
CertiKOS
An Extensible Architecture for Building Certified Concurrent OS Kernels

Ronghui Gu, Zhong Shao et al, Yale University, FLINT Research Group

1

“ Complete Formal
Verification is the only way to
guarantee that a system is
free of programming errors ”

- seL4 (SOSP ‘09)

2

Shared Memory Consistency ???

● “Proofs about concurrent programs are much harder than proof about
sequential programs” (seL4, SOSP ‘09)
○ I/O concurrency
○ Multithreading
○ Multiprocessors

● Can’t use a big lock, because performance.
○ Must use fine grained locks.

● “Verification to a kernel version with fine grained locking will far exceed the
cost already paid for verifying the single core version” (Peters, ApSys ‘15)

3

What to prove to verify an OS kernel?

● Functional Correctness
○ Specification S, Kernel code K, User Program P
○ For all user program P, K ⋈ P refines S ⋈ P

● Liveness
○ All the system calls will eventually return
○ Pretty hard, at the scale of the concurrent kernels

4

ASIDE

5

certified concurrent layers

cost

extensibility
CompCertX

asm&C
mix of 3

new technical
contributions

certified

multicore machine lifting

logical log + hardware scheduler
+ environment context

push/pull model

certified concurrent layerssequential

cost

extensibility
CompCertX

asm&C
mix of 3

contributions

certified

11

certified objects

specification of modules to trust

1

certified concurrent layerssequential

2 py

extensibility
CompcertX

asm&C
3 concurrency

contribution

certified

111

certified concurrent layerssequential

2 py

extensibility
CompcertX

asm&C
3 concurrency

contribution

certified

111

abs-state

certified concurrent layerssequential

2 py

extensibility
CompcertX

asm&C
3 concurrency

contribution

certified

11

1

primitives

abs-state

2 py

extensibility
CompcertX

asm&C
3 concurrency

contribution

certified

111

memory

code

2 py

extensibility
CompcertX

asm&C
3 concurrency

contribution

certified

111

2 py

extensibility
CompcertX

asm&C
3 concurrency

contribution

certified

111
A
T

implementation

2 py

extensibility
CompcertX

asm&C
3 concurrency

contribution

certified

111
A
T

specification

implementation

2 py

extensibility
CompcertX

asm&C
3 concurrency

contribution

certified

111
A
T

implementation

specification

2 py

extensibility
CompcertX

asm&C
3 concurrency

contribution

certified

simulation proof
specification

implementation

2 py

extensibility
CompcertX

asm&C
3 concurrency

contribution

certified

kernelverify a sequential
[POPL’15]

2 py

extensibility
CompcertX

asm&C
3 concurrency

contribution

certified

kernel

MM

TM

PM

Trap

code

seq machine

TM

PM

Trap

MM

2 py

extensibility
CompcertX

asm&C
3 concurrency

contribution

certified

seq machine

cost

extensibility
CompcertX

asm&C
3 concurrency

certified
extensibility is the key to support

concurrency

seq machine

contributions

mem

thread

proc

cost

CompcertX
asm&C

mix of 3

certified

trap

virt

multicore machine

seq machine

contributions
support concurrency

extensibility

mem

thread

proc

trap

virt

multicore machine

CPU-local machine 1 1

cost

CompcertX
asm&C

mix of 3

certified

reuse

contributions

extensibility

mem

thread

proc

cost

CompcertX
asm&C

mix of 3

certified

multicore machine

CPU-local machine 1 1

trap

virt

spin-lock

reuse

contributions

extensibility

cost

CompcertX
asm&C

mix of 3

certified

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

reuse

1 1

contributions

extensibility

cost

CompcertX
asm&C

mC2

mix of 3

certified

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

reuse

1 1

contributions

extensibility

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contributions

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

certified concurrent layers

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

local objects

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

certified concurrent layers

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

k

atomic objects

logical log
multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

certified concurrent layers

a sequence of events

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

certified concurrent layers

k

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

certified concurrent layers

k

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

certified concurrent layers

k

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

share

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

k

cost

extensibility
CompcertX

asm&C

fine-grained lock

mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

k k

cost

extensibility
CompcertX

asm&C

fine-grained lock

mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

1 1cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

step 0: raw x86 multicore model

CPU0

CPU1

atom

private

share

atom

0.a

1.a

assume sequential consistency

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

0.a 1.alogical log

CPU0

CPU1

atom

private

share

atom

non-determinism
step 0: raw x86 multicore model

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

CPU0

CPU1

atom

private

share

atom

non-determinism
step 0: raw x86 multicore model

0.a 1.a

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

CPU0

CPU1

atom

private

share

atom

0.a

1.a

0 1

1 0

non-determinism
step 0: raw x86 multicore model

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

CPU0

CPU1

atom

private

share

atom

0.a

1.a

0 1 1 0

non-determinism

oracle

hardware scheduler
step 0: raw x86 multicore model

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

CPU0

CPU1

atom

private

share

atom

0.a

1.a

0 1 1 0

non-determinism

be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

shared1CPU0 pull1 push1

shared
mem at i

shared1

invalid

log

x y z invalid

atom1 shared1 CPU0 pull1 push1shared1

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

hardware scheduling

switch
event

returned
events

...

pull1 push1

pull1 push1

We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110

be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

shared1CPU0 pull1 push1

shared
mem at i

shared1

invalid

log

x y z invalid

atom1 shared1 CPU0 pull1 push1shared1

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

hardware scheduling

switch
event

returned
events

...

pull1 push1

pull1 push1

We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110

step 1: hardware scheduler
purely logical

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

CPU0

CPU1

atom

private

share

atom

0 1 1 0

non-determinism

be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

shared1CPU0 pull1 push1

shared
mem at i

shared1

invalid

log

x y z invalid

atom1 shared1 CPU0 pull1 push1shared1

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

hardware scheduling

switch
event

returned
events

...

pull1 push1

pull1 push1

We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110

0.a 1.a

be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

shared1CPU0 pull1 push1

shared
mem at i

shared1

invalid

log

x y z invalid

atom1 shared1 CPU0 pull1 push1shared1

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

hardware scheduling

switch
event

returned
events

...

pull1 push1

pull1 push1

We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110

step 1: hardware scheduler
purely logical

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virtnon-determinism

?8

be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

shared1CPU0 pull1 push1

shared
mem at i

shared1

invalid

log

x y z invalid

atom1 shared1 CPU0 pull1 push1shared1

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

hardware scheduling

switch
event

returned
events

...

pull1 push1

pull1 push1

We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110

step 1: hardware scheduler
purely logical

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

machine with hardware scheduler8

be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

shared1CPU0 pull1 push1

shared
mem at i

shared1

invalid

log

x y z invalid

atom1 shared1 CPU0 pull1 push1shared1

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

hardware scheduling

switch
event

returned
events

...

pull1 push1

pull1 push1

We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110

step 1: hardware scheduler

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

machine with hardware scheduler

share

shared
mem

8

be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

shared1CPU0 pull1 push1

shared
mem at i

shared1

invalid

log

x y z invalid

atom1 shared1 CPU0 pull1 push1shared1

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

hardware scheduling

switch
event

returned
events

...

pull1 push1

pull1 push1

We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110

CPU0

step 2: push/pull model

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

machine with hardware scheduler

CPU0 share

shared
mem

pull

logical
copy

8

be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

shared1CPU0 pull1 push1

shared
mem at i

shared1

invalid

log

x y z invalid

atom1 shared1 CPU0 pull1 push1shared1

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

hardware scheduling

switch
event

returned
events

...

pull1 push1

pull1 push1

We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110

step 2: push/pull model

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

machine with hardware scheduler

sharepull

shared
mem

logical
copy

8

be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

shared1CPU0 pull1 push1

shared
mem at i

shared1

invalid

log

x y z invalid

atom1 shared1 CPU0 pull1 push1shared1

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

hardware scheduling

switch
event

returned
events

...

pull1 push1

pull1 push1

We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110

CPU0

step 2: push/pull model

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

machine with hardware scheduler

sharepull

shared
mem

logical
copy

8

be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

shared1CPU0 pull1 push1

shared
mem at i

shared1

invalid

log

x y z invalid

atom1 shared1 CPU0 pull1 push1shared1

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

hardware scheduling

switch
event

returned
events

...

pull1 push1

pull1 push1

We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110

CPU0

step 2: push/pull model

CPU1 pull

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

machine with hardware scheduler

share

shared
mem

pull

logical
copy

push

8

be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

shared1CPU0 pull1 push1

shared
mem at i

shared1

invalid

log

x y z invalid

atom1 shared1 CPU0 pull1 push1shared1

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

hardware scheduling

switch
event

returned
events

...

pull1 push1

pull1 push1

We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110

CPU0

step 2: push/pull model

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

machine with hardware scheduler

share

shared
mem

pull

logical
copy

push

8

be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

shared1CPU0 pull1 push1

shared
mem at i

shared1

invalid

log

x y z invalid

atom1 shared1 CPU0 pull1 push1shared1

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

hardware scheduling

switch
event

returned
events

...

pull1 push1

pull1 push1

We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110

CPU0

step 2: push/pull model

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

machine with hardware scheduler

machine with local copy

8

be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

shared1CPU0 pull1 push1

shared
mem at i

shared1

invalid

log

x y z invalid

atom1 shared1 CPU0 pull1 push1shared1

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

hardware scheduling

switch
event

returned
events

...

pull1 push1

pull1 push1

We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

machine with hardware scheduler

machine with local copy

CPU0

CPU1

atom

private

private

atom

0.a

1.a

0 1 1 0

be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

shared1CPU0 pull1 push1

shared
mem at i

shared1

invalid

log

x y z invalid

atom1 shared1 CPU0 pull1 push1shared1

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

hardware scheduling

switch
event

returned
events

...

pull1 push1

pull1 push1

We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110

8

be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

shared1CPU0 pull1 push1

shared
mem at i

shared1

invalid

log

x y z invalid

atom1 shared1 CPU0 pull1 push1shared1

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

hardware scheduling

switch
event

returned
events

...

pull1 push1

pull1 push1

We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110

step 3: per-CPU machine

be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

shared1CPU0 pull1 push1

shared
mem at i

shared1

invalid

log

x y z invalid

atom1 shared1 CPU0 pull1 push1shared1

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

hardware scheduling

switch
event

returned
events

...

pull1 push1

pull1 push1

We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

machine with hardware scheduler

machine with local copy

CPU0

CPU1

atom

private

private

atom

0.a

1.a

1 1 0

8

be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

shared1CPU0 pull1 push1

shared
mem at i

shared1

invalid

log

x y z invalid

atom1 shared1 CPU0 pull1 push1shared1

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

hardware scheduling

switch
event

returned
events

...

pull1 push1

pull1 push1

We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110

0

step 3: per-CPU machine

be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

shared1CPU0 pull1 push1

shared
mem at i

shared1

invalid

log

x y z invalid

atom1 shared1 CPU0 pull1 push1shared1

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

hardware scheduling

switch
event

returned
events

...

pull1 push1

pull1 push1

We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110

CPU1 private atom

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

machine with hardware scheduler

machine with local copy

CPU0 atom private

0.a

0

8

be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

shared1CPU0 pull1 push1

shared
mem at i

shared1

invalid

log

x y z invalid

atom1 shared1 CPU0 pull1 push1shared1

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

hardware scheduling

switch
event

returned
events

...

pull1 push1

pull1 push1

We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110

1 1 0

1.a

step 3: per-CPU machine

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

machine with hardware scheduler

machine with local copy

CPU0 atom private

0.a

0

8

be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

shared1CPU0 pull1 push1

shared
mem at i

shared1

invalid

log

x y z invalid

atom1 shared1 CPU0 pull1 push1shared1

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

hardware scheduling

switch
event

returned
events

...

pull1 push1

pull1 push1

We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110

1 1 01.aE

step 3: per-CPU machine

environment context

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

machine with hardware scheduler

CPU i machine CPU j machine

machine with local copy

8

be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

shared1CPU0 pull1 push1

shared
mem at i

shared1

invalid

log

x y z invalid

atom1 shared1 CPU0 pull1 push1shared1

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

hardware scheduling

switch
event

returned
events

...

pull1 push1

pull1 push1

We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

machine with hardware scheduler

CPU i machine CPU j machine

machine with local copy

share privateatom pull push

8

be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

shared1CPU0 pull1 push1

shared
mem at i

shared1

invalid

log

x y z invalid

atom1 shared1 CPU0 pull1 push1shared1

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

hardware scheduling

switch
event

returned
events

...

pull1 push1

pull1 push1

We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110

step 4: remove unnecessary
interleaving

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

machine with hardware scheduler

CPU i machine CPU j machine

machine with local copy

shuffle

share privateatom pull push

8

be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

shared1CPU0 pull1 push1

shared
mem at i

shared1

invalid

log

x y z invalid

atom1 shared1 CPU0 pull1 push1shared1

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

hardware scheduling

switch
event

returned
events

...

pull1 push1

pull1 push1

We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110

step 4: remove unnecessary
interleaving

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contributions

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

machine with hardware scheduler

CPU i machine CPU j machine

machine with local copy

merge

share privateatom pull push

8

be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

shared1CPU0 pull1 push1

shared
mem at i

shared1

invalid

log

x y z invalid

atom1 shared1 CPU0 pull1 push1shared1

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

hardware scheduling

switch
event

returned
events

...

pull1 push1

pull1 push1

We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110

step 4: remove unnecessary
interleaving

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contributions

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

machine with hardware scheduler

CPU i machine CPU j machine

machine with local copy

atom

reuse

8

be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

shared1CPU0 pull1 push1

shared
mem at i

shared1

invalid

log

x y z invalid

atom1 shared1 CPU0 pull1 push1shared1

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

hardware scheduling

switch
event

returned
events

...

pull1 push1

pull1 push1

We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110

0 1 1 00.a 1.a

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contributions

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contributions

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

1 1

Certified Abstraction Layer

● A language construct (L1, M, L2) and a mechanized proof object
○ layer implementation M, built on top of the interface L1 (the underlay) is a contextual

refinement of the desirable interface L2 above (the overlay).

● A deep specification L2 of a module M captures everything contextually
observable about running the module over its underlay L1.
○ Once we have certified M with a deep specification L2, there is no need to look at M again.
○ Any property about M can be proved by L2 alone.

6

Certified Layers : (L1, M, L2) and a mechanized proof object

7

Implementation Independence

Simulation Relation

8

Composition of Deep Specifications

9

Layer Design

10

Multicore Hardware Model

● Allows all CPUs to access the same piece of memory simultaneously
● Logically distinguish

○ Private Memory: single CPU/threads (no need to synchronize)
○ Shared Memory: multiple CPU/threads (synchronize using atomic hardware instructions)

● Each shared memory operation can be viewed as if it were atomic.

11

Atomic Object

● Abstraction of well-synchronized shared memory.
○ Set of primitives
○ Initial State
○ Logical log

● Current state can be Initial State + Replay log

12

Step 0: Multicore Hardware Model ᵎx86mc

● Allows arbitrary interleavings at the level of assembly instructions.
○ Hardware will non-deterministically choose 1 CPU.
○ Execute next assembly instruction on that CPU.

● Each instruction is classified as:
○ Atomic, Shared and Private

● Only atomic operations generate events.
○ Logical log = [0.atom1, 1.atom2]

13

Step 1: Model + Hardware Scheduler ᵎhs

● Add hardware scheduler ᶗhs that specifies a particular interleaving.
○ Deterministic machine model

● Insert logical switch points.
○ Query the scheduler to get the CPU id that will execute the next instruction.
○ All the switch decisions are stored in the log.

14

Contextual Refinement

● We say that layer L0 contextually refines layer L1 if and only if
○ For any P that does not go wrong on ᵎL1

■ P does not go wrong with piLo on an configuration

● The behavior of running a program P over this model with a hardware
scheduler ᷑hsis denoted by [[P]]hs = { ᵎhs(P, ᷑hs) | ᷑hs ϵ EChs}.

● Theorem:
○ ∀P, [[P]]x65mc refines [[P]]hs

15

Step 2: Machine with local copy of shared memory

16

Step 3: Partial Machine with environment context

17

Step 4: CPU Local Machine Models

18

END ASIDE

19

Certifying the
mC2 Kernel

● Layer Architecture
● System Architecture
● Spinlocks
● Memory Management
● Thread Management

20

System Architecture

21

Layer Architecture

22

Certifying the mC2 Kernel

● Design abstraction layers in a way
○ complex interdependent kernel components are untangled
○ well-organized object stack with clean specification.

● Bottom layer that connects to the CPU-local machine model ᵎloc
○ instantiated with a particular active CPU.

● Trap handler is the top layer that provides system call interfaces
○ serves as a specification of the whole kernel
○ instantiated with a particular active thread running on that active CPU.

● Any global property proved at the top abstraction layer can be transferred
down to the lowest hardware machine.

23

Spin lock module -- Ticket lock

24

Starvation Freedom for locks

● Invariant
○ Environment context that holds lock(i) will never acquire lock(i) again before releasing it.
○ Always releases lock(i) within k steps

● Acquiring the ticket-lock eventually succeeds
○ Mechanized in Coq
○ Proof idea : upper bound on the number of events generated by context of threads before

the current one.

● MCS locks
○ Better scalability than ticket locks
○ Similar Proof for starvation freedom

25

Memory Management

● A thread acquiring a lower layer lock cannot acquire a lock defined at a
higher layer.
○ Prevent deadlock

● Global invariants:
○ Paging is enabled only after all the page maps are initialized
○ Pages that store kernel specific data have kernel only permission in all page maps
○ The kernel page map is an identity map
○ Non shared parts of user processes’ memory are isolated

26

Page Allocation -- Allocation Table, Quotas and Locks

27

Thread Management and Scheduling -- yield, sleep and wakeup

28

Evaluation

29

Contents

● Proof effort and cost of change
● Performance evaluation
● Concurrency overhead
● IPC Performance
● Hypervisor Performance

Proof Effort and Cost of Change

● Code : 6500 lines of C + x86 assembly over 2 person years
● Specification (these are part of the trusted computing base):

○ 943 lines of code for the lowest layer axiomatizing the hardware machine model.
○ 450 lines of code specifying the abstract system call interfaces.

● 5249 lines of additional specifications
○ For auxiliary definitions, theorems, invariants etc.

● 50k lines of Coq proofs.
○ At least ⅓ of this is semi-automatically generated and redundant.

30

Performance Evaluation

● Not the main concern, but still run benchmarks.
● Since power control code has not been verified

○ Turbo boost and power management features of the hardware have been disabled.

31

Concurrency Overhead

● Runtime overhead is dominated by:
○ Latency of the spinlocks
○ Contention of shared data.

● All shared objects pre-allocated a
fine-grained lock.

● MCS locks vs Ticket Locks
○ Efficiency remains the same for ticket

locks but increases for the MCS locks.

32

IPC Overhead mC2 vs seL4

● seL4 fastpath/slowpath:
○ 1200/1800 cycles

● Mc2 IPC:
○ ~3800 cycles

● seL4 is optimized and tailored for hardware performance.

33

Hypervisor Performance

34

Conclusions

35

● Extensible architecture
● Clean, Rigorous, Layered,

Practical

