
TENS0RFLOW
Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,

Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay

Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng, Google Brain

ARPIT AGGARWAL (2016MCS2653)

RAJAT GUPTA (2016MCS2673)

Credits: Jeff Dean

OVERVIEW
➤ INTRODUCTION

➤ BACKGROUND & MOTIVATION

➤ DistBelief

➤ Design Principles

➤ Related Work

➤ Execution Model

➤ Extensibility Case Studies

➤ Implementation

➤ Evaluation - Caffe, Torch

TENSORFLOW - ABSTRACT

➤ A machine learning system that operates at large scale and in heterogeneous
environments.

➤ Uses dataflow graphs to represent computation, shared state, and the
operations that mutate that state.

➤ Maps the nodes of a dataflow graph across many machines in a cluster, and
within a machine across multiple computational devices, including multicore
CPUs, general- purpose GPUs, and Tensor Processing Units (TPUs).

INTRODUCTION
➤ DistBelief - first generation machine learning system.

➤ Uses GPUs for fast training of models.

➤ Dataflow graph to represent computation and state on which algorithm
operates.

➤ Parameter servers (low-level efficiency).

BACKGROUND

DISTBELIEF
➤ Parameter Servers

➤ DAG structure and backpropogation

➤ Data Parallelism

➤ Ad-hoc for Deep Neural Network
Algorithms.

PARAMETER SERVER

TRAINING MODEL

➤ Parameters - Weight matrix and Bias Vector

➤ Objective - minimise Loss Function.

Loss Function : g(f(Actual Value) - f(Predicted Value))

NEURAL NETWORK & LOSS FUNCTION

BACKPROPAGATION

Back propagation is commonly used by the gradient descent optimisation
algorithm to adjust the weight of neurones by calculating the gradient of the
loss function.

The error is calculated at the output and distributed back through the network
layers.

https://en.wikipedia.org/wiki/Gradient_descent
https://en.wikipedia.org/wiki/Gradient
https://en.wikipedia.org/wiki/Loss_function

RNN & ADVERSARIAL NETWORKS

DISTBELIEF-LIMITATIONS
➤ Defining New Layers

➤ Refining the Training Algorithms

➤ Newer Versions of SGD required changes in Parameter server
Implementation. e.g.

➤ get() and put() interface were not sufficient for all optimisation
methods. e.g.

➤ Defining new Training Algorithms

➤ Not sufficient for advanced models such as RNN, adversarial networks, reinforcement
learning models.

➤ Main Purpose for Training Deep Neural Networks.

➤ Difficult to Deploy trained models to different Platforms such as Mobiles

DISTBELIEF-LIMITATIONS
➤ Parameter update rules not the same programming model as the rest of the

system.

➤ Separate code for parameter servers vs. rest of system.

➤ Lacked uniformity & was more complicated.

DESIGN PRINCIPLES

➤ Dataflow graphs of primitive

operators

➤ Deferred execution

➤ Common abstraction for

heterogeneous accelerators

DATAFLOW GRAPHS
➤ A directed graph that shows the data dependencies between a number of

functions.

➤ Consume data from input ports and produce data to its output ports.

DATAFLOW GRAPHS

DATAFLOW GRAPHS

DATAFLOW GRAPHS OF PRIMITIVE OPERATORS

➤ DistBelief:

➤ Complex layers , Rigid Structure (c++ classes)

➤ Not helpful for research purposes.

➤ TF:

➤ Easier to work on new and add new layers, every mathematical
operation is represented as node.

➤ Allows to define separate gradient for each layer.

➤ Mutable state and updation policy as nodes, which helps in defining
new rules.

Deferred execution

TWO PHASES:

First Phase:

➤ Defines program as dataflow graph where nodes are mapped to
input data and variables that define the state.

➤ Performs intermediate optimisations before execution.

Second Phase:

➤ Execution of Program on multiple available devices.

➤ Defer the execution till entire program is available, which helps in
better utilisation of resources.

COMMON ABSTRACTION FOR HETEROGENEOUS ACCELERATORS

➤ CPU - Central Processing Unit

➤ GPU - Graphical Processing Unit

➤ TPU - Tensor Processing Unit

Common abstraction for multiple device

A device must have methods for

➤ Issuing kernels for execution

➤ Allocating memory for input and output

➤ Transferring buffers to and from host memory.

COMMON ABSTRACTION FOR HETEROGENEOUS ACCELERATORS

GPU

A graphics processing unit (GPU) is a computer chip that performs rapid
mathematical calculations, primarily for the purpose of rendering images.

A CPU consists of a few cores optimised for sequential serial processing while a
GPU has a massively parallel architecture consisting of thousands of smaller,
more efficient cores designed for handling multiple tasks simultaneously.

TPU

GENERATIVE ADVERSARIAL NETWORKS

Two agents:

Generative model: Generate new samples that are as similar as the data

Discriminative model: Distinguish samples in disguise

TRAINING GANS: TWO-PLAYER GAME

Generator network : try to fool the discriminator by generating real-looking
images

Discriminator network : try to distinguish between real and fake images

GAN

TENSOR
A Tensor is a generalisation of vectors and matrices to potentially higher
dimensions. Internally, TensorFlow represents tensors as n-dimensional arrays
of base datatypes.

➤ Tensor object:

➤ Partially defined computation.

➤ Build a graph of Tensor objects, calculating dependency and further
execution to get desired result.

➤ All Tensors are dense.

➤ Efficient memory usage and communication such RDMA, GPU-GPU
transfer.

RELATED WORK
➤ Single machine frameworks

➤ Batch flow networks

➤ Parameter Servers

SINGLE MACHINE FRAMEWORKS
➤ CAFFE

➤ Framework for training specified neural network.

➤ Easy to compose models.

➤ Difficult to add new layers or optimisers.

➤ Similar to DistBelief.

➤ THEANO

➤ Similar to TensorFlow.

➤ DataFlow Graph Representation.

➤ But single machine.

➤ TORCH

➤ Imperative Programming model

➤ Fine grained control of execution and memory execution.

➤ Lacks dataflow graph for portable representation

SINGLE MACHINE FRAMEWORKS

MAP REDUCE

The MapReduce algorithm contains two important tasks, namely Map
and Reduce.

 • The Map task takes a set of data and converts it into another
set of data, where individual elements are broken down into tuples
(key-value pairs).  

 • The Reduce task takes the output from the Map as an input
and combines those data tuples (key-value pairs) into a smaller set of
tuples.  

BATCH DATAFLOW SYSTEMS
➤ Map Reduce Technique

➤ DryadLINQ

➤ Uses high-level query language

➤ Powerful than Map-Reduce

➤ SPARK

➤ Extends DryadLINQ

➤ Catches computed data for iterative ML algorithms

➤ Limited to Immutable Input data and all subcomputations to be
deterministic to handle cluster failure.

PARAMETER SERVERS
➤ Project Adam - CNN

➤ Li - fault tolerance, models, elastic rescaling.

➤ GeePS - Parameter server specialised for use with GPUs.

➤ MXNet - Uses dataflow graph and parameter servers

Uses some function to aggregate the updates

Doesn’t allow sparse gradient updates within a single value.

TENSORFLOW
EXECUTION

MODEL

TensorFlow Execution Model

Data Flow graph
● Uses single dataflow graph to represent all computation and states including

○ Individual mathematical operations
○ Parameters
○ Parameter update rules
○ Input preprocessing

Data Flow graph

Benefit?

Easy to execute independent
computations in parallel

Easy to partition computations
across multiple devices

Parameter server
approach

● Make in-place updates
to very large parameters

● Propagate those
updates to parallel
training steps as quiclky
as possible

Tensorflow approach
● Dataflow with mutable

states
● Added flexibility
● Able to experiment with

different optimizations
algorithms, consistency
schemes, parallel strategies

Updating parameters in case of
very large models

Expresses communication between subgraph explicitly

Dataflow Graph Elements
1. Vertex - unit of computation
2. Edge - output from, or input to a vertex

01

02

03

04
Tensors

● Values that flow along
edges

● N-dimensional arrays
● Dense

Operations

● Takes m>=0 tensors as
input

● Produces n>=0 tensors as
output

● Has named type
● Eg. Const, MatMul,

Assign.

Variables (Stateful operations)

● Variable operation owns a
mutable buffer used to store
shared parameters

● No inputs
● Produces reference handle

Queues (Stateful operations)

● Several queue implementations
supported

● Allows concurrent access
● Produces reference handle
● Supports synchronization

Computation is a dataflow graph

Computation is a dataflow graph

Dataflow Graph Elements
Since tensors are dense, Tensorflow offers two alternatives for sparse data

● Encode data into variable-length string elements of dense tensor
● Use tuple of dense tensors

○ n-D sparse tensor with m nonzero elements
○ Co-ordinate list as m*n matrix of coordinates
○ m length vector of values

Partial and Concurrent Execution
● API for executing graph allows client to specify declaratively the subgraph that

should be executed
● Runtime prunes the graph to contain the necessary set of operations
● Tensorflow supports multiple concurrent steps on the same graph
● Co-ordination can be done through queues
● By default concurrent executions of a subgraph run asynchronously
● Asynchrony makes it straightforward to use machine learning algorithms with

weak consistency
● Checkpointing subgraph runs periodically for fault tolerance.

Distributed Execution
● Simplified by dataflow as communication between subcomputations explicit
● Allows a program to be deployed on

○ Cluster of GPUs for training
○ Cluster of TPUs for serving
○ Cellphone for mobile inference

● Tensorflow runtime places operations on devices subject to implicit and
explicit constraints on graph

● Device responsible for executing a kernel for each operation assigned to it
● Tensorflow allows multiple kernels to be registered for single operation
● For many operations, such as element-wise operators (Add, Sub, etc.), a

single kernel implementation is compiled for CPU and GPU using different
compilers.

Distributed Execution
Placement algorithm

● Computes feasible set of devices for each operation
● Calculates set of operations that must be colocated.
● Selects a satisfying device for each colocation group
● Respects implicit colocation constraints (each stateful op and its state on

same device)
● Custom device preferences allowed

Distributed Execution
● Simple heuristics yield adequate performance for novice users
● Expert users can optimize performance by manually placing operations to

balance the computation, memory, and network requirements across multiple
tasks and multiple devices within those tasks

Distributed Execution

Assign devices to ops
● TensorFlow inserts Send/Recv Ops to transport tensors across devices
● Recv ops pull data from Send ops

Assign devices to ops
● TensorFlow inserts Send/Recv Ops to transport tensors across devices
● Recv ops pull data from Send ops

Send and Receive Implementations
● Send transmits its single input to a specified device as soon as the tensor is

available, using a rendezvous key to name the value
● Recv has a single output, and blocks until the value for a specified

rendezvous key is available locally, before producing that value

Different implementations depending on source/dest devices

● e.g. GPUs on same machine: local GPU → GPU copy

● e.g. CPUs on different machines: cross-machine RPC

● e.g. GPUs on different machines: RDMA

Distributed Execution
● Once the graph for a step has been pruned, placed, and partitioned, its

subgraphs are cached in their respective devices.
● A client session maintains the mapping from step definitions to cached

subgraphs, so that a distributed step on a large graph can be initiated with
one small message to each participating task.

● This model favors static, reusable graphs, but it can support dynamic
computations using dynamic control flow.

Dynamic Control Flow
● Tensorflow supports advanced machine learning algorithms that contain

conditional and iterative control flow (RNN) (generate predictions from
sequential data)

● Core of RNN is a recurrence relation
● Dynamic control flow enables iteration over subsequences that have variable

lengths
● Doesn’t unroll the computation to the length of the longest sequence

Dynamic Control Flow

● Added conditional and iterative programming constructs in dataflow graph itself
● Above primitives used to build higher-order constructs, such as map(), fold() and

scan()

Dynamic Control Flow
● Uses Switch and Merge from classic dynamic dataflow architectures

Switch

● Demultiplexer
● Takes input data and a control input
● Switch output not taken receives a special dead value.

Merge

● Multiplexer
● Forwards atmost 1 non-dead signal to output
● Produces dead signal if both input dead signal

Dynamic Control Flow
● While loop is much more complicated
● operators to ensure loop is well formed

○ Enter
○ Exit
○ NextInstruction

● The execution of iterations can overlap
● TensorFlow can also partition conditional branches and loop bodies across

multiple devices and processes.
● The partitioning step adds logic to coordinate the start and termination of each

iteration on each device, and to decide the termination of the loop.

Extensible
● Core system defines a number of standard operations

and kernels (device-specific implementations of

operations)

● Easy to define new operators and/or kernels

Differentiation and Optimization
Differentiation :

● Library differentiates a symbolic
expression for a loss function
and produces a new symbolic
expression representing the
gradients.

● Given a neural network as a
composition of layers and a loss
function, the library will
automatically derive the
backpropagation code.

Differentiation and Optimization
● Wide range of optimization algorithms provided
● W’ = W - a * dL/dW

○ Parameter server can implement SGD using -= as write operation

● New optimizations can be built using Variable operations and primitive
mathematical operations without modifying the underlying system

Training very large models
● b -> sparse vectors
● n -> number of words in

dictionary
● n * d embedding matrix
● b * d dense matrix

representation
● n * d can be very large
● Implement sparse embedding

matrix as composition of
primitive operations

Training very large models
● Gather : extracts a sparse set

of rows form a tensor
● Part : divides incoming indices

into variable-sized tensors that
contain indices destined for
each shard

● Stitch - reassembles partial
results into single tensor

● Each operation has its
corresponding gradient, so it
supports automatic
differentiation

Exploiting Model Parallelism
On a single core: Instruction parallelism (SIMD). Pretty much free.

Across cores: thread parallelism. Almost free, unless across sockets, in which
case inter-socket bandwidth matters (QPI on Intel).

Across devices: for GPUs, often limited by PCIe bandwidth.

Across machines: limited by network bandwidth / latency

Model Parallelism

Model Parallelism : partition model across machines

Model Parallelism : partition model across machines

Fault Tolerance
● Training can take several days
● no guarantee for availability of the same resources for the duration of the

training process.
● long-running TensorFlow job is likely to experience failure or pre-emption, and

we require some form of fault tolerance.
● Implemented user level checkpointing
● Uses two operations in graph, Save and Restore
● 1 Save per task to maximise I/O bandwidth

Synchronous Replica Coordination
Asynchronous :

● SGD is robust to asynchrony
● Scalable because they maintain high throughput in presence of stragglers
● The increased throughput comes at the cost of using stale parameter values

in training steps

Synchronous :

● Slow workers limit throughput
● Backup workers used to mitigate stragglers
● Take m out of n inputs

Data Parallelism Choices
Can do this Synchronously :

● N replicas equivalent to N times larger batch size
● Pro : No gradient staleness
● Con : Less fault tolerant (requires some recovery if single machine fails)

Can do this Asynchronously :

● Pro : Relatively fault tolerant (failure in model replica doesn’t block other
replicas)

● Con : Gradient staleness means gradient less effective

(or Hybrid : M asynchronous groups of N synchronous replicas)

Asynchronous Training
● Unlike DistBelief, no separate parameter server system:

○ Parameters are now just stateful nodes in the graph

Synchronous Training

Synchronous Vs Asynchronous

● Three synchronization schemes for parallel SGD.
● Each color represents a different starting parameter value
● White square is a parameter update
● Dashed rectangle represents a backup worker whose result is discarded.

Synchronous converges faster (time to accuracy)

● Synchronous updates (with backup workers) trains to higher accuracy faster
● Better scaling to more workers (less loss of accuracy)

Implementation
● Tensorflow runtime is a cross

platform library
● C API separates user-level code

in different languages from the
core runtime.

● Runs on several operating
systems including

GPU microarchitectures

○ Kepler
○ Maxwell
○ Pascal

x86 and ARM based CPU
architectures

○ Linux
○ Mac OS X
○ Windows
○ Android, iOS

Implementation
Distributed Master

● Translates user requests into execution
across tasks

● Graph and step definitions -> Pruning
-> Partitioning -> Subgraphs for each
participating device

● Applies standard optimizations such as
subexpression elimination

● Coordinates execution of optimized
subgraphs across tasks

Implementation
Dataflow Executor

● Handles requests from master
● Schedules execution of kernels that

comprise a local subgraph
● Dispatches kernels to local devices and

runs in parallel when possible

Current implementation can execute upto
10,000 subgraphs per second

Implementation
● Runtime supports over 200 standard operations including

○ Mathematical operations
○ Array manipulation operations
○ Control flow operations
○ State Management operations

● Implemented quantization for faster inference in environments such as
mobile devices

● Users can register additional kernels written in C++
● Fused-kernels profitable for performance critical implementations such as

Sigmoid and ReLU activation functions and their corresponding gradients

EVALUATION

SINGLE MACHINE BENCHMARKS

➤ Single GPU

➤ Torch ~ Tensorflow

➤ Caffe uses open-source and simple libraries.

➤ Neon uses handwritten convolution kernels.

SYNCHRONOUS REPLICA MICROBENCHMARK

Null training step - do trivial operation and
send updates.

Scalar curve - single 4B key from all servers

Dense curve - fetches full model

IMAGE CLASSIFICATION - INCEPTION

➤ MXNet and TensorFlow - Single GPU performance.
➤ Step time increases as worker increases
➤ Step time - 50 worker creates high contention, adding backup server decreases

the step time.

LANGUAGE MODELLING

