. Finally, the transactional design of our address spaces

helps minimize coherence messages in the cluster (section 3.2).

1.3 Scheduling

In our model, the number of subtasks of a task are known at the time the

task is submitted, but their workload is not. Scheduling these subtasks across



6 Introduction

the cluster with balanced load is an important ingredient to scalable compu-

tation. Broadly, two dynamic load balancing strategies have been proposed

in the past – Push and Pull. In the former, overloaded computing devices

send work to others while in the latter, underloaded devices ask for work

from others. Push schemes are generally used for small centralized systems

as they do not scale well on larger ones. For de-centralized systems, Pull

schemes offer better scalability and fault tolerance. Work stealing is one

of the most effective examples of Pull based dynamic load balancing and

has been employed in many language and library based systems like Mul-T

[46], Cilk [14], OpenMP [19], Intel’s Thread Building Blocks (TBB) [56] and

Microsoft’s Parallel Patterns Library (PPL) [16].

Although work stealing (with random victim selection) has proven to be

quite effective in several parallel systems, it poses several challenges in our

context of hybrid CPU-GPU clusters. First, care is needed to limit the

overhead of stealing. This is particularly true in the context of task pipelines,

where a given subtask flows through many stages like input preparation stage,

data fetch stage, execution stage, etc. Sometimes it is useful to steal a

subtask before a computing device exhausts its pipeline, but it is also more

complicated. Secondly, the effectiveness of work-stealing tends to reduce as

the heterogeneity and computational disparity between devices grows. CPUs

allow threads to be scheduled on a single core, but GPUs do not allow per-core

scheduling and kernels can occupy the entire GPU. Subtasks large enough

to effectively use the GPU can be too slow on the CPU. Shorter ones may

improve CPU performance, but GPUs remain under-utilized. This disparity

between CPUs and GPUs poses scheduling challenges.
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1.3.1 Reducing Steal Overhead

Unicorn uses two techniques to limit the overhead of stealing. First, it em-

ploys a steal-agent per node in the cluster. Due to shared memory usage,

the agent is able to easily monitor local load and track the ability of each lo-

cal device to service an incoming steal request. This guided victim selection

helps making more targeted steal requests, thereby reducing the number of

unsuccessful steal attempts in the cluster. The selection of a victim node for

a steal request remains random.

Secondly, Unicorn employs a proactive stealing technique called ProSteal.

When a device runs out of work (i.e., subtasks), its task pipeline stalls. It can

no longer overlap communication of subtasks with computation of others. It

needs to prime its task pipeline afresh after it steals a new subtask. Unicorn

prevents this performance loss in the system by stealing early (especially

for GPU devices) with one or more subtasks still pending with the device.

The exact number of subtasks pending with a device at the time of steal is

computed dynamically based on the device’s rate of subtask execution and

the observed latency to prime the pipeline after a stall (section 3.5.1.1).

1.3.2 Handling CPU-GPU Performance Disparity

Task decomposition in our system remains in user’s control. However, this

can sometimes be tedious. Unicorn simplifies application’s subtask sizing by

adjusting it to suit the current execution environment. However, choosing

sizes for heterogenous devices in the presence of high diversity is tricky.

One alternative, to address the CPU-GPU performance disparity, is to let
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the application programmer design subtasks differently for different devices.

But this would compromise abstraction and simplicity of programming. In

our framework, applications logically partition tasks and remain unaware of

where each subtask is scheduled. In any case, dynamically adapting subtask

sizes to the current execution environment can be a tedious exercise for the

application programmer.

Another alternative is to group, say, multiple CPU cores together into a

single device, but this can become complicated with a large number of device

types with diverse capabilities. Additionally, this would also compromise

the simplicity of the programming model as each kernel must execute on a

“set of devices.” This also takes away the liberty to use existing sequential

CPU functions as subtask kernels, an important design goal for us. Another

alternative is to envision a subtask as a set of work-items and schedule a

single work-item per CPU core. This is analogous to OpenCL’s [55] work-

group and work-item. This feature is implemented in our system but again

tasks may opt to disregard it in the interest of simplicity. However, in that

case all CPU cores and GPUs uniformly execute the subtasks of the same

size.

Unicorn supports diversity between devices’ computation powers by resiz-

ing subtasks at runtime. For example, CPU subtasks may be further split

into smaller ones. On a node with, say, two octa-core processors, a CPU

subtask may be decomposed into up to 16 smaller units, each scheduled on

one core. On the other hand, GPU subtasks may be logically grouped into

a bigger one, as multiple GPU subtasks can run concurrently using CUDA

[48] streams. On Fermi generation devices, it is possible to launch up to 16
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subtasks simultaneously. This example allows a skew of 1:256 in the size of

the subtasks executed on CPUs versus those executed on GPUs. Results in

section 5.5.3 show the performance improvement obtained by creating such

skew on a variety of subtasks.

In general, an application should empirically determine an appropriate sub-

task size. The goal here is not to select a subtask size that causes too many

CPU cache misses or keeps the GPU largely under utilized. Experimenting

with a small data set exclusively on one GPU and exclusively on one CPU

should help in making this decision.

1.4 Performance Optimizations

Besides the two work-stealing optimizations mentioned above, Unicorn em-

ploys several other optimizations for efficiency. Some of these performance

optimizations target scheduling while others focus on data transfers and min-

imizing control messages within the runtime. The optimizations include:

1. Data affinity based subtask scheduling to reduce data transfers within

the cluster

2. Pipelining subtask data transfers and computation in order to hide

communication latency

3. Grouping communications among a pair of nodes to reduce network

latency

4. Software cache in GPUs to boost re-use of shared read-only data among

subtasks
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5. Scheduling multiple instances of the same subtask in the cluster to

prevent stragglers

6. Spatially optimized address space accesses

7. Lazy address space coherence within the runtime to reduce manage-

ment messages

We briefly introduce the main optimizations next.

1.4.1 Data Transfer Optimizations

Some of data transfer optimizations explicitly focus on reducing the amount

of data transferred in the cluster, while others attempt to reduce the data

transfer time by hiding it behind other ongoing useful computation.

1.4.1.1 Locality Aware Scheduling

Often a coarse-grained computation is decomposed such that adjacent sub-

tasks exhibit spatial locality and access adjacent regions of input address

spaces. However, this is sometimes infeasible or it is overly complicated to

write programs in this fashion. To help such application programs, our run-

time maintains a distributed map of data resident on various nodes and uses

it to estimate the affinity of work to different nodes to guide scheduling.

Traditionally, locality-aware scheduling has mostly focussed on maximizing

reuse of resident data. This approach tends to schedule computation (or

subtasks) on nodes having the largest amount of input data resident. We,

however, observe that it is equally important to focus on minimizing the cost
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of fetching the non-resident data because significant time can be lost in fetch-

ing remote data and different devices are able to consume data at different

rates. Thus, our locality-aware scheduler takes into account the time spent

in fetching remote data and strives to minimize it.

1.4.1.2 Pipelining

To further reduce the cost of fetching remote data, Unicorn anticipates sub-

tasks a device may run in the future and fetches its data, hiding communi-

cation latency behind ongoing computation. Our scheduler makes subtask

assignments in groups. Subtasks in the group are sequentially executed start-

ing with the first one. While a device is executing the first subtask in the

assigned group, the next subtask overlaps its communication with the ongo-

ing computation of the first subtask. Similarly, the third subtask overlaps its

communication with the second subtask’s computation. This continues for

all subsequent subtasks in the group.

This mechanism is especially useful for GPUs capable of compute-communication

overlap and multiple kernel launches, where we create a pipeline of subtasks.

At any given time, one subtask may be transferring its data to the GPU, one

or more subtasks may be executing and one subtask may be copying its data

out of the GPU.

1.4.1.3 Grouping Communications

Often subtasks access data in patterns. This is especially true of regular

coarse-grained experiments where a subtask may access multiple contiguous

ranges of data with uniform separation. In such cases, our runtime detects the
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access pattern and instead of issuing multiple remote data transfer requests

for each subtask, one unified request is issued. At the remote end, the data is

packed before being sent to the requestor where it is unpacked and mapped

into the requesting subtask’s local view. This optimization helps scalability

as it prevents flooding of the network with too many small data transfer

requests. This also simplifies application programs, which do not need to

consider data and communication granularity.

1.4.1.4 Software GPU Caches

In addition to on-CPU caches of memory fetched from remote nodes, our

runtime system maintains an on-GPU software LRU cache for portions of

the address spaces currently loaded on the GPU device. This greatly helps

eliminate unnecessary data transfers when the same read-only data is re-

quested by multiple subtasks scheduled on that GPU, or in cases where data

written by a subtask is later read by another subtask of a subsequent task.

1.4.2 Scheduling Optimizations

Among the scheduling optimizations, Unicorn employs special mechanism to

prevent a few straggling subtasks from becoming a bottleneck for the entire

application. If a subtask executing on a device in the cluster takes long to

finish, while other devices have become idle, Unicorn’s scheduler may multi-

assign, i.e., assign the same subtask to multiple devices. We never migrate

away the subtask from the “slow” unit, allowing the multi-assigned units

to compete. Migration overheads are high and unnecessary: multi-assign

happens only near the end of a task. The results of the first finishing device
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are employed and the unused subtasks are aborted and their local writes are

discarded. This optimization also helps tackle situations where a subtask

straggles as a result of a slow network link or excessive load on one or more

nodes in the cluster.

1.4.3 Address Space Optimizations

Unicorn’s address spaces are specifically designed for efficient transactional

semantics and to minimize explicit cache coherence messages. We do not em-

ploy the usual MSI coherence protocol as it has the potential to generate too

many cache invalidations. The transactional semantics mean that a subtask

sees the global data at the beginning of the task, and then only its own up-

dates to that data. After the task finishes, the writes of the subtasks become

visible to subsequent tasks. Thus, we need no explicit coherence messages

during the task execution. Only at the end of the task, a few coherence

messages may be exchanged to invalidate outdated copies of data.

Address spaces are also optimized for linear and block accesses. Subtasks

needing one or more contiguous data ranges (like elements of an array) may

request for optimized linear accesses while subtasks needing one or more

uniformly separated contiguous data ranges (like sub-matrix of a bigger ma-

trix) may request for optimized block accesses. Internally, Unicorn organizes

address spaces to adapt to the kind of requested access.

1.5 High Level Abstractions

Unicorn is an extensible framework and it is possible to optimally orchestrate
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its functionality into other well known programming models like Map-Reduce

[20]. Chapter 2 describes the set of supported callbacks in Unicorn. The Sub-

task Execution callback can serve as the Map stage whereas the Data Syn-

chronization callback can be programmed to synchronize subtasks reducing

two a time. Chapter 5 evaluates this approach by implementing page-rank

[51] computation for a collection of web pages. The map stage of the ex-

periment computes contributions of PageRank for all outlinks in the web.

The reduce stage accumulates individual contributions on all inlinks for each

webpage. Results demonstrate the efficiency of Unicorn’s implementation

and its Map-Reduce suitability in general.

1.6 Epilogue

In addition to demonstrating the efficacy of the proposed system, this thesis

explores various optimization parameters. For pipelining, we explore when to

allow steal and study the impact of pipeline-flush. We explore various GPU

cache policies and the impact of application-provided hints. We study when to

multi-assign and how often the later assigned device finishes first. We analyze

the impact of variance in application controlled subtask size. We also study

the impact of changing input data availability patterns in the cluster. The

primary contributions of this work are:

1. We present a novel shared-memory based parallel programming model

that transparently maps and autonomously schedules computation on

any cluster of CPUs and GPUs in a load-balanced fashion.
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2. We develop a runtime framework supporting the proposed model and

investigate the optimizations necessary for such a framework to be prac-

tical. Our runtime (Unicorn) batches and combines data transfer for

efficient communication. It performs prefetching and pipelining allow-

ing compute-communication overlap. It also supports multi-scheduling

in response to dynamically changing load.

3. We present a concrete study of scheduling in hybrid CPU-GPU clus-

ters. Specifically, we propose ProSteal which is a proactive and aggres-

sive stealing approach that avoids GPU pipeline stalls. We also explore

locality aware scheduling for subtasks written in no particular order of

spatial locality. We also present a technique to dynamically group sub-

tasks on GPU and split subtasks among CPU cores, effectively support-

ing a large variation in subtask sizes for efficient execution on devices

of variable computing power.

The rest of the thesis is organized as follows. Chapter 2 provides more insights

into the Unicorn’s programming model. Chapter 3 describes Unicorn’s run-

time and internal implementation details at length. Chapter 4 discusses the

pseudo-code implementation of matrix multiplication and two dimensional

Fast Fourier Transform experiments in our system. Chapter 5 discusses the

parallelizations of a few scientific benchmarks on Unicorn. The chapter also

evaluates the performance of these benchmarks along with an overhead and

stress analysis of our runtime. Chapter 6 discusses Unicorn’s application

profiling tool. Chapter 7 provide a reference to Unicorn’s public header files.

Chapter 8 presents related work and chapter 9 concludes the thesis.
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Chapter 2

Programming Model

The Unicorn programming model [2] is a practical implementation of the

theoretical BSP model of parallel computation. It is designed especially to

simplify application programs for heterogenous clusters. More than other

distributed programming models and frameworks proposed (section 8), Uni-

corn limits application’s burden like task decomposition and data manage-

ment. In our model, applications neither bother about data placement in

the cluster nor do they handle how and when the data is transferred. Our

model abstracts all types of computational devices uniformly as bulk syn-

chronous devices. The model retains the simplicity of traditional distributed

shared memory (DSM) style programming and at the same time it improves

efficiency and eliminates non-determinism because the bulk synchronous se-

mantics require only deferred synchronizations and data exchanges. The

transactional address space design, along with the scheme of local views,

makes multi-assign like optimizations quite efficient. Finally, the determinis-

tic nature of our programming model omits several data hazards and dead-

locks from the application code.

An application in Unicorn is written as a graph of interdependent tasks

(Figure 2.1). Tasks communicate through and operate upon one or more

address spaces. A task is eligible to execute when all its precedent tasks

complete. While task graphs impart the generality to our model, the majority
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The Unicorn programming model

A parallel program is a graph of tasks

Task	  0

Task	  1

Task	  2

Tasks are divided into multiple 
concurrently executable subtasks

Task	  3

Data Dependency

Indian Institute of Technology DelhiFigure 2.1: Application program in Unicorn

of the efficiency and simplicity is built within a task. It is expected that tasks

are highly coarse and can be decomposed into many concurrent subtasks,

which can be executed in parallel. A task is decomposed into independent

subtasks that are scheduled and concurrently executed on various devices

in the cluster. A task is equivalent to a BSP superstep. Similar, to the

BSP model where a device operates in three phases - input phase, local

computation phase and output phase, the lifetime of a Unicorn subtask also

consists of three similar phases (Figure 2.2), each backed by an application

implemented callback. A subtask is specified by the following three callback

functions:
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The Unicorn programming model
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Figure 2.2: Mapping a BSP superstep to a Unicorn task

1. A subscription function that may explicitly specify the regions of one

or more address spaces the subtask accesses. Subtask subscriptions

may overlap. A trivial function may simply subscribe to entire shared

spaces.

2. A kernel execution function that specifies the execution logic of sub-

tasks, in SPMD fashion.

3. A data synchronization function that manages the output of subtasks

(i.e., reduction or redistribution).

Figure 2.3 shows these three stages of the subtask and the pseudo-code of

the Subscription and Execution callbacks (for matrix multiplication task) is

listed in chapter 4. The subtasks of this task do not have conflicting writes

and no explicit Data Synchronization callback is required.
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Data Subscription

Kernel Execution

Data Synchro-
nization (implicit,

reduce, redistribute)

Figure 2.3: Execution Stages of a Subtask

Note that explicitly specifying subtask subscriptions is not a requirement of

our model. However, due to a lack of virtual paging on GPUs one cannot au-

tomatically deduce this information at runtime without modifying subtask

code. Static code analysis is also not an attractive option as its scope is

limited and it restricts how kernels should be written. On CPUs, however,

automatic subscription inference is performed dynamically using POSIX’s

[32] mprotect feature to protect shared address spaces. On access by a sub-

task, that virtual page along with a few contiguous pages, is prefetched (if

necessary). With a pre-fetch of 5 pages (while multiplying two square matri-

ces with 4K elements each on an 8-node cluster with 12 CPU cores per node),

we measured this scheme to have a low overhead (10% - 15%) compared to

one with explicit subscriptions. A detailed analysis of this scheme, however,

is beyond the scope of this thesis.

A subtask may subscribe to multiple shared address spaces and multiple

discontiguous regions within each address space. This causes memory frag-

mentation and leads to poor cache performance. To alleviate this problem,

our model supports a notion of subscription views. A subtask kernel may
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use the original global addresses (natural view) or a packed remapping of

addresses so the subscribed regions appear contiguous (compact view). The

compact view can save space and also yields better memory hierarchy usage

on GPUs, where memory is scarce (and virtual paging is not available). For

both views, a private copy of the subscribed regions of shared address space

is created for each potential writer, where it accumulates writes locally. On

completion of kernel execution conflicting spaces are combined. Read-only

regions are also fetched and cached locally on nodes but are shared among

all subscribing subtasks scheduled on that node. Note that using compact

views requires the subtask kernel to be modified to use re-mapped addresses.

1”’
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3 4
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7 8

Node 1 Node 2 Node 3 Node 4

Figure 2.4: Hierarchical Reduction - leaf nodes are subtasks, others are re-
duced subtasks; dotted lines are inter-node data transfer

Although we support unified OpenCL subtask kernels for simplicity, better

performance may be achieved using specialized kernels for each architecture

type in the cluster (e.g. C++ for CPUs and CUDA for nVIDIA GPUs).

When writing specialized kernels, the programmer need not obsess about the
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memory hierarchy of devices any more than one might with standard CPU

or CUDA implementations. This means that most existing kernel implemen-

tations can be effectively used as-is and can be debugged in sequential or

single GPU setup before being used.

We allow two primitives for synchronizing the output computed by differ-

ent subtasks: reduce and redistribute. The reduce operator allows an

application-provided callback function to combine output of two subtasks;

output that have been written to the same global address. Like standard

reduction, we assume it is commutative and associative. Our runtime sched-

ules reductions of the subtasks of a task in a hierarchical manner (Figure 2.4)

greedily as subtasks complete. The runtime first reduces memory of subtasks

executed on the same node. Once a node completes its local reductions, it is

reduced with another node that also has completed its local reductions. The

runtime executes inter-node reductions in a binary-tree fashion to improve

parallelism and reduce data transfer.

Reduction semantics require the local copies of the same address to be com-

bined to produce the final (or intermediate) copies. Sometimes the output of

the subtasks simply needs to be collated or reordered, e.g., to scatter-gather.

Performing this through reduction can be inefficient. We instead provide the

redistribute operator. Using this operator, the application can associate

a rank with different regions of its output address spaces. Our runtime then

ensures that all memory regions with the same rank are inserted consecu-

tively, in the order of subtask ID. Thus the regions are ordered in shared

address space by rank and within a rank by the writing subtask ID. This

operator can also be used to demand all-to-all broadcast or scatter-gather,
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more efficiently than through individual subscription.

2.1 Data Subscriptions and Lazy Memory

We acknowledge the programming overhead in explicitly specifying data sub-

scriptions before subtasks can access it. However, this is not a requirement of

our model. Rather, limitations of virtual paging prevent automatic inference

of data subscriptions. GPUs altogether lack virtual paging while CPUs are

limited to the granularity of a virtual memory page.

On CPUs, automatic subscription inference is performed using POSIX’s [32]

mprotect feature to protect shared address spaces. On access by a subtask,

that virtual page along with a few contiguous pages, is prefetched (if nec-

essary). With a pre-fetch of 5 pages, we measured this scheme to be only

10% slower than explicit subscriptions while multiplying two square matrices

with 4K elements each on an 8-node cluster with 12 CPU cores per node. We

call this delayed on-demand loading of subscription as lazy memory. Since

the mprotect feature can not protect a partial page, there could be conflicts

in case two subtasks write to different portions of the same page. However,

there are three ways to circumvent this limitation – the first involves padding

the address spaces such that every page is exclusively used by one subtask

only, the second employs page initialization by a sentinel value and a post-

processing step to take final value from the subtask that has changed the

sentinel and the third method is to resolve the conflict by implementing a

data reduction callback, which we do.

Due to a lack of virtual paging on GPUs, one cannot employ a similar tech-
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nique to deduce subscription information at runtime. One possible alterna-

tive is force the programmer to access GPU’s global memory through some

wrapper that sets a flag (on GPU) for a polling CPU thread. The wrapper

makes the CPU thread fetch the required data and then DMA to GPU and

in the meantime the GPU kernel is made to sleep. However, this approach

is severely performance limiting. Another alternative is to infer subscription

using static code analysis of CUDA (or OpenCL or PTX assembly) code.

But we find its scope limited and it also restricts how kernels should be

written. Due to these operational limitations with GPUs and to maintain

programming uniformity, we focus this thesis on explicit data subscription by

application programs. Future improvements in GPU technology may provide

better solutions to this problem.
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Runtime System

This chapter describes the design of Unicorn’s runtime along with the moti-

vation for several design choices and trade-offs. The chapter also describes

several optimizations that enable our programming model. Unicorn’s run-

time system can be broadly decomposed into the following components. The

next few sections discuss these in more detail.

1. Device and Node Management

2. Shared Address Spaces

3. Network Subsystem

4. Pipelining

5. Scheduling

6. Software GPU Cache

7. Conflict Resolution

3.1 Device and Node Management

Unicorn consists of two major subsystems – network and scheduling. The two

comprise threads that manage cluster-wide operations like subtask scheduling
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and data exchange between nodes. The scheduling subsystem is a two-level

hierarchy of threads with “scheduler thread” employing a “compute thread”

for every device (i.e., CPU core and GPU) on the node. The scheduler

thread issues commands to all compute threads and ensures that load among

those is balanced. The network subsystem is a collection of three threads.

All these threads serve similar purpose which is transfer of control messages

and data among nodes. However, different kinds of messages are handled

by different threads. One of these threads is designed for transfer of subtask

data (and accompanying data compression, if any) while the other two handle

the remaining messages (like task creation, address space ownership update,

etc.)

All threads in Unicorn serve a private priority queue that contains the com-

mands queued for it. These priority queues are revocable and commands in

queue can be removed before execution. Prioritization is required for task

ordering and issuing prefetch requests at lower importance than regular data

fetch. Revocation is required for features like work-stealing (section 3.5.3)

where subtask cancellation needs removal of queued commands.

Our commands are carefully designed to minimize the load on these queues.

For example, one of our commands allows execution of a set of subtasks

(specified as a range of subtask IDs) in one go. Our scheduler chooses the

device and the set of subtasks that should run on it. If the device is remote,

the scheduler requests the network subsystem to deliver the command to the

concerned queue.

For inter-node communications, the commands passed to the network subsys-

tem undergo a series of optimizations minimizing the number of MPI requests
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and the volume of data transferred. These include buffering and grouping

disjoint requests into larger chunks when possible, filtering out duplicate re-

quests made by devices, and combining multiple outgoing messages to the

same node into one.

3.1.1 Runtime Internals

Controller

Profiling Manager

Communication
Manager

Device Manager

Task Manager

Scheduling Manager

Profiling and
Analysis Engine

Light Operations Threads

Heavy Operations Thread

CPU Compute Threads

GPU Compute Threads

Subtask Manager

Task Scheduler

Steal Agent

Work Stealing

Locality Aware

Memory
Module

pthreads

CUDA

OpenCL

MPI

Application

Network Subsystem Scheduling Subsystem Separate Thread

Figure 3.1: The design of the Unicorn runtime – Light orange region repre-
sents the instance of the runtime on each node in the cluster

On initialization, Unicorn starts one MPI process per node in the cluster.

This process begins by creating an instance of controller. The controller

manages the creation, destruction and lifetime of all other runtime compo-

nents. These include Profiling Manager, Communication Manager, Device

Manager, Task Manager and Scheduling Manager. The last three modules

are part of the scheduling subsystem and the Communication Manager com-

prises the network subsystem. The controller is also the interface between the
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application code and the Unicorn runtime. All application requests like cre-

ation and submission of tasks, creation and destruction of address spaces, etc.

pass through the controller. The runtime also executes user space callbacks

under the sandbox of the controller.

Once the controller initializes other runtime components, they directly talk

to each other without the controller’s involvement. All modules store diag-

nostic information with the Profiling Manager. The information collected by

the Profiling Manager on all nodes is accumulated on MPI master node at

application shutdown. This data may be dumped to stdout/stderr or may

be sent to Profiling and Analysis Engine for further processing. More infor-

mation on the kinds of analysis performed by the engine is present in chapter

6. The engine also converts the data into readily consumable graphical and

tabular formats. This information is mostly used for performance debugging

and diagnosis.

Task and subtask execution and all communication in Unicorn are carried

out asynchronously. For this reason, separate communication, scheduling

and device management components exist in the runtime. To support asyn-

chrony, these components accept commands with priority levels from other

components and execute them in dedicated threads. Being asynchronous is

also essential for optimizations like pre-fetching and for task pipelines that

overlap computation of subtasks with communication of others.

The Communication Manager carries out all inter-node communications over

MPI. All control messages (generated by the runtime) and all data trans-

fers (requested by executing subtasks) destined for remote nodes are routed

through the Communication Manager, which filters duplicate requests made
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by various subtasks and also combines multiple requests targeted for same

destination node, whenever possible. Requests that involve subtask data

transfer are classified as heavy operations and are handled by a separate

thread. All other requests are light operations and are categorized into two

types – fixed size requests and variable size requests. Fixed size requests are

the ones whose data size is pre-known and special MPI optimizations that

re-use the same data buffers repeatedly are employed. Variable size data

requests have varying lengths and buffers are not pre-allocated for those.

Rather they are handled using MPI Probe in a separate thread. Segregating

heavy and light operations also allows critical control messages in the run-

time to be transferred quickly. This indirectly helps in keeping most runtime

threads active rather than waiting on a few commands.

The Device Manager handles all CPU cores and GPUs on a node. For each

device, it creates a dedicated compute thread, each of which is backed by an

exclusive priority queue. All commands that are targeted for execution on

a device are enqueued in the corresponding priority queue. Each compute

thread has a helper Memory Module. For the CPU compute threads, the

Memory Module manages sharing of read-only address space data and cre-

ation/destruction of virtual memory for local working copies of the address

space subscriptions of the subtasks. On the other hand, the Memory Mod-

ule for the GPU compute threads employ a software LRU cache for efficient

sharing of scarce GPU memory between subtasks. It also manages the cre-

ation and destruction of pinned memory buffers used for bidirectional DMA

transfers between CPU and GPU. CPU compute threads use pthreads un-

derneath while GPU ones use the CUDA runtime. Both may optionally use
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OpenCL. We also explored using different processes (instead of threads) for

managing CPU and GPU devices. This helps sandboxing application code

but the performance implications of the approach render it impractical.

The Task Manager enqueues each task submitted by the application and

submits them for execution (to the Scheduling Manager) when all its depen-

dencies are fulfilled. This is accompanied by creation of a Subtask Manager,

Task Scheduler and Steal Agent. The Subtask Manager keeps track of the

subscriptions and data transfers of each subtask executing on the node. It

also tracks the subtask execution times, which helps estimate the relative

execution rates at different cluster devices. This also helps in determining

if a subtask is straggling and if it should be multi-assigned to some other

device. The Task Scheduler co-operates with the Subtask Manager and the

Scheduling Manager for executing a subtask and collecting its acknowledge-

ment. The Steal Agent’s role is limited to directing an incoming steal request

to the device with the highest load. The purpose of Steal Agent is to help

reduce the number of steal attempts in the cluster.

The Scheduling Manager handles scheduling of all tasks submitted by the

application. Like compute threads, the scheduling Manager has a dedicated

thread backed by an exclusive priority queue. The Task Scheduler of every

task enqueues subtasks in the Scheduling Manager’s queue and it schedules

them for local or remote devices (using the Communication Manager). When

a device finishes execution of its subtasks, an acknowledgement is sent to the

corresponding Task Scheduler through the Scheduling Managers on various

nodes communicating via their respective Communication Managers.

The default Unicorn scheduler is locality-oblivious and based upon two-level
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work stealing assisted by Steal Agents. However, a task may opt for locality

aware scheduling, in which case data locality (on cluster nodes) is incorpo-

rated into scheduling decisions. Having a different system-wide Scheduling

Manager and a Task scheduler per task allows Unicorn to employ different

scheduling policies for different tasks running at the same time. However,

the common functionality is abstracted out into the system-wide Scheduling

Manager.

The next section lists the threads created by Unicorn’s runtime on every node

in the cluster. Subsequent sections of this chapter talk about the runtime in

greater detail and also explain the functionalities and design of the Network

subsystem and the Scheduling subsystem.

3.1.2 List of Threads

Unicorn runtime creates the following threads on each node in the cluster:

1. Fixed size network operations thread

2. Variable size network operations thread

3. Heavy network operations thread

4. Scheduler thread

5. One thread per CPU core or GPU device on the node

All our threads are light-weight and we do not dedicate any CPU core to

any of these. Rather, we let the management threads co-operate with device
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threads running application code. The observed overhead of these man-

agement threads is small. For example, the image convolution experiment

(chapter 5) has a measured overhead of 0.2% of its total execution time.

3.2 Shared Address Spaces

Our runtime provides distributed shared address space to the application.

Unicorn tasks bind to one or more address spaces for input and output. This

is specified with access flags like read-only, write-only or read-write. Address

spaces can be used exclusively by tasks or they may be shared. Two examples

of address space sharing among tasks are – an output address space of a task

may serve as input to the next task, or an address space may contain constant

data serving as input to a series of tasks.

Address spaces can be thought of as an equal (and contiguous) allocation of

virtual memory on all intended nodes in the cluster. This allocation on all

nodes is equivalent and exists to provide a logical view of distributed memory.

The address spaces are distributed in the sense that generally their entire

data is not resident on any particular node in the cluster but distributed

over several nodes.

Subtasks (of tasks) operate upon the bound address spaces by means of sub-

scriptions. Read subscriptions define address space bytes required for com-

putations done by the subtask and write subscriptions define address space

bytes produced by the subtask (as output). These bytes can be a single

contiguous region of memory within the address space or these can be a set

of uniformly or randomly distributed contiguous memory regions within the
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address space. For this reason, Unicorn allows a subtask to register multiple

subscriptions with the runtime (section 2). Note that each of these subscrip-

tions can be concisely specified using the quad tuple (offset, length, step,

size). This format enables applications to specify generally used contigu-

ous, block based and strided subscriptions in a few calls, which also directly

reduces the number of subscription calls the runtime processes per subtask.

As tasks execute on address spaces and their subtask subscriptions are pro-

cessed, address spaces are logically fragmented into memory regions defined

by these subscriptions. Internally, address spaces store these logical fragmen-

tations (called data regions) in the quad tuple format (offset, length, step,

size). Each of these data regions have an associated owner node in the cluster

and this owner node notionally contains the entire data corresponding to the

data region. The mapping of data regions to corresponding owner nodes is

stored in a directory called the address space ownership directory, or simply

the directory.

An application may create any number of address spaces from any node in

the cluster. The node on which an address space is incarnated is called its

creator node. Internally, Unicorn also assigns a master node to every address

space created by the application. As explained below, the master node serves

as an intermediary to enable efficient management of the directory. Master

nodes are chosen in round robin fashion to balance the load of all address

space routing requests among all cluster nodes. The master node contains the

master copy of directory for a given address space. Other nodes using that

address space generally contain a partial map: a subset of master ownership

directory. If these other nodes require a region that exists in their partial
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map, they directly send region fetch requests to the corresponding owner.

On the other hand, if a region is not present in the partial map, they route

address space fetches through the master node. The master then consults its

ownership directory and forwards the request to the actual owner containing

the data region in question.

When an address space is created, it contains a single region. The ownership

directory on all nodes is updated to map that single region to the selected

master. As a subtask executes and commits its writes (originally in its private

view) to the address space, the node on which the subtask was executed

becomes the new owner of the data regions write-subscribed by the subtask.

(For multiple writers, the final owner is where the final reduction occurs). At

the end of a task, the new owner node records this ownership in its directory

and also sends this ownership update to the master. If the master observes a

new owner node, it updates its own map and forwards the ownership update

message to the previous owner(s), which also updates its map. All other

nodes always initialize their maps to point to the master at the end of the

task. Thus, at the beginning of a task all nodes map to themselves data

regions they own and point to master for all other data regions. The master,

however, always knows the true locations of all data regions in the address

space.

Unicorn tasks guarantee transactional semantics. This means that address

space ownership updates are reflected only at task boundaries and all sub-

tasks of a task see the same address space data during task execution. In

other words, even for an address space marked read-write, where a few sub-

tasks are updating the address space while a few are reading it, the ones that
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are reading must not see the new data but read the state at the inception of

the task. Our address spaces achieve transactional semantics by deferring the

address space ownership updates till the end of the task. Since ownerships

are not modified during task execution, all subtasks continue to refer to the

original data location until task boundary. The following sequence of steps

define our delayed ownership update semantics –

1. All nodes hold information about write subscriptions of all locally com-

mitted subtasks in a local data structure. This information is a set ’S’

of quad tuples (offset, length, step, size).

2. At the end of the task, all nodes commit ’S’ into their address space

ownership directories and also send an ownership update message to

the master node. This message also carries the set ’S’.

3. The master node commits the received set ’S’ from every other node.

While commiting, it records the data regions that have changed owners

from last time and sends them another ownership update message.

4. All non-master nodes process the ownership update message from the

master and record master as the new owner of the data regions in the

message.

Note that we maintain a separate set ’S’ for every address space master node.

In other words, if a task employs three address spaces with two having the

same master node and the third having a different master node, we maintain

two such sets, one for each master. In case all address spaces used in a task

share the same master, only one set ’S’ is maintained and transferred.
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Often, read subscriptions of subtasks (of a task) overlap. In such cases, it is

prudent that data once fetched (by a subtask) must not be re-fetched upon

request by another subtask. To accomplish this, our runtime records all data

fetched on a node in a separate address space directory. This directory is

temporary as its lifetime is bound to that of the ongoing task and is thus

called temporary ownership directory. At inception, the temporary directory

is a logical replica of the address space ownership directory on every node

and as data is fetched, it records the updates. For every read subscription

request from a subtask, the temporary directory is the one consulted and

not the main directory. This ensures that no data is transferred again during

the lifetime of the task. Note that this mechanism also conforms to the

transactional semantics guaranteed by our runtime. It further allows several

nodes to be simultaneously designated temporary owners of a data region

without the need of an explicit handshake (or ownership update message)

for data sharing.

At the end of the task, the data fetched for reading (and recorded in tempo-

rary directory) may become stale as data ownerships could have changed and

the new data owner could have written new data in that region. Thus, at

task boundaries, the temporary directories are simply discarded. However,

if a task does not write to an address space (and subscribes to it for reading

only), as an optimization its temporary directory entries are retained for the

subsequent task.

Figure 3.2 shows an address space and states of its address space ownership

directories and temporary ownership directories as it flows through two Uni-

corn tasks on a sample three node cluster. In the initial state, the address
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Figure 3.2: Address Space Ownerships – PD represents Address Space Own-
ership Directory, TD represents Temporary Ownership Directory, x repre-
sents non-existent directory, red text represents changes from last state and
cells in light blue background represent directory changes via explicit own-
ership update messages; Node 1 is the address space master node.
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space master node (Node 1) owns the entire data. All directories point to

Node 1; temporary directories are null. In state II, a task starts and the

temporary directories on all nodes are logical replicas of the corresponding

main directories. In state III, Node 2 and Node 3 fetch data from Node 1

(for task execution) and the data brought in is recorded in their temporary

directories. The task terminates in state IV and subtasks that have executed

on each of the nodes commit their updates into the corresponding directories.

Noticing a change from previous state, Node 2 and Node 3 send ownership

update messages to Node 1 ands delete the temporary entries. In state V,

another task starts and a new temporary directory is instantiated on each

node. This task executes and upon termination commits writes to directories

in state VI. Again, Node 2 and Node 3 send ownership update messages to

Node 1. Upon receiving this message for block (or data region) 3, Node 1

notices a change from previous ownership (Node 2) and accordingly sends

another ownership update message to Node 2. Note that Unicorn consoli-

dates all ownership updates to be sent from a node to another and sends a

single unified message.

To theoretically analyze the overhead of our ownership update protocol, as-

sume a task executing on an N node cluster and using K address spaces K

> N. Our master selection mechanism ensures that every node is master of

at least one address space. Lets also assume that subtasks on node j make

Wij write subscriptions for address space i. This means the total number of

write subscriptions in the cluster is equal to

M =
K∑
i=1

N∑
j=1

Wij

Updating the ownerships at the first instance would mean sending (or per-
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haps broadcasting) at least M ownership update messages in the cluster.

However, by delaying these messages to task boundaries and by sending only

one ownership update message for all address spaces having the same master

node, we significantly reduce the number of ownership update messages gen-

erated in the cluster. In this example, every node being master of at least

one address space receives N-1 ownership update messages and every master

sends out a similar number of ownership update messages (in the worst case)

to non-masters. Thus, the maximum number of ownership update messages

possible with our protocol is 2N(N-1), which is significantly fewer than M.

Recall that Unicorn subtasks are also allowed to have overlapping write sub-

scriptions. In this case, subtasks are reduced by an application defined re-

duction operator. This reduction is a commutative and associative operation

and our runtime internally decides the node which becomes the final owner

of the overlapping data region post reduction. In this case, we do not send

any explicit ownership update at task boundary. Rather all nodes (except

master and the final owner) silently reset the new owner to the master node

whereas the master node and the final node record the final node as the new

owner.

Besides transactional semantics, our address spaces are designed for effi-

ciency. Our design ensures that no explicit ownership update messages are

required during task execution. Only at the end of the task, a few such

messages may be exchanged when the ownership of any data region changes.

To further limit the number of these messages, we aggressively reduce ad-

dress space fragmentation by combining adjacent directory records whenever

possible. Specifying subscriptions using block regions, further helps in mini-
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mizing the number of directory entries. Unicorn’s runtime also ensures that

all ownership updates of an address space (at a task boundary) have finalized

before a subsequent task starts on any particular cluster node.

Our runtime implements address space ownership directory using an r-tree

[37] based map shared by all subtasks. Its key is the said quad tuple and the

value is the owner node. On a read query for a particular data region, the

corresponding quad tuple is looked up in the r-tree, which returns the set of

all overlapping quad tuples (along with their owner nodes). Each quad tuple

in this set is intersected with the data region in question and the data fetch

request of the intersecting regions is sent to the corresponding owner nodes.

If the owner node is the master node and it does not have the required data,

it re-routes the request to the node having the data, which now directly sends

data back to the requestor without involving the master node.

On the other hand, if an update needs to be recorded in the r-tree before

the new data region is inserted in it, all its overlapping quad tuples are first

deleted, the data region is subtracted from their union and the result and the

new region, both inserted. Before the insertion of any quad tuple, a query

is made on its four boundaries for the existing quad tuples. with the same

owner nodes as for the one being inserted. Any adjacent quad with the same

owner node (as the value to be inserted) is removed from the r-tree and a

unified quad is inserted.
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3.3 Network Subsystem

Most distributed systems are bottlenecked by communication. Optimally

transferring data over the network is critical for sustained performance in a

cluster computing environment. Our network subsystem is optimized for per-

formance and works closely with compute threads and address spaces, merging

duplicate and overlapping requests, reducing both request and returned data

message counts and sizes. Besides, subtask data fetch requests are treated

at high priority while the prefetch requests for subtasks anticipated to run in

future are executed at a lower priority. Our network subsystem is also capa-

ble of compressing outgoing data and loss-lessly decompressing the same at

the recipient. This is especially important for large data transfers that are

otherwise too slow.

Recall that Unicorn runtime decomposes a task into multiple concurrent

subtasks. These subtasks may share part of their input data and thus may

subscribe to overlapping regions of input address spaces. Unicorn allows

subtasks to specify subscriptions as (offset, length) pairs or using quad tuples

(offset, length, step, count). The latter form is easy to use for strided or block

subscriptions. For each subtask subscription, our network subsystem queries

the address space directory for the corresponding data location in the cluster.

The query response may point to a local data location if the data is resident

locally on the node. In case the data is not locally resident, it may already be

enroute due to an earlier request or a new request must be initiated. In either

case the memory module returns a unique handle (internally implemented

like pthread signal-wait) on which the calling compute thread can wait till
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the data arrives.

The network subsystem initiates a remote data fetch against this handle if the

request does not fully overlap with previous requests. The r-tree is again used

for overlap detection. When the remote data fetch completes, the handled is

notified and the waiting thread signaled. Note that the address space query

and handle creation happen atomically. This is done to ensure that any

other compute thread requiring the same data is returned the same handle

to wait on. In a typical scenario, a compute thread may wait on several such

handles and a handle may be waited on by several compute threads. In our

implementation, a subtask first issues all subscription requests and collects

all the remote handles it depends on and then an aggregate handle is created

which it actually waits on. The aggregate handle is unique to a compute

thread while the internal handles may be shared by several compute threads.

Handles created for remote data fetch for a subtask may be destined for one

or more nodes. Our network subsystem reduces latency of these network

requests by grouping all handles destined for the same remote node into one

underlying request on the network. The response, however, is separate for

different handles as this helps faster awakening of compute threads waiting

upon a subset of handles.

In addition to this, system latency is also reduced by piggy-backing several

control messages over other messages. For example, address space ownership

update messages (section 3.2) are often combined with subtask completion

acknowledgements. This prevents network congestion and makes way for

other high priority messages.

Unicorn tasks with conflicting writes (to output address spaces) are required
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to define a data reduction callback (chapter 2). Subtask subscriptions in such

tasks are often large and may be entire address spaces altogether. Transfer-

ring such large address spaces (for reduction) over the network is generally

detrimental to system performance. In such cases, our network subsystem

compresses the address spaces before sending them across to other nodes.

Refer to section 3.7 for more details on this.

Our network subsystem internally employs three threads – one for fixed size

transfers, the second for variable size transfers and the third for heavy opera-

tions. The need for separate thread for fixed and variable sized data transfers

arises from MPI (our network subsystem’s backbone). While the former ones

are optimized by allocating the recipient buffer (of known size) in advance

and using persistent MPI commands repeatedly, the latter ones are received

using MPI Probe and post allocation of receiving buffer. We find that a

separate thread for MPI Probe works better. An example of variable size

data transfers in our runtime are ownership transfer messages which may

have a variable number of entries every time they are sent. These threads

are typically used to handle runtime’s control messages and many other task

execution messages. Hence we need to maintain a fast throughput on receiv-

ing and handling such messages. As a result, messages which are expected

to take longer are delegated from these threads to a separate heavy opera-

tions thread. These messages include subtask memory transfers, reduction

memory transfers (and associated compression/decompression), etc.
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3.4 Pipelining

Overlapping computation with communication is critical to hiding heavy

data transfer latencies for subtasks. Data is transferred at two stages in our

runtime – the first is the transfer of data among nodes and the second is

the transfer of data from CPU to GPU. We intend to hide both these data

transfer costs by deploying subtask pipelines.

Our scheduler (section 3.5) assigns a set of subtasks to a device. These

subtasks are usually executed in the given order. Thus, while executing any

particular subtask, a device knows the next subtask it is likely to execute

(modulo steal). The device, thus, issues a communication request for the

next subtask when it starts executing any subtask. This behavior ensures

that while the devices are busy executing subtasks, the network does not

become idle and fetches data for future work.

Similarly, every GPU in the cluster is kept busy by employing a pipeline of

subtasks. The data is moved in and out of these GPUs along with the execu-

tion of one or more GPU kernels. Since data transfer to/from GPUs requires

DMA (and pinned memory), our runtime allocates and re-uses pinned buffers

for fast movement of data in and out of GPUs.

Besides pipelining, the bulk synchronous nature of our programming model

(that leads to the transactional design of our address spaces) plays a signifi-

cant role in hiding data transfer latency. The transactional design guarantees

that all subtasks (of a task) see the same input data (at any given location)

for the lifetime of the task. This enables us to use simple coherence protocol

where no address space ownership update messages are generated during task
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execution. Whatever data is pre-fetched to a node, remains valid through-

out the task, precluding the need for any further on-demand transfers for

any subtask that may need that data. This no-invalidation system helps in-

crease the percentage of time that network carries data messages (as opposed

to control messages for system correctness). The ability to have somewhat

coarse-grained tasks also helps reduce communication overhead.

3.5 Scheduling Subsystem

Unicorn’s scheduling subsystem is at the core of its performance. It is both

a proactive and reactive system. A number of optimizations are built into it

to ensure that appropriate scheduling decisions are taken in the first place.

However, device/network load as well as application characteristics are vari-

able. Our dynamic scheduler adapts to the situation efficiently. Results in

chapter 5 highlight the importance of such a dynamic scheme.

Our scheduler is work-stealing [44, 23] based and load is balanced among de-

vices by stealing unexecuted subtasks. We observe that the usual design gen-

erally suffices when devices with uniform computing capability are involved in

a computation. However, modern cluster environments have heterogeneities

in memory hierarchy and computing power of devices, network throughput

of nodes, device architecture (x86 64, Tesla, Fermi) and programming styles

(OpenCL/CUDA/C++), etc. Due to these variations, devices tend to differ

a lot in the effective throughput delivered for a particular computation. In

our experiments, we measured GPU performance higher than CPU perfor-

mance by more than an order of magnitude sometimes. In our tests, a BLAS
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[24] based sequential implementation of multiplication of two dense square

matrices with 8K elements each (on Intel Xeon X5650) was outperformed

by a CUBLAS [17] based implementation (on Tesla M2070) by a factor of

33x+. Similarly, a BLAS based block LU-Decomposition on the GPU re-

ported 10x+ speedup over the sequential implementation. This disparity is

further aggravated in a cluster environment if the data is placed near faster

GPUs while the slower CPUs are on a remote node away from the data.

Scheduling subtasks across devices of widely different capabilities presents

its own challenges. Unicorn normally uses one cluster device as a computing

unit. However, to reduce disparity, a set of slow devices (usually CPU cores)

are made one computing unit (or work-group). Equivalently, a subtask is

now envisioned as a set of work-items and a single work-item is scheduled

per CPU core. The number of devices in a computing unit are dynamically

calibrated to yield the maximum performance. This work-group calibration

is performed locally on all nodes and all CPU cores on a node participate in

the formation of work-groups.

We also extend work stealing to account for subtask pipelining and underlying

device topology. To summarize, Unicorn employs a pipeline aware work

stealing scheduler accompanied by dynamic calibration of CPU work-groups.

The next few sub-sections describe these in detail, along with a scheduling

reconsideration technique, called multi-assign, for handling stragglers.

3.5.1 Work Stealing in Unicorn

The benefit of dynamic scheduling is that it responds not only to varying sub-

task load and compute unit capacity but also to varying network throughput.
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Unicorn scheduler begins by assigning an equal number of subtasks to each

device. Once a device nears completion, it steals subtasks from another

device. We employ two-level random stealing, where a compute unit first

attempts a local steal. On failure, it requests the steal-agent on a randomly

selected remote node, which in turn attempts to steal from its local units. Al-

though one might extend shared-memory algorithms to stealing over shared

address spaces or one sided MPI communication [23], we find the overheads

too high for that. On the other hand our runtime is already based on mul-

tiple asynchronous threads on each node and it is easier to use that runtime

infrastructure for load stealing without incurring loss in compute threads.

Recall that our pipelined schedule implies that the subtasks may be

1. idle,

2. waiting for data,

3. ready for execution, or

4. executing.

Our lock-free steal algorithm allows steal from any stage from idle to ready

for execution. (Steals from stage 4 is allowed as a special case and is discussed

later in section 3.5.3). The steal-agent on each node helps accomplish this

as it maintains the count of outstanding subtasks in each stage for all local

devices on its node and also monitors their execution rates. (Since we do not

model subtask heterogeneity, we simplify by using the past rate as a predictor

for future rate.) Thus, our two-level victim selection technique proceeds as

follows for device dij on node i:
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1. In first attempt set victim v = i, otherwise, choose random victim v,

different from victims selected in this round. (Round resets when a

victim is found or no potential agents remain.)

2. Send steal request to (the steal agent of) node v. The steal request

includes the measured subtask execution rate, Rij of dij and its aggres-

sion level aij, a value in [1:3]. In our setup, we keep GPUs at maxi-

mum aggression level (i.e. 3) while the aggression of CPUs increases

with the number of consecutively failed steal attempts. Initially, CPUs

start with aggression 1 and reach the maximum level at N/2 consecu-

tive steal failures, where N is the number of nodes executing the task.

Note that all devices in the cluster record the number of steal requests

issued by them and their outcome (success or failure).

3. Agent v, selects device dvw that is expected to complete its queue the

last among all devices of node v. (i.e., the highest value of Qvw

Rvw
, where

Q stands for the length of the queue at the given device). Agent v

considers subtasks in stage k only if aij >= k.

To further reduce the number of steal attempts in the cluster, a range of

subtasks is stolen. We compare the devices’ execution rates to decide the

quantum of the final steal: Qvw × Rij

Rij+Rvw
. A task terminates when all its

device queues are empty.

In contrast, a one level stealing algorithm, where a device directly steals

from another randomly selected device, generates too many steal requests

and is not scalable. For example, if we assume N nodes and D devices per

node, and that at a time t, every device has a probability pt of having an
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empty queue. The probability of a one level random steal attempt being

successful is 1 – pt
N×D

, while that of steal from a random steal agent is
1 – pDt

N
.

Our experiments described in chapter 5 also demonstrate this improvement.

We do not see the benefit of a deeper hierarchy (e.g. multiple steal-groups on

a node [40]) due to its management overheads. However, for larger clusters it

is possible that organizing nodes into hierarchical steal-groups will be useful.

3.5.1.1 ProSteal

As described earlier, Unicorn has all devices in the cluster aggressively over-

lap their current subtask computation with data transfer of the next potential

subtask. Various subtasks incur different data transfer latencies as the data

may already be locally available for some, while others may have to fetch

from one or more remote nodes. When a device turns idle and starts a steal

operation, it suspends its pipeline as it has no subtask whose data can be

fetched. After the stolen subtask arrives, the device restarts its pipeline

by initiating the stolen subtask’s data transfer. Had this subtask not been

stolen, its communication might have overlapped another subtask’s execu-

tion at the victim, which could have potentially completed the work faster.

In addition to this, GPU stealers suffer another pipeline hazard as they lose

the opportunity to overlap bi-directional data transfers between the device

and host CPU while they steal.

Figure 3.3 shows an example of a victim’s pipeline. The first three subtasks

execute normally – the computation of the first subtask gets overlapped

with the communication of the second and the computation of the second

gets overlapped with the communication of the third. However, subtask
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Figure 3.3: Loss in victim’s pipeline due to work stealing

four and five get stolen and there is no subtask left in the compute thread’s

queue, whose communication could overlap with the computation of the third

subtask. This causes a stall and subsequent performance loss in the victim’s

pipeline. Note that the stealer has initiated the steal operation as its pipeline

has already stalled. Thus, a steal operation may cause a stall in both stealer’s

and victim’s pipelines.

Unicorn addresses this problem using a novel aggressive stealing approach,

called ProSteal where the stealer does not wait for its pipeline to exhaust.

Rather it steals with one or more subtasks still in the queue. Stealing early
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helps the stealer to overlap the stolen subtask’s communication with the

ongoing computations at its end. It is important to initiate the steal request

at the appropriate time as stealing too early may increase the number of

steal attempts and harm application performance. The optimal number of

outstanding subtasks when a device steals is computed as Rs × (Ls + Ld)

where Rs, Ls and Ld, respectively, are rate of subtask execution, steal latency

and data fetch latency of the stealer. In other words, the longer it takes

to prime the pipeline after flush, the more aggressive the stealer is. For

CPUs, which generally have a slow rate of subtask execution in comparison

to GPUs, the expression results in relatively less aggressiveness. Note that

this aggressiveness is different from the one described in section 3.5.1, where

the aggressiveness is actually a measure of desperation (and increases with the

number of consecutive steal failures) and affects the response of the requested

steal agent. On the other hand, ProSteal’s aggressiveness is a measure of

performance and determines how soon the stealer should initiate the steal

request.

A pipeline is perfect if it spends the same time in all its stages. Assuming

that our two stage pipeline (with communication being the first stage and

computation being the second stage) is perfect, we can obtain a theoretical

lower bound on the time lost in pipeline stall as Ls + Tp where Ls is the

steal latency and Tp is the time spent in any pipeline stage. However, in case

both stages are not uniform the time lost in pipeline stall will have an upper

bound of Ls + max(Ts1, Ts2) and a lower bound of Ls + min(Ts1, Ts2) where

Ts1 is the time spent in the first stage of the pipeline and Ts2 is the time spent

in the second stage of the pipeline. Using a value greater than max(Ts1, Ts2)
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for Ld may lead to stealing too early and bringing in newer subtasks with a

few already in the stealer’s pipeline. This may cause throttle and ping pong

of subtasks (as the newly brought in subtasks, being pending, may be stolen

again). On the other hand, using a value smaller than min(Ts1, Ts2) for Ld

may be too small to prevent a pipeline stall. Thus, we use the average of

both Ts1 and Ts2 as the value of Ld. This yields good performance in our

experiments.

With ProSteal, we attempt to minimize the time lost in pipeline stall when

a GPU device empties its queue. It is difficult to predict Ls, Ts1 and Ts2

values for any particular subtask. Thus, for computing these numbers, every

Unicorn device uses the running average of the subtasks it has previously

executed. Secondly, we issue steal requests at subtask boundaries and not in

the middle of the pipeline. For this reason, we multiply our expression Ls+Ld

by the rate of subtask execution Rs. [3] presents a more comprehensive

analysis of this scheme. Results show that despite our approximations to the

theoretical bound, we avert GPU pipeline stalls by 80% (when using ProSteal

versus when not using it) on an average computed over the experiments

presented in section 5.3.1.2.

3.5.1.2 Locality-aware Scheduling

To reduce data fetch bottlenecks, Unicorn requires all subtasks of a task

be implemented with one dimensional or two dimensional spatial locality.

This means that consecutive subtasks access consecutive memory locations.

However, if a Unicorn task is implemented with little or no spatial locality

among subtasks, the application programmer can enable Unicorn’s locality-
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aware scheduling. When used, our locality-aware scheduler enriches schedul-

ing decisions by maximizing the re-use of locally resident data on nodes or

by minimizing the cost of fetching non-local data.

To maximize reuse of locally resident data on nodes, we compute an affinity

score of every subtask to every cluster node and possibly schedule subtasks

on nodes with high affinity towards them. To build such an affinity table

(subtasks versus nodes), we run an internal Unicorn task that computes this

information by analyzing address space directories on all cluster nodes. We

explore affinity score based on different parameters like maximize re-use of

locally resident data, minimize cost of transferring remote data, and minimize

estimated subtask execution time.

In Unicorn, a node’s address space directory is guaranteed to contain true

locations only for addresses in its local view. For all other addresses, it

points to address space’s master node (section 3.2), which points to the true

location. Hence, a node can only compute affinity of subtasks to itself but

not to other nodes. Thus, finding affinity of all subtasks to all nodes re-

quires a distributed computation in which each node finds its own affinity

to all subtasks. Another way to accomplish this is to compute this subtask-

node affinity table centrally. But a task may use multiple address spaces.

Centralized computation would require all master node’s directories to be

consolidated: leading to computation bottleneck in addition to large data

transfer.

For these reasons, our locality-aware scheduler works with only partial affinity

information on every node [4]. We let each node only compute every subtask’s

affinity to itself. This is a much smaller list with size equal to the number
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of subtasks in one task. Only this list is centrally gathered and analyzed for

task scheduling: at one node for each task.

Unicorn’s default locality-oblivious scheduler initially computes the number

of subtasks to be assigned to devices on each node, under the premise that

all subtasks are likely to have equal load. We retain this as the first step

even for locality-aware scheduling. Starting from this number of subtasks to

be assigned to each node, we resort to a greedy approach (section 3.5.1.2.1)

to assign specific subtasks to specific nodes.

3.5.1.2.1 Greedy Scheduling

In our greedy scheduling approach, subtasks pick nodes round-robin. Each

time a subtask picks a node, the estimated completion time of that node is

incremented by a time-estimate based upon the subtask’s affinity score to

the node. Accordingly, a global task completion estimate is also updated.

Assume the computed affinity of subtask j to node v is Avj and T is a

user controlled function mapping Avj to time tvj. The estimate for node

v, Tv =
∑

tvj ∀ subtasks j assigned to node v. The estimate of the task,

T = maxTv ∀ node v. Now, ∀ subtask j:

• assign j to node v such that the increase in T is the smallest.

• if two nodes v and w lead to the same increase (or no increase), assign

v if tvj < twj and w otherwise.

We discuss various mapping functions T in section 5.3.2. [4] theoretically

evaluates the greedy assignment algorithm and proves that greedily assigning
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every work-item to a node that will complete it with the lowest resulting

execution time is O(log n) competitive, with n being the number of nodes.

3.5.1.2.2 Locality-aware work stealing

The affinity information is also used during steal attempts where the victim

agent chooses the subtasks with the highest difference in affinity towards

the stealer. The victim computes a number – call it s – of subtasks to be

sent to the stealer on the basis of their relative rates of subtask execution

(i.e., the number of subtasks executed per second before the steal operation).

The victim, then, chooses the s subtasks with the highest difference between

their affinity to the stealer versus to the victim. As an aside, the stealer’s

affinity scores are not computed by the victim. We also do no include it with

every steal request. Rather, we piggyback nodes’ affinity scores on other data

transfer. Since stealing happens near the end of the task, a stealer’s affinity

array is highly likely to reach all potential victims with negligible overhead.

Nevertheless, if the affinity scores have not reached earlier, it comes with

the request. In section 5.3.2, we report performance improvements with this

scheme as compared to Unicorn’s locality oblivious work stealer, which may

allow a subtask with entire data on the victim’s node to be stolen by a

device on some other node with potentially no data, resulting in sub-optimal

performance.

3.5.2 Work-Group Calibration

An application may opt for work-groups to be created from multiple CPU

cores (on a node) in an attempt to assign them less work than intended in
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a subtask. Otherwise, all the subtasks assigned to these cores may be stolen

by faster GPUs. In this case, a subtask is logically subdivided and multiple

work-items are created from it, with each work-item intended to run on one

CPU core of the work-group. The maximum size of work-group created for

a subtask is equal to the number of CPU cores on a node. The optimal size

of work-group (for subtasks of a task) is, however, computed using binary

search over the range [1, number of CPU cores].

Our algorithm requires at least two subtasks to bootstrap the binary search.

For the first subtask, the sizeof work-group is set to the number of CPU

cores on the node and for the second subtask the size of work-group is set

to half the number of CPU cores. Next, we compare the execution times of

both these subtasks. If the former one’s execution time is shorter, the size of

work-group for the third subtask is set to three-fourth the number of CPU

cores. On the other hand, if the latter execution time is longer, then the size

of work-group created for the third subtask is one-fourth the total number

of CPU cores. This dynamic adjustment continues until the end of the task.

This dynamic calibration ensures that changing system load is optimally

dealt with and CPU cores do not over-execute subtasks. Over-executing can

be detrimental not only to the subtasks executed by CPUs but to the ones

executed by GPUs as well. First, because several CPU cycles are required

to complete GPU’s work. In case, CPUs remain busy with other work, they

won’t be able to sufficiently keep the GPU pipeline busy by moving data

to/from pinned memory (and GPUs) and launching GPU kernels. Further,

large work on these slower cores also unnecessarily overload the memory and

network throughputs at these nodes.
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3.5.3 Multi-Assign

Work-stealing in Unicorn is non-preemptive. Hence, it is not possible to

migrate a running subtask from one node (or device) to another. If a subtask

takes a long time to finish, while other devices have become idle, Unicorn may

multi-assign that subtask, i.e., assign the same subtask to multiple devices.

At this stage, multiple instances of the same subtask may be running in the

cluster. However, the one that finishes first commits its results to the global

address space. All other running instances of the subtask are cancelled and

their output (in their private views) is discarded.

We employ a simple protocol to determine the subtask instances to be can-

celled. When a subtask is multi-assigned to a cluster device, it also memo-

rizes the device where the subtask’s original instance is running. The orig-

inal instance also records the device executing the multi-assigned instance.

Further multi-assignments are only allowed from the initial instance of the

subtask and a multi-assigned instance can not multi-assign further. Thus, at

any given time, the original instance knows where all the multi-assigned in-

stances are running and all the multi-assigned instances know the location of

the original instance. Whichever device finishes first, it informs the original

instance, which in turn sends cancellation messages to all others.

Multi-assign is implemented as a part of stealing. In particular, we allow a

subtask in ‘executing’ stage to also be stolen, while it is allowed to continue

executing. Such steals are only allowed when the steal request specifically

includes a multi-assign flag (i.e., when the stealing device is at maximum

aggression level (section 3.5.1)).
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We multi-assign only if the stealing device’s estimated completion time (based

upon its observed execution rate) is less than the victim’s remaining esti-

mated completion time. We use the remaining time for victim because it has

already executed a part of the subtask at the time of multi-assign. Thus,

the time it has already spent in execution of the subtask is subtracted from

its total estimated time. As an additional heuristic, a subtask is only multi-

assigned to a device on a different node or to a different device type on the

same node (CPU subtasks are multi-assigned to GPU and vice versa). This

reduces the chance of slow execution on the re-assigned device as well. Exper-

iments show significantly faster completion times due to multi-assignment.

This is especially useful in networked environments, where the effective data

transfer bandwidths may be variable and a device on a node with slow link

may not receive its input fast enough, delaying the entire task.

3.5.3.1 Subtask Cancellation

Post multi-assign, only the earliest completing instance of subtask is allowed

to commit its output. All others are sent cancellation messages. In our im-

plementation, subtask cancellations are done gracefully if they happen to be

executing Unicorn’s code at the time of cancellation. However, cancellation

is complicated in case subtasks are executing application code at the time of

cancellation.

We cancel a CPU subtask by performing a longjmp out of the application

code. However, this has the potential to leak resources or leave them in

an inconsistent state. For this reason, we require application kernels to be

self-confined and not access global state that requires explicit cleanup. Ap-
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plications that cannot conform to this requirement may opt to disable the

multi-assign feature.

Further, the current state of technology on GPUs does not allow clean can-

cellation of an executing kernel. The entire GPU context may be destroyed

but that has a high overhead and may also leave the GPU in an inconsistent

state temporarily. For this reason, we currently do not multi-assign GPU

subtasks in case they have copied data from CPU to GPU (and started ker-

nel execution). However, if GPU technology matures and provides a low

overhead kernel termination in future, we can enable GPU multi-assignment

freely.

3.5.4 Scheduling Across Task Barriers

The Unicorn programming model introduces a task barrier at the end of ev-

ery task. This existence of the barrier simplifies application programs and

helps programmers logically think through the parallel program’s control

flow. However, barriers do incur overhead on the overall application per-

formance, even with good load balance. To circumvent this overhead, we

maintain only a logical barrier but dilute its physical presence by allowing

subtasks (of a subsequent task) to be scheduled before the barrier imposed

by the earlier task, as soon as their dependencies are satisfied. To support

this, we pre-process subtask subscriptions of all submitted tasks and build a

subtask data dependency graph. Any subtask which has all its dependencies

satisfied can be allowed to start without waiting for the barrier. A detailed

analysis of this aggressive scheduling scheme and the types of applications

where they accrue benefit, however, is beyond the scope of this thesis.
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3.5.5 Scheduling Concurrent Tasks

The current implementation of Unicorn allows multiple simultaneous tasks

only if their subscribed address spaces are disjoint or if they are read-only.

When a task is ready for execution, all its subtasks are added to execution

queues of various compute devices. Thereafter, they are scheduled, stolen

and multi-assigned as usual. An application can also specify a priority with

a task to control its scheduling.

3.6 Software GPU Cache

Moving data between CPUs and GPUs is a relatively expensive operation.

For optimal performance, it is important to reduce the frequency and volume

of such data copies. Subtasks of a Unicorn task are allowed to have overlap-

ping subscriptions. In such situation, it is beneficial to transfer data from

CPU to GPU only once and use it for as many subtasks as possible. Simi-

larly, output produced by a Unicorn task may serve as input to a subsequent

task. In this case, data can be retained on GPUs at the end of the task in

anticipation that a subtask (of a future task) may be scheduled on the same

GPU.

Our runtime maintains an on-GPU software cache to optimize DMA transfers

to the device. The cache allows a GPU to skip a data transfer in case the data

is already resident. This scheme is suitable for both the scenarios described

above, i.e., multiple subtasks of a task share read-only data and data written

by a subtask of a task is later read by a subtask of another task. An exclusive
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instance of GPU cache is created for every GPU in the cluster.

Unicorn’s runtime supports four GPU cache eviction policies – LRU (least

recently used), MRU (most recently used), LFU (least frequently used) and

MFU (most frequently used). The eviction policies come into play when

GPU is low on global memory space and memory needs to be freed up by

evicting one or more cache entries. LRU scheme evicts the least recently used

subscription, MRU evicts the most recently used subscription, LFU evicts the

least frequently used subscription while MFU evicts the most frequently used

subscription. By default, our current implementation employs LRU cache

eviction policy. Depending upon the nature of the application, other cache

eviction policies may be requested. A study of performance implications of

these policies is presented in section 5.6.3.

Unlike hardware caches, we do not have a concept of cache lines that get

invalidated. Rather, we invalidate entire subtask subscription. A study on a

true cache implementation versus ours may provide interesting pointers for

a better cache design. But this is beyond the scope of this thesis.

3.7 Conflict Resolution

Unicorn subtasks may subscribe to overlapping regions in an address space.

The runtime treats this as a write conflict among subtasks and the application

must explicitly specify a reduction mechanism to resolve the conflict. The

output, otherwise, is not defined. Unicorn runtime provides a range of inbuilt

reduction operators which an application may use. Applications are also free

to define custom reductions.
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Unicorn treats reduction as a first-class citizen and the output of subtasks

are aggressively reduced as soon as they are ready. Thus, at any given time,

a few subtasks may be in the execution stage while a few others may be in

reduction stage. Aggressively performing reductions help in reducing overall

execution time as these are executed during the time subtasks await their

remote subscriptions to be fetched. Secondly, this reduces memory pressure

on the system. As soon as two subtasks reduce, the memory of one of these

is freed. Steal attempts are made only if there is no reduction to perform.

Note that subtasks may subscribe to an entire address space. This is the

worst case for reduction as all subtasks conflict with each other. To efficiently

perform reduction, Unicorn employs the following three optimizations:

1. Despite subscribing to entire address spaces, subtasks may only write

to a few disjoint portions of the address space. We uses POSIX’s mpro-

tect feature to determine the VM pages touched a subtask and invoke

conflict resolution on those pages only.

2. GPU kernels are by design multi-threaded. On CPUs, we use OpenMP’s

parallel for construct to speedup execution of inbuilt reduction opera-

tors.

3. Before transmitting data to remote nodes for reduction, it is compressed

by our network subsystem (section 3.3). To optimize reduction, we

also compress data before transmitting from GPUs to CPUs. Unicorn

provides a few in-built compression algorithms but applications may

also provide their own.

Chapter 5 describes the PageRank experiment implemented over Unicorn,
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where entire address spaces are subscribed. The results of the experiment

show that Unicorn achieves good scalability and reduction is performed quite

efficiently.
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Chapter 4

Pseudo Code Samples

Unicorn programs are written as a graph of tasks communicating through

address spaces. A task reads from its input address spaces and writes to

its output ones that may serve as input to one or more subsequent tasks.

During execution, subtasks of a task are required to subscribe to address

space regions they want to operate upon. Once the subscriptions are speci-

fied, Unicorn runtime optimally transfers the subscribed data to the device

where subtask is executing and creates private views for subtask’s writes to

be accumulated.

Subtasks communicate with our framework through a series of callback func-

tions - the data subscription callback defines the regions of the global shared

memory a subtask would read-from or write-to (collectively called subtask

subscription), the kernel execution callback is the actual computation logic

of the subtask written either in hardware’s native language like C/C++ for

CPUs and CUDA for GPUs, or in a high level language like OpenCL [55]

which caters to both CPUs and GPUs, and the data synchronization callback

which defines how conflicting writes from different subtasks be merged before

committing to the global shared address space.

This section presents pseudo code skeletons of two application programs: one

computes Matrix Multiplication and the other computes two dimensional

Fast Fourier Transform (2D-FFT) using our runtime. The former example
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is implemented using one Unicorn task whereas the latter one employs two

Unicorn tasks - the first one computes 1D-FFT on matrix rows while the

second one computes 1D-FFT on matrix columns.

Listing 4.1 shows the pseudo code skeleton of a Unicorn program that multi-

plies two square matrices to produce the result matrix. The matrix multiply

function takes matrix dimension and block dimension as input. The former

is the number of elements in rows/columns of the square matrices while

the latter is the number of elements in rows/columns of each subtask. For

simplicity, the code sample assumes that matrix dimension is divisible by

block dimension. Line 5 of the code registers the data subscription callback

and line 6 registers an OpenCL based subtask execution callback. This call-

back is executed on both CPU and GPU devices in the cluster. Lines 11 to

13 of the program create three address spaces - one for each matrix involved

in the computation. The output (or result) matrix is logically divided into

blocks of size block dimension ∗ block dimension. The program creates a

task and a subtask for each of these logical blocks of the output matrix (line

20). The line also creates an instance of the task configuration struct mat-

mul conf. Task configuration is generally used for small task-wide read-only

that all subtasks should see. Unicorn ensures that the configuration is auto-

matically transported to all CPU and GPU devices in the cluster. Thereafter,

lines 21 to 23 specify access modifiers for each of the three address spaces.

Both input address spaces are accessed in read-only fashion while the output

address space is write-only. Finally, line 24 submits the matrix multiplication

task to the Unicorn runtime for asynchronous execution. The program waits

for the asynchronous task to finish on line 25.
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1 struct matmul conf { s i z e t matrix dimension ,
b lock d imens ion ; } ;

2 matrix multiply ( matr ix dimension , b lock d imens ion )
3 {
4 key = ”MATMUL” ;

5 register callback ( key ,SUBSCRIPTION,
matmul subscr ipt ion ) ;

6 register callback ( key , OPENCL, ” matmul ocl ” ,
” prog . o c l ” ) ;

7 i f ( get host ( ) == 0) // Submit task from s i n g l e host
8 {
9 // c r e a t e address spaces

10 s i z e = matr ix dimens ion ∗ matr ix dimens ion ∗
s izeof ( f loat ) ;

11 input1 = malloc shared ( s i z e ) ;
12 input2 = malloc shared ( s i z e ) ;
13 output = malloc shared ( s i z e ) ;

14 i n i t i a l i z e i n p u t ( input1 ) ; // a p p l i c a t i o n code
15 i n i t i a l i z e i n p u t ( input2 ) ; // a p p l i c a t i o n code

16 // f i n d b locks per dimension ( assumes d i v i s i b i l i t y )
17 block count = matr ix dimens ion / b lock d imens ion ;

18 // c r e a t e task with one subtask f o r every block o f
the output matrix

19 subtasks = block count ∗ block count ;
20 task = create task ( key , subtasks ,

matmul conf ( matrix dimension , b lock d imens ion ) ) ;

21 bind address space ( task , input1 , READ ONLY) ;
22 bind address space ( task , input2 , READ ONLY) ;
23 bind address space ( task , output , WRITE ONLY) ;

24 submit task ( task ) ;
25 wait for task completion ( task ) ;
26 }
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27 }

Listing 4.1: Unicorn program for square matrix multiplication

Unicorn callbacks for the matrix multiplication application are shown in list-

ing 4.2. Each subtask computes its part in the result matrix. For that, it

subscribes to corresponding rows of the first input matrix and corresponding

columns of the second input matrix (lines 23-25) in the data subscription call-

back. The OpenCL kernel launch configuration is specified on line 27 and the

OpenCL callback is implemented from line 30 onwards. This callback reads

from the subtask’s subscriptions in both input matrices and computes the

subtask’s output. For higher performance, Unicorn also allows the OpenCL

subtask kernel to be substituted by two native kernels - one for CPU (in

C/C++) and the other for GPU (in CUDA).

1 matmul subscription ( task , device , subtask )
2 {
3 matmul conf∗ conf = ( matmul conf ∗) ( task . conf ) ;
4 block count = conf→matr ix dimens ion /

conf→ block d imens ion ;

5 block row = ( subtask . id / b lock count ) ;
6 block column = ( subtask . id % block count ) ;

7 matr i x row s i z e = conf→matr ix dimens ion ∗
s izeof ( f loat ) ;

8 b l o c k r o w s i z e = conf→ block d imens ion ∗
s izeof ( f loat ) ;

9 b l o c k r o w o f f s e t = block row ∗
conf→ block d imens ion ∗ matr i x row s i z e ;

10 b l o c k c o l u m n o f f s e t = block column ∗
conf→ block d imens ion ∗ s izeof ( f loat ) ;

11 b l o c k o f f s e t = b l o c k r o w o f f s e t +
b l o c k c o l u m n o f f s e t ;
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12 /∗
13 ∗ Spec i f y s u b s c r i p t i o n s
14 ∗ A block s u b s c r i p t i o n i s de f ined by o f f s e t , s i z e ,

s tep and count
15 ∗ F i r s t input matrix s u b s c r i b e s to a l l b locks in

the row block row
16 ∗ Second input matrix s u b s c r i b e s to a l l b locks in

the column block column
17 ∗ Output matrix s u b s c r i b e s to the block at row

block row and column block column
18 ∗/

19 block subscription info bs in f o0 ( b l o c k r o w o f f s e t ,
mat r ix row s i z e , mat r ix row s i z e ,
conf→ block d imens ion ) ;

20 block subscription info
bs in f o1 ( b l o ck co lumn o f f s e t , b l o ck row s i z e ,
mat r ix row s i z e , conf→matr ix dimens ion ) ;

21 block subscription info bs in f o2 ( b l o c k o f f s e t ,
b l o ck row s i z e , mat r ix row s i z e ,
conf→ block d imens ion ) ;

22 // Bind s u b s c r i p t i o n s to address spaces by index
23 subscribe ( task . id , dev i ce . id , subtask . id , 0 ,

b s i n f o0 ) ;
24 subscribe ( task . id , dev i ce . id , subtask . id , 1 ,

b s i n f o1 ) ;
25 subscribe ( task . id , dev i ce . id , subtask . id , 2 ,

b s i n f o2 ) ;

26 // OpenCL ke rne l launch c o n f i g u r a t i o n
27 set launch conf ( task . id , dev i ce . id , subtask . id ,

. . . ) ;
28 }

29 // OpenCL Kernel ( should go in to prog . o c l f i l e )
30 matmul ocl ( task , device , subtask )
31 {
32 matmul conf∗ conf = ( matmul conf ∗) ( task . conf ) ;
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33 f loat ∗ input1 = ( f loat ∗) subtask . s u b s c r i p t i o n [ 0 ] ;
34 f loat ∗ input2 = ( f loat ∗) subtask . s u b s c r i p t i o n [ 1 ] ;
35 f loat ∗ output = ( f loat ∗) subtask . s u b s c r i p t i o n [ 2 ] ;

36 . . . OpenCL Matrix M u l t i p l i c a t i o n Code . . .
37 }

Listing 4.2: Unicorn callbacks for square matrix multiplication

Listing 4.3 shows the pseudo code for 2D-FFT. The experiment firstly per-

forms a 1D-FFT along the input matrix rows (lines 22-29) and then performs

1D-FFT along the columns of the input matrix (lines 30-39). Different call-

backs are registered for both kinds of FFTs. Subscriptions for the row FFT

task are specified on lines 9-10 while the ones for the column FFT task are

registered on lines 11-12. Line 35-37 ensure that the column FFT uses the

output address space of the row FFT as its input. The input address space

of the row FFT contains the final output after execution of the column FFT

task.

1 struct complex { f loat r ea l , imag ; } ;
2 struct f f t c o n f { s i z e t rows , c o l s ; } ;

3 ROWS PER SUBTASK = 128 ;

4 // Assumes matr ix rows and m a t r i x c o l s are d i v i s i b l e
by ROWS PER SUBTASK

5 f ft 2d ( matrix rows , m a t r i x c o l s )
6 {
7 r o w f f t k e y = ”FFT ROW” ;
8 c o l f f t k e y = ”FFT COL” ;

9 register callback ( r ow f f t k ey , SUBSCRIPTION,
f f t r o w s u b s c r i p t i o n ) ;

10 register callback ( r ow f f t k ey , OPENCL,
” f f t r o w o c l ” , ” prog row . o c l ” ) ;
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11 register callback ( c o l f f t k e y , SUBSCRIPTION,
f f t c o l s u b s c r i p t i o n ) ;

12 register callback ( c o l f f t k e y , OPENCL,
” f f t c o l o c l ” , ” p r o g c o l . o c l ” ) ;

13 i f ( get host ( ) == 0) // Submit task from s i n g l e host
14 {
15 // c r e a t e address spaces
16 s i z e = matr ix rows ∗ m a t r i x c o l s ∗ s izeof ( complex ) ;
17 input = malloc shared ( s i z e ) ;
18 output = malloc shared ( s i z e ) ;

19 i n i t i a l i z e i n p u t ( input ) ; // a p p l i c a t i o n data

20 // c r e a t e task c o n f i g u r a t i o n
21 f f t c o n f f f t t a s k c o n f ( matrix rows , m a t r i x c o l s ) ;

22 /∗ Row FFT Task ∗/

23 // c r e a t e task with one subtask per row
24 nsubtasks = matr ix rows / ROWS PER SUBTASK;
25 task = create task ( r ow f f t k ey , nsubtasks ,

f f t t a s k c o n f ) ;

26 bind address space ( task , input , READ ONLY) ;
27 bind address space ( task , output , WRITE ONLY) ;

28 submit task ( task ) ;
29 wait for task completion ( task ) ;

30 /∗ Column FFT Task ∗/

31 // c r e a t e task with one subtask per column
32 nsubtasks = m a t r i x c o l s / ROWS PER SUBTASK;
33 task = create task ( c o l f f t k e y , nsubtasks ,

f f t t a s k c o n f ) ;

34 // Swap both the address spaces
35 swap( input , output ) ;

36 bind address space ( task , input , READ ONLY) ;
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37 bind address space ( task , output , WRITE ONLY) ;

38 submit task ( task ) ;
39 wait for task completion ( task ) ;
40 }
41 }

Listing 4.3: Unicorn program for 2D-FFT

Listing 4.4 describes callbacks of both 1D-FFTs. Each subtask of the row

FFT task computes 1D-FFT on a contiguous set of 128 rows while each

subtask of the column FFT task computes 1D-FFT on a contiguous set of

128 columns of the input matrix. The subscription for row FFT task is a

contiguous chunk of 128 rows (lines 4-9) while the subscription for column

FFT task is a scattered set of rows of 128 elements (lines 24-31).

1 fft row subscription ( task , device , subtask )
2 {
3 f f t c o n f ∗ conf = ( f f t c o n f ∗) ( task . conf ) ;
4 r o w s s i z e = ROWS PER SUBTASK ∗ conf→ c o l s ∗

s izeof ( complex ) ;

5 // sub s c r i b e us ing o f f s e t and length
6 subscription info s i n f o ( subtask . id ∗ row s i ze ,

r o w s s i z e ) ;

7 // sub s c r i b e to input and output memory by index
8 subscribe ( task . id , dev i ce . id , subtask . id , 0 , s i n f o ) ;
9 subscribe ( task . id , dev i ce . id , subtask . id , 1 , s i n f o ) ;

10 // OpenCL ke rne l launch c o n f i g u r a t i o n
11 set launch conf ( task . id , dev i ce . id , subtask . id ,

. . . ) ;
12 }

13 // OpenCL Kernel ( should go in to prog row . o c l f i l e )
14 f ft row ocl ( task , device , subtask )
15 {
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16 f f t c o n f ∗ conf = ( f f t c o n f ∗) ( task . conf ) ;
17 complex∗ input = ( complex ∗) subtask . s u b s c r i p t i o n [ 0 ] ;
18 complex∗ output = ( complex ∗) subtask . s u b s c r i p t i o n [ 1 ] ;

19 . . . OpenCL 1D FFT Code . . .
20 }

21 f ft col subscription ( task , device , subtask )
22 {
23 f f t c o n f ∗ conf = ( f f t c o n f ∗) ( task . conf ) ;
24 o f f s e t = ROWS PER SUBTASK ∗ subtask . id ∗

s izeof ( complex ) ;
25 c o l s s i z e = ROWS PER SUBTASK ∗ s izeof ( complex ) ;
26 s t e p s i z e = conf→ c o l s ∗ s izeof ( complex ) ;

27 // sub s c r i b e us ing o f f s e t and length
28 block subscription info b s i n f o ( o f f s e t , c o l s s i z e ,

s t e p s i z e , conf→ rows ) ;

29 // sub s c r i b e to input and output memory by index
30 subscribe ( task . id , dev i ce . id , subtask . id , 0 ,

b s i n f o ) ;
31 subscribe ( task . id , dev i ce . id , subtask . id , 1 ,

b s i n f o ) ;

32 // OpenCL ke rne l launch c o n f i g u r a t i o n
33 set launch conf ( task . id , dev i ce . id , subtask . id ,

. . . ) ;
34 }

35 // OpenCL Kernel ( should go in to p r o g c o l . o c l f i l e )
36 f f t co l o c l ( task , device , subtask )
37 {
38 f f t c o n f ∗ conf = ( f f t c o n f ∗) ( task . conf ) ;
39 complex∗ input = ( complex ∗) subtask . s u b s c r i p t i o n [ 0 ] ;
40 complex∗ output = ( complex ∗) subtask . s u b s c r i p t i o n [ 1 ] ;

41 . . . OpenCL 1D FFT Code . . .
42 // Succ e s s i v e e lements are conf→ c o l s apart
43 }

Listing 4.4: Unicorn callbacks for 2D-FFT



74 Pseudo Code Samples



Chapter 5

Experimental Evaluation

We have implemented several coarse-grained scientific computation bench-

marks over Unicorn. These include image convolution, matrix multiplication,

LU matrix decomposition, two-dimensional fast Fourier transform (2D-FFT)

and Page Rank. These benchmarks have well known parallelizations and are

diverse enough for studying different kinds of complexities. Image convolu-

tion, although embarrassingly parallel, has a unique requirement of fringe

around the image. Matrix multiplication is computationally intensive with

heavy data transfer requirements. LU decomposition has a nested task hier-

archy, 2D-FFT involves a parallelization-unfriendly matrix transpose opera-

tion and finally Page Rank is a map-reduce based computation. The goal of

these experiments is to assess conditions under which our runtime responds

well.

Our experimental cluster consists of fourteen nodes, each equipped with two

6-core Intel Xeon X5650 2.67 GHz processors and two Tesla M2070 GPUs.

The nodes run CentOS 6.2 with CUDA 5.5. For communication, we use Open

MPI [31] 1.4.5 (over SSH) over an InfiniBand [1] network with 32Gbps peak

bandwidth. Unless stated otherwise, the input address spaces are randomly

distributed (as 2048 × 2048 blocks) over the cluster nodes and our runtime

transparently moves data on-demand to other nodes, as the program exe-

cutes.
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Our runtime allows restricting applications to only certain cores, e.g., only

CPU cores, only GPUs, or both, However, CPU cores, being main OS vehi-

cles, are not used purely for computation but also other support functions like

CPU-GPU data transfers, GPU kernel launches, network data transfers, etc.

When subtask data usage is high (e.g., in several hundred MBs per subtask),

significant CPU load is observed in CPU↔GPU data transfers. Based on our

empirical analysis, we withhold upto two CPU cores (per node) from subtask

execution when both CPUs and GPUs are requested by an application. In

section 5.7.1, we study the performance impact of varying the number of

CPU cores employed in computations. This also provides an insight into the

library’s runtime overheads.

Many of our experiments use subtasks of size 2048× 2048. This empirically

determined size works well for both CPUs and GPUs. The size is not too

large for CPUs (to cause frequent cache misses) and not too small for GPUs

(to cause their under-utilization). In section 5.5.3, we present the impact of

varying subtask size on performance.

We first discuss the implementation of the selected benchmarks over Unicorn

and then present how these scale with an increasing number of nodes. We

also compare the performance of these implementations to the reference cases

when only CPU cores and when only GPUs are used in the cluster.

Next, we evaluate Unicorn’s work-stealing based scheduling by comparing it

with a work-sharing scheduling scheme. We also compare the overheads of

one-level work-stealing with a naive two-level technique and ProSteal (sec-

tion 3.5.1.1) – a scheduling optimization which proactively steals subtasks

before the devices finish their assigned subtasks. Next, we evaluate Uni-
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corn’s locality-aware scheduling, which is used in cases when the subtasks of

our experiments are written without any particular order of spatial locality.

As described in section 3.5.1.2, the affinity of subtasks to nodes is evaluated

in a separate internally created Unicorn task. The outcome of this task is

a table that gives a score to a subtask-node pair. The score can be based

on several criterion. In our evaluation, we evaluate four different heuristics

for computing the affinity (or locality) score. The first three heuristics re-

spectively maximize reuse of local data on a node (i.e., score awarded to a

subtask-node pair is directly proportional to the amount of subtask’s input

data resident on the node), minimize the number of remote data transfer

events per subtask, and minimize the estimated data transfer time per sub-

task. The fourth one is a hybrid heuristic called Derived Affinity, which

computes scores by minimizing both remote transfer events and estimated

data transfer time per subtask.

The scheduling results are followed by a study of load balance achieved by

our runtime. Here, we study the finishing times of various cluster devices

involved in computations. The closer the devices finish to each other, the

better the load is balanced. We also experiment with changing the input

data location in the cluster and observe that the load still remains balanced

as our runtime automatically moves more computations to the node with

more resident data.

Next, we test our runtime’s resilience to data organization and subtask sizes

used in computations. We first change the initial placement (in the cluster) of

input data for various experiments and study the response of our runtime to

various commonly used patterns. Next, we change subtask sizes for various
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experiments and study its performance implications.

Next, we study various optimizations presented in section 3. These include

multi-assign, pipelining and gpu caches. This is followed by a study of Uni-

corn’s overheads where we focus on time spent in runtime versus application

code. We also vary the number of CPU cores employed in computations

requiring both CPUs and GPUs in the cluster and study the response of the

experiments.

All measurements are based on at least three trials. Results are presented

for the sample that reported minimum execution time.

5.1 Unicorn Parallelization of Benchmarks

In our image convolution experiment all color channels of a 24-bit RGB

image of size 65536 × 65536 are convolved with a 31 × 31 filter. The input

image is stored in a read-only address space (initially distributed randomly

across the cluster nodes), logically divided into 1024 blocks of size 2048 ×

2048. Each block is convolved using a separate subtask. However, because

convolution at boundaries requires data from adjoining blocks, the input

memory subscription of a subtask overlaps with other subtasks’, usually at

all four boundaries. The output image is generated in a write-only address

space.

In the matrix multiplication experiment two dense square matrices of size

216×216 each are multiplied to produce the result matrix. Each input matrix

is stored in a read-only address space and the result matrix is stored in a

write-only address space of the task. The output matrix is logically divided
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into 2048 × 2048 blocks and computation of each block is assigned to a

different subtask (which subscribes to all blocks in the corresponding row of

the first input matrix and all blocks in the corresponding column of the second

input matrix). The CPU subtask callback is implemented using a single-

precision BLAS [24] function and the GPU callback uses the corresponding

CUBLAS [17] function.

For the in-place block LU Decomposition [21] experiment, the input matrix

(216 × 216) is kept in a read-write address space and is logically divided

again into 2048× 2048 sized blocks. The matrix is solved top-down for each

diagonal block. For a matrix divided into n ∗ n blocks, solving for each

diagonal block (i, j) involves three tasks – LU decomposition of the diagonal

block (i, j), propagation of its results to other blocks in its row (i, j + 1...n)

and column (i + 1...n, j), and propagation of these results to other blocks

underneath (i + 1...n, j + 1...n). The first of these three tasks is executed

sequentially while the other two are executed in parallel. One task is spawned

per diagonal block, which in turn, executes 3 tasks within, making a total

of 3n – 2 tasks (where n is the number of diagonal blocks). The parallelism

in tasks (i.e., the number of subtasks) reduces as we move down the matrix

because the number of blocks to be solved in parallel decreases. The CPU

subtask implementation uses single-precision BLAS functions while the GPU

implementation employs the corresponding CUBLAS routines.

The 2D-FFT experiment performs two single-precision one dimensional complex-

to-complex FFTs (one along matrix rows and the other along matrix columns)

over a matrix with 61440×61440 elements. The input matrix is initially ran-

domly distributed over the cluster nodes in blocks of 512 consecutive matrix
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rows. We use two Unicorn tasks for the experiment (each with 120 sub-

tasks). The first task performs 1D-FFT along matrix rows while the second

performs 1D-FFT along matrix columns. Note that we do not need to per-

form an explicit transpose in between the two and instead rely on our network

subsystem to efficiently serve data. For the first 1D-FFT, the subtask size is

512 rows while it is 512 columns for the second. The CPU subtask callback

uses calls to the FFTW [30] library, whereas the GPU subtask uses calls to

the CUFFT [18] library functions.

The Page Rank experiment computes the search rank of a webpage based on

the web’s hyperlink structure. The search rank of a webpage is the proba-

bility of a random surfer visiting it. The algorithm works by first uniformly

initializing the ranks of each page to a constant value, and then iteratively

transferring the ranks of all web pages to their outlinks till the ranks of all

pages converge (or till a maximum number of iterations).

For our experiment, we use a randomly generated web graph of 500 million

web pages and a maximum of 20 outlinks per web page. With 90% prob-

ability, a page’s outlinks point to nearby pages (within an imaginary circle

centered at this web page and having a diameter of 0.1% of total web pages),

with 9% probability, a page’s outlinks point within a diameter of 1%, and

with 1% probability they are linked to farther off pages. The data for the

web (along with its outlinks) is stored on disk in multiple NFS files with

each file storing record of one million web pages. Data from these 500 files

is read by all cluster nodes through a parallel file mapping API provided by

Unicorn. This API memory maps file regions requested by a subtask and

provides a handle to access it.
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Our Page Rank implementation performs 25 iterations and each iteration

executes 250 subtasks. Each subtask processes 2 million distinct web pages

and transfers each web page’s page rank to all its outlinks equally. Note that

a web page may point to any other page in the web. Thus, the corresponding

subtask may produce output page rank for any web page. For this reason,

all subtasks write-subscribe to entire output address space and the output

of all subtasks are summed up (using Unicorn’s data reduction callback) to

produce the final output. The output of subtasks is written to an address

space in every iteration and after reduction it becomes the input for the next

iteration. We allocate two address spaces and cycle them as input or output

every iteration. After the last iteration, the output address space contains

the final page ranks. The CUDA kernel code for this experiment uses the

GPU’s global memory to accumulate page ranks produced by various GPU

threads (employed by a subtask) and synchronization between them is done

using global memory atomic add instructions.

5.1.1 Characteristics of Benchmarks

Figure 5.1 provides a quick glance at our implementations of the said bench-

marks. Note that per subtask input data requirement for Matrix Multipli-

cation, 2D FFT and Page Rank is quite high in comparison to other experi-

ments. Because of these large data sizes, our runtime turns off use of pinned

buffers for CPU to GPU data transfers (as excessive pinned memory usage

degrades overall system performance). For similar reasons, GPU to CPU

data transfers are also done without pinned buffers. As a side effect of turn-

ing off pinned buffers, multiple GPU subtasks cannot be pipelined (for data
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transfers and computations) and multiple simultaneous kernel executions are

not possible. This also prevents our runtime from employing our aggressive

stealing approach called ProSteal (section 3.5.1.1). For these reasons, we also

present some results for smaller input matrix sizes (32768 × 32768), where

usage of pinned memory buffers is not too large to throttle the memory sub-

system. Our runtime is then able to employ pinned buffers and multiple

kernel executions. Although our runtime turns off pinned buffers if subtask

subscription is too high, but an application program may reduce subtask size

to enable these.

Benchmark

Characteristic

Total Total Task Max. Max. Requires
Input Output Count Subtask Subtask Conflict

(in GB) (in GB) Input Output Resolution
(in MB) (in MB)

Image Convolution 12 12 1 12.35 12 No
Matrix Multiplication 32 16 1 1024 16 No

LU Decomposition 16 16 94 48 16 No
2D FFT 28.125 28.125 2 240 240 No

Page Rank 40.98 1.86 25 175.48 1907.35 Yes

Figure 5.1: Characteristics of various benchmarks

5.2 Performance Scaling

Results in Figure 5.2 show strong scaling achieved by our implementations (of

Image convolution, Matrix multiplication, LU decomposition and 2D FFT)

discussed in section 5.1. Of the four experiments, Image convolution exhibits

maximum scaling and peaks at 11.83 when run on 14 nodes. Matrix multi-

plication, being relatively expensive on communication, achieves a maximum

scaling of 7.34. In contrast to image convolution, which spends 50.05% of
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Figure 5.2: Performance analysis of various benchmarks
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the total experimental time in communication (of 11.4 GB), matrix multipli-

cation transfers a much larger 248.50 GB data in the cluster and this takes

43.81% of the total experimental time. Although for matrix multiplication

both input matrices are 16 GB each, every input block is required by all sub-

tasks in its row and all in its column. Thus about 250 GB data is eventually

transferred in 659 pipelined events (each of the 1024 subtasks subscribe to 1

GB data from both the input matrices).

The other two experiments, block LU decomposition and 2D-FFT, exhibit

relatively inferior scaling (4.8 and 5.36 respectively) as these experiments

have limited parallelism. The former is an iterative experiment with 32

iterations and 3 tasks per iteration (one out of these three is sequential).

The experiment has an average of 121.7 subtasks per task. The 2D-FFT

experiment (with an implicit matrix transpose operation) has two tasks each

with 120 subtasks.

The results in Figure 5.2 indicate a similar amount of data transfer for matrix

multiplication and LU decomposition. However, the former is implemented

as a single task with time complexity O(n3) and the latter has many itera-

tions with three tasks using BLAS calls of varying time complexities (O(n),

O(n2) and O(n3)). This increases communication latency, which is evident

from fifty times more data transfer events (36654 versus 659). This, coupled

with the fact that the first of these three tasks is sequential, leads to lower

scalability for the experiment. In contrast, both image convolution and 2D

FFT have lower time complexities – O(nm) for the former (m being the filter

size) and O(n log n) for the latter, but the latter has around 4.5x more data

transfer, resulting in its lower scaling. These results collectively indicate that
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applications with high compute to communication ratio should perform well

with our runtime.
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Figure 5.3: Scaling with increasing problem size

Figure 5.3 plots the execution times of image convolution and matrix mul-

tiplication benchmarks with increase in the problem size. The results are

presented for two cases - in the first case only 4 cluster nodes are used for

execution while 8 cluster nodes are employed in the second case. Results

show that our runtime responds equivalently to various input sizes as similar

scaling curves (while varying workload sizes) are observed despite increase in

the number of nodes.

5.2.1 CPU versus GPU versus CPU+GPU

Figures 5.4, 5.5 and 5.6 plot GPUs-only performances for image convolu-

tion, matrix multiplication and 2D FFT respectively and compare those to

the corresponding CPU+GPU performances. For the computation in these

applications there is a significant performance disparity between CPUs and
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Figure 5.4: Image Convolution – GPU vs. CPU+GPU
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Figure 5.5: Matrix Multiplication – GPU vs. CPU+GPU
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Figure 5.6: 2D FFT – GPU vs. CPU+GPU

GPUs, with GPUs being several times faster than CPUs. Due to this, em-

ploying both together generally results in nearly all CPU subtasks getting

multi-assigned to GPUs. Also, running some subtasks on slower CPUs takes

away the opportunity to pipeline those in case the GPUs had executed them.

For these reasons, the experiments’ performances when using CPU+GPU do

not show much throughput gain over their GPUs-only versions. For image

convolution and matrix multiplication, results show that nearly 98% subtasks

were executed by GPUs and CPUs were only able to complete fewer than 2%

of the subtasks. For 2D FFT, this ratio is a little better with around 15%

subtasks completed by CPUs.

Figure 5.7 compares CPUs-only and GPUs-only performances for matrix

multiplication and 2D FFT for input matrices of size 32768 × 32768. The

wide performance disparity between CPUs and GPUs is evident in these

results (especially for matrix multiplication where in the 1-node case CPUs-

only performance is around 5 times slower than GPUs-only performance).
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The disparity is narrower for 2D-FFT, where the best results occur when

using both CPUs and GPUs together. However, this experiment uses only

32 subtasks, thus restricting parallelism and performance gains to 32 devices

(i.e., 2 nodes) only. Ideally, the number of subtasks should be a few times

the number of devices. But in this case, the number of subtasks becomes less

than the number of devices as the number of nodes in the cluster grows.
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Figure 5.7: Experiments with matrices of size 32768×32768 (lower is better)

5.2.2 PageRank

Figure 5.8 presents results for the PageRank experiment. The experiment

executes 25 map-reduce iterations. In the map stage, 250 subtasks process

an equal share of input web pages and distribute their page ranks equally

among all their outlinks. In the reduce stage, the page rank contributions

from each subtask are summed up to compute the final page ranks of all

web pages. For efficiency, reductions are performed in parallel on all cluster

nodes. Once the intra-node reductions complete, nodes perform inter-node
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Figure 5.8: Page Rank

reductions to compute the final result.

Results show that CPUs perform better than GPUs for this experiment.

This is because our GPU implementation uses slow atomic-add operations

to compute subtask output. Also, in this case, there is additional overhead

of large GPU-CPU data transfers (Figure 5.1). Along with performance

results, Figure 5.8 plots the average time spent in reduce stage by every

node in the cluster. Results show that the time spent in reduction stage

decreases with an increasing number of nodes. This is because more nodes

allow more reductions to be simultaneously executed and the total time spent

in reduction decreases.

5.3 Scheduling

In this section, we compare our distributed and dynamic two-level scheduler

with a dynamic centralized scheduler. The dynamic centralized scheduler

assigns tasks to nodes, as they become free. There is no pre-emption. In
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Figure 5.9: Centralized scheduling versus Unicorn – 14 nodes

order to reduce scheduling overhead, it assigns subtasks in chunks. It starts

with a default static allocation of subtasks and then incrementally calibrates

the chunk size based on the observed execution rate at each computing unit.

Initially, a single subtask is assigned to each unit. Depending on the comple-

tion time of the assigned work, the scheduler chooses the number of subtasks

to assign to that unit the next time around. If a unit finishes the job ear-

lier than most others, its chunk size is doubled. On the other hand, if a

unit completes its subtasks slower than most, its chunk is halved in the next

allocation. Results in Figure 5.9 show that the performance of centralized

scheduler is inferior to Unicorn’s distributed scheduling.

5.3.1 Work Stealing

This section presents a comparison of one-level work stealing versus Unicorn’s

two-level scheme with a steal agent running per node (section 3.5.1). We also
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compare the performance of the latter to our aggressive stealing scheme called

ProSteal.

5.3.1.1 One-level vs. Two-level

Results in Figure 5.10 show comparable performance numbers for one-level

and two-level scheduling schemes for matrix multiplication and LU decompo-

sition. However, image convolution and 2D FFT respectively report 6.92%

and 2.13% performance improvement with two-level stealing, compared to

the one-level stealing scheme. The gain in image convolution is because of

the small memory footprint of an image convolution subtask, which allows

GPUs (which are the stealers in most cases) to co-execute more subtasks as

compared to other experiments where despite stealing a set of subtasks large

memory footprint prohibits their co-execution.

Despite moderate performance gains, two-level stealing reports significant re-

duction (over one-level) in the total number of steals attempts generated in

the cluster. The average reduction for image convolution, matrix multiplica-

tion, LU decomposition and 2D FFT respectively is 65.88%, 64.9%, 67.03%

and 66%. Due to this, the average number of successful steals in the cluster

increase in two-level scheme (over one-level) by 44.24%, 54.25%, 60.08% and

52.3% for these experiments respectively. The same is not translated into

performance gains because our steals are extremely light weight. The only

information transferred as a result of steal is the subtask id and there is no

associated direct data transfer.
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Execution time (sec) versus nodes
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Figure 5.10: One-level versus two-level work stealing
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5.3.1.2 ProSteal

Unicorn avoids GPU pipeline stalls by allowing devices to steal before their

pipelines are completely flushed. As discussed in chapter 3, the appropriate

time when a GPU should steal is dynamically computed based on the GPU’s

subtask execution rate and its latency to re-prime its pipeline after a stall.

Figure 5.11 plots the performance of this scheme versus the performance

obtained by Unicorn scheduler without ProSteal. On an average, ProSteal

yields 5.11% better performance for image convolution but degrades by 4%

for LU decomposition experiment. The performance gain in image convo-

lution is because ProSteal is able to avert GPU pipeline stalls for 95.33%

successful GPU steals (which are 33% of the total steals). The number is

only 65.29% for LU decomposition where successful GPU steals are only 14%

of the total steals. More detailed results of ProSteal can be found in [3].

5.3.2 Locality-aware Scheduling

In this section, we study node-affinity based scheduling in Unicorn. For this,

we have modified our experiments such that there is no particular spatial

coherence between consecutive subtasks’ data. In other words, adjacent sub-

tasks of our experiments do not necessarily execute on adjacent address space

regions.

For locality-aware scheduling, we compute an affinity score for every subtask

on every node and our scheduler uses this score to maximize global affinity.

We experiment with four heuristics. We start with scheduling a subtask on a

node where most of its input resides, maximizing local data. In this case, the
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more the amount of local data (on a node) for a subtask is, the more the cor-

responding affinity score is. The other strategies, instead of maximizing local

data, target the time to fetch remote data. The next strategy minimizes the

number of remote data transfer events or requests. It is based on the observa-

tion that the incurred data fetch latency grows with data fragmentation and

the number of data transfer requests. Accessing closely placed remote data

is less expensive than accessing discontiguous remote data, which may cost

additional latency. The third strategy optimizes the amount of remote data.

It minimizes the total number of virtual memory pages to be fetched from

remote nodes. Our last strategy, called Hybrid or Derived Affinity optimizes

for both remote transfer events and time.

Figures 5.12 and 5.13 plot the performance of Unicorn’s locality-oblivious

scheduler as well as the performance of the local data based affinity and

compares these to remote data based affinity (transfer events, remote data

and hybrid). The figures also record the cluster-wide data transfers and

subtask latency incurred in these experiments.

Results show that one or more of our heuristics perform better than Unicorn’s

locality oblivious scheduler at most of the data points. For image convolution

experiment, a maximum gain of 13.93% (over Unicorn’s default scheduler) is

observed with remote data and hybrid heuristics in the fourteen node case.

This is attributed to a substantial data transfer reduction from 11.44 GB (for

default scheduler) to 0.43 GB (for remote data heuristic) and 0.78 GB (for

hybrid heuristic). A gain of similar magnitude is not reflected in execution

time because of the high throughput of our network (32 Gbps).

For the matrix multiplication experiment, we observe the maximum gain
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Figure 5.12: Locality aware scheduling
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Figure 5.13: Locality aware scheduling (Contd.)
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of 21.94% in the two node case with the hybrid heuristic. This result is

attributed to a 88.24% reduction in data transfer, a 49.28% reduction in

data transfer events and a 1.18 sec gain in average subtask latency. Note

that this is a communication bound experiment and the reduction in data

transfer has resulted in a large gain in performance. However, there is an

observed overhead of 16.42% in affinity computation.

For the LU decomposition experiment, the hybrid heuristic performs better

than others at most of the data points and we observe an average gain of 8.6%

with this heuristic. On an average, this heuristic results in a 45.37% reduction

in total data transfer and has a reported average overhead of 2.21%. The

experiment has moderate performance gains as compared to data transfer

savings as it is an iterative experiment, with a mix of compute and commu-

nication bound tasks per iteration.

The 2D FFT experiment does not gain much by affinity as the savings in

data transfer are mitigated by high affinity computation overheads. The

maximum gain for this experiment is observed with transfer events heuristic

which, in the fourteen node case, yields a speed-up of 2.8% after accounting

for 9.31% affinity computation overhead.

Among all our heuristics, the derived affinity scheme gives close to the best

results (at most data points). The overhead of computing and using affinity

is non-trivial, though. The results suggest that employing other methods

of affinity computation (e.g. taking affinity as input from application or

augmenting address space directory with affinity data all the time) might

help in making the heuristics more useful. Further study on affinity and its

overhead can be found in [4].
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Figure 5.14: Image Convolution: Locality aware work-stealing (Derived
Affinity)
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Our runtime also uses the computed affinity information while work stealing.

We let the victim assign those subtasks to the stealer that are high on affinity

scores for the stealer but low on affinity scores for the victim. Figures 5.14

and 5.15 plot performance numbers of locality oblivious work-stealing versus

locality aware work-stealing for the derived affinity heuristic. For the image

convolution experiment, we observe an average performance gain of 1.74%

while the matrix multiplication experiment reports a flat response on an

average with locality aware work-stealing (as compared to locality oblivious

work-stealing). We do not observe much improvement with locality-aware

work-stealing primarily because by the time stealing happens most of the

subtasks have already executed and secondly because we use stale affinity

information (computed at task start) for work-stealing and do not update

this as the task progresses (see section 3.5.1.2.2).

5.4 Load Balancing

In this section, we study the effectiveness of our scheduler in achieving a

balanced load on all cluster devices. Figures 5.16 and 5.17 respectively plot

the finishing times of all cluster devices for the image convolution benchmark

and for one iteration of the PageRank experiment. The figures also plot the

number of subtasks executed by each of these devices. Note that all the

CPU devices on a node are represented as work-groups numbered from W1

to W14. Similarly, GPU devices in the cluster are labelled G1 to G28.

Recall that for the matrix multiplication experiment, the entire input data

is initially equally distributed randomly among all cluster nodes. For this
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reason, all GPUs execute roughly the same number of subtasks (as they face

similar data transfer overheads and subtasks are homogeneous). The same is

true for CPU work-groups. For the PageRank experiment, however, the input

data is resident on NFS. The graph plots 10th iteration of the experiment

which means that the input data for the iteration additionally comes from

different cluster nodes (as it is computed in last iteration). As such, variable

input data latency is incurred by various CPU work-groups, causing them

to execute different number of subtasks. Despite the disparity in subtask

execution rate of GPUs and CPU work-groups, the finishing times of each of

them is quite close to each other (for both experiments). This shows that our

scheduler is able to balance the cluster load despite this device heterogeneity.

In another experiment (matrix multiplication on 10 nodes using GPUs only),

we study the effectiveness of our load balancer (Figure 5.18) in the centralized

initial data placement scheme (section 5.5.2). Since the entire data is located

on the first node, our runtime schedules more subtasks on the two GPUs of

this node as compared to the others. Since all 20 GPUs in the cluster finish

at roughly the same time, load balance can be inferred.
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Figure 5.16: Load Balancing (Image Convolution) – W denotes a CPU work
group and G denotes a GPU device – Block random data distribution
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Figure 5.17: Load Balancing (Page Rank) – W denotes a CPU work group
and G denotes a GPU device
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Figure 5.18: Load Balancing (Matrix Multiplication) – 32768× 32768 matri-
ces – Centralized data distribution

5.5 Stress Tests

In this section, we put our runtime under non-favorable conditions and study

its response to various experiments. We study three things – firstly the re-

sponse of our runtime when subtasks in the image convolution experiment are

made to execute subtasks of different sizes, secondly the impact of changing

the input data availability pattern before start of the experiment and thirdly
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the impact of changing the size of subtasks employed in the experiment.

5.5.1 Heterogeneous Subtasks
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Figure 5.19: Load Balancing (Heterogeneous Subtasks) – W denotes a CPU
work group and G denotes a GPU device

Figure 5.19 shows load balancing achieved by Unicorn when subtasks in

Image Convolution experiment perform different amount of work. The top

half of the image is convolved using 512 subtasks of size 2048 × 2048 while

the bottom half is convolved using 128 subtasks of size 4096 × 4096. The

experiment is executed on 10 nodes. Despite, the four fold execution disparity

in subtasks, our runtime maintains a decent load balance in the cluster.

5.5.2 Input Data Distributions

In this section, we vary the placement of the initial input data in the address

space(s). Figure 5.20 evaluates image convolution and matrix multiplication

for various schemes like centralized (entire address space on one cluster node),

row random (rows of 2048×2048 blocks placed randomly on all cluster nodes),
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Figure 5.20: Impact of initial data distribution pattern

column random (columns of 2048×2048 blocks placed randomly on all cluster

nodes) and block random (2048×2048 blocks placed randomly on any cluster

node). Additionally, a fifth scheme is plotted for matrix multiplication where

rows of 2048× 2048 blocks for the first input matrix and columns of 2048×

48 blocks for the second input matrix are placed randomly in the cluster.

Results show that our runtime maintains performance despite the changes

in data availability pattern. Only the centralized scheme behaves poorly

as the network interface of the node containing the entire data becomes a

bottleneck.

5.5.3 Varying Subtask Size

Figure 5.21 shows the response of our runtime to change in user’s sizing of

subtask. Within a reasonable range – (2048-8192) for matrix multiplication

and (1024-4096) for image convolution – our system is able to maintain a
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Figure 5.21: Subtask size (N ×N) – experiments executed on 14 nodes

throughput within 20% of the peak performance. On either side, system

overheads begin to dominate. For extreme sizes, the throughput degrades

as on one extreme there are too few subtasks to generate enough parallelism

and on the other there are too many subtasks resulting in data transfers

dominating the exploitable parallelism.

5.6 Unicorn Optimizations

In this section, we study the impact of two major Unicorn optimizations –

multi-assign and pipelining. We study the overhead of multi-assign along with

its performance benefits. This is followed by a study of performance gains

achieved by creating a pipeline of subtasks, which enables communications

of a few subtasks be overlapped with computations of others.
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5.6.1 Multi-Assign
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Figure 5.22: Multi-Assign (no external load)
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Figure 5.23: Multi-assign under external load (Image Convolution) – 4 nodes

We study two cases to understand the implications of multi-assign. First,

under the absence of any external load we compare the performance of image

convolution and matrix multiplication experiments with multi-assign enabled
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to the case with multi-assign disabled. Second, we create an external load

and study how image convolution behaves with and without multi-assign.

For the first case, results in Figure 5.22 show that there is no performance

penalty in enabling multi-assign, in general. The observed average perfor-

mance gain (with multi-assign) for image convolution and matrix multipli-

cation respectively are 9.19% and 2.23% respectively (in comparison to no

multi-assign). In fact, the performance gains increase with increasing num-

ber of nodes – for image convolution, multi-assign reports a maximum gain

of 38.26% (over no multi-assign) in the fourteen node case. Similarly, the

maximum performance gain of 10.62% is observed in the fourteen node case

for matrix multiplication.

Next, we study multi-assignment over four nodes with the image convolution

benchmark. We artificially overload one of the nodes with one process per

core computing trigonometric functions indefinitely. In this case, we expect

subtasks assigned to the overloaded node to be moved away from it. Our

scheduler does this through stealing and multi-assignment. In the absence

of multi-assignment a subtask may start running on a slow device and take

a long time to finish, thereby, delaying the entire task. We run this test

twice: once allowing multi-assignment and once preventing it. Results in

Figure 5.23 show that with multi-assignment, subtasks of the overloaded

cores get re-assigned and the task completes faster. Without it, the task

remains bottlenecked by the ‘slow’ cores. Our heuristics generally only multi-

assign fewer than 1% of the subtasks, but the later-assigned unit finishes

first about 50% of the time. Of course, when one finishes, the other is

aborted, leading to a faster overall time. The cancellation protocol itself has
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insignificant overhead.

5.6.2 Pipelining
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Figure 5.24: Pipelining (Image Convolution)

Figure 5.24 shows the impact of pipelining with the help of the image con-

volution experiment. With pipelining, our runtime overlaps computation of

one subtask with the communication of the next. Further, on GPUs this

makes multiple simultaneous kernel executions possible. Results show that

our runtime achieves 3-4x speed-up with pipelining.

In [2], we study pipelining for an experimental 10-node cluster and report

its effectiveness in hiding remote data access latency. If all required data

were locally available on each of the 10 nodes, image convolution gets only

1% faster and matrix multiplication gets 31% faster. On the other hand,

disabling pipelining makes them 2.29x and 1.19x slower, respectively.
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5.6.3 Software cache for GPUs
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Figure 5.25: Matrix Multiplication – GPU Cache Eviction Strategies

Unicorn employs a software cache to reduce DMA data transfers to all GPUs

in the cluster. The cache prevents read-only data shared by two or more
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subtasks (of a task) executing on a GPU from being DMA’ed more than

once. The cache also prevents data transfers in case a write-only or read-

write data generated by a subtask is later consumed by a subtask of another

task.

In this section, we study four cache eviction policies and compare their per-

formances. The four policies are least recently used (which evicts the data of

subtask that was used the earliest in time), most recently used (which evicts

the data of subtask that was used the latest in time), least frequently used

(which evicts the data of subtask that was used the minimum number of

times) and most frequently used (which evicts the data of subtask that was

used the maximum number of times). Figure 5.25 plots the performances of

these policies where these are respectively denoted by shorthand notations

LRU, MRU, LFU and MFU. Results show that both LRU and LFU per-

form better than MRU and MFU. This result can also be inferred from lesser

number of cache evictions per allocation and lesser number of average cache

misses in LRU and LFU as compared to MRU and MFU.

5.6.4 Data Compression

To ameliorate high data transfer latency in PageRank reduction, we compress

data computed by subtasks before transferring over the network or from GPU

to CPU. The employed compression algorithm is based on Run Length En-

coding (section 10.1) and is executed on GPUs for GPU→CPU data trans-

fers and on CPUs for inter-node data transfers. Figure 5.26 presents the

cluster-wide size of uncompressed data (i.e. before compression) for reduc-

tion, compression ratio (i.e. the ratio of uncompressed size to compressed
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size) and performance boost with compression (over the case when there is

no compression). Results show that the performance gains increase with

increase in the number of nodes and reach a peak of 23.81% for network

compression and a peak of 2.45% for GPU→CPU compression (for the 14

node case). Note that because of lower latency of GPU→CPU transfers, the

gain observed with GPU compression is moderate as compared to inter-node

compression. Also, note that the amount of data transferred in the cluster

increases with the number of nodes. However, this reduces the number of

subtasks processed per node which means that inter-node reductions take

place with more sparsity in data (and thus higher compression yield).

Network reduction statistics GPU→CPU reduction statistics
Nodes Uncompressed Compression Performance Uncompressed Compression Performance

Data Size (GB) Ratio Gain (%) Data Size (GB) Ratio Gain (%)

8 162.98 3.63 6.44 27.01 44.63 0.31
10 209.55 4.72 16.10 25.15 44.64 0.83
12 256.11 5.29 21.00 23.28 44.66 0.64
14 302.68 5.78 23.81 31.67 44.61 2.45

Figure 5.26: PageRank data compression (250 million web pages)

5.7 Overhead Analysis

In this section, we evaluate the overhead of our implementation of Unicorn’s

runtime firstly by varying the number of CPU cores used in the experiments

and secondly by studying the amount of time experiments spend inside run-

time’s code versus the application code.
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Figure 5.27: Varying CPU cores used in subtask computation

5.7.1 Varying CPU cores

CPU cores are not only used for subtask computations but for many other

critical operations like CPU-GPU data transfers, network data transfers,

scheduling and Unicorn runtime’s control operations. For all our experi-

ments presented in this section, we have reserved two CPU cores (out of 12

available) per node for these support functions and presented results by using

the rest for subtask computations. Figure 5.27 varies the number of CPU

cores allowed for the application subtasks per node from 7 to 12 and compares

their performances. Results show that the performance of all these cases re-

main close to each other. The average difference between the maximum and

minimum performing cases (at all data points) for both experiments is less

than 10%.

This narrow performance difference is an indication of our runtime’s low
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overhead. Because of this low overhead, we currently do not dynamically

vary the number of CPU cores used in a Unicorn task. An exploration of

this is desired in future. However, we currently do allow applications to

statically specify the number of CPU cores to be reserved for a task.
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Figure 5.28: Matrix Multiplication – Varying CPU core affinity

We also study the impact of binding our compute threads (section 3) to

CPU cores. In all the experiments presented thus far, we have not explicitly

bound compute threads to processing cores, allowing the operating system

to manage them. Figure 5.28 compares this scenario to the case when all

our compute threads are explicitly bound to CPU cores (which leaves a few

cores for other critical operations like data transfers). The figure plots the

performance of the matrix multiplication experiment for two cases - when 10

cores and 8 cores are employed in subtask computation. For each case, we

report performance when there is no explicit core for these critical operations

(plotted as [0:0]). Relative to this, we plot performances of cases where

[n:m] cores are designated for non-subtask computations (i.e. n cores are
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explicitly freed from first CPU while m cores are explicitly freed from the

second one). Results show that explicit binding of compute threads (to cores)

does not have a significant performance impact. However, not explicitly

binding threads and letting the operating system to freely migrate them

yields best performance.

5.7.2 Unicorn Time versus Application Time
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Figure 5.29: Library time versus application time

Figure 5.29 compares the time spent (by image convolution and matrix mul-

tiplication experiments) in runtime’s code to the time spent in application

execution. The latter includes the time taken for data transfers (both net-

work and CPU-GPU) and callback executions. The rest of the experimental

time is considered as our runtime’s overhead. Results show that the aver-

age overhead for image convolution is 3.6% while it is 0.91% for the matrix

multiplication experiment. In absolute value, the average overhead is 0.43

seconds for image convolution and 0.82 seconds for matrix multiplication.
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5.7.3 Data Transfer Frequency

Image Convolution Matrix Multiplication
Avg. unique Avg. total Avg. transfer Avg. unique Avg. total Avg. transfer Avg. first matrix

Nodes data sent per data sent per freq. per byte data sent per data sent per freq. per byte transfer freq. per

node (GB) node (GB) per node node (GB) node (GB) per node byte per node

2 3.05 3.05 1.00 8.50 8.50 1.00 1.00
4 2.26 2.27 1.00 7.38 15.88 2.15 1.18
8 1.31 1.32 1.01 5.63 18.19 3.23 1.86
10 1.07 1.07 1.01 4.50 18.20 4.04 2.17
12 0.91 0.92 1.01 4.00 18.83 4.71 2.78
14 0.87 0.88 1.01 3.18 18.36 5.78 2.88

Figure 5.30: Data Transfer Frequency

In this section, we study the number of times each byte in the address space

gets transferred in the cluster (between nodes). Two examples are consid-

ered – on one end is the image convolution experiment which has very little

subscription overlap (fringe) among subtasks. At the other end is matrix

multiplication where entire input data of every subtask overlaps with that

of other subtasks. Figure 5.30 lists the average number of unique and total

bytes transferred by every node in the cluster along with the average data

transfer frequency (i.e., the ratio of total bytes transferred to unique bytes

transferred per node). Results show that the data transfer frequency stays

close to 1 for the image convolution experiment, whereas it grows with in-

creasing number of nodes for the matrix multiplication experiment. This is

because one of input matrices is required on all cluster nodes and because

of the initial random placement of data, (n-1) transfers are required (where

n is the number of nodes). The other matrix, however, exhibits relatively

moderate transfer frequency (the last column in the table).

Most of the data transferred is only because it resides at a node different from
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the subtask that requires it. For matrix multiplication, e.g., disabling steal-

ing and multi-assignment reduces the unique data sent per node by 5.88% on

average. Correspondingly, the total data sent and transfer frequency per byte

decrease by 9.76% and 4.97% respectively. Thus, there is only 3.88% addi-

tional transfer due to re-sending of data to the new destination after stealing

or multi-assignment. The rest 96.12% data transfer is due to subscription

overlap among subtasks.

5.8 Unicorn versus others

Figure 5.31 compares the performance of our matrix multiplication exper-

iment (single node) to StarPU [6]. The three bars for StarPU plot, re-

spectively, its default eager scheduler, the first run of its advanced dmdas

scheduler (i.e., without calibration; this scheduler requires calibration runs

for optimal performance), and the best run out of three successive runs of

dmdas after calibration. This best run performs better than Unicorn until

a matrix size of 16384× 16384. For larger matrices, it starts to lag Unicorn

and eventually fails at 65536 × 65536 reporting it ran out of memory. Yet,

Unicorn runs at this and even higher sizes.

Figure 5.32 compares Unicorn to SUMMA[58] for multiplication of two square

matrices (on CPUs only) of size 32768 × 32768. Results show that Unicorn

performs quite close to SUMMA (which is hand tuned for matrix multiplica-

tion) for this double precision computation. Note that SUMMA incurs a bit

of overhead in the sense that it requires a different MPI process per CPU core

whereas Unicorn works with one MPI process per node. For this experiment,
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Figure 5.31: Unicorn versus StarPU
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we have used different block sizes for both implementations (1024× 1024 for

Unicorn and 128 × 128 for SUMMA) in order to compare their best CPU

performances.



Chapter 6

Application Profiling

1 Pa r a l l e l Task 6 Execution Time = 15.7919 [ Schedul ing Po l i cy : WS]

2 Subtask d i s t r i b u t i o n f o r task [ 0 , 1 ] . . .

3 Device Subtask Execution P r o f i l e . . .
4 Device 0 Subtasks 4
5 Device 12 Subtasks 108
6 Device 13 Subtasks 56
7 Device 14 Subtasks 3
8 Device 26 Subtasks 90
9 Device 27 Subtasks 75

10 Machine Subtask Execution P r o f i l e . . .
11 Machine 0 Subtasks 168 CPU Subtasks 4
12 Machine 1 Subtasks 168 CPU Subtasks 3

13 Total Acknowledgements Received 336

14 Address Space [ 0 , 1 ] memory t r a n s f e r s t a t i s t i c s on [ Host 0 ] . . .
15 1235888826 bytes memory r e c e i v ed in 155 events
16 1236443811 bytes memory t r a n s f e r r e d in 163 events

17 Address Space [ 0 , 2 ] memory t r a n s f e r s t a t i s t i c s on [ Host 0 ] . . .
18 0 bytes memory r e c e i v ed in 0 events
19 0 bytes memory t r a n s f e r r e d in 0 events

Figure 6.1: Sample Unicorn Logs (part 1)

Unicorn provides compile time controls for profiling various modules of the

library. The resultant logs help identify application and runtime bottle-

necks. Among others, the logs dump address space allocations and their

data transfers across cluster nodes, work-stealing and multi-assign statistics,

task and subtask execution timeline, MPI calls issued at each cluster node,

node affinity statistics, load balancing and scheduling information. The logs

are dumped out in textual format like the ones in figures 6.1, 6.2 and 6.3.

Logs in Figure 6.1 show the total experimental time taken under the default

work stealing scheduling policy and the number of subtasks executed by each
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1 Task P r o f i l e r [ Host 0 ] . . . . . . . . . . . .

2 INPUTMEMORYTRANSFER => Accumulated Time : 20515.3 s ; Actual Time =
6.86013 s ; Overlapped Time = 20508.4 s

3 OUTPUTMEMORYTRANSFER => Accumulated Time : 0 s ; Actual Time = 0 s ;
Overlapped Time = 0 s

4 TOTALMEMORYTRANSFER => Accumulated Time : 20517.9 s ; Actual Time =
6.86123 s ; Overlapped Time = 20511.1 s

5 DATA PARTITIONING => Accumulated Time : 0 .406627 s ; Actual Time =
0.376811 s ; Overlapped Time = 0.0298162 s

6 SUBTASK EXECUTION => Accumulated Time : 137.482 s ; Actual Time =
15.324 s ; Overlapped Time = 122.158 s

7 DATAREDUCTION => Accumulated Time : 0 s ; Actual Time = 0 s ;
Overlapped Time = 0 s

8 DATA REDISTRIBUTION => Accumulated Time : 0 s ; Actual Time = 0 s ;
Overlapped Time = 0 s

9 MEMORYCOMMIT => Accumulated Time : 0 s ; Actual Time = 0 s ;
Overlapped Time = 0 s

10 SUBTASK STEAL WAIT => Accumulated Time : 8 .32788 s ; Actual Time =
6.59817 s ; Overlapped Time = 1.72971 s

11 SUBTASK STEAL SERVE => Accumulated Time : 0 .000205755 s ; Actual Time
= 0.000205755 s ; Overlapped Time = 0 s

12 STUBWAITONNETWORK => Accumulated Time : 8 .46128 s ; Actual Time =
4.97415 s ; Overlapped Time = 3.48713 s

13 COPYTOPINNEDMEMORY => Accumulated Time : 0 .700807 s ; Actual Time
= 0.663236 s ; Overlapped Time = 0.037571 s

14 COPYFROMPINNEDMEMORY => Accumulated Time : 1 .1685 s ; Actual Time
= 1.1685 s ; Overlapped Time = 0 s

15 CUDACOMMANDPREPARATION => Accumulated Time : 0 .00107765 s ; Actual
Time = 0.00107765 s ; Overlapped Time = 0 s

16 UNIVERSAL => Accumulated Time : 20679.8 s ; Actual Time = 15.3001 s ;
Overlapped Time = 20664.5 s

Figure 6.2: Sample Unicorn Logs (part 2)

machine and device (CPU/GPU) in the cluster. The figure also shows the

amount of memory sent or received (and the number of send/receive events)

for every address space used on a node in the cluster.

Figure 6.2 shows the work done (Accumulated Time) and the wall clock time

spent (Actual Time) in various events like memory transfers, data subscrip-

tion, stealing, copy to/from pinned buffers, etc. The work done is the arith-

metic sum of the times spent by various threads while the wall clock time

accounts for the time overlapped between these threads only once. The com-

mon time between threads is displayed under the heading Overlapped Time.

Figure 6.3 shows the cumulative memory transfers (across all address spaces)

for a task on a node. Beneath that, the subtask execution rate for each stub
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1 Task Exec Stat s [ Host 0 ] . . . . . . . . . . . .

2 Memory Trans f e r s Received = 1235888826 bytes ; Receive Events =
155 ; Sent = 1236443811 bytes ; Send Events = 163

3 Scat te r ed Memory Trans f e r s Received = 1235888826 bytes ; Receive
Events = 155 ; Sent = 1236443811 bytes ; Send Events = 163

4 Device 0 Subtask execut ion ra t e = 0 .0386306 ; S t ea l attempts = 2 ;
Su c c e s s f u l s t e a l s = 0 ; Fa i l ed s t e a l s = 2 ; P i p e l i n e s a c r o s s
ranges = 0

5 Device 12 Subtask execut ion ra t e = 7 . 05162 ; S t ea l attempts = 3 ;
Su c c e s s f u l s t e a l s = 1 ; Fa i l ed s t e a l s = 2 ; P i p e l i n e s a c r o s s
ranges = 1

6 Device 13 Subtask execut ion ra t e = 4 . 1 3 1 ; S t ea l attempts = 2 ;
Su c c e s s f u l s t e a l s = 0 ; Fa i l ed s t e a l s = 2 ; P i p e l i n e s a c r o s s
ranges = 0

7 Unicorn [ Host 0 ] Event Timel ine Device 0
8 Task [ 0 , 1 ] Subtask 281 ( Sp l i t 0 o f 12) 41 .2708 43.8583
9 Task [ 0 , 1 ] Subtask 281 Event SubtaskExecution 41.4977 43 .858
10 Task [ 0 , 1 ] Subtask 281 Event WaitOnNetwork 41.2789 41 .497
11 Task [ 0 , 1 ] Subtask 325 ( Sp l i t 0 o f 12) 43 .8586 46 .797
12 Task [ 0 , 1 ] Subtask 325 Event SubtaskExecution 44.2574 46.7967
13 Task [ 0 , 1 ] Subtask 325 Event WaitOnNetwork 43 .942 44.2572

14 Unicorn [ Host 0 ] Event Timel ine Device 12
15 Task [ 0 , 1 ] Subtask 11 43.1959 44.7673
16 Task [ 0 , 1 ] Subtask 11 Event CopyFromPinnedMemory 44.6632 44.7669
17 Task [ 0 , 1 ] Subtask 11 Event CopyToPinnedMemory 43.3631 43.3665
18 Task [ 0 , 1 ] Subtask 11 Event SubtaskExecution 43.3668 43.3672
19 Task [ 0 , 1 ] Subtask 32 43.6812 45.0229
20 Task [ 0 , 1 ] Subtask 32 Event CopyFromPinnedMemory 44.8802 44.8843
21 Task [ 0 , 1 ] Subtask 32 Event CopyToPinnedMemory 43.6829 43.6867
22 Task [ 0 , 1 ] Subtask 32 Event SubtaskExecution 43 .687 43.6875
23 Task [ 0 , 1 ] Subtask 33 41.5666 43.8472
24 Task [ 0 , 1 ] Subtask 33 Event CopyFromPinnedMemory 43.6878 43.8468
25 Task [ 0 , 1 ] Subtask 33 Event CopyToPinnedMemory 41.6809 41.6841
26 Task [ 0 , 1 ] Subtask 33 Event SubtaskExecution 41.6843 41.6847
27 Task [ 0 , 1 ] Subtask 33 Event WaitOnNetwork 41.5898 41.6744

Figure 6.3: Sample Unicorn Logs (part 3)

is reported. This is accompanied by the total number of steal attempts by a

device, the number of successful ones (out of the total) and in case the stealer

is a GPU device, the figure also reports the number of steal attempts that

were able to bring in new subtasks before the GPU pipeline stalled. Lastly,

the figure displays the event timeline, i.e., the start and end times for various

events happening on each device in the cluster. These events include subtask

execution, wait for remote data transfers, time spent in transfers to/from

pinned buffers for GPUs, etc.
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Unicorn has an analysis engine that can consume these textual logs as input

and generate easily understandable graphs. The graphs include performance

and scalability charts, CPU versus GPU versus CPU+GPU charts, load bal-

ancing, multi-assign and event timeline charts. A few sample charts are

shown in figures 6.4, 6.5, 6.6 and 6.7.

Figure 6.4 depicts the performance improvements in a sample experiment

when the number of nodes used in the cluster are increased from 2 to 10.

Figure 6.5 shows the load balance achieved by various GPUs in the cluster.

Figure 6.6 compares the centralized work-sharing scheduler (Push) described

in section 5.3 with the Unicorn’s work-stealing scheduler (Pull). In both

cases, there is a plot with compute communication overlap enabled and a

plot with this optimization disabled. Finally, Figure 6.7 shows activities of

cluster devices over a timeline during the experiment.
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Figure 6.4: Performance

Figure 6.5: Load Balance



124 Application Profiling

Figure 6.6: Compute Communication Overlap

Figure 6.7: Event Timeline



Chapter 7

Public API

This section documents Unicorn’s public headers - pmPublicDefinitions.h

(Listing 7.1) and pmPublicUtilities.h (Listing 7.2). The prefix pm is taken

from code name (PMLIB which is short for Partitioned Memory Library) of

this project.

1 namespace pm
2 {
3 typedef unsigned short int ushort ;
4 typedef unsigned int uint ;
5 typedef unsigned long ulong ;

6 const s ize t MAX NAME STR LEN = 256 ;
7 const s ize t MAX DESC STR LEN = 1024 ;
8 const s ize t MAX CB KEY LEN = 128 ;
9 const s ize t MAX MEM SECTIONS PER TASK = 8 ;

10 /∗∗
11 ∗ This enumeration d e f i n e s s u c c e s s and a l l

e r r o r c o n d i t i o n s f o r the PMLIB Appl i ca t ion
Programming I n t e r f a c e (API) .

12 ∗ Appl i ca t i on s can depend upon these s t a t u s
f l a g s to know the outcome o f PMLIB f u n c t i o n s .

13 ∗ Appl i ca t i on s may use pmGetLastError f o r a
b r i e f d e s c r i p t i o n o f the e r r o r .

14 ∗/
15 typedef enum pmStatus
16 {
17 pmSuccess = 0 ,
18 pmOk,
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19 pmStatusUnavailable ,
20 pmFatalError ,
21 p m I n i t i a l i z a t i o n F a i l u r e ,
22 pmNetworkInitError ,
23 pmNetworkTerminationError ,
24 pmInvalidIndex ,
25 pmInvalidCommand ,
26 pmThreadingLibraryFailure ,
27 pmTimerFailure ,
28 pmMemoryError ,
29 pmNetworkError ,
30 pmIgnorableError ,
31 pmGraphicsCardError ,
32 pmBeyondComputationalLimits ,
33 pmUnrecognizedMemory ,
34 pmInvalidKey ,
35 pmMaxKeyLengthExceeded ,
36 pmDataProcessingFai lure ,
37 pmNoCompatibleDevice ,
38 pmConfFileNotFound ,
39 pmInval idOffset ,
40 pmInval idCal lbacks ,
41 pmUserError ,
42 pmMaxStatusValues
43 } pmStatus ;

44 /∗∗ This func t i on r e tu rn s the PMLIB ' s v e r s i on
number as a char ∗ in the format
MajorVersion MinorVersion Update ∗/

45 const char∗ pmGetLibVersion ( ) ;

46 /∗∗ This func t i on r e tu rn s a b r i e f d e s c r i p t i o n o f
the l a s t e r r o r ( i f any ) caused by execut ion
o f any PMLIB func t i on ∗/

47 const char∗ pmGetLastError ( ) ;

48 /∗∗ This func t i on i n i t i a l i z e s the PMLIB l i b r a r y .
I t must be the f i r s t PMLIB API c a l l e d on a l l
machines under MPI c l u s t e r . ∗/

49 pmStatus p m I n i t i a l i z e ( ) ;
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50 /∗∗ This func t i on marks the te rminat ion o f use
o f PMLIB in an a p p l i c a t i o n . This must be the
a p p l i c a t i o n ' s l a s t c a l l to PMLIB. ∗/

51 pmStatus pmFinal ize ( ) ;

52 /∗∗ This func t i on r e tu rn s the id o f the c a l l i n g
host ∗/

53 uint pmGetHostId ( ) ;

54 /∗∗ This func t i on r e tu rn s the t o t a l number o f
hos t s ∗/

55 uint pmGetHostCount ( ) ;

56 /∗∗ Some bas i c type d e f i n i t i o n s ∗/
57 typedef void∗ pmMemHandle ;
58 typedef void∗ pmRawMemPtr ;
59 typedef void∗ pmTaskHandle ;
60 typedef void∗ pmDeviceHandle ;
61 typedef void∗ pmCallbackHandle ;
62 typedef void∗ pmClusterHandle ;

63 typedef enum pmMemType
64 {
65 READ ONLY,
66 WRITE ONLY,
67 READ WRITE,
68 READ ONLY LAZY,
69 WRITE ONLY LAZY,
70 READ WRITE LAZY,
71 MAX MEM TYPE
72 } pmMemType;

73 typedef enum pmSubscriptionType
74 {
75 READ SUBSCRIPTION,
76 WRITE SUBSCRIPTION,
77 READ WRITE SUBSCRIPTION
78 } pmSubscriptionType ;

79 typedef enum pmSubscr ip t i onVi s ib i l i tyType
80 {
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81 SUBSCRIPTION NATURAL, // D i s j o i n t
s u b s c r i p t i o n s are mapped at same
d i s t a n c e s as in task memory ( d e f a u l t
opt ion )

82 SUBSCRIPTION COMPACT, // D i s j o i n t
s u b s c r i p t i o n s are mapped back to back

83 SUBSCRIPTION OPTIMAL, // Ei ther
SUBSCRIPTION NATURAL or
SUBSCRIPTION COMPACT whichever i s opt imal
f o r the subtask

84 MAX SUBSCRIPTION VISBILITY TYPE
85 } pmSubscr ip t i onVi s ib i l i tyType ;

86 /∗∗ St ruc tu r e s f o r memory s u b s c r i p t i o n ∗/
87 typedef struct pmSubscr ipt ionInfo
88 {
89 s ize t o f f s e t ; /∗ O f f s e t from the s t a r t o f

the memory reg i on ∗/
90 s ize t l ength ; /∗ Number o f bytes to be

subsc r ibed ∗/

91 pmSubscr ipt ionInfo ( ) ;
92 pmSubscr ipt ionInfo ( s ize t , s ize t ) ;
93 } pmSubscr ipt ionInfo ;

94 typedef struct pmScatte redSubscr ipt ionIn fo
95 {
96 s ize t o f f s e t ;
97 s ize t s i z e ;
98 s ize t s tep ;
99 s ize t count ;

100 pmScatte redSubscr ipt ionIn fo ( ) ;
101 pmScatte redSubscr ipt ionIn fo ( s ize t , s ize t ,

s ize t , s ize t ) ;
102 } pmScatte redSubscr ipt ionIn fo ;

103 /∗∗ GPU context f o r subtask ∗/
104 typedef struct pmGpuContext
105 {
106 void∗ s c r a t c h B u f f e r ;
107 void∗ reservedGlobalMem ;
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108 pmGpuContext ( ) ;
109 } pmGpuContext ;

110 /∗∗ User in fo rmat ion typede f s ∗/
111 typedef struct pmSpl i t In fo
112 {
113 uint s p l i t I d ;
114 uint sp l i tCount ;

115 pmSpl i t In fo ( ) ;
116 pmSpl i t In fo ( uint , uint ) ;
117 } pmSpl i t In fo ;

118 typedef struct pmMemInfo
119 {
120 pmRawMemPtr ptr ;
121 pmRawMemPtr readPtr ;
122 pmRawMemPtr wr i tePtr ;
123 s ize t l ength ;
124 pmSubscr ip t i onVi s ib i l i tyType v i s i b i l i t y T y p e ;

125 pmMemInfo ( ) ;
126 pmMemInfo(pmRawMemPtr, pmRawMemPtr,

pmRawMemPtr, s ize t ) ;
127 pmMemInfo(pmRawMemPtr, pmRawMemPtr,

pmRawMemPtr, s ize t ,
pmSubsc r ip t i onVi s ib i l i tyType ) ;

128 } pmMemInfo ;

129 typedef struct pmSubtaskInfo
130 {
131 ulong subtaskId ;
132 pmMemInfo memInfo [MAX MEM SECTIONS PER TASK ] ;
133 uint memCount ;
134 pmGpuContext gpuContext ;
135 pmSpl i t In fo s p l i t I n f o ;

136 pmSubtaskInfo ( ) ;
137 pmSubtaskInfo (ulong , pmMemInfo∗ , uint ) ;
138 } pmSubtaskInfo ;
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139 typedef struct pmTaskInfo
140 {
141 pmTaskHandle taskHandle ;
142 void∗ taskConf ;
143 uint taskConfLength ;
144 ulong taskId ;
145 ulong subtaskCount ;
146 ushort p r i o r i t y ;
147 uint o r i g i n a t i n g H o s t ;

148 pmTaskInfo ( ) ;
149 } pmTaskInfo ;

150 typedef struct pmDataTransferInfo
151 {
152 pmMemHandle memHandle ;
153 s ize t memLength ;
154 s ize t ∗ operatedMemLength ; // Mem Length

a f t e r programmer ' s compress ion / encrypt ion
155 pmMemType memType ;
156 uint srcHost ;
157 uint destHost ;

158 pmDataTransferInfo ( ) ;
159 } pmDataTransferInfo ;

160 typedef enum pmDeviceType
161 {
162 CPU = 0 ,
163 #i f d e f SUPPORT CUDA
164 GPU CUDA,
165 #e n d i f
166 MAX DEVICE TYPES
167 } pmDeviceType ;

168 typedef struct pmDeviceInfo
169 {
170 pmDeviceHandle deviceHandle ;
171 char name [MAX NAME STR LEN ] ;
172 char d e s c r i p t i o n [MAX DESC STR LEN ] ;
173 pmDeviceType deviceType ;
174 uint host ;
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175 uint deviceIdOnHost ;
176 uint dev i c e Id InC lu s t e r ;

177 pmDeviceInfo ( ) ;
178 } pmDeviceInfo ;

179 typedef enum pmSchedul ingPol icy
180 {
181 SLOW START,
182 RANDOM STEAL, /∗ d e f a u l t p o l i c y ∗/
183 RANDOM STEAL WITH AFFINITY,
184 EQUAL STATIC,
185 PROPORTIONAL STATIC,
186 NODE EQUAL STATIC
187 } pmSchedul ingPol icy ;

188 typedef enum pmAf f in i tyCr i t e r i on
189 {
190 MAXIMIZE LOCAL DATA,
191 MINIMIZE REMOTE SOURCES,
192 MINIMIZE REMOTE TRANSFER EVENTS,
193 MINIMIZE REMOTE TRANSFERS ESTIMATED TIME,
194 DERIVED AFFINITY,
195 MAX AFFINITY CRITERION
196 } pmAf f in i tyCr i t e r i on ;

197 /∗ The l i f e t i m e o f s c ra t ch b u f f e r f o r a subtask
∗/

198 typedef enum pmScratchBufferType
199 {
200 PRE SUBTASK TO SUBTASK, // Scratch

b u f f e r l i v e s from data d i s t r i b u t i o n
c a l l b a c k to subtask c a l l b a c k

201 SUBTASK TO POST SUBTASK, // Scractch
b u f f e r l i v e s from subtask c a l l b a c k to
data r e d i s t r i b u t i o n / reduct i on c a l l b a c k

202 PRE SUBTASK TO POST SUBTASK, // Scratch
b u f f e r l i v e s from data d i s t r i b u t i o n
c a l l b a c k to data r e d i s t r i b u t i o n / reduct i on
c a l l b a c k

203 REDUCTION TO REDUCTION // Scratch
b u f f e r l i v e s and t r a v e l s from one data
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r educt i on c a l l b a c k to the next ( even
a c ro s s machines )

204 } pmScratchBufferType ;

205 typedef struct pmRedistr ibutionMetadata
206 {
207 uint order ;
208 uint count ;

209 pmRedistr ibutionMetadata ( ) ;
210 pmRedistr ibutionMetadata ( uint , uint ) ;
211 } pmRedistributionMetadata ;

212 /∗∗ The f o l l o w i n g type d e f i n i t i o n s stand f o r the
c a l l b a c k s implemented by the user programs . ∗/

213 typedef pmStatus
(∗ pmDataDistr ibut ionCal lback ) ( pmTaskInfo
pTaskInfo , pmDeviceInfo pDeviceInfo ,
pmSubtaskInfo pSubtaskInfo ) ;

214 typedef pmStatus
(∗ pmSubtaskCallback CPU ) ( pmTaskInfo
pTaskInfo , pmDeviceInfo pDeviceInfo ,
pmSubtaskInfo pSubtaskInfo ) ;

215 typedef void
(∗pmSubtaskCallback GPU CUDA ) ( pmTaskInfo
pTaskInfo , pmDeviceInfo∗ pDeviceInfo ,
pmSubtaskInfo pSubtaskInfo , pmStatus∗
pStatus ) ; // po in t e r to CUDA kerne l

216 typedef pmStatus
(∗ pmSubtaskCallback GPU Custom ) ( pmTaskInfo
pTaskInfo , pmDeviceInfo pDeviceInfo ,
pmSubtaskInfo pSubtaskInfo , void∗
pCudaStream ) ;

217 typedef pmStatus
(∗ pmDataReductionCallback ) ( pmTaskInfo
pTaskInfo , pmDeviceInfo pDevice1Info ,
pmSubtaskInfo pSubtask1Info , pmDeviceInfo
pDevice2Info , pmSubtaskInfo pSubtask2Info ) ;

218 typedef pmStatus
(∗ pmDataRedistr ibutionCal lback ) ( pmTaskInfo
pTaskInfo , pmDeviceInfo pDeviceInfo ,
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pmSubtaskInfo pSubtaskInfo ) ;
219 typedef bool

(∗ pmDeviceSe lect ionCal lback ) ( pmTaskInfo
pTaskInfo , pmDeviceInfo pDeviceIn fo ) ;

220 typedef pmStatus
(∗ pmPreDataTransferCallback ) ( pmTaskInfo
pTaskInfo , pmDataTransferInfo
pDataTrans fer Info ) ;

221 typedef pmStatus
(∗ pmPostDataTransferCallback ) ( pmTaskInfo
pTaskInfo , pmDataTransferInfo
pDataTrans fer Info ) ;

222 typedef pmStatus
(∗ pmTaskCompletionCallback ) ( pmTaskInfo
pTaskInfo ) ;

223 /∗∗ Uni f i ed c a l l b a c k s t r u c t u r e ∗/
224 typedef struct pmCallbacks
225 {
226 pmDataDistr ibut ionCal lback da taD i s t r i bu t i on ;
227 pmSubtaskCallback CPU subtask cpu ;
228 pmSubtaskCallback GPU CUDA subtask gpu cuda ;
229 pmSubtaskCallback GPU Custom

subtask gpu custom ; // At l ea s t one o f
subtask gpu cuda and subtask gpu custom
must be NULL

230 pmDataReductionCallback dataReduction ;
231 pmDataRedistr ibutionCal lback

dataRed i s t r i bu t i on ;
232 pmDeviceSe lect ionCal lback d e v i c e S e l e c t i o n ;
233 pmPreDataTransferCallback preDataTransfer ;
234 pmPostDataTransferCallback postDataTransfer ;
235 pmTaskCompletionCallback

taskComplet ionCal lback ;
236 const char∗ subtask openc l ;

237 pmCallbacks ( ) ;
238 pmCallbacks ( pmDataDistr ibutionCal lback ,

const char∗ subtask openc l ) ;
239 pmCallbacks ( pmDataDistr ibutionCal lback ,

const char∗ subtask openc l ,
pmDataReductionCallback ) ;
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240 pmCallbacks ( pmDataDistr ibutionCal lback ,
const char∗ subtask openc l ,
pmDataRedistr ibutionCal lback ) ;

241 pmCallbacks ( pmDataDistr ibutionCal lback ,
pmSubtaskCallback CPU ,
pmSubtaskCallback GPU CUDA ) ;

242 pmCallbacks ( pmDataDistr ibutionCal lback ,
pmSubtaskCallback CPU ,
pmSubtaskCallback GPU Custom ) ;

243 pmCallbacks ( pmDataDistr ibutionCal lback ,
pmSubtaskCallback CPU ,
pmSubtaskCallback GPU CUDA ,
pmDataReductionCallback ) ;

244 pmCallbacks ( pmDataDistr ibutionCal lback ,
pmSubtaskCallback CPU ,
pmSubtaskCallback GPU Custom ,
pmDataReductionCallback ) ;

245 pmCallbacks ( pmDataDistr ibutionCal lback ,
pmSubtaskCallback CPU ,
pmSubtaskCallback GPU CUDA ,
pmDataRedistr ibutionCal lback ) ;

246 pmCallbacks ( pmDataDistr ibutionCal lback ,
pmSubtaskCallback CPU ,
pmSubtaskCallback GPU Custom ,
pmDataRedistr ibutionCal lback ) ;

247 } pmCallbacks ;

248 /∗∗ The c a l l b a c k r e g i s t e r a t i o n API . The
c a l l b a c k s must be r e g i s t e r e d on a l l machines
us ing the same key .

249 ∗ The r e g i s t e r e d c a l l b a c k s are returned in the
po in t e r pCallbackHandle ( i f r e g i s t e r a t i o n i s
s u c c e s s f u l ) .

250 ∗/
251 pmStatus pmRegisterCal lbacks ( const char∗ pKey ,

pmCallbacks pCallbacks , pmCallbackHandle∗
pCallbackHandle ) ;

252 /∗ The r e g i s t e r e d c a l l b a c k s must be r e l e a s e d by
the a p p l i c a t i o n us ing the f o l l o w i n g API ∗/

253 pmStatus pmReleaseCal lbacks ( pmCallbackHandle
pCallbackHandle ) ;
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254 /∗∗ The memory c r e a t i o n API . The a l l o c a t e d
memory i s returned in the v a r i a b l e pMemHandle
∗/

255 pmStatus pmCreateMemory ( s ize t pLength ,
pmMemHandle∗ pMemHandle) ;

256 /∗∗ The 2D memory c r e a t i o n API . The a l l o c a t e d
memory i s returned in the v a r i a b l e pMemHandle .

257 ∗ The a l l o c a t e d memory has a two dimens iona l
layout with pRows rows and pCols columns .

258 ∗/
259 pmStatus pmCreateMemory2D( s ize t pRows , s ize t

pCols , pmMemHandle∗ pMemHandle) ;

260 /∗ The memory d e s t r u c t i o n API . The same
i n t e r f a c e i s used f o r both input and output
memory ∗/

261 pmStatus pmReleaseMemory (pmMemHandle pMemHandle) ;

262 /∗∗ This rou t in e reads the e n t i r e d i s t r i b u t e d
memory pointed to by pMem from the e n t i r e
c l u s t e r i n to the l o c a l b u f f e r . This i s a
b lock ing c a l l .

263 ∗/
264 pmStatus pmFetchMemory(pmMemHandle pMemHandle) ;

265 /∗∗ This rou t in e f e t c h e s pLength bytes o f
d i s t r i b u t e d memory pointed to by pMem from
o f f s e t pOf f s e t i n to the l o c a l b u f f e r . This i s
a b lock ing c a l l .

266 ∗/
267 pmStatus pmFetchMemoryRange (pmMemHandle

pMemHandle , s ize t pOffset , s ize t pLength ) ;

268 /∗∗ This rou t in e r e tu rn s the naked memory
po in t e r a s s o c i a t e d with pMem handle .

269 ∗ This po in t e r may be used in memcpy and
r e l a t e d f u n c t i o n s .

270 ∗/
271 pmStatus pmGetRawMemPtr(pmMemHandle pMemHandle ,

pmRawMemPtr∗ pPtr ) ;
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272 /∗∗ The memory s u b s c r i p t i o n APIs . These
e s t a b l i s h memory dependenc ies f o r a subtask .

273 ∗ Any subtask i s not a l lowed to sub s c r i b e on
beha l f any other subtask .

274 ∗ These func t i on can only be c a l l e d from
DataDis t r ibut ion c a l l b a c k . The e f f e c t

275 ∗ o f c a l l i n g t h i s f unc t i on otherwi s e i s
undef ined . The f u n c t i o n s can be mixed in

276 ∗ any order and may be c a l l e d mul t ip l e t imes
f o r a p a r t i c u l a r subtask .

277 ∗/
278 pmStatus pmSubscribeToMemory ( pmTaskHandle

pTaskHandle , pmDeviceHandle pDeviceHandle ,
ulong pSubtaskId , pmSpl i t In fo& pSp l i t I n f o ,
uint pMemIndex , pmSubscriptionType
pSubscriptionType , const pmSubscr ipt ionInfo&
pSubsc r i p t i on In f o ) ;

279 pmStatus pmSubscribeToMemory ( pmTaskHandle
pTaskHandle , pmDeviceHandle pDeviceHandle ,
ulong pSubtaskId , pmSpl i t In fo& pSp l i t I n f o ,
uint pMemIndex , pmSubscriptionType
pSubscriptionType , const
pmScatte redSubscr ipt ionIn fo&
pS ca t t e r e dSu bs c r i p t i on In f o ) ;

280 /∗∗ The memory r e d i s t r i b u t i o n API . I t
e s t a b l i s h e s memory orde r ing f o r an

281 ∗ address space computed by a subtask in the
f i n a l task memory . Order 0 i s assumed

282 ∗ to be the f i r s t order . Data f o r order 1 i s
p laced a f t e r a l l data f o r order 0 .

283 ∗ There i s no guaranteed orde r ing i n s i d e an
order number i f mu l t ip l e subtasks

284 ∗ produce data f o r that order . This func t i on
can only be c a l l e d from DataRed i s t r ibut ion

285 ∗ c a l l b a c k . The e f f e c t o f c a l l i n g t h i s
func t i on otherw i s e i s undef ined .

286 ∗/
287 pmStatus pmRedistributeData ( pmTaskHandle

pTaskHandle , pmDeviceHandle pDeviceHandle ,
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ulong pSubtaskId , pmSpl i t In fo& pSp l i t I n f o ,
uint pMemIndex , s ize t pOffset , s ize t
pLength , uint pOrder ) ;

288 /∗∗ The CUDA launch c o n f i g u r a t i o n s t r u c t u r e ∗/
289 typedef struct pmCudaLaunchConf
290 {
291 int blocksX ;
292 int blocksY ;
293 int blocksZ ;
294 int threadsX ;
295 int threadsY ;
296 int threadsZ ;
297 int sharedMem ;

298 pmCudaLaunchConf ( ) ;
299 pmCudaLaunchConf ( int , int , int , int , int ,

int ) ;
300 pmCudaLaunchConf ( int , int , int , int , int ,

int , int ) ;
301 } pmCudaLaunchConf ;

302 /∗∗ The CUDA launch c o n f i g u r a t i o n s e t t i n g API .
I t s e t s k e rne l launch c o n f i g u r a t i o n f o r the
subtask s p e c i f i e d by

303 ∗ pSubtaskId . The launch c o n f i g u r a t i o n i s
s p e c i f i e d in the s t r u c t u r e pCudaLaunchConf .

304 ∗ This func t i on can only be c a l l e d from
DataDis t r ibut ion c a l l b a c k . The e f f e c t

305 ∗ o f c a l l i n g t h i s f unc t i on otherwi s e i s
undef ined .

306 ∗/
307 pmStatus pmSetCudaLaunchConf ( pmTaskHandle

pTaskHandle , pmDeviceHandle pDeviceHandle ,
ulong pSubtaskId , pmSpl i t In fo& pSp l i t I n f o ,
pmCudaLaunchConf& pCudaLaunchConf ) ;

308 /∗∗ I f subtask gpu custom i s set , a p p l i c a t i o n
may need to a l l o c a t e a CUDA b u f f e r in the
custom c a l l b a c k .

309 ∗ cudaMalloc and l i k e f u n c t i o n s are
synchronous and they i n t e r r u p t any
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p o s s i b i l i t y o f asynchronous launches ,
310 ∗ r e s u l t i n g in l i m i t e d occupancy on the

dev i ce . By us ing t h i s funct ion , a subtask
can upfront ask the l i b r a r y

311 ∗ to r e s e r v e that b u f f e r . This b u f f e r can be
acce s s ed in k e r n e l s us ing
pSubtaskInfo . gpuContext→ reservedGlobalMem

312 ∗ This func t i on can only be c a l l e d from
DataDis t r ibut ion c a l l b a c k . The e f f e c t o f
c a l l i n g t h i s func t i on otherw i se

313 ∗ i s undef ined .
314 ∗/
315 pmStatus pmReserveCudaGlobalMem ( pmTaskHandle

pTaskHandle , pmDeviceHandle pDeviceHandle ,
ulong pSubtaskId , pmSpl i t In fo& pSp l i t I n f o ,
s ize t pSize ) ;

316 /∗∗ The s t r u c t u r e that a s s o c i a t e s ta sk s to
address spaces ∗/

317 typedef struct pmTaskMem
318 {
319 pmMemHandle memHandle ;
320 pmMemType memType ;
321 pmSubscr ip t i onVi s ib i l i tyType

s u b s c r i p t i o n V i s i b i l i t y T y p e ; /∗ By
de fau l t , t h i s i s SUBSCRIPTION NATURAL ∗/

322 bool di s jo intReadWritesAcrossSubtasks ; /∗
By de fau l t , t h i s i s f a l s e . Appl ies only
to RW adre s s spaces . ∗/

323 pmTaskMem( ) ;
324 pmTaskMem(pmMemHandle , pmMemType) ;
325 pmTaskMem(pmMemHandle , pmMemType,

pmSubscr ip t i onVi s ib i l i tyType ) ;
326 pmTaskMem(pmMemHandle , pmMemType,

pmSubscr ipt ionVis ib i l i tyType , bool ) ;
327 } pmTaskMem;

328 /∗∗ The task d e t a i l s s t r u c t u r e used f o r task
submiss ion ∗/

329 typedef struct pmTaskDetails
330 {
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331 void∗ taskConf ;
332 uint taskConfLength ;
333 pmTaskMem∗ taskMem ;
334 uint taskMemCount ;
335 pmCallbackHandle ca l lbackHandle ;
336 ulong subtaskCount ;
337 ulong taskId ; /∗ Meant f o r a p p l i c a t i o n to

a s s i g n and i d e n t i f y ta sk s ∗/
338 ushort p r i o r i t y ; /∗ By de fau l t , t h i s i s

s e t to max p r i o r i t y l e v e l (0 ) ∗/
339 pmSchedul ingPol icy p o l i c y ; /∗ By de fau l t ,

t h i s i s SLOW START ∗/
340 int timeOutInSecs ; /∗ By de fau l t , t h i s i s

max p o s s i b l e va lue in s igned int ,
negat ive va lue s mean no timeout ∗/

341 bool multiAssignEnabled ; /∗ By de fau l t ,
t h i s i s t rue ∗/

342 bool overlapComputeCommunication ; /∗ By
de fau l t , t h i s i s t rue ∗/

343 bool canSpl itCpuSubtasks ; /∗ By de fau l t ,
t h i s i s f a l s e ∗/

344 bool canSpl itGpuSubtasks ; /∗ By de fau l t ,
t h i s i s f a l s e ∗/

345 #i f d e f SUPPORT CUDA
346 bool cudaCacheEnabled ; /∗ By de fau l t , t h i s

i s t rue ∗/
347 #e n d i f
348 bool suppressTaskLogs ; /∗ By de fau l t , t h i s

i s f a l s e ∗/
349 pmAf f in i tyCr i t e r i on a f f i n i t y C r i t e r i o n ; /∗

By de fau l t , t h i s i s MAXIMIZE LOCAL DATA ∗/
350 pmClusterHandle c l u s t e r ; /∗ Unused ∗/

351 pmTaskDetails ( ) ;
352 pmTaskDetails ( void∗ taskConf , uint

taskConfLength , pmTaskMem∗ , uint
taskMemCount , pmCallbackHandle
cal lbackHandle , ulong subtaskCount ) ;

353 } pmTaskDetails ;

354 /∗ The f l a g d i s jo intReadWritesAcrossSubtasks
should be t rue ( f o r RW output memories ) i f
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the read s u b s c r i p t i o n s o f a subtask do not
over lap with wr i t e s u b s c r i p t i o n s o f any
subtasks other than i t s e l f . ∗/

355 /∗∗ The task submiss ion API . Returns the task
handle in v a r i a b l e pTaskHandle on s u c c e s s . ∗/

356 pmStatus pmSubmitTask ( pmTaskDetails
pTaskDetai ls , pmTaskHandle∗ pTaskHandle ) ;

357 /∗∗ The submitted ta sk s must be r e l e a s e d by the
a p p l i c a t i o n us ing the f o l l o w i n g API .

358 ∗ The API automat i ca l l y b locks t i l l task
complet ion . Returns the task ' s e x i t s t a t u s .

359 ∗/
360 pmStatus pmReleaseTask ( pmTaskHandle pTaskHandle ) ;

361 /∗∗ A task i s by d e f a u l t non b lock ing . The
c o n t r o l comes back immediately .

362 ∗ Use the f o l l o w i n g API to wait f o r the task
to f i n i s h .

363 ∗ The API r e tu rn s the e x i t s t a t u s o f the task .
364 ∗/
365 pmStatus pmWaitForTaskCompletion ( pmTaskHandle

pTaskHandle ) ;

366 /∗∗ Returns the task execut ion time ( in seconds )
in the v a r i a b l e pTime .

367 ∗ The API automat i ca l l y b locks t i l l task
complet ion .

368 ∗/
369 pmStatus

pmGetTaskExecutionTimeInSecs ( pmTaskHandle
pTaskHandle , double∗ pTime) ;

370 /∗∗ A u n i f i e d API to r e l e a s e task and i t ' s
a s s o c i a t e d r e s o u r c e s ( ca l l back s , input and
output memory) .

371 ∗ Returns the task ' s e x i t s t a t u s ( i f no
e r r o r ) . The API automat i ca l l y b locks t i l l
task f i n i s h e s .

372 ∗/
373 pmStatus pmReleaseTaskAndResources ( pmTaskDetails
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pTaskDetai ls , pmTaskHandle pTaskHandle ) ;

374 /∗∗ This func t i on r e tu rn s a wr i t ab l e b u f f e r
a c c e s s i b l e to data d i s t r i b u t i o n , subtask ,
data reduct i on and data r e d i s t r i b u t i o n
c a l l b a c k s .

375 Scratch b u f f e r s i z e parameter i s only honored
f o r the f i r s t i nvoca t i on o f t h i s func t i on
f o r a p a r t i c u l a r subtask and sc ra t ch b u f f e r
type .

376 Succ e s s i v e i n v o c a t i o n s re turn the b u f f e r
a l l o c a t e d at i n i t i a l r eque s t s i z e . This
b u f f e r i s only used to pass in fo rmat ion
generated in one c a l l b a c k

377 to other c a l l b a c k s ∗/
378 #i f d e f CUDACC
379 h o s t d e v i c e
380 #e n d i f
381 inl ine void∗ pmGetScratchBuffer ( pmTaskHandle

pTaskHandle , pmDeviceHandle pDeviceHandle ,
ulong pSubtaskId , pmSpl i t In fo& pSp l i t I n f o ,
pmScratchBufferType pScratchBufferType ,
s ize t pBuf f e rS i ze , pmGpuContext∗ pGpuContext )

382 {
383 #i f de f ined ( CUDA ARCH )
384 return ( pGpuContext ?

pGpuContext→ s c r a t c h B u f f e r : NULL) ;
385 #else
386 void∗

pmGetScratchBufferHostFunc ( pmTaskHandle
pTaskHandle , pmDeviceHandle
pDeviceHandle , ulong pSubtaskId ,
pmSpl i t In fo& pSp l i t I n f o ,
pmScratchBufferType pScratchBufferType ,
s ize t pBuf f e rS i z e ) ;

387 return
pmGetScratchBufferHostFunc ( pTaskHandle ,
pDeviceHandle , pSubtaskId , pSp l i t I n f o ,
pScratchBufferType , pBu f f e rS i z e ) ;

388 #e n d i f
389 }
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390 /∗∗ This func t i on i s only supported from CPU and
can not be c a l l e d from GPU k e r n e l s ∗/

391 pmStatus pmReleaseScratchBuf fer ( pmTaskHandle
pTaskHandle , pmDeviceHandle pDeviceHandle ,
ulong pSubtaskId , pmSpl i t In fo& pSp l i t I n f o ,
pmScratchBufferType pScratchBufferType ) ;

392 /∗∗ This func t i on r e tu rn s the
REDUCTION TO REDUCTION sc ra t ch b u f f e r
a s s o c i a t e d with the f i n a l reduced subtask o f
the task pTaskHandle ∗/

393 void∗
pmGetLastReductionScratchBuffer ( pmTaskHandle
pTaskHandle ) ;

394 /∗∗ This func t i on r e tu rn s the r e d i s t r i b u t i o n
metadata i . e . a s e t o f t u p l e s r e p r e s e n t i n g
order number and r e d i s t r i b u t i o n s r e c e i v e d f o r
that order .

395 ∗ The pCount output parameter i s the t o t a l
count o f r e d i s t r i b u t i o n s . ∗/

396 pmRedistr ibutionMetadata ∗
pmGetRedistributionMetadata ( pmTaskHandle
pTaskHandle , uint pMemIndex , ulong∗ pCount ) ;

397 } // end namespace pm

Listing 7.1: Unicorn Header: pmPublicDefinitions.h

1 namespace pm
2 {
3 typedef enum pmReductionOpType
4 {
5 REDUCE ADD,
6 REDUCE MIN,
7 REDUCE MAX,
8 REDUCE PRODUCT,
9 REDUCE LOGICAL AND,

10 REDUCE BITWISE AND,
11 REDUCE LOGICAL OR,
12 REDUCE BITWISE OR,
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13 REDUCE LOGICAL XOR,
14 REDUCE BITWISE XOR,
15 MAX REDUCTION OP TYPES
16 } pmReductionOpType ;

17 typedef enum pmReductionDataType
18 {
19 REDUCE INTS,
20 REDUCE UNSIGNED INTS,
21 REDUCE LONGS,
22 REDUCE UNSIGNED LONGS,
23 REDUCE FLOATS,
24 REDUCE DOUBLES,
25 MAX REDUCTION DATA TYPES
26 } pmReductionDataType ;

27 /∗∗ The f o l l o w i n g func t i on can be used f o r
optimal i n b u i l t r educt i on o f two subtasks . ∗/

28 pmDataReductionCallback
pmGetSubtaskReductionCallbackImpl

29 ( pmReductionOpType pOperation ,
pmReductionDataType pDataType ) ;

30 /∗∗ The f o l l o w i n g func t i on can be c a l l e d from
with in a custom implementation o f
pmDataReductionCallback . ∗/

31 pmStatus pmReduceSubtasks ( pmTaskHandle
pTaskHandle , pmDeviceHandle pDevice1Handle ,
unsigned long pSubtask1Id , pmSpl i t In fo&
pSp l i t In f o1 , pmDeviceHandle pDevice2Handle ,
unsigned long pSubtask2Id , pmSpl i t In fo&
pSp l i t In f o2 , pmReductionOpType pOperation ,
pmReductionDataType pDataType ) ;

32 const s ize t MAX FILE SIZE LEN = 2048 ;

33 /∗∗ This func t i on r e tu rn s the s t a r t i n g address
o f the f i l e s p e c i f i e d by pPath and memory
mapped by the c a l l pmMapFile .

34 The number o f bytes in pPath must be l e s s than
MAX FILE SIZE LEN . ∗/

35 void∗ pmGetMappedFile ( const char∗ pPath ) ;
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36 /∗∗ This func t i on memory maps an e n t i r e f i l e
s p e c i f i e d by pPath on a l l machines in the
c l u s t e r .

37 The number o f bytes in pPath must be l e s s than
MAX FILE SIZE LEN . ∗/

38 pmStatus pmMapFile ( const char∗ pPath ) ;

39 /∗∗ This func t i on unmaps the f i l e s p e c i f i e d by
pPath and mapped by the c a l l pmMapFile ( s )
from a l l machines in the c l u s t e r .

40 The number o f bytes in pPath must be l e s s than
MAX FILE SIZE LEN . ∗/

41 pmStatus pmUnmapFile ( const char∗ pPath ) ;

42 /∗∗ This func t i on memory maps pFileCount f i l e s
s p e c i f i e d by pPaths on a l l machines in the
c l u s t e r .

43 The number o f bytes in each pPaths entry must
be l e s s than MAX FILE SIZE LEN . ∗/

44 pmStatus pmMapFiles ( const char∗ const∗ pPaths ,
uint pFileCount ) ;

45 /∗∗ This func t i on unmaps pFileCount f i l e s
s p e c i f i e d by pPaths and mapped by the c a l l
pmMapFile ( s ) from a l l machines in the c l u s t e r .

46 The number o f bytes in each pPaths entry must
be l e s s than MAX FILE SIZE LEN . ∗/

47 pmStatus pmUnmapFiles ( const char∗ const∗ pPaths ,
uint pFileCount ) ;

48 } // end namespace pm

Listing 7.2: Unicorn Header: pmPublicUtilities.h
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Related Work

Many single node CPU-GPU programming frameworks like [61, 43, 15] have

been proposed in the literature. But these lack scheduling and load bal-

ancing capabilities and division of work between CPU and GPU is largely

left to the programmer. StarPU [6] is a broader single node framework that

supports CPU/GPU co-scheduling, but for optimal results it often requires

calibration runs and scheduling hints from the programmer. It employs fine-

grained schedulable units called codelets. Manual sizing of codelets in this

framework is a challenge as the same size generally does not suit CPUs and

GPUs well. GPUSs [7], a derivative of StarSs, also requires programmers

to annotate specific code blocks with constructs (that identify tasks and

target devices) and directionality clauses (that determine data movement).

These hints are used to build a task dependency graph, which determines the

scheduling of individual tasks. XKaapi [34] is another system that employs

a work stealing scheduler to distribute the load on CPUs and GPUs. In all

these systems, scheduling decisions once made are not re-assessed and the

granularity of work division between various accelerators and CPU cores is

left to the programmer. These systems also do not target multiple machines.

Existing cluster programming systems can be broadly classified into two cat-

egories. The first comprises language based approaches like [26, 42, 14, 50,

47, 38, 27], usually extending a sequential language like C or Fortran. The
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second category includes library based approaches like [10, 29, 2, 60, 39].

The former ones focus variously on functional, loop or data parallelism and

generally use shared address spaces (built on top of DSM or more specifi-

cally PGAS [54]) with fine grained synchronization. Their focus is to mainly

allow the user to express parallelism at a high level and most do not support

GPUs. In contrast, library based approaches employ some MPI-like commu-

nication, where machine specific details are not completely abstracted from

the programmer. Instead of focusing on program logic, the programmer has

to directly handle issues like synchronization, scalability and latency. Hence,

usual problems like race conditions and deadlocks remain.

Other frameworks allow applications to use GPUs on remote nodes but they

don’t exhibit performance in the absence of optimizations like we report.

Using remote GPU on a 40Gbps network, rCUDA [53, 25] reports remote

matrix multiplication and 1D FFT respectively 12.9% and 72.9% slower than

local GPU. Similarly, [8] and [35] report remote OpenCL extensions, but in

spite of the application exercising direct control over the distribution of data

and computation, their scalability and efficiency is not comparable to ours.

Our system Unicorn is built on top of pthreads, MPI and CUDA. Its novelty

is in its general and intuitive interface, yet efficient implementation. It unifies

computation on local and remote computing units (CPUs and GPUs) using

bulk synchrony. Its runtime environment autonomously performs data distri-

bution, dynamic load-balanced scheduling and synchronization. The closest

existing works targeting CPU and GPU clusters are Phalanx [33], StarPU-

MPI [5], G-Charm [59] and Legion [9]. Phalanx is a C++ template library

with powerful mechanisms to create a thread hierarchy that is mapped onto
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a hierarchy of processors and memories. But it lacks scheduling and load

balancing capabilities. It also does not use CPUs and GPUs collectively for

computations.

StarPU-MPI is an extension of StarPU but it does not fully abstract the ex-

istence of multiple machines: the programmer must either explicitly manage

communication with an MPI-like interface or explicitly submit independent

tasks to each node of the cluster. Rather than a unified cluster programming

framework, it is an MPI based aggregation of independent StarPU instances

running on each node. It lacks a cluster wide scheduler. It only provides

independent schedulers on each node, with inter-node schedule managed by

the user. StarPU maintains data replicas for potential use in upcoming tasks.

However, if a task modifies data in one of the replicas, all others are invali-

dated. For optimal performance, it recommends applications to advise when

and where not to keep data replicas. In contrast to this, Unicorn adopts a

light weight memory consistency protocol where the invalidation messages

are deferred to task boundaries (where they are piggy-backed on other reg-

ular message exchange between nodes) and no overhead is incurred during

task execution. StarPU also supports a notion of data filters which allows

data to be viewed in parts (or hierarchy) by associated codelets. These filters

are usually synchronous. Asynchronous filters can also be created with some

limitations on data usage by the application. Unicorn, on the other hand, is

an entirely asynchronous system and achieves data partitioning through an

application callback.

G-Charm, based on Charm++ [41], is a framework specially optimized for

GPUs. It particularly focuses on reducing GPU data transfers by employ-
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ing a software-cache over GPUs and grouping multiple Charm++ chares

together to reduce the number of GPU kernel invocations. Each processor

in the system runs an independent instance of Charm++ runtime and they

communicate via message-passing (messages are buffered in a message queue

with Charm++ runtime). Even the input data for chares is received by this

mechanism. In contrast, Unicorn has a dedicated thread (on each node) to

efficiently manage data transfers and segregate them from control messages.

This approach guarantees progress of the entire asynchronous system. Also,

unlike Unicorn’s multi-assign, G-Charm lacks a mechanism to reconsider and

correct poorly made scheduling decisions.

Legion is a powerful system that uses a software out-of-order processor to

schedule application-created tasks with dependencies specified by the pro-

grammer. The programmer does so by explicitly partitioning data into mem-

ory regions and sub-regions and annotating these regions with access priv-

ileges (read-only, read-write, etc.) and coherence (exclusive access, atomic

access, etc.). The system is complicated to program. For efficiency, the pro-

grammer is also required to write custom mappers which map regions and

tasks to nodes.

StarPU-MPI, G-Charm and Legion are quite similar in the way they support

generic task graphs where a task is individually schedulable and is capable

of spawning more tasks. However, we argue that this is not the natural way

the programmers think and write programs. In contrast, Unicorn abstracts

generic task graphs into an interface where programmers write applications

as a graph of tasks, with each task decomposable into several concurrently

executable subtasks.
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In contrast to StarPU-MPI and a few others, Unicorn applications need not

write any code for task graphs, data transfers, MPI initialization, etc. But

Unicorn applications do need to provide additional subtask subscription code.

In StarPU-MPI, there is no concept of subscriptions but data filters do exist.

In addition to this, all programming models provide some optional perfor-

mance boosting features at the cost of some extra code (e.g. scheduling

customization in StarPU and subtask resizing in Unicorn). Thus, it is diffi-

cult to provide an eternal comparison of the number of lines of code required

by client applications of these models. However, in general, Unicorn requires

significantly less new code than corresponding StarPU-MPI and other imple-

mentations, which leave many runtime controls to the application.
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Chapter 9

Conclusions and Future Work

This thesis presents a practical bulk synchronous programming model that

allows distribution of computation across multiple CPU cores within a node,

multiple GPUs, and multiple nodes connected over a network, all in a unified

manner. Our model maps efficiently to modern devices like GPUs, as they

are already bulk synchronous in nature. Our runtime undertakes all local and

networked data transfers, scheduling, and synchronization in an efficient and

robust manner. By design, we eliminate races and deadlocks as all devices

operate in a private view of the address space.

For ease of programming, Unicorn exposes a distributed shared memory

system with transactional semantics. Experiments show that our runtime

overcomes the performance limitations of the distributed shared memory ap-

proach and achieves good performance gains for coarse-grained experiments.

This performance is possible due to a number of critical optimizations work-

ing in concert. These include prefetching, pipelining, maximizing overlap

between computation and communication, and scheduling/re-scheduling ef-

ficiently across heterogeneous devices of vastly different capacities. Unicorn

also employs special optimizations for GPUs like a software LRU cache to

reduce DMA transfers and a proactive work-stealer to reduce pipeline stalls.

Our framework can realize any task that may be optionally decomposed into

a set of concurrently executable subtasks with checkout/checkin memory se-
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mantics and a synchronized reduction step to resolve conflicting checkins.

However, tasks having non-deterministic access pattern (like graph traver-

sal) or fine-grained/frequent communication or complex conflict resolution

may not perform efficiently in our system. This thesis has not focused on ir-

regular workloads in general. However, dynamic load balancing mechanisms

have been shown to work well for irregular applications as well. Detailed

experimentation with irregular applications remains future work.

In the future, there is potential to optimize data transfers for a set of tasks

rather than one task at a time. Except for data dependency or an explic-

itly specified user dependency, Unicorn tasks are independent of each other.

However, wiser scheduling decisions can be made with à priori knowledge of

tasks to come. Unicorn’s locality aware scheduler produces a schedule opti-

mized for the task at hand. By evaluating the data requirements of dependent

tasks, it is possible to produce a globally optimal schedule. Of course, the

time it takes to generate such a schedule must be weighed against the time

saved in data transfers while executing the global schedule.

In the present implementation, Unicorn moves data between GPUs on a node

or across nodes through address spaces stored on CPU. However, it is possible

to exploit GPUDirect technology to directly transfer data between GPUs on

a node. GPUDirect RDMA can be explored for inter-node GPU-GPU data

transfers. MPI also offers RDMA features on high performance interconnects

(like Infiniband) allowing applications to directly access remote node’s mem-

ory bypassing operating systems on both nodes involved in communication.
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Appendix

10.1 Unicorn’s MapReduce Extension

The MapReduce [20] programming model visualizes a task in two stages. The

first stage (called map stage) marshalls the input data into different groups

while the second stage (called reduce stage) consumes these groups and pro-

duces a reduction (or summarization) of each. Both stages are individually

parallelizable and can be run distributedly over a cluster. The reduce stage,

however, must start after the map stage is complete.

In this thesis, we explore Unicorn’s suitability to realize this high level pro-

gramming abstraction. For the map stage, we deploy Unicorn’s subtask exe-

cution callback while the reduce stage is executed by data reduction callback.

Note that these two callbacks are already executed sequentially by Unicorn’s

runtime. In the former callback, subtasks concurrently process disjoint data

(subscribed by of data subscription callback) from input address space(s)

and produce a logical grouping in output address space(s). For example,

in PageRank experiment (section 5), the callback results in each subtask

producing an array whose indices represent web page IDs and values are real

numbers that represent page rank contributions from the data (or web pages)

processed by this subtask. For the reduce stage, our runtime takes two sub-

tasks at a time and logically sums them up (i.e., adds the page rank values

at every index of the output of both subtasks). Note that Unicorn provides

built-in functions for mostly used reductions operations like summation.

In such experiments, however, the data produced by map stage is sparse
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because a subtask contributes page ranks to only a small fraction of the web.

Thus, most indices in a subtask’s output array (in the address space) are zero.

In a cluster environment like Unicorn, data reduction requires movement of

a lot of data. This includes both inter-node data transfers and GPU to CPU

transfers. Our runtime provides a few simple compression routines like Run

Length Encoding (RLE) where a sequence of frequently occurring values (like

zero) in a sparse array are replaced by their run lengths. Results in section

5 provide more insight into the performance benefits of this scheme.

We also experimented with Zlib [22] but found that the compression bene-

fits are nullified by the time taken to compress (and uncompress). Rather,

simpler techniques like RLE show promising results for latency bound appli-

cations.

10.2 Scratch Buffers

Unicorn runtime supports inter callback communication for subtasks. The

pmGetScratchBuffer API call documented in chapter 7 creates a memory

buffer, called scratch buffer, for this purpose. For every subtask, the first call

to the said API creates the scratch buffer of the requested size while every

subsequent call returns the buffer that was created by the first call. For GPU

subtasks, the subtask execution callback runs on GPU while other callbacks

are executed on CPU. In this case, the runtime transparently moves scratch

buffers from CPU to GPU or vice versa, as required. A scratch buffer can be

optionally deleted by its owning subtask using pmReleaseScratchBuffer API

call if it is no longer needed or in case a scratch buffer of different size is
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required.

10.3 Matrix Multiplication Source Code

This section lists the source code of an application that parallelizes square

matrix multiplication using Unicorn. The CPU subtask code is implemented

in C using BLAS [24] routines while the GPU subtask code is written in

CUDA using CUBLAS [17] routines. Listing 10.1 contains the header file for

the application. Listing 10.2 specifies the C/C++ code for the application

while listing 10.3 contains the CUDA code. The code logically divides the

output matrix into blocks of size 2048 ∗ 2048 and each of these blocks is

computed by a different subtask. To compute its block, a subtask subscribes

to all blocks in the corresponding row of the first input matrix and to all

blocks in the corresponding column of the second input matrix.

1 #define ELEM SIZE s izeof ( f loat )
2 #define BLOCK DIM 2048

3 #define BLOCK OFFSET IN ELEMS( blockRow , blockCol ,
blockDim , matrixDim ) ( ( ( blockRow ) ∗ ( matrixDim ) +
( blockCol ) ) ∗ ( blockDim ) )

4 #define SUBSCRIBEBLOCK( blockRow , blockCol ,
b l ockOf f s e t , blockHeight , blockDim , matrixDim ,
subtaskId , s p l i t I n f o , memoryIndex ,
subscr ipt ionType ) \

5 { \
6 s ize t bOf f s e t = BLOCK OFFSET IN ELEMS( blockRow ,

blockCol , blockDim , matrixDim ) ; \
7 pmScatteredSubscriptionInfo s I n f o ( ( ( b l o c kO f f s e t

∗ matrixDim ) + bOf f s e t ) ∗ ELEM SIZE , blockDim
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∗ ELEM SIZE , matrixDim ∗ ELEM SIZE ,
( blockHeight ) ) ; \

8 pmSubscribeToMemory( pTaskInfo . taskHandle ,
pDeviceIn fo . deviceHandle , subtaskId ,
s p l i t I n f o , memoryIndex , subscr ipt ionType ,
s I n f o ) ; \

9 }

10 enum memIndex
11 {
12 INPUT MATRIX1 MEM INDEX = 0 ,
13 INPUT MATRIX2 MEM INDEX,
14 OUTPUT MATRIX MEM INDEX,
15 MAX MEM INDICES
16 } ;

17 struct matMulTaskConf
18 {
19 s ize t matrixDim ;
20 s ize t blockDim ;
21 } ;

22 pmStatus matrixMultiply cudaLaunchFunc (pmTaskInfo
pTaskInfo , pmDeviceInfo pDeviceInfo ,
pmSubtaskInfo pSubtaskInfo , void∗ pCudaStream ) ;

Listing 10.1: File matmul.h

1 void serialMatrixMultiply ( f loat ∗ pMatrixA , f loat ∗
pMatrixB , f loat ∗ pMatrixC , s ize t pDim1 , s ize t
pDim2 , s ize t pDim3 , s ize t pRowStepElems1 ,
s ize t pRowStepElems2 , s ize t pRowStepElems3 )

2 {
3 cblas sgemm ( CblasRowMajor , CblasNoTrans ,

CblasNoTrans , ( int )pDim1 , ( int )pDim3 ,
( int )pDim2 , 1 . 0 f , pMatrixA ,
( int ) pRowStepElems1 , pMatrixB ,
( int ) pRowStepElems2 , 0 . 0 f , pMatrixC ,
( int ) pRowStepElems3 ) ;

4 }
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5 bool GetSpl itData ( s ize t ∗ pBlockOffset , s ize t ∗
pBlockHeight , matrixMultiplyTaskConf∗ pTaskConf ,
pmSpl i t In fo& p S p l i t I n f o )

6 {
7 ∗ pBlockOf f set = 0 ;
8 ∗pBlockHeight = pTaskConf→blockDim ;
9 i f ( p S p l i t I n f o . sp l i tCount )

10 {
11 s ize t l Sp l i tCount = ( ( pTaskConf→blockDim <

p S p l i t I n f o . sp l i tCount ) ?
pTaskConf→blockDim :
p S p l i t I n f o . sp l i tCount ) ;

12 i f ( p S p l i t I n f o . s p l i t I d > l Sp l i tCount 1)
13 return fa l se ;

14 s ize t l S p l i t t e d B l o c k S i z e =
( pTaskConf→blockDim / lSp l i tCount ) ;

15 ∗ pBlockOf f set = p S p l i t I n f o . s p l i t I d ∗
l S p l i t t e d B l o c k S i z e ;

16 i f ( p S p l i t I n f o . s p l i t I d == lSp l i tCount 1)
17 ∗pBlockHeight = ( pTaskConf→blockDim

( p S p l i t I n f o . s p l i t I d ∗
l S p l i t t e d B l o c k S i z e ) ) ;

18 else
19 ∗pBlockHeight = l S p l i t t e d B l o c k S i z e ;
20 }

21 return true ;
22 }

23 pmStatus matrixMultiply dataDistribution (pmTaskInfo
pTaskInfo , pmDeviceInfo pDeviceInfo ,
pmSubtaskInfo pSubtaskInfo )

24 {
25 matMulTaskConf∗ lTaskConf =

(matMulTaskConf∗) ( pTaskInfo . taskConf ) ;

26 // Subtask no . i n c r e a s e s v e r t i c a l l y in output
matrix ( f o r i n c r ea s e d l o c a l i t y )
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27 s ize t lBlocksPerDim = ( lTaskConf→matrixDim /
lTaskConf→blockDim ) ;

28 s ize t lBlockRow = ( pSubtaskInfo . subtaskId %
lBlocksPerDim ) ;

29 s ize t lB lockCol = ( pSubtaskInfo . subtaskId /
lBlocksPerDim ) ;

30 // Subscr ibe to e n t i r e lBlockRow of the f i r s t
matrix ( with equal s p l i t )

31 pmScatteredSubscriptionInfo l S I n f o 1 ( ( lBlockRow ∗
lTaskConf→blockDim + l B l o c k O f f s e t ) ∗
lTaskConf→matrixDim ∗ ELEM SIZE ,
lTaskConf→matrixDim ∗ ELEM SIZE ,
lTaskConf→matrixDim ∗ ELEM SIZE ,
lBlockHeight ) ;

32 pmSubscribeToMemory( pTaskInfo . taskHandle ,
pDeviceIn fo . deviceHandle ,
pSubtaskInfo . subtaskId ,
pSubtaskInfo . s p l i t I n f o ,
INPUT MATRIX1 MEM INDEX, READSUBSCRIPTION,
l S I n f o 1 ) ;

33 // Subscr ibe to e n t i r e lBlockCol o f the second
matrix

34 pmScatteredSubscriptionInfo l S I n f o 2 ( ( lBlockCol ∗
lTaskConf→blockDim ) ∗ ELEM SIZE ,
lTaskConf→blockDim ∗ ELEM SIZE ,
lTaskConf→matrixDim ∗ ELEM SIZE ,
lTaskConf→matrixDim ) ;

35 pmSubscribeToMemory( pTaskInfo . taskHandle ,
pDeviceIn fo . deviceHandle ,
pSubtaskInfo . subtaskId ,
pSubtaskInfo . s p l i t I n f o ,
INPUT MATRIX2 MEM INDEX, READSUBSCRIPTION,
l S I n f o 2 ) ;

36 // Subscr ibe to one block o f the output matrix
( with equal s p l i t )

37 SUBSCRIBEBLOCK( lBlockRow , lBlockCol ,
lB lockOf f s e t , lBlockHeight ,
lTaskConf→blockDim , lTaskConf→matrixDim ,
pSubtaskInfo . subtaskId ,
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pSubtaskInfo . s p l i t I n f o ,
OUTPUT MATRIX MEM INDEX, WRITESUBSCRIPTION)

38 return pmSuccess ;
39 }

40 pmStatus matrixMultiply cpu (pmTaskInfo pTaskInfo ,
pmDeviceInfo pDeviceInfo , pmSubtaskInfo
pSubtaskInfo )

41 {
42 matrixMultiplyTaskConf∗ lTaskConf =

( matrixMultiplyTaskConf ∗) ( pTaskInfo . taskConf ) ;

43 s ize t lB lockOf f s e t , lB lockHeight ;
44 i f ( ! GetSpl itData(& lB lockOf f s e t , &lBlockHeight ,

lTaskConf , pSubtaskInfo . s p l i t I n f o ) )
45 return pmSuccess ;

46 f loat ∗ lMatr ix1 = ( f loat ∗) ( pSubtaskInfo . memInfo
[ INPUT MATRIX1 MEM INDEX ] . ptr ) ;

47 f loat ∗ lMatr ix2 = ( f loat ∗) ( pSubtaskInfo . memInfo
[ INPUT MATRIX2 MEM INDEX ] . ptr ) ;

48 f loat ∗ lMatr ix3 = ( f loat ∗) ( pSubtaskInfo . memInfo
[OUTPUT MATRIX MEM INDEX ] . ptr ) ;

49 s ize t lSpanMatrix2 = ( pSubtaskInfo . memInfo
[ INPUT MATRIX2 MEM INDEX ] . v i s i b i l i t y T y p e ==
SUBSCRIPTION NATURAL) ? lTaskConf→matrixDim
: lTaskConf→blockDim ;

50 s ize t lSpanMatrix3 = ( pSubtaskInfo . memInfo
[OUTPUT MATRIX MEM INDEX ] . v i s i b i l i t y T y p e ==
SUBSCRIPTION NATURAL) ? lTaskConf→matrixDim
: lTaskConf→blockDim ;

51 serialMatrixMultiply ( lMatrix1 , lMatrix2 ,
lMatrix3 , lBlockHeight , lTaskConf→matrixDim ,
lTaskConf→blockDim , lTaskConf→matrixDim ,
lSpanMatrix2 , lSpanMatrix3 ) ;

52 return pmSuccess ;
53 }
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54 // Both input matr i ce s are o f s i z e pMatrixDim ∗
pMatrixDim and are s to r ed back to back in
pInputMatr ices

55 // pOutputMatrix i s o f s i z e pMatrixDim ∗ pMatrixDim
and conta in s the r e s u l t a f t e r p a r a l l e l matrix
m u l t i p l i c a t i o n

56 // pMatrixDim i s a power o f 2 and i s at l e a s t 2048 .
57 void matmul( s ize t pMatrixDim , f loat ∗

pInputMatrices , f loat ∗ pOutputMatrix )
58 {
59 pmInitialize ( ) ;

60 pmCallbacks lCa l l ba ck s ;
61 lCa l l ba ck s . da taD i s t r i bu t i on =

matrixMultiply dataDistribution ;
62 lCa l l ba ck s . subtask cpu = matrixMultiply cpu ;
63 lCa l l ba ck s . subtask gpu custom =

matrixMultiply cudaLaunchFunc ;

64 const char∗ lKey = ”MMKEY” ;
65 pmCallbackHandle lHandle ;
66 pmRegisterCallbacks ( lKey , lCa l lbacks , lHandle ) ;

67 s ize t lMatrixElems = pMatrixDim ∗ pMatrixDim ;
68 s ize t lMat r i xS i z e = lMatrixElems ∗ ELEM SIZE ;
69 unsigned long lSubtaskCount = ( pMatrixDim /

BLOCK DIM) ∗ ( pMatrixDim / BLOCK DIM) ;

70 pmTaskDetails lTaskDeta i l s ;
71 lTaskDeta i l s . ca l lbackHandle = lHandle ;
72 lTaskDeta i l s . subtaskCount = lSubtaskCount ;

73 pmMemHandle lInputMem1 , lInputMem2 , lOutputMem ;
74 pmCreateMemory2D( pMatrixDim , pMatrixDim ∗

ELEM SIZE , &lInputMem1 ) ;
75 pmCreateMemory2D( pMatrixDim , pMatrixDim ∗

ELEM SIZE , &lInputMem2 ) ;
76 pmCreateMemory2D( pMatrixDim , pMatrixDim ∗

ELEM SIZE , &lOutputMem) ;
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77 pmRawMemPtr lRawInputPtr1 , lRawInputPtr2 ,
lRawOutputPtr ;

78 pmGetRawMemPtr( lInputMem1 , &lRawInputPtr1 ) ;
79 pmGetRawMemPtr( lInputMem2 , &lRawInputPtr2 ) ;

80 memcpy( lRawInputPtr1 , pInputMatrices ,
lMat r i xS i z e ) ;

81 memcpy( lRawInputPtr2 , pInputMatr ices +
lMatrixElems , lMat r i xS i z e ) ;

82 pmTaskMem lTaskMem [MAX MEM INDICES ] ;
83 lTaskMem [INPUT MATRIX1 MEM INDEX] = { lInputMem1 ,

READ ONLY, SUBSCRIPTION OPTIMAL} ;
84 lTaskMem [INPUT MATRIX2 MEM INDEX] = { lInputMem2 ,

READ ONLY, SUBSCRIPTION OPTIMAL} ;
85 lTaskMem [OUTPUT MATRIX MEM INDEX] = {lOutputMem ,

WRITE ONLY, SUBSCRIPTION OPTIMAL} ;

86 lTaskDeta i l s . taskMem = (pmTaskMem∗) lTaskMem ;
87 lTaskDeta i l s . taskMemCount = MAX MEM INDICES;

88 matMulTaskConf lTaskConf = {pMatrixDim ,
BLOCK DIM} ;

89 lTaskDeta i l s . taskConf = ( void ∗)(&lTaskConf ) ;
90 lTaskDeta i l s . taskConfLength = s izeof ( lTaskConf ) ;

91 lTaskDeta i l s . canSpl itCpuSubtasks = true ;

92 pmTaskHandle lTaskHandle = NULL;
93 pmSubmitTask( lTaskDeta i l s , &lTaskHandle ) ;

94 pmWaitForTaskCompletion( lTaskHandle ) ;

95 pmFetchMemory( lOutputMem) ;

96 pmGetRawMemPtr( lOutputMem , &lRawOutputPtr ) ;
97 memcpy( pOutputMatrix , lRawOutputPtr ,

lMat r i xS i z e ) ;

98 pmReleaseTask( lTask ) ;
99 pmReleaseCallbacks ( lCa l l ba ck s ) ;
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100 pmReleaseMemory( lInputMem1 ) ;
101 pmReleaseMemory( lInputMem2 ) ;
102 pmReleaseMemory( lOutputMem) ;

103 pmFinalize ( ) ;
104 }

Listing 10.2: File matmul.cpp

1 const f loat gZero = ( f loat ) 0 . 0 ;
2 const f loat gOne = ( f loat ) 1 . 0 ;

3 pmStatus matrixMultiply cudaLaunchFunc (pmTaskInfo
pTaskInfo , pmDeviceInfo pDeviceInfo ,
pmSubtaskInfo pSubtaskInfo , void∗ pCudaStream )

4 {
5 cublasHandle t lCublasHandle ;
6 cublasCreate(&lCublasHandle ) ;

7 matMulTaskConf∗ lTaskConf =
(matMulTaskConf∗) ( pTaskInfo . taskConf ) ;

8 f loat ∗ lMatr ix1 = ( f loat ∗) ( pSubtaskInfo . memInfo
[ INPUT MATRIX1 MEM INDEX ] . ptr ) ;

9 f loat ∗ lMatr ix2 = ( f loat ∗) ( pSubtaskInfo . memInfo
[ INPUT MATRIX2 MEM INDEX ] . ptr ) ;

10 f loat ∗ lMatr ix3 = ( f loat ∗) ( pSubtaskInfo . memInfo
[OUTPUT MATRIX MEM INDEX ] . ptr ) ;

11 cublasSetStream ( lCublasHandle ,
( cudaStream t ) pCudaStream ) ;

12 cublasSetPointerMode ( lCublasHandle ,
CUBLAS POINTER MODE HOST) ;

13 s i z e t lSpanMatrix2 = ( pSubtaskInfo . memInfo
[ INPUT MATRIX2 MEM INDEX ] . v i s i b i l i t y T y p e ==
SUBSCRIPTION NATURAL) ? lTaskConf→matrixDim
: lTaskConf→blockDim ;
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14 s i z e t lSpanMatrix3 = ( pSubtaskInfo . memInfo
[OUTPUT MATRIX MEM INDEX ] . v i s i b i l i t y T y p e ==
SUBSCRIPTION NATURAL) ? lTaskConf→matrixDim
: lTaskConf→blockDim ;

15 cublasSgemm( lCublasHandle , CUBLAS OP N,
CUBLAS OP N, ( int ) l lTaskConf→blockDim ,
( int ) lTaskConf→blockDim ,
( int ) lTaskConf→matrixDim , &gOne , lMatrix2 ,
( int ) lSpanMatrix2 , lMatrix1 ,
( int ) lTaskConf→matrixDim , &gZero , lMatrix3 ,
( int ) lSpanMatrix3 ) ;

16 cublasDestroy ( lCublasHandle ) ;

17 return pmSuccess ;
18 }

Listing 10.3: File matmul.cu
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