Pure Lambda Calculus

Lecture 17
Lambda Calculus

- Lambda Calculus (λ-calculus) is a functional notation introduced by Alonzo Church in the early 1930s to formalize the notion of computability.
- Pure λ-calculus is an abstract model of computation and is used to study the computation with functions.
- It is mainly concerned with
 - functional applications and
 - the evaluation of λ-expressions by techniques of substitution.
- The λ-calculus is an expressive and sufficiently powerful simple language with few constructs and a simple semantics and can be used to express all computable functions.
Pure λ-calculus does not have any built-in functions or constants but these are included in applied λ-calculus.

Different languages are generated from different choices of functions and constants.

Functional programming languages (e.g., LISP, SCHEME, POP-2, SML) are based on applied λ-calculus.

Calculation in the λ-calculus is by rewriting (reducing) a λ-expression to a normal form.
 - For pure λ-calculus, λ-expressions are reduced by substitution.
 - Every occurrences of the parameter in the body are replaced with (copies of) the argument. In extended λ-calculus, we also apply the usual reduction rules.
Pure λ-Calculus

- Mainly three constructs to define λ-term
 - variables,
 - function application and
 - function abstraction.

- Notational conventions
 - A variable denoted by x, y, z, f, g, \ldots
 - λ-term denoted by M, N, P, Q, \ldots
\[\text{\textit{\textbf{\lambda-term}}}\]

- All variables are \lambda-terms and are called \textit{atoms}.
- If \(M\) and \(N\) are arbitrary \lambda-terms, then \((MN)\) is a \lambda-term, called \textit{function application}.
 - More usual notation for function application is \(M(N)\) but historically \((MN)\) has become standard in \lambda-calculus.
- If \(M\) is any \lambda-term and \(x\) is any variable, then \((\lambda x.M)\) is a \lambda-term.
 - This is called an \textit{function abstraction}.
Formally, the grammar of λ-term in pure λ-calculus is defined as:

$$<\lambda\text{-term}> ::= x \mid (MN) \mid (\lambda x . M)$$

Examples: Following are examples of λ-terms.

1. x
2. $(x y)$
3. $(\lambda x . x)$
4. $(\lambda x . (y z))$
5. $((\lambda x . x) y)$
6. $(x (\lambda y . y))$
7. $(\lambda x . (\lambda y . (x y)))$
8. $(\lambda x . y) (\lambda y . z)$
Informal Interpretation of \(\lambda \)-term

- A term \((\lambda x \cdot M)\) represents a function whose value at an argument \(N\) such as \((\lambda x \cdot M)N\) is calculated by substituting \(N\) for all free occurrence of \(x\) in \(M\).

Example: \((\lambda f \cdot f(f \ y))\) represents an operation of applying a function twice to an object denoted by \(y\).

\[\text{e.g., } (\lambda f \cdot f(f \ y)) \ N = N(N \ y)\]

- If \(M\) has been interpreted as a function, then \((MN)\) is interpreted as the result of applying \(M\) to an argument \(N\) provided the result is meaningful.

Example:

If \(M = (\lambda x \cdot x \ y)\), then \(MN = (\lambda x \cdot x \ y)N = N \ y\)
Definition: The λ-expression of the form $(\lambda x . y)$ is called a constant function which when applied to any argument N gives y as a result
- e.g., $(\lambda x . y) \ N = y$ or $(\lambda x . y) \ M = y$.

Definition: The λ-expression of the form $(\lambda x . x)$ is called identity function which when applied to any argument N gives itself e.g., $(\lambda x . x) \ N = N$.

Pure lambda calculus is untyped and functions can be applied freely.
- The λ-term $(x \ x)$ is valid, where variable x is applied to itself. But in notion of computation, it may not be meaningful.
- For the sake of simplicity, the following syntactic conventions are used to minimize brackets.
- $MNPQ$ is same as $(((MN)P)Q)$ - (left associative).
- $\lambda x . MN$ is same as $(\lambda x . (MN))$
Currying of Function

- Currying of function means \(\lambda \)-function with more arguments can be expressed as a function of less number of arguments.
- We can write
 \[
 \lambda x_1 . (\lambda x_2 . (\ldots . (\lambda x_n . M) \ldots)) = \lambda x_1 x_2 \ldots x_n . M
 \]
- \(\lambda \)-function with more variables is right associative.
 - if \((\lambda xy . x y) \) is applied to a single argument say, \(z \) then \((\lambda xy . x y) z \) results in \(\lambda y . z y \)
 - if \((\lambda xyz . x y z) \) is applied to two argument say, \(p & q \) then \((\lambda xyz . x y z) p q \) results in \(\lambda z . p q z \)
- \(\lambda \)-function with \(n \) arguments is when applied on
 - one argument, then it reduces to a function of \((n-1) \) arguments
 - two arguments, then it reduces to a function of \((n-2) \) arguments and so on.
The scope of various λ’s in the following function are given below:

$$\lambda_1 y \cdot y x (\lambda_2 x \cdot y (\lambda_3 y \cdot z)x) v w$$

- Scope of λ_1 is $y x (\lambda_2 x \cdot y (\lambda_3 y \cdot z)x)$
- Scope of λ_2 is $y(\lambda_3 y \cdot z)x$
- Scope of λ_3 is z

(v w) does not fall under the scope of any λ.
Definitions

Definition: An occurrence of a variable x in a \(\lambda \)-term P is **bound** iff it is in a part of P with the form \((\lambda x . M)\) otherwise x is said to be **free** variable.

– The set of all such variables is denoted by FV(P).

Definition: A term is **closed** if it does not have free variables.

Substitutions:

- The notation \(M [N/x] \) means to get a result after substituting N for each free occurrence of x in a term M.
- The substitution is said to be **valid** if no free variable in N becomes bound after substitution.
Substitution Rules

There are few substitution rules:

1. $x [N/x] = N$
2. $y [N/x] = y$, $\forall y \neq x$
3. $(P \ q) [N/x] = (P [N/x]) (Q [N/x])$
4. $(\lambda x. M) [N/x] = \lambda x. M$
 (since x is bound in M thus can not be replaced by N)
5. $(\lambda y. M) [N/x] = \lambda y. M [N/x]$, $\mbox{if } y \neq x \mbox{ and } y \notin \mbox{FV}(N)$
6. $(\lambda y. M) [N/x] = \lambda z. ((M [z/y]) [N/x])$, $\mbox{if } y \neq x \mbox{ and } y \in \mbox{FV}(N) \mbox{ and } z \notin \mbox{FV}(MN)$.

Some obvious results:

- $M [x/x] = M$
- $M [N/x] = M$, $\mbox{if } x \notin \mbox{FV}(M)$
- $\mbox{FV}(M [N/x]) = \mbox{FV}(N) \cup (\mbox{FV}(M) - \{x\})$, $\mbox{if } x \in \mbox{FV}(M)$
- $\mbox{FV}(MN) = \mbox{FV}(M) \cup \mbox{FV}(N)$
- $\mbox{FV}(\lambda x. M) = \mbox{FV}(M) - \{x\}$
- $\mbox{FV}(xy) = \{x, y\}$
Examples

Evaluate the following λ-expressions (constant functions in following examples) using substitution rules.

1. $(\lambda y . x) [z/x]$

 Using rule (5), we get

 $(\lambda y . x) [z/x] = \lambda y . x [z/x]$

 Further, using rule (1), we get

 $\lambda y . z$

 Hence, $(\lambda y . x) [z/x] = \lambda y . z$

2. $(\lambda y . x) [y/x]$

 Here rule (5) can not be applied as $y \in \text{FV}(N) = \{y\}$. Using rule (6), we get

 $(\lambda y . x) [y/x] = \lambda z . ((x [z/y]) [y/x])$

 $\quad = \lambda z . x [y/x] \{\text{using rule (2)}\}$

 $\quad = \lambda z . y \{\text{using rule (1)}\}$

 Hence,

 $(\lambda y . x) [y/x] = \lambda z . y$
3. \((\lambda y \cdot x \ (\lambda x \cdot x)) \ [(\lambda y \cdot x \ y)/x]\)

Here \(N = (\lambda y \cdot x \ y), \ FV(N) = \{x\}\)

\(M = x \ (\lambda x \cdot x)\)

Since \(y \notin FV(N)\), using rule 5, we get

\((\lambda y \cdot x \ (\lambda x \cdot x) \) \ [(\lambda y \cdot x \ y)/x]\)

\[= \lambda y \cdot (x \ (\lambda x \cdot x)) \ [(\lambda y \cdot x \ y)/x]\]

Using (3), we get

\[= \lambda y \cdot x \ [(\lambda y \cdot x \ y)/x] \ (\lambda x \cdot x) \ [(\lambda y \cdot x \ y)/x]\]

Using (1) and (4)

\[= \lambda y \cdot (\lambda y \cdot x \ y) \ (\lambda x \cdot x)\]

Hence,

\((\lambda y \cdot x \ (\lambda x \cdot x)) \ [(\lambda y \cdot x \ y)/x]\)

\[= \lambda y \cdot (\lambda y \cdot x \ y) \ (\lambda x \cdot x)\]
The λ-expression (λ-term) is simplified by using conversion or reduction rules. There are three types of λ - conversions rules. These make use of substitution explained above.

- α-conversion (alpha)
- β-conversion (beta)
- η-conversion (eta)
Few Definitions

Definition: Let a term P contains an occurrence of $(\lambda x . M)$ and let $y \notin \text{FV}(M)$. Then the act renaming x by y is replacing $(\lambda x . M)$ by $(\lambda y . M[y/x])$. It is called a change of bound variable in P.

Definition: P α-converts to Q iff Q has been obtained from P by finite series of changes of bound variables.

- The terms P and Q have identical interpretations and play identical roles in any application of λ-calculus.

Definition: Two terms M and N are congruent if M α-converts to N. It is denoted by

$$M \rightarrow_\alpha N.$$
\(\alpha\)-conversion rule

- Any abstraction of the form \(\lambda x . M\) can be converted to \(\lambda y . M [y/x]\) provided the substitution is valid.
- This is called \(\alpha\)-conversion or \(\alpha\)-reduction rule.

\(\alpha\)-reduction Rule: \(\lambda x . M \rightarrow_\alpha \lambda y . M [y/x]\)

Examples:

1. \(\lambda x . x y \rightarrow_\alpha \lambda z . z y,\) whereas \(\lambda x . (x y) \neq_\alpha \lambda y . (y y)\)

2. \(\lambda x y . x(x y) \rightarrow_\alpha \lambda u z . u(u z)\)

Proof:

\[
\begin{align*}
\lambda x y . x(x y) &= \lambda x . (\lambda y . x(x y)) \\
&= \lambda x . (\lambda z . x(x z)) \\
&\rightarrow_\alpha \lambda u . (\lambda z . u(u z)) \\
&\rightarrow_\alpha \lambda u z . u(u z)
\end{align*}
\]
β-conversion rule

- A λ-expression \((\lambda x . M)N\) represents a function \((\lambda x . M)\) applied to an argument \(N\).
- Any λ-expression of the form \((\lambda x . M)N\) is reduced to \(M[N/x]\) provided the substitution of \(N\) for \(x\) in \(M\) is valid.
- This type of reduction is called β-conversion or β-reduction rule.
- It is the most important conversion rule.
Definition: Any term of the form \((\lambda x . M) N\) is called a \(\beta\)-redex (redex stands for reducible expression) and the corresponding term \(M[N/x]\) is called its contractum.

Definition: If a term \(P\) contains an occurrence of \((\lambda x . M) N\) and if we replace that occurrence by \(M[N/x]\) to obtain a result \(Q\), then we say that we have contracted the redex occurrence in \(P\) or \(P\ \beta\)-contracts to \(Q\) (denoted as \(P \rightarrow_\beta Q\)).

Alternatively, \(P\ \beta\)-reduces to \(Q\) (\(P \rightarrow_\beta Q\)) iff \(Q\) is obtained from \(P\) by finite (perhaps empty) series of \(\beta\)-contractions.

\(\beta\)-reduction Rule: \((\lambda x . M) N \rightarrow_\beta M[N/x]\)
Examples β-reduction

1. $(\lambda x . x) y \quad \rightarrow \quad x [y/x] \quad \rightarrow \quad y$
 Hence, $(\lambda x . x) y \quad \rightarrow_{\beta} \quad y$

2. $(\lambda x . x(x y)) N \quad \rightarrow \quad x(x y) [N/x]$
 $\quad \rightarrow \quad N(N y)$
 Hence $(\lambda x . x(x y)) N \quad \rightarrow_{\beta} \quad N(N y)$

3. $(\lambda x . y) N \quad \rightarrow \quad y [N/x] \quad \rightarrow \quad y$
 Hence $(\lambda x . y) N \quad \rightarrow_{\beta} \quad y$
4. Show that

\[(\lambda x. (\lambda y. y x) z) \ v \rightarrow_\beta z \ v\]

Proof:

\[(\lambda x. (\lambda y. y x) z) \ v \rightarrow ((\lambda y. y x)z) \ [v/x]\]
\[\rightarrow (\lambda y. y v) \ z\]
\[\rightarrow (y v) \ [z/y]\]
\[\rightarrow z \ v\]

Hence

\[(\lambda x. (\lambda y. y x) z) \ v \rightarrow_\beta z \ v\]
η-conversion

- Any abstraction of the form \((\lambda x . M x)\) is reduced to \(M\) if \(x\) is not free in \(M\).
- A \(\lambda\)-expression (abstraction form) to which \(\eta\)-reduction can be applied is called \(\eta\)-redex.
- The rule of \(\eta\)-conversion expresses the property that two functions are equal if they give the same results when applied to the same arguments.

\[\eta\text{-Reduction Rule: } (\lambda x . M x) \rightarrow M\]
Equality of λ-expressions

- Two λ-expressions M and N are equal if they can be transformed into each other by finite sequence of λ-conversions.
- The meaning of λ-expressions are preserved after applying any conversion rule.
- For example, $\lambda x . x$ is same as $\lambda z . z$.
- We represent M equal to N by $M = N$.
Properties of Equality

Equality satisfies the following properties (equivalence relation in set theory):

- **Idempotence**: A term M is equal to itself e.g., $M = M$.
- **Commutativity**: If M is equal to N, then N is also equal to M i.e., if $M = N$, then $N = M$.
- **Transitivity**: If M is equal to N and N is equal to P then M is equal to P i.e., if $M = N$ and $N = P$ then $M = P$.
Identical Expressions

Definition: Two λ-expressions M and N are identical, if they consists of same sequence of characters.

Example:

$\lambda x .xy$ and $\lambda z .zy$ are not identical but they are equal.

– So, identical expressions are equal but converse may not be true.
Computation with Pure λ-Term

- Computation in the λ-calculus is done by rewriting (reducing) a λ-expression into a simple form as far as possible.
- The result of computation is independent of the order in which reduction is applied.
- A reduction is any sequence of λ-conversions.
- If a term can not be further reduced, then it is said to be in a normal form.
Normal Form

Definition: A λ-expression is said to be in *normal form* if no beta-redex (e.g. a sub exp of the form $(\lambda x. M)N$) occurs in it.

Example: The normal form of the λ-expression

$$(\lambda x . (\lambda y . y x) z) v \rightarrow z v$$

It is not necessary that all λ-expressions have the normal forms because λ-expression may not be terminating.
Example of \(\lambda \)-expression with no Normal Form

Example: \(\lambda \)-expression \((\lambda x . xxy) \ (\lambda x . xxy)\) does not have a normal form because it is non terminating.

\[
(\lambda x . xxy) \ (\lambda x . xxy)
\]

\[
\rightarrow (xxy) \ [(\lambda x . xxy)/x]
\]

\[
\rightarrow (\lambda x . xxy) \ (\lambda x . xxy) \ y
\]

\[
\rightarrow (xxy) \ [(\lambda x . xxy)/x] \ y
\]

\[
\rightarrow (\lambda x . xxy) \ (\lambda x . xxy) \ yy
\]

\[
\vdots
\]

\[
\vdots
\]

- This reduction is nonterminating
Reduction Order

- λ-conversion rules provide the mechanism to reduce a λ-expression to normal form but do not tell us what order to apply the reductions when more than one redex is available.

- Mathematician Curry proved that if an expression has a normal form, then it can be found by leftmost reduction.
 - The leftmost reduction is called *lazy reduction* because it does not first evaluate the arguments but substitutes the arguments directly into the expression.
 - Curried functions ($f \times y z$) use lazy reduction.
 - *Eager reduction* is one where the arguments are evaluated before substitution.
 - Function $f(x,y,z)$ use eager reduction.