CertiIKOS

An Extensible Architecture for Building Certified Concurrent OS Kernels

Ronghui Gu, Zhong Shao et al, Yale University, FLINT Research Group

"

is the only way to
guarantee that a system is
free of programming errors *

- selL.4 (SOSP ‘09)

Shared Memory Consistency 7?7

e “Proofs about concurrent programs are much harder than proof about
sequential programs” (seL4, SOSP ‘09)

o 1/0 concurrency
o Multithreading
o Multiprocessors

e Can't use a big lock, because performance.
o Must use fine grained locks.

e “Verification to a kernel version with fine grained locking will far exceed the
cost already paid for verifying the single core version” (Peters, ApSys ‘15)

What to prove to verify an OS kernel?

e Functional Correctness
o Specification S, Kernel code K, User Program P
o Forall user program P, K= P refines S=P

e Liveness

o All the system calls will eventually return
o Pretty hard, at the scale of the concurrent kernels

ASIDE

new technical
contributions

certified concurrent layers

logical log + hardware scheduler
+ environment context

push/pull model

multicore machine lifting

certified sequential layers

certified objects

specification of modules to trust

certified sequential layers

certified sequential layers

abs-state

_

certified sequential layers

abs-state

_

orimitives

code

-

memory

implementation

specification

mp\ementaﬂon

specification

mp\ementaﬂon

simulation proof

specification

A

- O—0—-0—-0

imp\ementaﬂon

verity a seqguential kernel
[POPL’15]

seg machine

kernel

seg machine

Trap

seg machine -

contributions

extensibility 1s the key to support

concurrency

- support concurrency
contributions

trap

virt

proc

thread

mem

multicore machine

contributions

trap

virt

reuse proc
thread

mem
CPU-local machine - -

multicore machine

contributions

trap

virt

reuse proc
thread

mem

spin-lock

CPU-local machine - -
multicore machine

contributionsitrap

virt

proc

reyse thread-local machine . .

mlx Of 3 thread

-

spin-lock

CPU-local machine - -
multicore machine

contributionsitrap
mC2 virt

proc

reyse thread-local machine . . II II

mlx Of 3 thread

-

spin-lock

CPU-local machine - -
multicore machine

certified concurrent layers trap

virt

proc

th read

mem

sSpin-Ic

CPU-I

multice

certified concurrent layers trap

virt

proc

th read

mem

ocal objects

sSpin-Ic

CPU-I

multicc

certitied concurrent layers trap

virt

proc

th read

mem

atomic objects

sSpin-Ic

CPU-I

multicc

logical log [[T 1]

a seguence of events

certified concurrent layers trap

virt

proc

th read

mem

Spin-Ic

CPU-I

HE B
AR

multicc

certified concurrent layers trap

virt

proc

th read

mem

sSpin-Ic

CPU-I

HE B
(I

multicc

certified concurrent layers trap

virt

proc

th read

mem

sSpin-Ic

CPU-I

(I

multicc

trap

virt

proc

th read

mem I
share. '

sSpin-Ic

CPU-I

I

multicc

trap

virt

fine-grained lock

proc

th read

mem

sSpin-Ic

CPU-I

_
I

multicc

fine-grained lock

I

(I

trap

virt

proc

th read

mem

sSpin-Ic

CPU-I

multicc

trap

virt

proc

thread-local machine . . II II

thread

-

spin-lock

CPU-local machine - -
multicore machine

step O: raw x86 multicore model trap
assume seqguential consistency virt

proc

th read

mem

CPU

spin-Ic

CPU-I

multicore machine

step O: raw x86 multicore model trap

virt

proc

cruo- TR

th read

mem
CPU1

sSpin-Ic

CPU-I

oglcal log

multicore machine

step O: raw x86 multicore model trap
non-determinism virt
proc '
cruo- TR
thread
mem I
CPU" > .
Spin-Ic

CPU-I

multicore machine

step O: raw x86 multicore model trap
non-determinism virt

proc

th read

mem

CPU

Spin-Ic

CPU-I

multicore machine

step O: raw x86 multicore model trap
non-determinism virt

proc

th read

mem

CPU

Spin-Ic

CPU-I

multicore machine

step 1: hardware scheduler &, trap
purely logical virt

proc

th read

mem

sSpin-Ic

CPU-I

multicore machine

step 1: hardware scheduler &, trap
purely logical virt

proc

th read

mem

sSpin-Ic

CPU-I

multicore machine

step 1: hardware scheduler trap
purely logical virt

proc

\?ghs thread

mem

sSpin-Ic

CPU-I

multicore machine

step 1: hardware scheduler trap

virt

proc

th read

mem

sSpin-Ic

CPU-I
\v/ghs machine with hardware scheduler

step 2: push/pull model trap

virt
CPUO m oe
shared
e thread
mem :
sSpin-Ic

CPU-I
\V/ghs machine with hardware scheduler

step 2: push/pull model trap

virt

cruo » IR o
logical
Copy

thread

shared mem
mem .
sSpin-Ic

CPU-I
\v/ghs machine with hardware scheduler

multicore machine

step 2: push/pull model

cruo >R

logical
copy

shared
mem

\v/ghs machine with hardware scheduler

multicore machine

trap

virt

proc

th read

mem

sSpin-Ic

CPU-I

step 2: push/pull model trap

virt

cruo » IR o
logical

copy ,
thread
shared e
ar
sSpin-Ic
CPU"

CPU-I

\V/ghs machme with hardware scheduler

multicore machine

step 2: push/pull model trap

virt

oruo MR o

logical
Copy

thread

shared Tem '
mem

sSpin-Ic

CPU-I
\v/ghs machine with hardware scheduler

step 2: push/pull model trap

virt

R o I sharo d push o o
logical

copy ,

thread

shared - :
mem

Spin-Ic

CPU-I
\v/ghs machine with hardware scheduler

trap

virt

proc

th read

mem

sSpin-Ic

CPU-I

machine with local copy

\V/ghs machine with hardware scheduler

multicore machine

step 3: per-CPU machine trap

virt

> +> proc '

CPU1 > b thread

1.a mem

sSpin-Ic

CPU-I

machine with local copy

\V/ghs machine with hardware scheduler

multicore machine

step 3: per-CPU machine trap

virt

> +> proc '

> > th read

1.a

mem

sSpin-Ic

CPU-I

machine with local copy

\V/ghs machine with hardware scheduler

multicore machine

step 3: per-CPU machine trap

virt

> proc

CPU1 > b thread

mem

sSpin-Ic

CPU-I

machine with local copy

\V/ghs machine with hardware scheduler

multicore machine

step 3: per-CPU machine trap

virt

- proc

thread
environment context em

sSpin-Ic

CPU-I

machine with local copy

\V/ghs machine with hardware scheduler

multicore machine

trap

virt

proc

th read

mem

CPU i machine CPU j machine spin-Ic

machine with local copy

CPU-I

\V/ghs machine with hardware scheduler

multicore machine

step 4. remove unnecessary
Interleaving

trap

virt

proc

th read

g atom g pull g share g PHVaIe g push

mem

CPU i machine CPU j machine spin-Ic
machine with local copy I
CPU-I
\V/ghs machine with hardware scheduler

multicore machine

step 4. remove unnecessary

' : trap
interleaving |
virt
g atom g pull | share [privaie [2gg push proc

shuffle

th read

mem

CPU i machine CPU j machine spin-Ic
machine with local copy I
CPU-I
\V/ghs machine with hardware scheduler

multicore machine

step 4. remove unnecessary

' : trap
interleaving |
virt

merge

th read

mem

CPU i machine CPU j machine spin-Ic
machine with local copy I
CPU-I
\V/ghs machine with hardware scheduler

multicore machine

contributions trap

virt

proc

thread
CPU-local machine e
CPU i machine CPU j machine spin-Ic

machine with local copy

\V/ghs machine with hardware scheduler

multicore machine

trap

virt

proc

th read

mem

sSpin-Ic

CPU-I

multicc

trap

virt

proc

thread-local machine . . II II

thread

-

spin-lock

CPU-local machine - -
multicore machine

Certified Abstraction Layer

e Alanguage construct (L., M, L,) and a mechanized proof object
o layer implementation M, built on top of the interface L1 (the underlay) is a contextual
refinement of the desirable interface L2 above (the overlay).

e A deep specification L, of a module M captures everything contextually

observable about running the module over its underlay L1.

o Once we have certified M with a deep specification L2, there is no need to look at M again.
o Any property about M can be proved by L2 alone.

Certified Layers : (L1, M, L2) and a mechanized proof object

overlay
interface

CorAsm
implementation

underlay
interface

spec L, with
abstract state abs

R €

module M with
concrete state: mem

simulation (implements)
relation R(abs, mem)

calling abstract

VAR

spec L,

Implementation Independence

primitives in L,

Simulation Relation

Composition of Deep Specifications

Li+r M : Ly Lo s N :Ls

Layer Design

CPU l—I EC(pt, {i}) Lemma5
Lemmal Hhs Lemma? chm Lemma4 Hpt Lemma3
; EC), ; EC), ; Chs LemmaS
CPUj Hp, EC(pt, j}) ;

Figure 5: The contextual refinement chain from multicore hardware model Iy ggy to CPU-local model ITj,,.

Multicore Hardware Model

e Allows all CPUs to access the same piece of memory simultaneously
e Logically distinguish
o Private Memory: single CPU/threads (no need to synchronize)
o Shared Memory: multiple CPU/threads (synchronize using atomic hardware instructions)

e Each shared memory operation can be viewed as if it were atomic.

11

Atomic Object

e Abstraction of well-synchronized shared memory.
o Set of primitives
o Initial State
o Logical log

e Current state can be Initial State + Replay log

12

Step 0: Multicore Hardware Model I

x86mc

e Allows arbitrary interleavings at the level of assembly instructions.
o Hardware will non-deterministically choose 1 CPU.
o Execute next assembly instruction on that CPU.

e Each instruction is classified as:
o Atomic, Shared and Private

e Only atomic operations generate events.
o Logical log =[0.atom1, 1.atom2]

‘atoml, haredl sharedl
. ~'\?W|tch /f \
CPU1 private1 x\ammfz private2

.
>

13

Step 1: Model + Hardware Scheduler IT,

e Add hardware scheduler ¢, that specifies a particular interleaving.
o Deterministic machine model
e Insert logical switch points.

o Query the scheduler to get the CPU id that will execute the next instruction.
o All the switch decisions are stored in the log.

CPUO mi; : sharedl sharedl
N
Ehs gven
Nor o) ¢ SR S (= o= o=
private al

CPU 2 private2

>

[0 0,0.atom;,0>1,1>11<1,1.atomp,1—>0,0-0,0-1] 14

Contextual Refinement

e We say that layer L, contextually refines layer L. if and only if
o For any P that does not go wrong on HL1
m P does not go wrong with piLo on an configuration
e The behavior of running a program P over this model with a hardware
scheduler ¢,_is denoted by [[P]]. . = {11, (P,¢,) |¢, €EC, }.

e Theorem:

o VPPl refines [[P]], .

x65mc

15

Step 2: Machine with local copy of shared memory

—
Ry

CPUO p»atoml p pulll p sharedl p, sharedl p» pushl P
operation to local copy
local T r—
block 1™ invalid invalid

invalid

push
invalid

>

shared e
block 1—-— invalid

16

Step 3: Partial Machine with environment context

sharedl shared1

CPUO push]_ >

€pr({0}

returned

events OL)(MOL’O][OC"I,I"—>1,1‘—>l,l.a,'l:om2,lc>0]()L>(j[0c_,0]>

17

Step 4: CPU Local Machine Models

sharedl sharedl

,‘ shuffle >

sharedl sharedl

pushl p»

pushl p»

‘ merge adjacent >

sharedl sharedl

pushl p»

18

END ASIDE

Certifying the
mC2 Kernel

Layer Architecture
System Architecture
Spinlocks

Memory Management
Thread Management

20

System Architecture

| Trap & Syscall
\ J
\ J IPC
¢ & S 3 FIFoBBOQ | — l . G
S9¥5¢Q gen
B~ 3 0 — . l Lib Mem ELF Ldr v | |
(Per Core ———— v (2 f—[7 Console | |
]VM Monitor Process Page Map _.l VMM APIC I I
— L ‘ Data
imer Scheduler y | S |
' TCB | Driver |
(2 g‘{—_' Thread -.: RdyQ ‘ PendQ ‘ S|eepQ \J | S—
Lapic| £ kstack —_ " v V¥ Aloc Tol | \ Serial | Kbd | | e |
(4] l

I & | curTiD = PcPU | £3 ¢ 12 R y ' !
{ IsC j L& | ™ ll(% sl eE | M& Container = & | Console Bufer | Video | |

» I ~ . s drive
Fee o ————————— - = = Tl |

Core 0 Core 1 Core 8 OQll=l|l5
2 | < HIE (\){dGA) | —» Use !
Q ideo

S [LAPICO|| | |LAPIC1]| LAPIC 8| | | S|&][3 | |
L =’ Te—— —ms) e —J

Figure 3: System architecture for the mC2 kernel

21

Layer Architecture

useri () user N usery [userj
L,
Ly
threadiye « « thread;, threadyy « « o thread;
L :

pt{ip| I, EC(r, (i) ﬂ I1,, EC@r.{j}) | pt({j})

CP U i e CP U J
p [pr ECI).\’
x86mc I_Ix86mc

Figure 2: Contextual refinement between concurrent layers
22

Certifying the mC2 Kernel

Design abstraction layers in a way
o complex interdependent kernel components are untangled
o well-organized object stack with clean specification.

Bottom layer that connects to the CPU-local machine model II,__
o instantiated with a particular active CPU.

Trap handler is the top layer that provides system call interfaces

o serves as a specification of the whole kernel
o instantiated with a particular active thread running on that active CPU.

Any global property proved at the top abstraction layer can be transferred

down to the lowest hardware machine.
23

Spin lock module -- Ticket lock

(myt, i.now) | (9:5) (9,6) (9.8) 99| |09
CPUL pyinc_ticketi pygetnowi ~Pyget nowi Byget nowi pypulli
Eloc({t)) ? ? ? ?
-
1 typedef struct { o t=pFAI(&L[1i].ticket);
volatile uint ticket; 0w while(pL[i].now!=t){}
volatile uint now; T Ppull (i);
4} ticket lock; 12 }
s ticket lock L[NUM LOCK]; i3void rel lock (uint i) {
6 i« ppush (1);
7void acq lock (uint i) { s PL[1i].now ++;
s uint t; 16 }

Figure 7: Pseudocode of the ticket lock implementation

24

Starvation Freedom for locks

e [nvariant
o Environment context that holds lock(i) will never acquire lock(i) again before releasing it.
o Always releases lock(i) within k steps

e Acquiring the ticket-lock eventually succeeds

o Mechanized in Coq
o Proof idea : upper bound on the number of events generated by context of threads before
the current one.

e MCS locks

o Better scalability than ticket locks
o Similar Proof for starvation freedom

25

Memory Management

e A thread acquiring a lower layer lock cannot acquire a lock defined at a
higher layer.
o Prevent deadlock
e Global invariants:
o Paging is enabled only after all the page maps are initialized
o Pages that store kernel specific data have kernel only permission in all page maps
o The kernel page map is an identity map
o Non shared parts of user processes’ memory are isolated

26

Page Allocation - Allocation Table, Quotas and Locks

1int palloc (uint tid) { o if (fp != nps) {

> if (cn[tid].quota < 1) ¥ AT[i].free = 0;

! return ERROR; 12 AT[i].ref = 1;

i pacq lock (lock AT); 13 cn[tid].quota --;
uint i=0,fp=nps; 14}
while(fp==nps&&i<nps){ 15 else fp = ERROR;

if (!'AT[i].free) i« prel lock (lock AT);
8 fp = 1i; 17 return fp;
9 i++; } 18 }

Figure 8: Pseudocode of palloc

27

Thread Management and Scheduling - yield, sleep and wakeup

CPUO Running Thread @sleep
() sleep /|R)yield Q)yield
CDwakeup by
ReadyO - CPUO
—
yield SleepQs

[— ®wakeup by

PendQ < CPUL <

Figure 9: Scheduling routines yield, sleep, and wakeup

28

Contents

Proof effort and cost of change

Eva | U at | O n Performance evaluation

Concurrency overhead
IPC Performance
Hypervisor Performance

Proof Effort and Cost of Change

e Code: 6500 lines of C + x86 assembly over 2 person years

e Specification (these are part of the trusted computing base):
o 943 lines of code for the lowest layer axiomatizing the hardware machine model.
o 450 lines of code specifying the abstract system call interfaces.

e 5249 lines of additional specifications
o For auxiliary definitions, theorems, invariants etc.

e 50k lines of Coq proofs.

o At least Y5 of this is semi-automatically generated and redundant.

30

Performance Evaluation

e Not the main concern, but still run benchmarks.

e Since power control code has not been verified
o Turbo boost and power management features of the hardware have been disabled.

31

Concurrency Overhead

e Runtime overhead is dominated by:

o Latency of the spinlocks = 1200 100%

o Contention of shared data. S S 900 80% 2 <
e All shared objects pre-allocated a 5 60% G ©
. . > o 600 =0
fine-grained lock. o c 40% O =
. o ite]
e MCS locks vs Ticket Locks T 300 20% 2

o Efficiency remains the same for ticket 0 0%

locks but increases for the MCS locks. # of cores 1) 3 4
C—IMCS lock E===dticket lock ==+=MCS lock ==*—ticket lock

Figure 11: The comparison between actual efficiency of ticket
lock and MCS lock implementations in mC2

32

IPC Overhead mC2 vs selL 4

e sel4 fastpath/slowpath:
o 1200/1800 cycles

e Mc2IPC:
o ~3800 cycles

e sel4is optimized and tailored for hardware performance.

33

Hypervisor Performance

68%

150% ¥ B mC2
i
140% . kvm

FH
A

¥

130%

FEE
T

120% |}

L

o

]
o

=

L
FREE,
o

A

110%
100%

=
£
L

A

A

R,
R

A
o
=
3
£

FIEF,
A

.
R,

£
2t

e e e e e e e e

s

L

o

¥

FEFFFFFFIA

9 0 o, /o -] 5 i] ¥ 8
; & S a
& \9\(\ N
\Q
o‘& P }
S

DaCaPo Benchmark Set

Figure 13: Normalized performance for macro benchmarks
running over Linux on KVM vs. Linux on mC2; the baseline is

Linux on bare metal; a smaller ratio is better o

Conclusions

Extensible architecture
Clean, Rigorous, Layered,
Practical

35

