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"

is the only way to
guarantee that a system is
free of programming errors *

- selL.4 (SOSP ‘09)



Shared Memory Consistency 7?7

e “Proofs about concurrent programs are much harder than proof about
sequential programs” (seL4, SOSP ‘09)

o 1/0 concurrency
o  Multithreading
o Multiprocessors

e Can't use a big lock, because performance.
o Must use fine grained locks.

e “Verification to a kernel version with fine grained locking will far exceed the
cost already paid for verifying the single core version” (Peters, ApSys ‘15)



What to prove to verify an OS kernel?

e Functional Correctness
o Specification S, Kernel code K, User Program P
o Forall user program P, K= P refines S=P

e Liveness

o All the system calls will eventually return
o Pretty hard, at the scale of the concurrent kernels
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Certified Abstraction Layer

e Alanguage construct (L., M, L,) and a mechanized proof object
o layer implementation M, built on top of the interface L1 (the underlay) is a contextual
refinement of the desirable interface L2 above (the overlay).

e A deep specification L, of a module M captures everything contextually

observable about running the module over its underlay L1.

o Once we have certified M with a deep specification L2, there is no need to look at M again.
o  Any property about M can be proved by L2 alone.



Certified Layers : (L1, M, L2) and a mechanized proof object
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Layer Design

CPU l—I EC(pt, {i}) Lemma5
Lemmal Hhs Lemma? chm Lemma4 Hpt Lemma3
; EC), ; EC), ; Chs LemmaS
CPUj Hp, EC(pt, j}) ;

Figure 5: The contextual refinement chain from multicore hardware model Iy ggy to CPU-local model ITj,,.



Multicore Hardware Model

e Allows all CPUs to access the same piece of memory simultaneously
e Logically distinguish
o  Private Memory: single CPU/threads (no need to synchronize)
o  Shared Memory: multiple CPU/threads (synchronize using atomic hardware instructions)

e Each shared memory operation can be viewed as if it were atomic.
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Atomic Object

e Abstraction of well-synchronized shared memory.
o  Set of primitives
o Initial State
o Logical log

e Current state can be Initial State + Replay log
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Step 0: Multicore Hardware Model I

x86mc

e Allows arbitrary interleavings at the level of assembly instructions.
o Hardware will non-deterministically choose 1 CPU.
o Execute next assembly instruction on that CPU.

e Each instruction is classified as:
o  Atomic, Shared and Private

e Only atomic operations generate events.
o Logical log =[0.atom1, 1.atom2]

‘atoml, haredl  sharedl
. ~'\?W|tch /f \
CPU1 private1 x\ammfz private2

.
>
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Step 1: Model + Hardware Scheduler IT,

e Add hardware scheduler ¢, that specifies a particular interleaving.
o Deterministic machine model
e Insert logical switch points.

o Query the scheduler to get the CPU id that will execute the next instruction.
o All the switch decisions are stored in the log.

CPUO mi; : sharedl sharedl
N
Ehs gven
Nor o) ¢ SR S (= o= o=
private al

CPU 2 private2

>

[0 0,0.atom;,0>1,1>11<1,1.atomp,1—>0,0-0,0-1] 14



Contextual Refinement

e We say that layer L, contextually refines layer L. if and only if
o For any P that does not go wrong on HL1
m P does not go wrong with piLo on an configuration
e The behavior of running a program P over this model with a hardware
scheduler ¢,_is denoted by [[P]]. . = {11, (P,¢, ) |¢, €EC, }.

e Theorem:

o VPPl refines [[P]], .

x65mc
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Step 2: Machine with local copy of shared memory
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Step 3: Partial Machine with environment context
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Step 4: CPU Local Machine Models

sharedl sharedl

,‘ shuffle >

sharedl sharedl
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pushl p»
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sharedl  sharedl

pushl p»
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System Architecture
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Figure 3: System architecture for the mC2 kernel
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Layer Architecture

useri () user N usery [ userj
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Figure 2: Contextual refinement between concurrent layers
22



Certifying the mC2 Kernel

Design abstraction layers in a way
o complex interdependent kernel components are untangled
o well-organized object stack with clean specification.

Bottom layer that connects to the CPU-local machine model II,__
o instantiated with a particular active CPU.

Trap handler is the top layer that provides system call interfaces

o serves as a specification of the whole kernel
o instantiated with a particular active thread running on that active CPU.

Any global property proved at the top abstraction layer can be transferred

down to the lowest hardware machine.
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Spin lock module -- Ticket lock

(myt, i.now) | (9:5) (9,6) (9.8) 99| |09
CPUL  pyinc_ticketi pygetnowi ~Pyget nowi Byget nowi pypulli
Eloc({t)) ? ? ? ?
-
1 typedef struct { o t=pFAI(&L[1i].ticket);
volatile uint ticket; 0w while(pL[i].now!=t){}
volatile uint now; T Ppull (i);
4} ticket lock; 12 }
s ticket lock L[NUM LOCK]; i3void rel lock (uint i) {
6 i« ppush (1);
7void acq lock (uint i) { s PL[1i].now ++;
s uint t; 16 }

Figure 7: Pseudocode of the ticket lock implementation
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Starvation Freedom for locks

e [nvariant
o  Environment context that holds lock(i) will never acquire lock(i) again before releasing it.
o  Always releases lock(i) within k steps

e Acquiring the ticket-lock eventually succeeds

o Mechanized in Coq
o Proof idea : upper bound on the number of events generated by context of threads before
the current one.

e MCS locks

o Better scalability than ticket locks
o  Similar Proof for starvation freedom

25



Memory Management

e A thread acquiring a lower layer lock cannot acquire a lock defined at a
higher layer.
o Prevent deadlock
e Global invariants:
o Paging is enabled only after all the page maps are initialized
o Pages that store kernel specific data have kernel only permission in all page maps
o The kernel page map is an identity map
o Non shared parts of user processes’ memory are isolated
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Page Allocation - Allocation Table, Quotas and Locks

1int palloc (uint tid) { o if (fp != nps) {

> if (cn[tid].quota < 1) ¥ AT[i].free = 0;

! return ERROR; 12 AT[i].ref = 1;

i pacq lock (lock AT); 13 cn[tid].quota --;
uint i=0,fp=nps; 14}
while(fp==nps&&i<nps){ 15 else fp = ERROR;

if (!'AT[i].free) i« prel lock (lock AT);
8 fp = 1i; 17 return fp;
9 i++; } 18 }

Figure 8: Pseudocode of palloc
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Thread Management and Scheduling - yield, sleep and wakeup

CPUO Running Thread @sleep
() sleep /|R)yield Q)yield
CDwakeup by
ReadyO - CPUO
—
yield SleepQs

[— ®wakeup by

PendQ < CPUL <

Figure 9: Scheduling routines yield, sleep, and wakeup
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Proof Effort and Cost of Change

e Code: 6500 lines of C + x86 assembly over 2 person years

e Specification (these are part of the trusted computing base):
o 943 lines of code for the lowest layer axiomatizing the hardware machine model.
o 450 lines of code specifying the abstract system call interfaces.

e 5249 lines of additional specifications
o  For auxiliary definitions, theorems, invariants etc.

e 50k lines of Coq proofs.

o At least Y5 of this is semi-automatically generated and redundant.
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Performance Evaluation

e Not the main concern, but still run benchmarks.

e Since power control code has not been verified
o Turbo boost and power management features of the hardware have been disabled.
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Concurrency Overhead

e Runtime overhead is dominated by:

o Latency of the spinlocks = 1200 100%

o  Contention of shared data. S S 900 80% 2 <
e All shared objects pre-allocated a 5 60% G ©
. . > o 600 =0
fine-grained lock. o c 40% O =
. o ite]
e MCS locks vs Ticket Locks T 300 20% 2

o Efficiency remains the same for ticket 0 0%

locks but increases for the MCS locks. # of cores 1 ) 3 4
C—IMCS lock E===dticket lock ==+=MCS lock ==*—ticket lock

Figure 11: The comparison between actual efficiency of ticket
lock and MCS lock implementations in mC2
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IPC Overhead mC2 vs selL 4

e sel4 fastpath/slowpath:
o 1200/1800 cycles

e Mc2IPC:
o ~3800 cycles

e sel4is optimized and tailored for hardware performance.
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Hypervisor Performance
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Conclusions

Extensible architecture
Clean, Rigorous, Layered,
Practical
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