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“ Complete Formal 
Verification is the only way to 
guarantee that a system is 
free of programming errors ”

- seL4 (SOSP ‘09)
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Shared Memory Consistency ???

● “Proofs about concurrent programs are much harder than proof about 
sequential programs” (seL4, SOSP ‘09)
○ I/O concurrency 
○ Multithreading
○ Multiprocessors

● Can’t use a big lock, because performance. 
○ Must use fine grained locks. 

● “Verification to a kernel version with fine grained locking will far exceed the 
cost already paid for verifying the single core version” (Peters, ApSys ‘15)
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What to prove to verify an OS kernel?

● Functional Correctness
○ Specification S, Kernel code K, User Program P
○ For all user program P,  K ⋈ P refines S ⋈ P

● Liveness
○ All the system calls will eventually return
○ Pretty hard, at the scale of the concurrent kernels
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be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:
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We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:
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consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a
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be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we
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5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we
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hs
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that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a
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be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we
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hs

)
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be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
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)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch
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be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.
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consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.
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introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
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that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment
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be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
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example on ⇧x86mc can be simulated by the following E
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consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
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that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This
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be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.
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As a first step toward abstracting away the low-level details of concurrent CPUs, we
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step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
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be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs
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that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
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is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
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be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
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Certified Abstraction Layer

● A language construct (L1, M, L2) and a mechanized proof object
○ layer implementation M, built on top of the interface L1 (the underlay) is a contextual 

refinement of the desirable interface L2 above (the overlay).

● A deep specification L2 of a module M captures everything contextually 
observable about running the module over its underlay L1. 
○ Once we have certified M with a deep specification L2, there is no need to look at M again.
○ Any property about M can be proved by L2 alone.

6



Certified Layers : (L1, M, L2) and a mechanized proof object

7

Implementation Independence



Simulation Relation
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Composition of Deep Specifications
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Layer Design
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Multicore Hardware Model

● Allows all CPUs to access the same piece of memory simultaneously
● Logically distinguish

○ Private Memory: single CPU/threads (no need to synchronize)
○ Shared Memory: multiple CPU/threads (synchronize using atomic hardware instructions)

● Each shared memory operation can be viewed as if it were atomic.
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Atomic Object

● Abstraction of well-synchronized shared memory.
○ Set of primitives
○ Initial State
○ Logical log

● Current state can be Initial State + Replay log
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Step 0: Multicore Hardware Model ᵎx86mc

● Allows arbitrary interleavings at the level of assembly instructions.
○ Hardware will non-deterministically choose 1 CPU.
○ Execute next assembly instruction on that CPU.

● Each instruction is classified as:
○ Atomic, Shared and Private

● Only atomic operations generate events.
○ Logical log = [0.atom1, 1.atom2] 
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Step 1: Model + Hardware Scheduler ᵎhs

● Add hardware scheduler ᶗhs that specifies a particular interleaving.
○ Deterministic machine model

● Insert logical switch points.
○ Query the scheduler to get the CPU id that will execute the next instruction.
○ All the switch decisions are stored in the log.
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Contextual Refinement

● We say that layer L0 contextually refines layer L1 if and only if
○ For any P that does not go wrong on ᵎL1 

■ P does not go wrong with piLo on an configuration

● The behavior of running a program P over this model with a hardware 
scheduler ᷑hsis denoted by [[P]]hs = { ᵎhs(P, ᷑hs) | ᷑hs ϵ EChs}.

● Theorem:
○ ∀P, [[P]]x65mc  refines [[P]]hs
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Step 2: Machine with local copy of shared memory

16



Step 3: Partial Machine with environment context
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Step 4: CPU Local Machine Models
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END ASIDE
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Certifying the 
mC2 Kernel

● Layer Architecture
● System Architecture
● Spinlocks
● Memory Management
● Thread Management
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System Architecture
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Layer Architecture
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Certifying the mC2 Kernel

● Design abstraction layers in a way 
○ complex interdependent kernel components are untangled
○ well-organized object stack with clean specification.

● Bottom layer that connects to the CPU-local machine model ᵎloc
○ instantiated with a particular active CPU. 

● Trap handler is the top layer that provides system call interfaces 
○ serves as a specification of the whole kernel
○ instantiated with a particular active thread running on that active CPU. 

● Any global property proved at the top abstraction layer can be transferred 
down to the lowest hardware machine. 
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Spin lock module -- Ticket lock
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Starvation Freedom for locks

● Invariant
○ Environment context that holds lock(i) will never acquire lock(i) again before releasing it. 
○ Always releases lock(i) within k steps

● Acquiring the ticket-lock eventually succeeds
○ Mechanized in Coq
○ Proof idea : upper bound on the number of events generated by context of threads before 

the current one.

● MCS locks
○ Better scalability than ticket locks
○ Similar Proof for starvation freedom
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Memory Management

● A thread acquiring a lower layer lock cannot acquire a lock defined at a 
higher layer. 
○ Prevent deadlock

● Global invariants:
○ Paging is enabled only after all the page maps are initialized
○ Pages that store kernel specific data have kernel only permission in all page maps
○ The kernel page map is an identity map
○ Non shared parts of user processes’ memory are isolated
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Page Allocation -- Allocation Table, Quotas and Locks
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Thread Management and Scheduling -- yield, sleep and wakeup
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Evaluation

29

Contents

● Proof effort and cost of change
● Performance evaluation
● Concurrency overhead
● IPC Performance
● Hypervisor Performance



Proof Effort and Cost of Change

● Code : 6500 lines of C + x86 assembly over 2 person years
● Specification (these are part of the trusted computing base):

○ 943 lines of code for the lowest layer axiomatizing the hardware machine model.
○ 450 lines of code specifying the abstract system call interfaces.

● 5249 lines of additional specifications 
○ For auxiliary definitions, theorems, invariants etc.

● 50k lines of Coq proofs.
○ At least ⅓ of this is semi-automatically generated and redundant. 
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Performance Evaluation

● Not the main concern, but still run benchmarks. 
● Since power control code has not been verified

○ Turbo boost and power management features of the hardware have been disabled. 
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Concurrency Overhead

● Runtime overhead is dominated by:
○ Latency of the spinlocks
○ Contention of shared data.

● All shared objects pre-allocated a 
fine-grained lock.  

● MCS locks vs Ticket Locks
○ Efficiency remains the same for ticket 

locks but increases for the MCS locks.
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IPC Overhead mC2 vs seL4

● seL4 fastpath/slowpath:
○ 1200/1800 cycles

● Mc2 IPC:
○ ~3800 cycles

● seL4 is optimized and tailored for hardware performance.
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Hypervisor Performance
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Conclusions

35

● Extensible architecture
● Clean, Rigorous, Layered, 

Practical


