
P4+BACUS for developing high-performance software switches

Paper # 132

Abstract
High-level domain-specific languages (DSLs) for spec-
ifying modern packet processing functionality, like P4
[4] and Netbricks [19], are convenient and promising
tools for networking protocol authors. An important
target for these DSLs are software switches running on
general-purpose hardware: software-based switching is
ubiquitous in virtualized data centers and these DSLs al-
low specification of the desired switching logic through
higher-level abstractions with strong type checking and
safe runtimes. However, now the onus of translating suc-
cinct and safe DSL-based program specifications to high-
performance software switch implementations shifts to
the DSL compiler. We present a series of architecture-
dependent optimization passes inside BACUS, a P4-to-
C/DPDK compiler, and demonstrate that the resulting
performance improvements are significant — up to 49%
over a current state-of-the-art P4 compiler on common
real workloads. Our results indicate that P4+BACUS is
a compelling method for developing software switches:
one can obtain the type-safety and succinctness of a high-
level language, and the performance of low-level hand-
optimized implementations.

1 Introduction
Software switches are ubiquitous in virtualized data-
centers — for example, every hypervisor contains a soft-
ware switch to switch packets between multiple VMs
and the physical NICs. New and innovative protocols
imply that newer packet processing functionality is im-
plemented in these switches over time. Because these
switches share resources with other VMs, optimization
of these packet-processing programs becomes important
for higher consolidation in cloud environments. Man-
ual programming and optimization of these software
switches is a daunting task: a software switch involves
a large body of code, and performance engineering re-
quires highly-skilled programmers; additionally, opti-
mization of these programs is tedious, error-prone, and
difficult to reason about, especially in the presence of
multiple co-existing protocol functionalities.

Domain specific languages like Click [12], Netbricks
[19], and P4 [4] are intended to bridge this gap, by al-
lowing manual specification of protocol functionality us-

ing higher-level constructs. In this way, several low-
level details are abstracted away from the programmer,
and the programmer can focus on the protocol function-
ality without worrying about mapping and optimizing
it for the low-level machine. The authors of a recent
P4 compiler, PISCES [22], report that P4 programs are
about 40 times shorter than equivalent C-based switch
implementations. However, now the onus of efficiently
mapping this high-level specification to the underlying
machine shifts to the compiler. Several previous stud-
ies [11, 13, 2] show that the difference between an un-
optimized and a carefully hand-optimized implementa-
tion for the same high-level specification can be signifi-
cant. An ideal compiler should automatically bridge this
performance gap between compiler-generated code and
hand-optimized code.

We report our experiences with adding architecture-
dependent optimizations to a P4 compiler that compiles
a high-level P4 program to a lower-level C-based im-
plementation that links with the DPDK infrastructure
[9], and eventually gets executed on a multi-socket x86
machine. Our choice of the programming language —
P4 — for compilation to a software target merits some
discussion. Often, P4 is believed to be a language
meant for programming hardware switches, and its sup-
port for software backends like C/DPDK is considered
only incidental (primarily meant for testing and debug-
ging purposes). Alternative languages like Netbricks
[19] or library-based environments like VPP [26] are in-
stead considered to be specifically designed for software
switching functionality. We challenge this common be-
lief. We show that P4 abstractions can be compiled to
high-performance software implementations. We com-
pare P4 abstractions with abstractions provided by other
frameworks like Netbricks and VPP, for their amenabil-
ity to compiler-based optimization in Sec. 6. In sum-
mary, the “higher-level” nature of P4 abstractions al-
lows greater optimization leverage for an automatic com-
piler. The code generated by our P4-to-C/DPDK com-
piler, which we call BACUS, is always competitive, and
often significantly more efficient than implementations
produced by other comparable DSLs and library-based
frameworks, including hand-optimized low-level imple-
mentations.

The salient features of our optimization strategy in-
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Figure 1: Comparison with other related work.
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Figure 2: An example P4 program.

clude: (1) a calibration method to determine hardware
characteristics automatically through microbenchmarks;
(2) data-flow analyses to determine expected network
traffic loads at different program points; (3) the table-
join algorithm to identify an efficient data-structure lay-
out for realizing the program logic involving match-
action tables; and (4) a scheduling pass to exploit the
memory-level parallelism available in a general-purpose
computer.

PISCES [22] is a related effort aimed at optimizing P4
programs, that focuses on architecture-independent opti-
mizations. In contrast, BACUS implements architecture-
dependent optimizations that depend on the characteris-
tics of the underlying general-purpose machine. In our
evaluation, we assume that architecture-independent op-
timizations are already available and implemented, and
demonstrate improvements achieved by our architecture-
dependent optimizations over the current state-of-the-art.
Fig. 1 compares the performance of the code generated
by BACUS with other comparable systems for various
benchmarks we use for evaluation: in summary, we ei-
ther significantly outperform (by up to 228%) or are
comparable to existing state-of-the-art systems (includ-
ing those that require careful hand-optimization). Com-
pared head-to-head, we obtain 49% performance im-
provement over PISCES on the identical benchmark used
in the PISCES paper [22] for evaluation: L2L3-ACL.
The evaluation section (Sec. 5) contains more details on
this and other experiments.

2 A brief introduction to P4
While erstwhile data-plane functionality was hard-wired
into high-speed ASICs, modern network programming
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Figure 3: Buffering manager sits between ingress and egress
pipelines in a P4 program.

constructs, such as software-defined networking (SDN)
constructs, require greater flexibility, control and cus-
tomization. P4 [16] is a language designed for efficient
and easy programming of the data-plane of typical net-
working systems, and is target-independent, i.e., it can
be compiled to a variety of hardware and software tar-
gets. P4’s abstractions include a programmable packet
parser, a programmable match-action pipeline, and a
programmable deparser to serialize the contents of an
output packet. Figure 2 shows an example P4 program
that performs L2 switching on a network packet followed
by MPLS, IP (v4 or v6 depending on the packet headers)
and ACL (e.g., firewall) processing on it.

In addition, P4 programs allow 1:N relationships in
the program specification through a buffering manager.
The P4 match-action pipeline can have three parts: an
ingress pipeline, a buffering manager, and an egress
pipeline (Fig. 3). Both ingress and egress pipelines map
a processing function to each packet. For example, each
packet that enters the ingress pipeline also leaves the
ingress pipeline. Similarly, each packet that enters the
egress pipeline also exits the egress pipeline. The buffer-
ing manager allows the P4 program to replicate, drop, or
schedule the packets. The ingress pipeline can set a cer-
tain attribute called egress spec in a packet’s head-
er/metadata fields1, and based on the value of this at-
tribute, the buffering manager can make decisions related
to drop, replication, or scheduling. Each packet that is
output by the buffering manager goes through the egress
pipeline before reaching the deparser. More precisely,
the buffering manager implements a function that maps
the value of the egress spec attribute to a collection
of packet instances represented as triples: (packet,
egress port, egress instance). The first two
fields in each triple represent packet contents and
the egress network port respectively. The third field
egress instance represents target-specific seman-
tics, and can be ignored for the discussion in this pa-
per. In practice, an egress spec value may represent
a physical egress port, a logical port (such as a tunnel), or

1Packet header fields refer to fields directly derived from the incom-
ing packet or fields that will be a part of the outgoing packet; metadata
fields implement per-packet local storage required for passing informa-
tion from one processing stage to another. The handling of both header
and metadata fields is identical in P4 programs, and so we use the term
‘headers’ to represent both packet headers and packet metadata in the
rest of the discussion.
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Type declarations
parser : packet → packet headers
ingress : packet headers → packet headers
buffering manager : packet headers stream → packet headers stream
egress : packet headers → packet headers
deparser : packet headers → packet

package(parser, ingress, buffering manager, egress, deparser) =
(map (parser ≫ ingress))
≫ buffering manager
≫ (map (egress ≫ deparser))

Figure 4: Functional representation of a P4 program.

a multicast group. For example, if it is a multicast group,
the buffering manager would create multiple copies of
the incoming packet, and output each with a different
egress port value.

The functional representation of a P4 program is
shown in Figure 4. The parser takes as input a packet
(a string of bytes) and outputs a set of packet header val-
ues. Similarly the deparser takes packet header values
as input and outputs a packet. The ingress and egress
components read/write to packet headers. The map func-
tor lifts these functions to operate on streams of packets
and packet-headers. The buffering manager sits between
the ingress and the egress pipelines, and takes as input
a stream of packet headers and outputs another stream
of packet headers. A full P4 program is represented as
a package that composes the individual components as
shown in the figure. We focus our optimization efforts
on the ingress and egress pipelines as they usually con-
stitute the bulk of the processing time.

Most processing logic in the ingress and egress
pipelines is typically represented through a set of match-
action tables. The match-action table construct allows ef-
ficient implementation of match-action rules in the data-
plane, and yet allows efficient and structured communi-
cation between the control-plane and the data-plane (we
discuss match-action tables in more detail in the next
paragraph). These match-action tables are connected
through one or more “control” blocks that either com-
pose the tables in sequence (through the ‘;’ operator)
or allow if-then-else style branching. A control block
could additionally involve optional declarations of lo-
cal variables for temporary storage and assignment state-
ments which can assign header fields to values computed
through expressions. The expressions are formed using
standard non-excepting arithmetic operators, and a few
bitvector-manipulation operators such as bit-slicing and
bit-concatenation.

Figure 5 shows an example syntax of a match-action
table, ipv4 host, that encodes a small fragment of
common IPv4 forwarding functionality. In a match-
action table, the keys represent packet header fields (e.g.,
hdr.vrf and hdr.ipv4.dstAddr in this example)
whose values need to be matched with the values stored

//arguments obtained from action data in table entry
action l3 switch(bit<9> port_id, bit<48> new_mac_da,

bit<48> new_mac_sa, bit<12> new_vlan) {
hdr.egress_spec = port;
hdr.ethernet.dstAddr = new_mac_da;
hdr.ethernet.srcAddr = new_mac_sa;
hdr.vlan_tag[0].vlanid = new_vlan;
hdr.ipv4.ttl = hdr.ipv4.ttl - 1;

}
action l3 l2 switch(...) { ... }
action l3 drop(...) { ... }
action noAction() {}

table ipv4 host {
key = {

hdr.vrf : exact;
hdr.ipv4.dstAddr : exact;

}
actions = {

l3 switch; l3 l2 switch;
l3 drop; noAction;

}
default action = noAction();

}

Figure 5: Example syntax of a match-action table.

hdr.vrf hdr.ipv4.dstAddr action action data
1 192.168.1.10 l3 switch “port id = ..,

new mac da = ..,
new mac sa = ..,
new vlan = ..”

100 192.168.1.10 l3 l2 switch “port id = ..”
1 192.168.1.3 l3 drop <empty>
. . . . . . . . . . . .

Figure 6: Example state of a match-action table in Fig. 5.

in the table. The specification of a “match” is done
through match-types. Each key is associated with a
match-type which represents the method of matching,
e.g., an exact match-type requires that the packet’s key
value exactly matches the key value stored in the table;
similarly, a longest-prefix (LPM) match-type requires
that the value stored in the table represents the longest
prefix that can be matched to the packet’s key value. The
P4 syntax supports a pre-defined, but extendable, set of
match-types. Figure 6 shows an example state of the
match-action table defined in Figure 5. Each entry in the
table contains values for the two keys and the associated
action along with its action-data. An action can be one
of the procedures specified through the actions key-
word in the table syntax (Fig. 5). If a match is found, the
corresponding action is invoked with arguments obtained
through the action data field (the fourth column in
Fig. 6). If a match is not found, and a default action exists
in the table (e.g., the default action is noAction in the
ipv4 host table), then the default action is executed. If a
match is not found and no default action exists, the con-
trol plane is invoked on the current state of the table and
the current state of the environment. The environment in-
cludes the values of the header fields of the packet. The
control-plane would typically add or modify entries in
the table before yielding control back to the data-plane,
which would retry the table lookup on the updated table.
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Type declarations
table(keys, actions).apply() : (packet headers, table state) →

(packet headers, table state)

Operational semantics
H ⊢ keys : values T ⊢ t.lookup(values) = hit(entry)

H ⊢ entry.action.apply(entry.action data) : H ′

H,T ⊢ t.apply() : H ′,T

H ⊢ keys : values T ⊢ t.lookup(values) = miss

t′ = ControlPlane(t,H) T ′ = T [t′/t]
H,T ′ ⊢ t′.apply() : H ′,T ′′

H,T ⊢ t.apply() : H ′,T ′′

ControlPlane(t, H) = apply a sequence of add entry/delete entry/
modify entry operations on t

Figure 7: A fragment of the match-action table semantics. H rep-
resents the packet headers (including metadata) and T represents the
state of the match-action tables. T [t′/t] represents a state of the tables,
where all tables are exactly as in T except that t has been replaced by
t′. Given H and T , the application of a table results in potentially new
H ′ and T ′. The first rule is for a table-hit and the second rule is for a
table-miss. On a miss, the control-plane will update the table and the
data-plane will re-apply the updated table on the packet headers. The
updates to the table are made through the control-plane API functions.

Figure 7 shows some relevant rules from the opera-
tional semantics of a match-action table lookup. The
second rule says that the control plane updates table t
to a new table t ′ (represented by replacing the old table
t with the new table t ′ in the table environment T ) be-
fore retrying the lookup. Unlike the data-plane which
is compiled from the high-level spec, the control-plane
needs to be programmed manually by the programmer.
To manipulate the table entries, the control-plane pro-
grammer needs a set of API functions: the add entry(),
delete entry(), and modify entry() functions may be used
to add, delete, or modify a table entry respectively
from within the control plane. We call these functions,
control-plane API functions. Because the compiler has
flexibility in choosing the data-structure for representing
a match-action table, it is also responsible for generating
the implementation for the control-plane API functions
— clearly, the API implementation would depend on the
data-structure choices made by the compiler. Control-
plane API code is not performance-critical, as typically
the calls to the control-plane are far and few. On the other
hand, data-plane accesses to match-action tables consti-
tute the bulk of the runtime.

3 Hardware calibration

We now discuss the typical nature of the performance-
critical subsystems in a general-purpose computer for
high-performance data-plane processing, and the algo-
rithms to measure and summarize the relevant character-
istics. In the process, we also roughly outline the gen-

eral code generation strategy, which we detail in the next
section. We expect these hardware measurements to be
performed once for each machine, in an offline calibra-
tion phase of the compiler. Measuring the required char-
acteristics, and not reading them from an architecture
manual is preferable for at least two reasons: (1) The
required characteristics may not be available in the ar-
chitecture manuals; even if they are available, the infor-
mation may be scattered across multiple manuals and au-
tomatically stitching them together seems difficult. Mea-
suring through specifically-designed micro-benchmarks
is usually easier and more accurate. (2) The runtime en-
vironment may be virtual or otherwise different from the
original bare-metal characteristics described in the man-
ual. In the following discussion, we outline the measure-
ment strategy along with the results of our measurements
on our test hardware described in Table 1.

CPU Subsystem
Features Comment

CPU Model Haswell based Xeon E5-2640 v3
Speed 2.60 GHz, 16 Cores/socket, 2 Sockets
Cache Size L1-d 32 KB, L2 256 KB, L3 20 MB
ROB Size 192 instructions

Memory Subsystem
Feature Comment

Size 64 GB, distributed on two sockets
#MSHRs 10

Table 1: Dell Poweredge R430 Rackserver details.

For a packet processing application, under normal op-
eration, an incoming network packet is received by a NIC
over the wire, and is DMAed to main-memory/last-level
caches through PCIe transfers. Similarly, an outgoing
network packet is DMAed from the last-level cache (or
the main memory) to the outgoing NIC port. CPU pro-
cessing takes place between these incoming and outgo-
ing transfers. On modern machines, each of these three
macro-level operations, i.e., receiving, processing, and
transmitting, typically execute in parallel, due to multi-
ple memory channels and banks, high bandwidth mem-
ory interfaces supporting multiple in-flight requests, in-
dependent DMA controllers, etc. Hence, the overall
throughput of a packet processing application is usu-
ally limited by the throughput of the slowest operation
(bottle-necked operation) among these three parallel op-
erations. While the processing speed is application-
dependent, the receive and transmit operations are com-
mon to all applications. There are two important as-
pects of the receive and transmit paths: (a) The PCIe link
between the I/O device and the last-level cache/main-
memory is a high-latency high-bandwidth interface. To
ensure that multiple in-flight PCIe requests can pro-
ceed in parallel, the hardware-readable FIFO ring (de-
vice ring) needs to be large enough to facilitate this paral-
lelism. (b) The transfer operation involves an expensive
memory-mapped I/O (MMIO) operation for the CPU to
communicate to the NIC that it has freed/consumed some
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space in the device ring. Batching of this MMIO op-
eration cost over several packets (also called doorbell-
batching) is an important optimization. The first step in-
volves calibrating the required size of the device ring and
the desired batch-size for doorbell batching (also called
the I/O-batch size or IOBS). We use a simple echo ap-
plication, i.e., an application that just forwards the pack-
ets from the receive NIC port to the transmit NIC port,
to measure the optimal values of the ring-size (R) and
IOBS. The application is run with different values of R
and IOBS and the smallest values that yield the desired
throughput (beyond which the throughput saturates) are
used by the compiler. For our test hardware, R=256 and
IOBS=32. In this optimal configuration, the echo appli-
cation’s per-core throughput with 64B packets is 22Mpps
(million packets per second).

After the I/O paths have been configured, the focus
shifts to the actual processing logic of the application
which executes on the CPU-memory subsystem. We first
measure the number of free CPU cycles, i.e., the time
spent by CPU waiting for the I/O packets to arrive. For
example, on our test machine, at the optimum IOBS=32,
the CPU has around 32 free cycles available; i.e., the
throughput of an application remains unaffected if the
per-packet processing can complete within 32 cycles. As
an aside, we note that for lower IOBS values, the CPU
idle times are higher (e.g., 128 for IOBS=4).

Most P4 applications would consume more CPU than
the available free cycles. Towards optimizing the CPU
usage of a packet processing application, we make two
observations: (a) CPU pipelines of modern out-of-order
super-scalar (OOO) processors can automatically exploit
the available instruction-level parallelism (ILP) in the ex-
ecuting code, provided that the parallel instructions fit in
a single reorder buffer window (ROB). To allow the ar-
chitecture to exploit ILP, the compiler needs to sched-
ule the instructions to ensure that instructions that fit
within a single ROB can be executed in parallel, i.e.,
they have minimal data and control dependencies. (b)
P4 programs involve lookups into match-action tables:
these tables are stored in memory and various levels of
the cache hierarchy. This CPU-cache-memory path is a
high-latency and high-bandwidth path, and thus hiding
the memory latency through parallel outstanding mem-
ory requests becomes important. To make effective code-
generation choices, the compiler needs to know the size
of the reorder buffer window (ROBW), the memory ac-
cess latencies, and the available parallelism on the CPU-
memory interconnect, which we also call memory-level
parallelism or MLP. We discuss micro-benchmarks de-
signed to measure all three.

To measure ROBW, we execute an instruction se-
quence of the following form:

mem-load; nop; nop; ... K nops; mem-load

We configure both memory-loads to miss all caches and
measure the runtime of this sequence with varying K.
When K equals the CPU’s reorder buffer size, we notice
a step-increase in the running time of this sequence, as
the two memory accesses can no longer be issued in par-
allel. Similarly, to measure MLP, we use the following
instruction sequence:
N mem-loads; nop; nop; ... K nops; mem-load

This is quite similar to the previous instruction sequence,
except that it involves N memory accesses before the se-
quence of K nops. For a given N, we expect a similar
step-increase when N +K equals the size of the reorder
buffer. However, we also expect a step increase in the
runtime after N equals the maximum available MLP (the
N + 1th memory access will now need to be serialized
after the Nth memory accesses). Figure 8 shows the re-
sult of this microbenchmark on our target machine: by
looking at the curve for N = 1, we conclude that the
reorder buffer size of our test machine is 192 instruc-
tions2. Further, we see that the gap between the curves
for N = 9 and N = 10 is significantly higher than the gap
between the curves for lower values of N (e.g., N = 0
and N = 1). This indicates that the maximum achievable
memory-level parallelism, or maxMLP, on our machine
is 10. This measured MLP tallies with the published in-
formation about our machine which says that it has 10
miss-handling-status-registers (MSHRs); our measure-
ment indicates that the number of MSHRs is the limiting
factor for MLP on our test system.

Next, we are interested in the effective memory access
latency for different levels of the cache hierarchy. The
“effective” latency needs to include any effects due to
latency-hiding through MLP exploitation — as we dis-
cuss later, a compiler needs to know the effective latency
for different MLP settings to make effective code gener-
ation and scheduling decisions. The latency of any el-
ement in the cache hierarchy is measured by setting up
the workload such that it hits that element with a high-
probability. For example, if we are interested in mea-
suring L3 latency, we randomly access an array which
would just fit in the L3 cache3. The effective latency is
computed by computing the average latency per memory
request for each MLP setting. Fig. 9 plots the results of
these measurements on our test machine, and we make
two observations from these results: (1) latency hiding
through MLP significantly reduces the effective mem-
ory latency, and (2) the reduction in the effective access
latency is different for different levels of the cache hi-
erarchy — more for memory elements that are farther
from the CPU. For a compiler making data-layout and
scheduling decisions, this has a significant fallout: e.g.,

2ROB size = #Nops + µ-ops for one memory access(186 + 6)
3We also measure the cache sizes through the same microbench-

mark; we omit this discussion as these techniques are well-known [20].
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if the compiler is generating code such that the expected
MLP is ≈ 10, then the effective latency difference be-
tween L3 and main-memory is much smaller (≈ 20 cy-
cles) than the actual latency difference (≈ 165 cycles at
MLP=1). Hence a compiler should be less worried about
spilling the working-set from L3 to main memory at high
MLP.

We summarize these measurements through a function
that indicates the effective memory latency (Leff) for a
given working-set size (WSS) and MLP value: Leff(WSS,
MLP). Fig. 10 plots Leff for some values of MLP for our
test machine. For example, if the total working set size
of the application is 256 Kb, and we are able to exploit
MLP=10 for a particular table access, then the effective
latency of that table access is 8 cycles. We use Leff for
making code transformation choices (next section).

A well-known idea to exploit available ILP and MLP
for packet-processing applications is packet batching
[11], wherein B packets are processed in one batch.
Batching usually creates independent processing threads
that can be executed in parallel within the same re-
order buffer window. However, it is also well-known
that batching can be counter-productive beyond a cer-
tain point, due to an associated increase in the working-
set size by virtue of handling multiple packets simul-
taneously, and its precipitous cache-pollution effects.
For example, on our test machine, a batch-size greater
than 64 is counter-productive. To capture this, we es-
timate the maximum batch-size Bmax, before batching
becomes counter-productive for a given hardware —
Bmax is largely independent of the application character-
istics, but depends on the hardware characteristics and
the packet-size, and is thus measured during the cali-
bration phase. Bmax has important implications on the
scheduling transformations discussed in the next section.

4 Code generation and optimization

The P4 program logic is first converted to a High-Level
Intermediate Representation (HLIR) which represents
the program as a packet-flow or a control-flow graph.
Broadly speaking, a node in HLIR could either be a table

node (indicating the application of a match-action table
on the packets in the packet stream) or a conditional node
(indicating conditional control flow such as if/else based
on some condition on the packet’s header fields). The
nodes are linked through directed edges, e.g., a condi-
tional node would have two outgoing edges representing
the true and false branches of the condition respectively.
The syntactic conversion of a P4 program to HLIR syn-
tax is straightforward and our code generation and opti-
mization algorithms work on the HLIR syntax.

As with most compilers, we structure our code op-
timization strategy as a series of analysis and transfor-
mation passes. Our optimizer involves three transforma-
tion passes, namely traffic estimation and batch-size al-
location, table-join, and memory-access scheduling and
prefetching.

We first group the HLIR nodes into basic blocks. As
in traditional compilation literature, a basic block is a
maximal path in the HLIR graph that contains no incom-
ing edges (except at the first node of the path) and con-
tains no outgoing edges (except at the last node of the
path). We discuss each transformation pass separately in
the following sections.

4.1 Traffic estimation and batch-size allo-
cation

The traffic-estimation pass involves estimating the rela-
tive traffic profile at each basic-block in the HLIR graph.
The traffic profile indicates the expected number of pack-
ets processed at the node, relative to the number of pack-
ets received at the ingress port. For example, if a con-
ditional node receives traffic T at its input, then it may
transmit traffic T ∗ p and T ∗ (1 − p) (for some p, s.t.
0 ≤ p ≤ 1) respectively on its two outgoing branches.
Similarly, if the buffering manager may drop (or repli-
cate) a packet, then its outgoing traffic would be less
(or more) than its incoming traffic. We estimate the av-
erage conditional probabilities, drop-probabilities, and
replication probabilities at compile time – these esti-
mates could be based on static analysis of the program
or could be aided through available execution profiles or
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programmer-provided hints.
The estimation of the steady-state traffic at each HLIR

node involves a forward data-flow analysis pass on the
HLIR graph. The incoming traffic at an HLIR node is the
sum of the traffic on the incoming edges at that node. For
nodes with a single outgoing edge, the outgoing traffic at
that node equals the incoming traffic at that node. For
nodes with multiple outgoing edges, the traffic is split
based on some estimated split ratio p. These functions
that relate the output traffic of a node to its input traf-
fic, are also called the dataflow analysis’s transfer func-
tions [1]. The transfer function of the buffering man-
ager is special: it needs to capture the effect of opera-
tions like drop, replicate, etc. After the transfer functions
have been estimated, the computation of the traffic pro-
file through data-flow analysis is straightforward. It is
easy to see that after this analysis, the estimated incom-
ing traffic at all nodes within a single basic block will
always be identical.

The traffic profile is needed to make packet-scheduling
decisions. For example, if the start node S of the HLIR
graph has incoming traffic T , and another node in the
graph, say X , has incoming traffic T/16, then, in the-
ory, we should schedule S sixteen times more often, on
average, than we schedule X . To realize this, we imple-
ment packet queues at each HLIR node: the execution
of a node X , through its function processX, involves
consuming a packet from one of X’s incoming queues,
processing the packet, and producing a new packet at
one of X’s outgoing queues. Thus, in our example,
processS should be invoked sixteen times more of-
ten than processX. The queues are sized to be large
enough to absorb expected traffic jitter. Any estimation
errors, or large fluctuations in traffic patterns, could po-
tentially cause some of the queues to become empty or
full: to handle this, we need to ensure (either through
static analysis or dynamic runtime checks) that a node’s
processing logic is executed only if its incoming queue
is not-empty and its outgoing queue is not-full.

Batch-size allocation: Apart from packet schedul-
ing, traffic estimation also indicates the potential par-
allelism that may be exploitable at each node through
packet batching. Because packet batching has limits (it
becomes counter-productive after Bmax batch-size), traf-
fic analysis is used to identify the optimal batch-sizes
that should be used at each HLIR node. We first iden-
tify the HLIR nodes with the maximum traffic, and allow
them the maximum batch-size Bmax. The batch sizes of
all other nodes are based on their respective traffic pro-
files relative to these maximum-traffic nodes, e.g., if the
traffic at one HLIR node X is TX , and the traffic at another
node Y is TX

16 , then the batch-size at Y should ideally be
a sixteenth of the batch-size at X . Thus, batch-sizes for
all nodes are allocated in proportion to their relative traf-

fic profiles and are upper-bounded by Bmax. This strat-
egy ensures that the contribution of packet data to the
program’s working set remains upper-bounded by Bmax
packets.

4.2 Table-join transformation pass

The high-level representation of packet processing logic
in P4 as a sequence of match-action tables opens oppor-
tunities for the compiler to potentially reduce the number
of table lookups by joining multiple tables into a single
larger table in the optimized implementation. Often this
reduction in the number of lookups may also translate
into a reduction in processing time. Our table-join trans-
formation pass is aimed at performing such transforma-
tions wherever profitable.

The table-join transformation is a local optimization
pass [1], i.e., it transforms each basic-block in isolation.
The input to the table-join algorithm is a basic block (a
sequence of nodes N) and the allocated batch-size (B)
at that basic block as computed in the traffic-estimation
pass. The output of the algorithm is a potentially trans-
formed sequence of nodes N′ that is logically equivalent
to N and is expectedly more efficient to execute for the
given B. There are three important considerations dur-
ing the table-join pass: (1) We need to correctly han-
dle all read-after-write (RAW), write-after-write (WAW)
and write-after-read (WAR) data-dependencies between
tables. (2) The table-join should be performed only if
we expect the lookup into the joint (larger) table to be
faster than the two individual lookups into the smaller
tables; in other words, the join should be profitable. (3)
The join operation should be completely transparent to
the control-plane, i.e., the control-plane API functions
used to manipulate the table entries need to be appropri-
ately re-implemented such that their semantic effect on
the joint table is identical to their intended effect on the
individual tables. For dependency analysis, we utilize
the high-level information about table keys and actions
available in program syntax, to label each HLIR graph
edge with one of the four data-dependence properties,
namely no-dependence, RAW, WAR or WAW, in a graph
pre-processing step.

Algo. 1 presents our algorithm for the table-join pass.
The JoinTables function takes two arguments, the in-
put sequence of nodes N in the basic block, and the al-
located batch-size B, and returns N′, the new (potentially
transformed) sequence of nodes. Each node in N (except
potentially the last node) represents a match-action table.
cantJoin represents a set of table-pairs that cannot be
joined, and is populated as the function executes. It may
not be possible to join two tables either because they have
data-dependencies that cannot be handled, or their joins
are not expected to be profitable.
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Function JoinTables(N, B)
cantJoin = {}
N′ = N
while true do

(found,T1,T2) = pickTablePair(N′, cantJoin)
if ¬found then

return N′

end
else

if mkTblsAdjacent(N′, T1, T2) ∧
joinIsProfitable(T1, T2, B) then

N′ = joinTablePair(N′, T1, T2)

end
else

cantJoin.insert((T1,T2))

end
end

end

Function mkTblsAdjacent(N′, T1, T2)
while !tblsAreAdjacent(N′, T1, T2) ∧
swapRight(N′, T1) do
end
while !tblsAreAdjacent(N′, T1, T2) ∧
swapLeft(N′, T2) do
end
return tblsAreAdjacent(N′, T1, T2)

Algorithm 1: Table join algorithm.

N′ is initialized to N, and the while loop greedily
selects two tables to be joined. This selected pair of
tables, T1 and T2, should not already be present in
cantJoin. The greediness of the algorithm stems from
greedily picking the pair of tables that would yield the
most profitable join (we discuss the notion of profitabil-
ity later). The chosen pair of tables need not be adja-
cent, and so the mkTblsAdjacent function attempts
to make them adjacent by iteratively swapping the first
table T1 with its right neighbor (as far as possible), and
then iteratively swapping the second table T2 with its
left neighbor (as far as possible). These swapping (or re-
ordering) operations can only be performed if no data de-
pendencies exist between the two tables being swapped.
If mkTblsAdjacent succeeds in bringing T1 and T2
adjacent, and the resulting join is profitable, then we join
the two tables into one table, and update N′ accordingly.
Otherwise, we update cantJoin to avoid considering
the same pair of tables again.

Fig. 11 shows an example HLIR graph demonstrat-
ing the swapLeft and swapRight operations. As
discussed previously, the swapLeft and swapRight

T1 T2

S

Swap−leftSwap−right

Basic Block

Figure 11: An example HLIR graph demonstrating swapLeft
and swapRight operations.

functions succeed only if the two nodes (or tables) being
swapped do not have a data-dependence.

For determining if a join is profitable
(joinIsProfitable() function), we use the
following logic: we first estimate the working-set size
of the current set of tables (of the whole program). Let
this be WSScur. We then estimate the new working-set
size (WSSnew) of the program, if the join is effected:
WSSnew = WSScur - T1.size - T2.size +
T1T2.size, where T1.size, T2.size, and
T1T2.size represent the sizes of T1, T2, and the
joined table T1T2. The join is profitable only if:
Leff(WSSnew,B) ≤ 2 ∗ Leff(WSScur,B) + ∆. Recall that
Leff(WSS,B) represents the effective average memory-
access latency for a given WSS and batching-factor B
(B acts as a proxy for the available MLP), and was
measured through micro-benchmarks (Fig. 10). ∆
represents the computational cost of indexing a table
(sans the actual memory access). For example, ∆ = 42
cycles for our test machine.

The actual joining of the match-action tables is based
on the natural-join operator ▷◁ in relational algebra (also
commonly used in relational databases). However, there
are some subtleties related to joining P4 match-action ta-
bles that merit discussion. First, we cannot join across
tables with arbitrary match-types: we join only across
tables that use only exact match-types. Joining across
exact matches is easier than joining across more sophis-
ticated match-types, such as longest-prefix match. Also,
exact matches are the most common match-types found
in P4 programs, and are thus a good candidate for opti-
mization. We leave the generalization of the table-join
algorithm to other match-types for future work.

Assuming no RAW dependencies between T1 and T2,
the joint-table (T1 ▷◁ T2) can be formed by joining the
individual entries (with matching common keys). The
joint-entries are indexed using the union of the keys of
the two individual tables (which we call the joint-key),
and the corresponding actions are formed by sequencing
the individual actions in T1 and T2 in the original exe-
cution order, i.e., T1’s actions are executed before T2’s
actions. This preservation of the sequence of actions of
the two tables correctly handles any WAW or WAR de-
pendencies between T1 and T2. If for a particular key,
one of the tables’ actions is the default action, then the
default action of the respective table is used as its action
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in the corresponding joint-entry. Similarly, if both tables
have a default action, then the joint-table’s default action
involves executing the two individual default actions in
their original execution order.

While joining, we also need to correctly handle table
misses, i.e., cases where the required entry is not present
in the table, and there is no default action. Recall that
the control-plane is invoked in these situations. To han-
dle this correctly, for any joint-key that would miss in
T2 (but hit in T1), we create an entry in the joint-table to
appropriately indicate that the miss happened in T2 and
not in T1; a “hidden action” (hidden from the user) is
used for these entries to transfer control to the control-
plane after executing T1’s respective action for that en-
try. Thus, for the control-plane, it appears as though T1
hit and T2 missed.

For joint-keys that would have missed in T1, we sim-
ply do not emit an entry in the joint-table — misses in the
joint-table are treated as T1 misses, as far as the control-
plane is concerned.

The handling of default actions is similar: if T1 has a
default action but T2 does not have a default action, then
the joint table’s default action transfers control to the
control-plane after executing T1’s default action (simi-
lar to the hidden-action construct).

After the control-plane executes its logic to update the
table and resubmit the request, the data-plane needs to
resume packet handling at the table that missed. For ex-
ample, if T2 missed, then the packet processing needs to
be resumed at T2 (and not at the joint-table). To achieve
this, we maintain a copy of the original nodes N in the
basic-block (in addition to the transformed basic-block
nodes N′) in the program. On a table miss, the control-
plane is invoked, which in turn, transfers control to the
respective original table in N after miss-handling (e.g.,
control is transferred to the original copy of T2 if it was
a T2 miss). Thus, our transformed program has redun-
dant paths: a fast-path with joined tables N′ which is tra-
versed on the data-path, and an equivalent original slow-
path N which is executed when the control-plane yields
after miss-handling. Notice that iterative joining of ta-
bles in N′ has no effect on N.

Finally, a table-join transformation also needs to en-
sure that the control-plane APIs, such as add entry,
delete entry and modify entry are appropri-
ately re-implemented to update both the original, as well
as the joint-tables accordingly.

In general, the problem of identifying the optimal ta-
bles to join, given data-dependence and profitability con-
straints, is NP-complete. Our linear-time greedy algo-
rithm may not yield the optimal solution, but we expect
it to work well in practice.

Table-join across RAW dependencies: While han-
dling of WAR and WAW dependencies during table-joins

is straightforward, table-joins across RAW dependencies
are more subtle. In general, joins across RAW depen-
dencies are not possible because the key of the second
table T2 may depend on the result of some computation
performed by T1’s action. However, most P4 programs
involve actions that set the header fields to constants.
In these cases, it may be possible to determine the out-
put values of header fields uniquely and deterministically
based on the input values of the table keys (the choice of
which action gets executed still depends on the input key
value). We refer to such dependencies, where the first
table T1’s output header value is uniquely determined
by T1’s key-values, as RAWfd dependencies: the writ-
ten values are functionally-dependent (fd) on the key
values of the first table. For RAWfd dependencies, the
joint-table can be computed statically by first comput-
ing T2’s key for each T1 key (at compile time), and then
emitting the corresponding joint-entry with the computed
joint-key.

In practice, because many RAW dependencies in P4
programs are RAWfd dependencies, joins across such
dependencies become possible. We have implemented
joins across RAWfd dependencies, and find that they are
consequential for the optimization of many P4 programs
(including the ones discussed in our evaluation section).

4.3 Memory-access scheduling/prefetching

After table-join, the compiler chooses data-structures to
implement each (potentially joined) match-action table.
Our choice of data-structures is identical to that of previ-
ous work: we use the cuckoo-hash table for exact-match
tables [28] and DIR24-8 trees [7] for longest-prefix-
match tables. Based on these data-structure choices, each
table-lookup operation gets transformed into potentially
multiple data-structure lookup operations. At this stage,
we implement code transformations for memory-access
scheduling and prefetching to maximize MLP.

Memory-access scheduling and prefetching involves
reordering memory accesses for different packets within
a single node of the basic block. For this, we first
identify the likely-expensive memory accesses (that are
likely to miss the L1 cache) in the table-lookup logic
at a single node. All accesses involving indexing into
a match-action table are identified as likely-expensive.
Subsequently, the code is transformed such that M likely-
expensive memory accesses from M different packets are
scheduled together, so they fit within a single ROB win-
dow. Note that M (the degree of grouping of expensive
memory accesses within a single table lookup) is usu-
ally different from B (the packet batch-size at that HLIR
node/table) — while B is aimed at optimizing MLP for
packet access, M is aimed at optimizing MLP during ta-
ble access. However, it is true that M ≤ B, as B dictates
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the maximum available parallelism during table access.
In previous work [2], this distinction between B and M
has been called batching and sub-batching respectively.
Further, the memory accesses, whose result is not needed
immediately (by virtue of sub-batching), are transformed
to use the more efficient software-prefetch instruction.
Software-prefetching improves performance because it
provides performance hints to the hardware for its inter-
nal scheduling of memory accesses [14].

5 Evaluation
We have implemented our algorithms inside a P4 com-
piler, which we call BACUS. BACUS is derived from an
existing P4 compiler, called T4P4S [13, 23]. We first
compare the implementations produced by BACUS with
and without the optimizations described in the paper, be-
fore comparing BACUS with other state-of-the-art com-
pilers for P4 programs. For our experiments, we mea-
sure the per-core throughput of the compiled code — be-
cause packet processing is data-parallel, the throughput
typically scales well with increasing number of cores till
the PCIe bandwidth capacities of the machine. We run
the compiled switch on a standalone machine (charac-
teristics described in Table 1) and use another machine
to generate traffic for this switch. The machines are
connected through two 40GBe network ports and two
10GBe network ports: this network bandwidth is enough
to saturate the processing resources in the system under
test. Because we are interested in measuring the limits of
the system, we perform our experiments with minimum-
sized 64-byte packets, unless otherwise specified; our
conclusions translate similarly to larger packet sizes.
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udp.dst

Port
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Figure 12: ChatServer application control flow.

We use five different applications to test our compiler.
For some applications, we use two configurations: one
where the size of the tables is small, and another where
the size of the tables is large. Wherever possible, we
use the exact same table sizes in our applications as used
in previous work. (1) L2Fwd: a simple L2 switch with
MAC learning: in this application, for each packet, two
table lookups are performed in sequence, one each in-
volving the source and destination MAC addresses of
the incoming packet. For small table sizes, the two ta-
bles are populated each with 256 entries. For large ta-
ble sizes, the two tables are populated each with 16M
entries (as also done in previous work [10]). (2) IPv6
Forwarding: a longest-prefix match lookup to a table

containing 200,000 random entries is performed on the
destination address to find the egress port.The packet
size used for this application is 78 bytes, as in previous
work [10]. (3) L2L3-ACL: an L2-L3 switch with ac-
cess control functionality having complex control-flow
and if-then-else branching, with 7 table lookups (5 ex-
act type, 1 ternary type and 1 LPM type). This appli-
cation was used in the PISCES paper [22]. In our ex-
periments for small table sizes, all tables for this bench-
mark have 4 entries. For large table sizes, the largest
tables have 16 million entries. (4) ChatServer: a state-
less L5 chat application on UDP that forwards messages
from senders to receivers in a given chat room (multi-
cast). The multi-cast forwarding decision is based on two
layer-5 custom header fields — sender ID and chatRoom
number. The P4 implementation of the ChatServer con-
tains six table lookups — MAC learning, routing, UDP
port matching, sender ID matching, egress routing, and
egress switching. The two routing lookups are LPM-type
and the rest are exact-match type. In the fourth table
of this application (Fig. 12), the lookup on the sender
ID returns the chat-room number which is written to
egress spec. The buffering manager replicates the
packets based on the number of members in the chat-
room. For small table sizes, we populate all tables with
256 entries; for large table sizes, the largest tables have
16 million entries. The ChatServer is intended to demon-
strate a higher-level application programmed in P4 that
involves replication with a complex pipeline of match-
action transformations. (5) MPLS: Refer figure 2. For
small table sizes, we populate all tables except ACL with
256 entries. For large table sizes, the L2 table has 16 mil-
lion, MPLS has 256, and IPv4 / 6 have 200,000 entries
respectively. ACL has 4 entries in both the cases. The
packet size for this benchmark is 82 bytes.

We first study the effects of our transformations on
L2Fwd, a simple application involving two lookups per
packet. We isolate the five transformations, namely
batching (B), table-join (TJ), memory-access scheduling
or sub-batching (S), and software prefetching (P). We
characterize the effect of our transformations on tables
of different sizes, from 16 to 4M entries in the L2Fwd
tables. For this experiment, we deliberately modified
our joinIsProfitable function in the table-join al-
gorithm to always return true (i.e., we always join the
two tables). Figure 13 plots our results. Notice that
TJ, when used without other transformations, usually
degrades performance for tables with more than 64 en-
tries: this is because the latency of accessing one larger
table is higher than the sum of latencies for accesses to
two smaller tables. However, in the presence of other
transformations that exploit MLP, TJ yields significant
speedups till the tables are of size 1K entries each. Be-
yond a certain point (4K entries in this experiment), TJ
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Figure 13: Effect of TableJoin on L2Fwd application.
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Figure 14: Effect of optimizations for small tables.

becomes infeasible as the joint-table exceeds the size of
the allocated memory. It is also evident that the advan-
tages of B+S+P increase with increase in table size, due
to greater benefits from MLP.

Effect of optimizations on small tables: We next
study the effect of our transformations on all our appli-
cations configured with small tables (Fig. 14). We make
some interesting observations: (1) B provides significant
gains by enabling higher ILP and MLP. (2) B+S+P does
not improve significantly over B at small table sizes. (3)
B+TJ is much more effective at improving performance
by reducing the table-lookup overheads. (3) B+TJ+S+P
usually provides extra performance by increasing MLP
while accessing the larger joint tables. It is interesting to
see that while B+TJ usually performs better than B+S+P
for these experiments involving small table sizes, it per-
forms worse for the ChatServer. This is because while
the joint table fits into the L3 cache for all other ap-
plications, it spills to main memory for the ChatServer.
Using TJ becomes unprofitable if the larger table is ac-
cessed through main memory, unless S+P are used to
hide the extra latency of the main memory. These results
clearly highlight the relevance of using the effective la-
tency (Fig. 10), and not the actual latency while making
table-join decisions.

Effect of optimizations on large tables: We next
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Figure 15: Effect of scheduling and prefetching.

study the effects of our optimization passes for cases
where the sizes of the tables are relatively large. In these
cases, TJ becomes irrelevant, as the joint-table sizes can
no longer fit in the allocated memory. Our algorithm is
able to infer this automatically and defaults to the us-
ing B+S+P transformations for these workloads. The re-
sults (Fig. 15) clearly demonstrate the incremental value
of each transformation over other transformations.

Comparison with existing tools and frameworks:
Figure 1 compares BACUS with existing compilers for
the P4 language, namely (1) T4P4S[13] and (2) PISCES
[22]. We also compare with other tools that involve man-
ual annotation/optimization of these programs: (3) G-
opt[10] requires the programmer to annotate the expen-
sive memory accesses in C code and employs a source-
to-source compiler to transform the code to hide the
memory latency, (4) XDP [27] is a high performance,
programmable network data path available in the Linux
kernel and P4C-XDP [18] is a backend for the P4 com-
piler [17] targeting XDP, and (5) hand-optimized DPDK
[9] code. We only show comparisons where they were
possible, e.g., where hand-optimized implementations
are available. We could not compare with PISCES for
all workloads because we could not get PISCES to com-
pile some of the applications. In summary, the per-
formance of BACUS-compiled code is always compet-
itive and often significantly better than the implementa-
tions produced by other competing frameworks, includ-
ing state-of-the-art compilers like PISCES, kernel-based
frameworks like XDP and hand-optimized implementa-
tions on top of library-based frameworks like DPDK.

We omit direct performance comparisons with Net-
bricks as we find that Netbricks performance is usually
inferior to hand-optimized DPDK code, as also reported
in their paper [19]. The current Netbricks compiler sup-
ports only basic optimizations like zero-copy [24] and
batching [19] that are already implemented in most hand-
optimized DPDK implementations, and are also imple-
mented in BACUS. Further, we find that unlike BACUS,
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the support for batching in Netbricks is relatively ad-hoc,
e.g., they do not analyze the traffic pattern and upper-
bound the maximum batch-size by Bmax. In our experi-
ments with the ChatServer, we have noticed that ad-hoc
batching implementations that do not bound the maxi-
mum batch-size at any node to Bmax may result in signif-
icant drop in throughput. For example, if the expected
replication factor in our multi-cast ChatServer is 4, then
the maximum batch-size used at program entry should be
Bentry =

Bmax
4 . If larger batch-sizes are used at program

entry, e.g., if Bentry =Bmax, we observe a drop in through-
put by 36%. We expect similar performance anomalies
with Netbricks, where the batching factor at program en-
try is assumed to be fixed and independent of the appli-
cation. In contrast to Netbricks, we have tested BACUS
on complex packet-processing programs involving deep
pipelines and potential packet replication.

6 Related Work

In recent years, the increasing relevance of virtualiza-
tion and software defined networking has brought pro-
grammable network functions into focus. Some pre-
vious studies have shown that packet processing work-
loads on general-purpose PCs are usually bottle-necked
by the performance of the shared interconnect (the
“front-side bus”) connecting the CPUs to the mem-
ory subsystem [3, 25, 6, 5]. Routebricks authors im-
plemented these optimizations by hand for a fixed set
of workloads (namely L2 forwarding, IP routing, and
IPSec encryption), running on a fixed machine architec-
ture. Subsequent work in this direction involved study-
ing batching [11], efficient hashing strategies [28], and
hiding memory latency through manually-orchestrated
“context-switching” among threads [10], and the use of
commonly available accelerators, e.g., GPUs, for packet
processing [8]. Our work builds upon ideas presented in
these previous works, albeit in the setting of an automatic
compiler.

The PISCES paper [22] discusses architecture-
independent functional optimizations and the authors
claim performance improvements of up to 50% over
their baseline compiler through these optimizations. We
are able to achieve significant performance improve-
ments over PISCES (49% in head-to-head comparisons)
through additional architecture-dependent optimizations.

Netbricks [19] is a related effort aimed at design-
ing higher-level abstractions for eliminating virtualiza-
tion overheads in network processing pipelines. Net-
bricks abstractions are richer and more general, e.g., they
support stateful abstractions for higher-layer networking
protocols like TCP, such as bytestream processing. How-
ever, their packet-processing abstractions are lower-level
than P4. For example, they allow arbitrary user-defined

functions (UDFs) with the map functor, in contrast to P4
which mandates that the logic be specified through struc-
tured match-action tables. For this reason, while some of
our optimization passes, such as traffic-estimation and
memory-access scheduling and prefetching are applica-
ble to Netbricks programs, our table-join transformation
pass is not: while each individual UDF can be highly
optimized, it seems difficult to automatically combine
multiple UDFs into a single more efficient UDF. Further,
Netbricks does not provide a language-based separation
between the data-plane and the control-plane: to achieve
such functionality, programmers need to manually ma-
nipulate the data-structures used by the UDFs in the
control-plane. This tight integration between the control-
plane and data-plane in Netbricks thwarts optimization
opportunities; in contrast, P4’s control-plane API func-
tions abstract this interface allowing for greater optimiza-
tion flexibility. Overall, Netbricks design is aimed at al-
leviating virtualization overheads, and not at exposing
optimization opportunities for an optimizing compiler.
Empirically, the performance of the code generated by
the current Netbricks compiler is either similar or signif-
icantly inferior to the performance of the code generated
by P4+BACUS.

Library-based frameworks like VPP [26, 15] provide
API support for specifying network protocol functional-
ity; unlike DSLs, API-based frameworks largely depend
on hand-optimization by the programmer for good per-
formance. While some APIs provide interfaces for easy
manual specification of common optimization patterns
such as batching and vectorization, more involved op-
timizations relying on dataflow-analyses, such as traffic-
estimation and table-join, are difficult to realize in these
frameworks.

Our table-join algorithm achieves similar goals as
OVS’s mega-flow cache [21], albeit using compile-time
optimizations (in contrast to run-time caching). Unlike
table-join, mega-flow caching is best-effort and could
incur significant runtime overheads. In general, the
two approaches are orthogonal and mutually inexclu-
sive: a mega-flow cache could be enabled with a BACUS-
optimized program to obtain cumulative benefits.

7 Conclusions and future directions

To conclude, we propose algorithms for architecture-
dependent optimizations in BACUS, a P4 compiler for
generating software switches. The resulting perfor-
mance improvements are significant and make a com-
pelling case for using P4+BACUS for developing high-
performance software packet-processing switches. In fu-
ture, understanding if P4 abstractions can be elegantly
extended to also support stateful abstractions seems like
an intriguing direction of exploration.
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