
 1

Introduction to Functional Programming

Prof Saroj Kaushik, CSE Department, IITD

Functional Languages
Focus on data values described by expressions built from function applications.
Functional languages emphasize the evaluation of expressions, rather than execution of
commands. Using functions to combine the basic values forms the expressions in these
languages. A functional program can be considered as a mapping of inputs to outputs.
A mathematical function also maps domain elements (inputs) to range elements (outputs).
For example, define a function f f : Domain --> Range, where Domain = {a, b, c}and
Range = { p, q, r}. Let f(a) = r; f(b) = p; f(c) = q. The domain and range might be
infinite. So one can define general rule of mapping. Consider a function square from
Integer to Integer as follows:
 square: Integer --> Integer
 square(x) = x * x; x ∈ Integer.
Here a variable x is called a parameter of the definition. It stands for any member of
domain set. At the time application, a particular member of the domain is specified such
as Square(3) = 9, Square(10) = 100.

Combining other functions one can create new functions. The most common form
of combining functions in mathematics is composition i.e., f ≡ g ο h. Applying f to
arguments is defined to be equivalent to applying h on arguments and then applying g to
the result i.e., f(x) ≡ g (h (x)). Functional programming is characterized by the
programming with values, functions and functional forms. The compositional operator is
an example of a functional form. Functional programming is based on the mathematical
concept of a function. It includes a set of primitive functions and a set of functional
forms. Pure functional languages perform all their computations via function application.
The variables in functional languages are values rather than memory locations. So a
variable in functional language means the same thing no matter where it appears in the
body of a function. This makes it easier to understand the program. A good point of
functional programs is that they are small and concise. Functional program encourages
thinking at higher levels of abstraction by providing higher-order functions.

A higher-order function has inputs or outputs that could also be function
abstractions. It also has an ability to define functions in the form of equations by using of
pattern matching. The list manipulations are simple because of its simple syntax.
True functional languages treat functions as first-class values. Many theorem provers and
other systems for mathematics by computer make use of functional languages.

A functional program consists of an expression E (representing both the
algorithm and the input). This expression E is subject to some reduction rules. Reduction
consists of replacing some part P of E by another expression P' according to the given
reduction rules. This process of reduction will be repeated until the resulting expression
has no more parts that can be reduced. The expression E" thus obtained is called the
normal form of E and constitutes the output of the functional program. LISP, Scheme,
ML, Miranda and Haskell are just some of the languages to implement this elegant
computational paradigm. The basic concepts of functional programming originated from

 2

lambda calculus. It is widely agreed that languages such as Haskell and Miranda are
purely functional, while SML and Scheme are not. However, there are some small
differences of opinion about the precise technical motivation for this distinction. Scheme
and Standard ML are predominantly functional but also allow `side effects'
(computational effects caused by expression evaluation that persist after the evaluation is
completed). Sometimes, the term "purely functional" is also used in a broader sense to
mean languages that might incorporate computational effects, but without altering the
notion of `function' (as evidenced by the fact that the essential properties of functions are
preserved.). Typically, the evaluation of an expression can yield a `task', which is then
executed separately to cause computational effects. The evaluation and execution phases
are separated in such a way that the evaluation phase does not compromise the standard
properties of expressions and functions. Since all functional languages rely on implicit
memory management, garbage collection is an important component in any
implementation. Functional languages manage storage automatically. The user does not
decide when to deallocate storage. The system scans the memory at intervals marking
every thing that is accessible and reclaiming remaining. This operation is called garbage
collection. Well-structured software in functional programming is easy to write, easy to
debug, and provides a collection of modules that can be re-used to reduce future
programming costs. Conventional languages place conceptual limits on the way problems
can be modularized. Functional languages push those limits back. Use of higher-order
functions and lazy evaluation technique can contribute greatly to modularity. Since
modularity is the key to successful programming, functional languages are very important
to the real world. Functional languages facilitate the expression of concepts and
structures at a high level of abstraction. A key property of functional languages is the
referential transparency. The phrase 'referentially transparency' is used to describe
notations where only the value of immediate component expressions is significant in
determining the value of a compound expression. Equal sub expressions can be
interchanged in the context of a larger expression to give equal results. Hence the value
of an expression depends only on the values of its constituent expressions (if any) and
these sub expressions may be replaced freely by others possessing the same value.
[Reade, Bird]. The meaning of an expression is its value and there are no other effects,
hidden or otherwise, in any procedure for actually obtaining it. Functional programming
languages are important for real-world applications in Artificial intelligence. Functional
programming is useful for developing executable specifications and prototype
implementations.

Mathematical function verses Imperative Programming Function:
The most important difference is based on the notion of a modifiable variable.
Mathematical function parameters simply represent some value that is fixed at function
application time. A function written in a truly functional language is a mathematical
function, which evaluates an expression and returns its value. A function written in an
imperative language, such as Fortran, Pascal, or C, which evaluates the same expression,
may also change a value in a memory location having nothing to do with the expression
being evaluated. While it may appear harmless, this side effect prevents the substitution
of the expression's value for the invocation of the function that evaluates it. Another
difference is the way functions are defined. Programming functions are defined

 3

procedurally whereas mathematical functions are defined in terms of expression or
application of other functions.

Logic and functional programming
The interpretation of logic program cube (X,Y) <-- Y = X * X * X is that ∀X,∀Y, (Y is a
cube of X if Y = X*X*X). It asserts a condition that must hold between the
corresponding domain and range elements of the function. Here cube is a predicate name.
We can see that cube(2, 8) is true and cube(2,5) is false.

In functional definition cube(X) = X * X * X introduces a functional object to which
functional operations such as functional composition may be applied. Here cube is a
function which when applied to domain value, gives a value in the range such as cube(2)
gives 8 as a result.

Problems with Functional languages:
In functional languages, complexity (in terms of space and time) analysis is an area that
has been more or less neglected until recently. One of the reasons for this is that it is
rather different from ordinary complexity analysis. Some work has been done by Bror
Bjerner's and Sören Holmström. Functional languages (particularly lazy ones - those
whose arguments are evaluated when needed) are difficult to implement efficiently.
Because of the constraints such as memory management, garbage collection etc. as
compared to imperative languages. Input/output and non-determinism are weak areas for
functional languages. Arrays are a important data structure for some algorithms.
Unfortunately the way they are traditionally used, i.e., with updating, does not fit well
into a pure functional world. A different approach to handling arrays where updates can
be implemented as in-place-updating.

 4

Lambda Calculus

Lambda Calculus (λ-calculus) is a functional notation introduced by Alonzo Church and
Stephen Kleene in the early 1930s to formalize the notion of computability. Church
introduced pure lambda calculus to study the computation with functions. The lambda
calculus is a formalization of the notion and a theory of functions. It is mainly concerned
with functional applications and the evaluation of λ-expressions by techniques of
substitution. The lambda-calculus is a simple language with few constructs and a simple
semantics. But, it is expressive; it is sufficiently powerful to express all computable
functions. It is an abstract model of computation equivalent to the Turing machine,
recursive functions, and Markov chains. Unlike the Turning machine which is sequential
in nature, they retain an implicit parallelism that is present in mathematical expressions.
The pure lambda-calculus does not have any built-in functions or constants but these are
included in applied lambda calculus. Different languages are obtained for different
choices of functions and constants. Functional programming languages are based on
applied λ-calculus. The lambda-calculus is rather minimal in form but as powerful as any
other programming language for describing computations. Calculation in the lambda-
calculus is by rewriting (reducing) a lambda-expression to a normal form. For the pure
lambda-calculus, lambda-expressions are reduced by substitution. That is, occurrences of
the parameter in the body are replaced with (copies of) the argument. In our extended
lambda-calculus we also apply the usual reduction rules.
Historically, it precedes the development of all programming languages. It provides a
very concise notation for functions, especially for list processing and has been used as the
basis of LISP, SCHEME, POP-2, SML etc. LISP (LISt Processing) was designed by John
McCarthy in 1958. It was developed keeping the interest of symbolic computation that is
primarily used in the areas such as mechanizing theorem proving, modeling human
intelligence, and natural language processing etc. In each of these areas, list processing
was seen as a fundamental requirement. LISP was developed as a system for list
processing based on recursive functions. Scheme is a dialect of LISP. It is a relatively
small language with static rather than dynamic scope rules. SML is acronym of Standard
Meta Language. It is a functional programming language and is the newest member of
the family of functional languages. It was initially developed at Edinburgh by Mike
Gordon, Robin Milner and Chris Wadsworth around 1975.

Pure Lambda Calculus

Pure lambda calculus has mainly three constructs: variables, function application and function
abstraction. We use the following notational conventions. Lowercase roman letter denotes a
variable e.g., x, y, z, f,g etc. and capital roman letter denotes any arbitrary λ-term e.g., M, N, P, Q
etc.

Definition: λ-term is defined as follows:

• All variables are λ-terms and are called atoms.

 5

• If M and N are arbitrary λ-terms, then (MN) is a λ-term, called function application.
More usual notation for function application is M(N) but historically (MN) has become
standard in λ-calculus.

• If M is any λ-term and x is any variable, then (λx .M) is a λ-term. This is called an
function abstraction.

Formally, the grammar of λ-term in pure lambda calculus is defined as:

<λ-term> :: = x | (MN) | (λx .M)
 Examples: Following are λ-terms.
1. (λx . (xy))
2. ((λy . y) (λx . (xy)))
3. (x(λx . (λx . x)))
4. (λx . (yz))

Informal Interpretation of λ-term

A term (λx . M) represents a function or an operator whose value at an argument N is calculated
by substituting N for all free occurrence of x in M. For example, (λx . x(xy)) represents an
operation of applying a function twice to an object denoted by y e.g., (λx . x(xy)) N =
N(Ny).

If M has been interpreted as a function or operator, then (MN) is interpreted as the result
of applying M to an argument N provided the result is meaningful. For example, if M = (λx . xy),
then MN = (λx . xy)N = Ny.

Definition: The λ-expression of the form (λx . y) is called constant function which when
applied to any argument N gives y as a result e.g.,(λx . y) N = y or (λx . y) M = y.

Definition: The λ-expression of the form (λx .x) is called identity function which when
applied to any argument N gives itself e.g., (λx . x) N = N.

Pure lambda calculus is untyped and functions can be applied freely. The λ-term (xx) is valid,
where variable x is applied to itself. In notion of computation, it may not be meaningful. For the
sake of simplicity, the following syntactic conventions are used to minimize brackets.

• MNPQ is same as (((MN)P)Q) - (left associative).
• λx . MN is same as (λx . (MN)) .

Currying of function (λ - function with more arguments) :

The lambda-calculus curries its functions of more than one variables into a function of single
argument i.e. λ-function (λx1 x2 . . . xn .M) with more arguments can be expressed in terms of λ-
function with one argument. It is right associative and written as:

λx1 x2 . . . xn .M = λx1 . (λx 2 . (… . (λxn .M)) ..)
When λ-function with n arguments is applied on one argument, then it reduces to a

function of (n-1) arguments. For example, if (λxy . x y) is applied to a single argument say, z
then the result is λy.z y which is another function. A function of more than one argument is
regarded as a function of one variable whose value is a function of the remaining variables.

Definition: A term P is defined to be a sub term of Q (Q contains P) if one of the following

 6

rules hold:
• P occurs in P.
• If P occurs in M or N, then P occurs in (MN).
• If (P occurs in M) or (P = x), then P occurs in (λx . M).

Examples:
1. (xy) and x are sub terms of ((xy) (λx . (xy))) as there are two occurrences of (xy) and three

occurrences of x.
2. (ux), (yz), u, x, y, z are all subterms of ux(yz) whereas x(yz) is not. The term ux(yz) is

represented as (ux)(yz).

Definition: For a particular occurrence of (λx . M) in a term P, the occurrence of M is
called the scope of this particular λ.

Example: Consider a formula (λ1y . yx (λ2x . y (λ3y . z)x))vw, the scopes of various
λ’s are given below:

• Scope of λ1
 is yx (λ2x . y (λ3y . z)x)

• Scope of λ2
 is y(λ3y . z)x

• Scope of λ3
 is z

• vw does not fall under the scope of any λ .

Definition: An occurrence of a variable x in a term P is bound if and only if, it is in a
part of P with the form (λx . M) otherwise x is said to be free variable.

If x has at least one free occurrence in a term P then it is called a free variable of P. The set of all
such variables is denoted by FV(P).

Definition: A term is closed if it does not have free variables.

Examples: Consider the following λ-terms. Find out the free variables in each case.
1. N = xv(λy .y v)w , then, FV(N) = {x,v,w}
2. M = (λy . y x (λx . y (λy . z) x))v w, then, FV(M) = { x,z,v,w}

Substitutions

The notation [x | N]M means to obtain the result after substituting N for each free occurrence of x
in a term M. The substitution is said to be valid if no free variable in N becomes bound after
substitution. There are few substitution rules as given below:
1. [x | N] x = N
2. [x | N] y = y , ∀ y ≠ x
3. [x | N](P Q) = ([x | N]P [x | N]Q)
4. [x | N](λx . M) = λx . M (since x is bound in M and can not be replaced by N)
5. [x | N](λy . M) = λy. [x | N] M , if y ≠ x and {y ∉ FV(N) or x ∉ FV(M) }.
6. [x | N](λy . M) = λz. [x | N] [z | y] M , if y ≠ x and y ε FV(N) and x ε FV(M).

Examples: Consider x, y and z to be distinct variables. Evaluate the following λ-expressions
by using substitution rules.
1. [x | z] (λy . x)

 7

We get
λy . [x | z] x {using rule (5) }

 λy . z {using rule (1) }
Hence, [x | z] (λy . x) = λy . z

2. [x | y] (λy . x)]
We get,

[x | y] (λy . x) = λz. [x | y] [y | z] x {using rule (6)},
since rule (5) can not be applied as y ε FV(N) = {y}.

 = λz. [x | y] x {using rule (2)}
 = λz . y {using rule (1)}

Hence, [x | y] (λy . x) = λz . y
In both 1 and 2, (λy . x) represents a constant function.

3. [x | (λy . xy)] (λy . x(λx . x))
Let N = (λy . xy), FV(N) = {x}
and M = x (λx . x), FV(M) = {x}

[x | (λy . xy)] (λy . x (λx . x)) = λy . [x | (λy . xy)] x (λx . x)
 {using rule (5)}

since y does not belong to FV(N)}
= λy . (λy . xy) [x | (λy . xy)] (λx . x) {using rule (3) }
= λy . (λy . xy) (λx . x) { using rule (4)}

Hence, [x | (λy . xy)] (λy . x(λx . x)) = λy . (λy . xy) (λx . x)
4. [x | (λy . vy)] (y (λv . xv))
 [x | (λy . vy)] (y (λv . xv))

= [x | (λy . vy)] y [x | (λy . vy)] (λv . xv) {using rule (3) }
= y [x | (λy . vy)] (λv . xv)
= y (λz . [x | (λy . vy)] [v | z] xv) {using rule (6) }
= y (λz . [x | (λy . vy)] xz)
= y (λz . (λy . vy) z)

Hence, [x | (λy . vy)] (y (λv . xv)) = y (λz . (λy . vy) z)

Some obvious results:
1. [x | x]M = M
2. [x | N]M = M , if x ∉ FV(M)
3. FV([x | N]M) = FV(N) ∪ (FV(M) – {x}) , if x ∈ FV(M)

Lemma: Let x, y, v be distinct variables and bound variables in M are not free in v, P, Q.
Then the following results hold true.
1. [v | P] [x | v]M = [x | P]M if v ∉ FV(M)
2. [v | x] [x | v]M = M if v ∉ FV(M)
3. [x | P] [y | Q]M = [y | ([x | P]Q)] [x | P]M if y ∉ FV(P)
4. [x | P] [y | Q]M = [y | Q] [x | P]M if y ∉ FV(P), x ∉ FV(Q)
5. [x | P] [x | Q]M = [x | ([x | P]Q)] M

λ-Conversion Rules

 8

The λ-expression (λ-term) is simplified by using conversion or reduction rules. There are mainly
two types of λ - conversions rules which make use of substitution explained above.

• α-conversion
• β-conversion

Definition: Let a term P contains an occurrence of (λx .M) and let y ∉ FV(M). The act of
replacing (λx . M) by (λy . [x | y] M) is called a change of bound variable in P.

Definition: P α-converts to Q if and only if Q has been obtained from P by finite series of
changes of bound variables. The terms P and Q have identical interpretations and play
identical roles in any application of λ-calculus.

Definition: Two terms M and N are congruent if M α-converts to N. It is denoted by
M ≡αN.

α-conversion rule :
Any abstraction of the form λx . M can be converted to λy . [x | y]M provided this substitution is
valid. This is called α-conversion or α-reduction rule.

Examples:
1. λx . xy ≡α λz . zy, whereas

λx . (xy) ≠α λy . (yy)
2. λxy . x(xy) = λx . (λy . x(xy)) (currying of function)
 ≡α λx . (λz . x(xz))
 ≡α λu . (λz . u(uz))
 ≡α λuz . u(uz)

β-conversion rule:
A λ-expression (λx . M)N represents a function λx . M applied to an argument N. Any λ-
expression of the form (λx . M)N is reduced to [x | N]M provided the substitution of N for x
in M is valid. This type of reduction is called β-conversion or β-reduction rule. It is the
most important conversion rule .

The informal interpretation of β-conversion rule is that the value of λx . M at N is calculated by
substituting N for all free occurrence of x in M so (λx . M) N can be simplified to [x |
N]M. Rules for substitution are applied which are basically formed using λ-conversion rules.

Definition: Any term of the form (λx . M) N is called a β-redex (redex stands for reducible
expression) and the corresponding term [x | N]M is called its contractum.

Definition: If a term P contains an occurrence of (λx .M) N and if we replace that
occurrence by [x | N]M to obtain a result Q , then we say that we have contracted the redex
occurrence in P or P β-contracts to Q (denoted as P ⇒β Q).

We say that P β-reduces to Q (P ⇒β Q) if and only if Q is obtained from P by finite (perhaps
empty) series of β-contractions.

Examples:

 9

1. (λx . x) y ⇒ [x | y] x ⇒ y
Hence, (λx . x) y ⇒β y

2. (λx . x(xy)) N ⇒ [x | N] x(xy) ⇒ N(Ny)
Hence (λx . x(xy)) N ⇒β N(Ny)

3. (λx . y) N ⇒ [x | N] y ⇒ y
Hence (λx . y) N ⇒β y

4. (λx . (λy . yx) z) v ⇒ [x | v] ((λy . yx) z)
⇒ (λy . yv) z
⇒ [y | z] (yv)
⇒ zv

Hence (λx . (λy . yx) z) v ⇒β zv

Equality of λ-expressions

Two λ-expressions M and N are equal if they can be transformed into each other by finite
sequence of λ-conversions (forward or backward). The meaning of λ-expressions are preserved
after applying any conversion rule. For example, λx. x is same as λz. z. We represent M equal to
N by M = N. Equality satisfies the following properties (equivalence relation in set theory):

• Idempotence: A term M is equal to itself e.g., M = M.
• Commutativity: If M is equal to N, then N is also equal to M

i.e., if M = N, then N = M.
• Transitivity: If M is equal to N and N is equal to P then M is equal to P

i.e., if M = N and N = P then M = P.

Definition: Two λ-expressions M and N are identical, if they consists of same sequence of
characters. For example, λx .xy and λz .zy are not identical but equal. So, identical
expressions are equal but converse may not be true.

Computation with Pure lambda Term

Computation in the lambda-calculus is done by rewriting (reducing) a lambda-expression into a
simple form as far as possible. The result of computation is independent of the order in which
reduction is applied. A reduction is any sequence of λ-conversions. If a term can not be further
reduced, then it is said to be in a normal form. The normal form is formally defined as follows:

Definition: A lambda-expression is said to be in normal form if no beta-redex (a sub
expression of the form (λx. M)N) occurs in it. For example, the normal form of the
λ-expression (λx . (λy . yx) z) v is zv.

It is not necessary that all λ-expressions have the normal forms because λ-expression may not
be terminating. It is easy to see that λ-expression (λx . xxy) (λx . xxy) does not have a normal
form because it is non terminating.

• (λx . xxy) (λx . xxy) ⇒ [(λx . xxy) | x] (xxy)
⇒ (λx . xxy) (λx . xxy) y
⇒ (λx . xxy) (λx . xxy) yy

:
:

 10

This reduction is nonterminating

Reduction Order

For a given λ-expression, the substitution and λ-conversion rules provide the mechanism to
reduce a λ-expression to normal form but these do not tell us what order to apply the reductions
when more than one redex is available. Mathematician Curry proved that if an expression has a
normal form, then it can be found by leftmost reduction.

Theorem: (Normalization theorem)
If M has a normal form N then there is a leftmost reduction of M to N e.g., by repeatedly
reducing leftmost redex of M, the reduction will terminate with an expression N which in the
normal form which can not be further reduced.

The leftmost reduction is called lazy reduction because it does not first evaluate the
arguments but substitutes the arguments directly into the expression. Eager reduction is one
where the arguments are reduced before substitution. These are explained in later chapter.

Theorem: (Church Rosser)
If M reduces to N and to P then there exist R such that N and P both reduce to R i.e.,

 M ⇒β N, M ⇒β P
 ∃ R such that N ⇒β R, P ⇒β R

This theorem says that λ-expressions can be evaluated in any order.

Corollaries to Church Rosser theorem:

• If N and P are normal forms of M, then N is congruent to P i.e., N and P are same except
that one is obtained from other by renaming of bound variables (using α-rule).

• If the reduction terminates in normal form, then they are unique.
• If M has a normal form and M = N, then N has a normal form.

Applied Lambda Calculus

Constants and predefined functions are added to pure lambda calculus in order to justify
the claim that functional programming languages have been originated from lambda calculus.
Because of adding constants, lambda calculus becomes applied lambda calculus. All the
theorems, definitions, λ-conversion rules, substitution rules of pure lambda calculus are valid for
applied calculus. The λ-term in applied lambda calculus is redefined as

<λ-term> :: = c | x | (MN) | (λx .M),
where c corresponds to any constant whose value does not change.

Examples:
1. (λx . x)c ⇒ [x | c] x ⇒ c

Therefore, (λx . x)c ⇒β c
2. (λx . c)x ⇒ [x | c] c ⇒ c

Therefore, (λx . c)x ⇒β c

 11

3. (λx . c) (xy) ⇒ [x | (xy)] c ⇒ c
Therefore, (λx . c) (xy) ⇒β c

4. (λx . xc) (λy . y) ⇒ [x | (λy . y)] (xc) ⇒ (λy . y)c ⇒ c
Therefore, (λx . xc) (λy . y) ⇒β c

5. (λy.c)((λx.x x x)(λx.x x x)) ⇒β c

Representation of Constants as λ-expressions

We have extended the syntax of pure lambda to allow λ-term to be a constant and additional
computation rules for replacing constants in expressions. Some of the constants are:

true, false, if, or, and, not, numerals {0, 1,2,…}, arithmetic operators {+, -, *} and
relational operators {<, >, =, <>} etc

We must think of appropriate functions to represent all the constants we want. Let us begin with a
well known representation for non negative integers. Consider a term of the form:
 f(f(....(f x)...)
with n (n ≥ 0) occurrence of f . We abbreviate such term as fnx. This means that apply f to x
exactly n times. Abstract such term so that we get, λf . λx . fnx which expresses the idea of n-fold
application. Such a term will be chosen as a representation for integer n.

• n = λf . λx . fnx
We can easily show that (fnx) can be written as (n f x)

In particular, we get,

• 0 = λf . λx . f0x
= λf . λx . x

• 1 = λf . λx . f (x)
• 2 = λf . λx . f (f (x))

Now let us see the suitable representation for the successor function.
 succ n = n + 1

= λf . λx . fn+1x
= λf . λx .f (fnx)
= λf . λx .f (n f x)

Therefore,
• succ = λn. (λf . λx .f (n f x))

Similar reasoning leads to the definitions:
• add = λn .λm . (λf . λx .f n (f m x))

= λn .λm . (λf . λx .n f (m f x))

• mult = λn .λm . (λf . λx .((f m) n x))
= λn .λm . (λf . λx . n (f m x))
= λn .λm . (λf . λx . n (m f x))

Lambda expressions corresponding to following constants.

• true = λx . λy .x
• false = λx . λy .y
• if = λx . λy . λz. x y z
• or = λx . λy . if x true y
• and = λx . λy . if x y false

 12

• not = λx . if x false true

1. Reduction rule: if true M N ⇒β M
Proof: if true M N = (λx . λy . λz. x y z) true M N
 ⇒ (λy. λz . true y z) M N
 ⇒ (λz . true M z) N
 ⇒ true M N = (λxy .x) M N

⇒ (λy . M) N ⇒ M
Therefore, if true M N ⇒β M

2. Reduction rule: if false M N ⇒β N
Proof: if false M N = (λxyz . x y z) false M N
 ⇒ (λyz . false y z) M N
 ⇒ (λz . false M z) N
 ⇒ false M N = (λxy .y) M N

⇒ (λy . y) N ⇒ N
Therefore, if false M N ⇒β N

Constant, if is a curried conditional. Above rules say that if with first argument as true reduces to
second argument and with first argument as false reduces to third argument.

3. Reduction rule: or true y ⇒β true
Proof: or true y = (λxy . if x true y) true y
 ⇒ (λy . if true true y) y
 ⇒ if true true y
 ⇒ true
4. Reduction rule: or false y ⇒β y
Proof: or false y = (λxy . if x true y) false y
 ⇒ (λy . if false true y) y
 ⇒ if false true y

 ⇒ y
5. Reduction rule: and true y ⇒β y
Proof: and true y = (λxy . if x y false) true y
 ⇒ (λy . if true y false) y
 ⇒ if true y false
 ⇒ y
6. Reduction rule: and false y ⇒β false
Proof: and false y = (λxy . if x y false) false y

 ⇒ (λy . if false y false) y
 ⇒ if false y false
 ⇒ false
7. Reduction rule: not true ⇒β false
Proof: not true = (λx . if x false true) true
 ⇒ if true false true
 ⇒ false
8. Reduction rule: not false ⇒β true
Proof: not false = (λx . if x false true) false

 13

 ⇒ if false false true
 ⇒ true

Let us assume arithmetic and relational operators with usual meanings such as 3 +
4 = 7, (5 > 3) = true etc.

Arithmetic expression:

Arithmetic expression 3 + 7 is written in prefix notation as + 3 7. It is treated as an λ-
expression and written as:
 (λxy . + x y) 3 7 (λy. +3 y) 7 ⇒ + 3 7 = 10

Now onwards, we will use the following conventions:

• infix notation for arithmetic expression such as 3 + 7 instead of + 3 7 for the sake of
convenience.

• Conditional expression in programming context as " if x then y else z" instead "if x
y z'

Examples:
1. (λ x . x + 5) 2 ⇒ [x | 2] (x + 5) ⇒ 7

Thus, (λ x . x + 5) 2 ⇒β 7
2. (λx . x * 4) 7 ⇒ [x | 7] (x * 4) ⇒ 28

Thus, (λ x . x * 4) 7 ⇒β 28
3. (λ y . y * y) 6 ⇒ [y | 6] (y * y) ⇒ 6 * 6 = 36

Thus, (λ y . y * y) 6 ⇒β 36
4. (λxy. x + y - 4) 5 ⇒ [x | 5] (λy. x + y - 4) ⇒ (λy . y + 1)

Thus, (λxy. x + y - 4) 5 ⇒β (λy . y + 1)
5. (λ x. ((λ y . x + y) 5)) ⇒ (λ x. ([y | 5] (x + y))) ⇒ λ x . x + 5

Thus, (λ x. ((λ y . x + y) 5)) ⇒β λ x . x + 5
6. (λf . f 2) (λy . y * 4) ⇒ [f | (λy . y * 4)] (f 2)

 ⇒ (λy . y * 4) 2 ⇒ [y | 2] (y * 4) ⇒ 8
 (λf . f 2) (λy . y * 4) ⇒β 8
7. (λxy . y * x – (y + 2)) 2 3

⇒ ([x | 2] (λy . y * x – (y + 2)) 3
⇒ (λy . y * 2 – (y + 2)) 3
⇒ [y | 3] (y * 2 – (y + 2))
⇒ 3 * 2 – (3 + 2)
= 6 – 5 = 1

 (λxy . y * x – (y + 2)) 2 3 ⇒β 1
8. (λx . (λ y . x + y) 5) ((λ y . y * y) 6)

⇒ [x | ((λ y . y * y) 6)] (λ y . x + y) 5)
⇒ [x | 36)] (λ y . x + y) 5
⇒ (λ y . 36 + y) 5
⇒ [y | 5] (36 + y)
⇒ 36 + 5 = 41

 (λx . (λ y . x + y) 5) ((λ y . y * y) 6) ⇒β 41
9. (λx . if x > 4 then x + 2 else 1) 7 ⇒ [x | 7] (if x > 4 then x + 2 else 1)

 14

⇒ 9
(λx . if x > 4 then x + 2 else 1) 7 ⇒β 9

10. (λx . x * 4) ((λx . if x > 4 then x + 2 else 1) 7)
⇒ [x | ((λx . if x > 4 then x + 2 else 1) 7)] (x * 4)
⇒ [x | 9] (x * 4)
⇒ 9 * 4 = 36

(λx . x * 4) ((λx . if x > 4 then x + 2 else 1) 7) ⇒β 36
11. (λy . y * 2 – y / 5 + (y + 4)) (x * 3)

⇒ [y | (x * 3)] (y * 2 – y / 5 + (y + 4))
⇒ (x * 3) * 2 – (x * 3) / 5 + ((x * 3) + 4)

Therefore, we can write an expression (x * 3) * 2 – (x * 3) / 5 + ((x * 3) + 4) using λ-notation as
(λy . y * 2 – y / 5 + (y + 4)) (x * 3)

Function definition using λ-notation

λ-function can be named or unnamed. Unnamed function has to be applied directly to argument
values as shown earlier whereas named function are applied by using function name along with
the arguments. The λ-function has the following valid form.
 fun_name ≡ λ list of arguments . expression

Expression can be simple or conditional. In conventional mathematical usage, the
application of n-argument function f to arguments x1,, xn is written as f (x1,, xn). In λ-
calculus, there are two ways of representing such application.
• (f x1....xn) - it is a curried representation where f expects its argument one at a time. Important

advantage of curried functions is that they can be partially applied.
• Application of f to n-tuple (x1,, xn) such as f(x1,, xn), where all the arguments should be

available to function at the first application of it.

Examples:
1. f ≡ λx . 2 * x + 3
 f 3 = (λx . 2 * x + 3) 3 ⇒β [x | 3] (2 * x + 3)

⇒β 9
Similarly, f 1 = 5.
2. g ≡ λx . if x > 4 then f x else –x
3. g 10 = (λx . if x > 4 then f x else –x) 10
 ⇒β [x | 10] (if x > 4 then f x else –x)

⇒β f 10 ⇒β [x | 10] (2 * x + 3)
 = 23.

Similarly, g 3 = -3.
4. plus ≡ λxy . x + y
5. plus 5 7 = (plus 5) 7 = ((λxy . x + y) 5) 7

= ((λx. λy . x + y) 5) 7
 ⇒β [x | 5] (λy . x + y) 7
 ⇒β (λy . 5 + y) 7
 ⇒β [y | 7] (5 + y) = 12
6. times ≡ λxy . x * y
 times 4 6 = (times 4) 6 = ((λxy . x * y) 4) 6

 15

= ((λx. λy . x * y) 4) 6
⇒β [x | 4] (λy . x * y) 6

 ⇒β (λy . 4 * y) 6
 ⇒β [y | 6] (4 * y) = 24

7. f1 ≡ (λx . times x x)
f1 (plus 3 2) = (λx . times x x) (plus 3 2)

⇒β [x | (plus 3 2)] (times x x) = [x | 5] (times x x)
⇒β times 5 5 = 25

8. g1 ≡ (λx . plus x 1)
g1 ((λy . times y y) 3) = (λx . plus x 1) ((λy . times y y) 3)

⇒β [x | (λy . times y y) 3] (plus x 1)
 ⇒β [x | (times 3 3)] (plus x 1)

⇒β [x | 9] (plus x 1)
⇒β plus 9 1 = 10

Recursive Definitions in λ - Notation

We have seen that how we could use λ-expression to write an applicative expression which
computes the same result as a sequence of assignments and conditional statements. However we
can’t perform the equivalent of iteration or recursion which are important constructs of
programming languages. To do this we must allow recursive definitions for λ-expression. We do
not require new syntax except that we give a name to λ-expression so that we can apply it to
itself. Also in order to make the recursion terminate, we shall use conditional expressions.
Recursion is achieved in two ways viz., Downgoing and Upgoing Recursion.

Downgoing Recursion

Downgoing style of recursion keeps breaking the problem down recursively into simpler version
until a terminal case is reached. Then it starts building the result upward by passing intermediate
results back to calling functions. While writing function using downgoing recursion, we should
follow the following tips:
• Definition for terminal case (0 – for numbers, [] – for list).
• For non terminal case with argument ‘n’, assume we have definition for (n-1), use this to

construct the next case up.
• Combine above mentioned cases in a conditional expression.
The following examples use downgoing recursion. Now onwards, we will use equality sign (=)
instead of ⇒β for the sake of convenience.

Examples:
1. Write λ-function for computing factorial of n (positive integer)
 fact ≡ λn. if n = 0 then 1 else n * fact (n-1)
 fact 3 = (λn. if n = 0 then 1 else n * fact (n-1)) (3)
 = 3 * fact 2
 = 3 * 2 * fact 1
 = 3 * 2 * 1 * fact 0
 = 3 * 2 * 1 * 1
 = 6

 16

2. Write λ-function for computing combinatorial function (nCr) (n and r are positive integers)
comb ≡ λnr . fact (n) div (fact r * fact (n-r))

 OR
comb ≡ λnr . if r = 1 then n else (n * comb (n-1) (r-1)) div r

 comb 4 2 = 4 * comb 3 1 div 2
 = 4 * 3 div 2 = 6
3. Compare two whole numbers for equality

equal ≡ λxy . if x = 0 then if y = 0 then true else false else equal (x-1) (y-1)
 equal 2 3 = equal 1 2
 = equal 0 1
 = false
Upgoing Recursion

In upgoing recursion, the intermediate results are computed at each stage of recursion, thus
building up the answer and passing it in a workspace parameter until the terminal case is reached.
At this stage the final result is already computed. This style of recursion is similar to iteration
having same complexity in terms of space and computing time. We use the following tips.
• Construct a new function with an additional workspace parameter to build up the result.
• Set workspace parameter equal to the value of the function for terminal case.
• For non terminal case, call the function with new parameter expressed in terms of old.

Let us write function for computing factorial using this approach.
 fact ≡ λn. factorial n 1
 factorial ≡ λnw. if n = 0 then w else factorial (n-1) (n * w)

Here ‘w’ is a workspace parameter used to build up the results. Since original function
‘fact’ has only one parameter ‘n’, we have to define an auxiliary function ‘factorial’ with extra
parameter ‘w’. The function ‘fact’ calls ‘factorial with workspace parameter initialized to1. Let
us see the working of this function.
 fact 3 = factorial 3 1

= factorial 2 (3*1)
= factorial 1 (2*3)
= factorial 0 (1*6)
= 6

Recursive List Processing

Consider list processing applications which require a list constructor, often called cons, and
written as an infix operator `::' in many functional languages. The constant nil denoted by []
represents the empty list. The functions car (for getting first element of the list) and cdr (for
getting tail of the list) dismantle a list and help us to separate head from tail of the list. The
function null tests a list whether it is empty or not. A list is constructed using function cons
whose car field contains first argument and cdr field points to second argument of cons function.
For example, a list s = (cons 4 nil) has the following graphical representation.
 s

4 nil
Example:
1. Graphical representation of a list (cons 5 s), where s is a list shown above.

 17

 s

5 4 nil

2. Graphical representation of a list p = cons 2 (cons 3 (cons 4 nil))

p

 2 3 4 nil
Now,
 car s = 2
 cdr s = cons 3 (cons 4 nil)
For the sake of convenience, we write a list cons 2 (cons 3 (cons 4 nil)) as [2,3,4], a conventional
notation in functional programming languages.

Important list functions using λ - Notation

1. Membership function:

mem ≡ λxs. if null s then false else if x = car s then true else mem x (cdr s)
 mem 2 [3,4,2] = mem 2 [4,2]
 = mem 2 [2]
 = true

2. Write a function that selects nth element of the list.

select ≡ λns. if null s then nil else if n = 1 then car s else select (n-1) (cdr s)
select 2 [4,6,7,8] = select 1 [6,7,8]

 = car [6,7,8]
 = 6
select 3 [4,6] = select 2 [6]

 = select 1 []
 = nil
3. Concatenating two lists.

append ≡ λmn. if null m then n else cons (car m) (append (cdr m) n)
append [2,3] [4,5,6,7] = cons 2 (append [3] [4,5,6,7])
 = cons 2 (cons 3 (append [] [4,5,6,7])

 = cons 2 (cons 3 [4,5,6,7])
 = cons 2 [3,4,5,6,7]
 = [2,3,4,5,6,7]

Here elements of the first list are copied and last node points to the second list. Therefore, the

second list is no longer available. One can write another version of append where entirely new list
is created and original lists are also available. The brackets are used for clarity otherwise they can
be removed.

4. Copy a list using both types of recursions
Downgoing version:

copy ≡ λs. if null s then nil else cons (car s) (copy (cdr s))
Upgoing version:

 18

copy ≡ copy1 s []
copy1 ≡ λsw. if null s then w else

copy1 (cdr s) (append w (list (car s)))

Here a function list is used to convert an element (head in this case) into list. Let us see the
working of both the functions.

Downgoing version:
 copy [2,3,4] = cons 2 (copy [3,4])
 = cons 2 (cons 3 (copy [4]))
 = cons 2 (cons 3 (cons 4 (copy [])))
 = cons 2 (cons 3 (cons 4 nil))
 = cons 2 (cons 3 [4])
 = cons 2 [3,4]
 = [2,3,4]
Upgoing version:
 copy [2,3,4] = copy1 [2,3,4] []
 = copy1 [3,4] (append [] [2])
 = copy1 [4] (append [2] [3])
 = copy1 [] (append [2,3] [4])
 = [2,3,4]

5. Reverse a given list:

Downgoing version:

rev ≡ λs. if null s then [] else append rev (cdr s) (list car s)

Upgoing version:
 rev ≡ rev1 s []

rev1 ≡ λsw. if null s then w else rev1 (cdr s) (cons (car s) w)

6. Find out common elements of two lists

common ≡ λmn. if null m then [] else if mem (car m) n then cons (car m)
(common (cdr m) n) else common (cdr m) n)

Tree recursion

Tree is represented using generalized list whose elements may be lists themselves.
The representation of general tree is given as follows:
 [root, br1,br2,...,brn], where bri is ith branch of a root and is tree in itself.
The representation of binary tree (tree with node having at most two branches) is special case of
general representation.

[root, left_br, right_br], where left_br and right_br are left and right binary sub trees.

For example, the following binary tree is represented using list representation as follows:
 root 7

5 15

 19

2 6 10
 12

[7, [5, [2, nil , nil], [6, nil , nil]] , [15, [10, nil , [12, nil , nil]], nil]]

Examples:

1. Count number of nodes in a binary tree.

tcount ≡ λt. if null t then 0 else
1 + tcount (car (cdr t)) + tcount (car (cdr(cdr t)))

We need an extra function called atom which when applied on a binary tree becomes true if
element of tree is an atom otherwise false for if it is list. Let us see the following functions for
creating mirror copy of a binary tree
2. Copying a binary tree

tcopy ≡ λt. if atom t then t else if null t then nil else
cons (tcopy (car t)) (tcopy (cdr t))

Binary Search Tree

Definition: Binary search tree is a binary tree if all the keys on the left of any node
(say, N) are numerically (alphabetically) less than the key in a node N and all the keys on
the right of N are numerically (alphabetically) greater than the key of a node N.

3. Search for an element in binary search tree.

bsearch ≡ λtx. if null t then false else if x = (car t) then true
else if x < (car t) then bsearch (car (cdr t)) x
else bsearch (car (cdr (cdr t))) x

4. Insert an element

binsert ≡ λtx. if null t then (cons x t) else if x < (car t) then
 binsert (car (cdr t)) x else binsert (car (cdr (cdr t))) x

 20

Introduction to SML

SML is acronym of Standard Meta Language. It is a functional programming language and is the
newest member of the family of functional languages. It was initially developed at Edinburgh by
Mike Gordon, Robin Milner and Chris Wadsworth around 1975. Since then numerous variations
and implementations have arisen. SML has basic data objects as expressions, functions and list
etc. Function is the first class data object that may be passed as an argument, returned as a result
and stored in a variable. SML is interactive in nature where each data object is entered, analyzed,
compiled and executed. The value of the object is reported along with its type. SML is strongly
typed language meaning by that each data object has a type determined automatically from its
constituents by the interpreter if not specified. SML has a polymorphic typing mechanism in
which the type of data object is determined using the context. It is statically scoped language
where the scope of a variable is determined at compile time that helps more efficient and modular
programs development. It also has exception handling facilities using which one can handle
unusual situations at run time. SML also supports abstract data types that are useful mechanism
for program modularization.

Interaction with SML

Basic form of interaction is read, evaluate and display. An expression is entered and terminated
by semi colon (;). An expression is analysed, compiled and executed by SML interpreter and the
result is printed on the terminal along with its type. In SML, the type is a collection of values. The
basic types are int (integers), real (real), char (character), bool (boolean) and string (sequence of
character). In addition to the basic types, SML also allows user defined types (discussed later).
An expression in SML denotes a value and the type of an expression is uniquely determined from
its constituents. If it does not succeed in identifying the type, then some error message is issued.

Conventions:

We have used the following conventions in order to distinguish between user input and SML
system's response.

• The SML system prompts with “ - “ for an expression to be entered by an user.
• It displays the output after the symbol “ > “. The output is shown in itellic.

Examples:
 - 2 + 5; user's input
 > val it = 7 : int system's response
 - 3 + 2.5;

> Error: operator and operand don't agree

The result starts with the reserved word val that indicates that the value has been computed and is
assigned to system defined identifier it along with its type implicitly derived by the system from
expression’s constituents.

Example:

- 2 > 5 ;

 21

> val it = false : bool

Each time a new expression is entered, the value of it gets changed. An expression is of boolean
type that gets evaluated to false value. This value is assigned to it followed by its type bool. Now
the previous value of it is not available. Few examples are given below:

Examples:

- not false;
> val it = true : bool
- ~3.45 ; {~ is unary minus }
> val it = ~3.45 : real

 - (25 + 5) mod 2 ; {mod gives remainder}
> val it = 0 : int
- floor (3.5 + 2.7) ; {floor gives integral part of real value}
> val it = 6 : int
- abs (~ 6); {abs gives absolute value}
> val it = 6 : int

Value Declaration

Value can be given a name called variable or identifier. The value of a variable can not be
updated and the life time of a variable is until it is redefined. The keyword val is used to define
the value of a variable.

For example, the execution of a value declaration val var = exp causes an variable var
to be bound to the value of an expression exp . The name of a variable is formed by using
alphanumeric characters [a – z, A – Z, numerals, underscore (_) and primes (‘)] and it must start
with letter. If value is named by a variable, then it is bound to that variable otherwise it is bound
to system defined identifier it .

Examples:
 - val x = 3 + 5 * 2 ; user's input
 > val x = 13 : int system's response

- val y = x + 3;
> val y = 16 : int
- y + x ; without value declaration
> val it = 29 : int

 - val x = ~1.23E~8 ; x is redefined
> val x = ~1.23E8 : real {~1.23E8 denotes –1.23*108)
- val t = y + x ;
 > Error: operator and operand don't agree

Bindings and Environments

We have seen that a variable can be bound to the value of an expression on the right hand side.
The collection of bindings at any particular state is called an environment of that state. Execution
of any declaration causes extension or change in the environment. The notation used for
environment is not of SML program but our own notation to explain the meaning of SML
programs. For example, the execution of the value declaration val x = 3 + 5 * 2 causes the
environment env = [x |⇒ 13 : int]. Each execution creates updated environment.
Examples:

- val x = 3 + 5 * 2;

 22

> val x = 13 : int
env1 = [x |⇒ 13 : int]

- val y = x + 3;
> val y = 16 : int

env2 = [x |⇒ 13 : int, y |⇒ 16 : int]
- y + x ;
> val it = 29 : int

env3 = [x |⇒ 13 : int , y |⇒ 16 : int, it |⇒ 29 : int]
- val x = ~1.23E~8 ;
> val x = ~1.23E8 : real

env4 = [y |⇒ 16 : int, it |⇒ 29 : int, x |⇒ –1.23*108 : real]
 - y;

> val it = 16 : int

Multiple Bindings

Multiple variables can be bound simultaneously using key word and as a separator. It is also
called simultaneous declaration. A val declaration for simultaneous declaration is of the form
 val v1 = e1 and v2 = e2 and … and vn = en .

SML interpreter evaluates all the expressions e1, e2, … , en and then bounds the variables v1, v2,…
,vn to have the corresponding values. Since the evaluations of expressions are done
independently, the order is immaterial. Consider some more examples and continue with the
previous environment env5 = [y |⇒ 16 : int, x |⇒ –1.23*108 : real, it |⇒ 16 : int]
Examples:

- val y = 3.5 and x = y ;
> val y = 3.5 : real

 > val x = 16 : int
env6 = [it |⇒ 16 : int, y |⇒ 3.5 : real, x |⇒ 16 : int]

In multiple value bindings, the values on right hand sides are evaluated first and then bound to the
corresponding variable in the left hand sides. Therefore, in the above example x does not get the
current value of y which is 3.5 but bound to the value 16 available from the previous environment
env5.
Examples:
 - val y = y + 3.0 and x = y ;
 > val y = 6.5 : real
 > val x = 3.5 : real

env7 = [it |⇒ 16 : int, y |⇒ 6.5 : real, x |⇒ 3.5 : real]

Compound Declarations

Two or more declarations can be combined and separated by semicolon. The general form of
compound declaration is D1; D2 ; …; Dn . SML first evaluates the first declaration D1 , produces
an environment, then evaluates the second declaration D2 , updates the previous environment and
proceeds further in the sequence. It must be noted that the subsequent declarations in sequential
composition may override the identifiers declared in the left hand side declarations. Consider few
examples and consider the previous environment as

env7 = [it |⇒ 16 : int, y |⇒ 6.5 : real , x |⇒ 3.5 : real]

Examples:

 23

- val x = 34; val x = true and z = x ; val z = x;
> val x = 34 : int

env8 = [it |⇒ 16 : int, y |⇒ 6.5 : real, x |⇒ 34 : int]
> val x = true : bool
> val z = 34 : int

env9 = [it |⇒ 16 : int, y|⇒ 6.5: real, x|⇒ true:bool, z|⇒ 34 : int]
> val z = true : bool

env10 = [it|⇒ 16:int, y|⇒6.5:real, x|⇒ true:bool, z|⇒ true:bool]

Expressions and Precedence

Expressions in SML are evaluated according to operator precedence. The higher precedence
means earlier evaluation. Equal precedence operators are evaluated from left to right. Operators
are of two kinds viz., infix operator and unary operator. Infix operator is placed between two
operands and is also called dyadic operator. An unnary operator is always written in front of an
operand and has higher precedence than any infix operator. It is also called monadic operator. in
SML, infix minus is represented by - whereas unary minus represented by ~. Function application
also has higher precedence than any infix operator. Precedence of operators is shown below in
decreasing order without mentioning the actual priority value. Operators enclosed in inner boxes
indicate operators with equal priority values.

 (,) functions ~ *, /, div, mod +, - =, <>, >, >=, <, <=

For example, fully parenthesized expression according to the precedence of operators for an
expression ~ 5 + 56 mod 4 * 10 > 34 - 45 div 3 + abs ~ 3 is

((~ 5) + ((56 mod 4) * 10)) > ((34 - (45 div 3)) + (abs (~ 3)))

Conditional Expressions

The general form of conditional expression is if E then E1 else E2 . It is evaluated by evaluating
first the boolean expression E and then depending on the value of E, either than part or else part
(but not both) is evaluated i.e., if E is true then E1 is the value of the conditional expression
otherwise E2 is the value. The type of E1 and E2 should be the same whereas the type of E is bool.
Conditional expression depends on boolean expression (called condition in short). The condition
is formed using arithmetic, relational, boolean and string operators. It is evaluated using
precedence of operators and gives true or false value. Priority of operators is: arithmetic
operators, relational operators followed by boolean / logical operators.

Arithmetic Operators: (Precedence has been shown earlier)

Integers : +, -, *, div, mod, abs, ~ (unary minus)
Real : +, -, *, /, sqrt, floor, sin, cos etc.

 Arithmetic operators +, -, and * are defined for both integers and reals and thus are overloaded.
The operators are overloaded if defined for more than one type of datatypes. SML can deduce the
type in most of the expressions, functions from the type of the constituents used.

Relational Operators: (All operators have equal precedence)

Integers & reals < (less than),
<= (less or equal to),

 24

> (greater than),
>= (greater or equal to)

For all except reals = (equal to),
<> (not equal to)

Boolean Operators: (Precedence is in decreasing order of not, andalso and orelse)

not (Logical negation),
andalso (Logical AND),

and orelse (Logical OR)

The boolean operators andalso and orelse are evaluated using lazy evaluation strategy which
means that evaluate whenever it is required (explained in detail later). For example, a boolean
expression or condition 2 + 3 > x - 2 andalso true orelse x = y when evaluated gives true or
false value.
Examples:
(for conditions):

- val n = ~ 6 ;
> val n = ~ 6 : int

env = [n |⇒ ~ 6 : int]
 - val x = true andalso false;
 > val x = false : bool

env = [n |⇒ ~ 6 : int, x |⇒ false : bool]
 - val y = x orelse true;

> val y = true : bool
env = [n |⇒ ~ 6 : int, x |⇒ false : bool, y |⇒ true : bool]

- val z = x orelse not(y);
 > val z = false : bool

env = [n|⇒ ~ 6:int, x|⇒ false:bool, y|⇒ true
(for conditional expressions):

- val t = if n +3 > 0 orelse y then 10 else 16 ;
> val t = 10 : int

env = [n |⇒ ~ 6 : int, x |⇒ false : bool, y |⇒ true : bool, z |⇒ true : bool, t |⇒ 10: int]
- val t2 = if x andalso y orelse z then n + 10 else 30;
> val t = 30 : int

env = [n |⇒ ~ 6 : int, x |⇒ false : bool, y |⇒ true : bool, z |⇒ true : bool, t |⇒ 30: int]
- val n = if x andalso y orelse not z then 10 else 23;
> val n = 10 : int

for conditional expressions):
- val t = if n +3 > 0 orelse y then 10 else 16 ;
> val t = 10 : int

env = [n |⇒ ~ 6 : int, x |⇒ false : bool, y |⇒ true : bool, z |⇒ true : bool, t |⇒ 10: int]
- val t2 = if x andalso y orelse z then n + 10 else 30;
> val t = 30 : int

env = [n |⇒ ~ 6 : int, x |⇒ false : bool, y |⇒ true : bool, z |⇒ true : bool, t |⇒ 30: int]
- val n = if x andalso y orelse not z then 10 else 23;
> val n = 10 : int

Characters and strings

Characters are encoded using ASCII (American Standard Code for Information Interchange)
coding scheme. In SML, a character is enclosed within double quotes and is preceded by a

 25

symbol #. A string is a sequence of characters except double quote and is also enclosed within
double quotes. There are various built-in functions to manipulate strings. Some of the functions
are size, ord, chr, ^ (symbol for concatenation of strings) etc.

• Function size returns the length of a string.
• An ordinal function denoted by ord yields ASCII code corresponding to a character

as an integer between 0 – 127.
• Function chr is an inverse function of ord, gives character corresponding to a code.

For instance, 97 and 51 are ASCII codes for characters "a" and "3" respectively.
• The concatenation operator (^) joins two strings.

Few examples are given to illustrate the use of these built-in functions. Consider the previous
environment and continue.

Examples:
 - val x = #”t” ;

> val x = #“t” : char
env = [y |⇒ true : bool, z |⇒ true : bool, t |⇒ 30: int, n |⇒ 10: int, x |⇒ # "t" : char]

- val y = “prog" ^ "ram”
> val y = “program" : string

env = [z |⇒ true : bool, t |⇒ 30: int, n |⇒ 10: int, x |⇒ # "t" : char, y |⇒ “program” : string]
 - val t = size “testing” ;

 > val t = 7 : int
env = [z |⇒ true : bool, n |⇒ 10: int, x |⇒ # "t" : char, y |⇒ “program” : string , t |⇒ 10: int]

- val n = size (“to” ^ “gether”) ;
> val n = 8 : int

env = [z |⇒ true : bool, x |⇒ # "t" : char, y |⇒ “program” : string , t |⇒ 10: int, n |⇒ 8: int]
- val x = ord #“a” ;
> val x = 97 : int

env = [z |⇒ true : bool, y |⇒ “program” : string , t |⇒ 10: int, n |⇒ 8: int, x |⇒ 97 : int]
- val z = chr 51;
> val z = #“3” : char

env = [y |⇒ “program” : string , t |⇒ 10: int, n |⇒ 8: int, x |⇒ 97 : int, z |⇒ #“3” : char]

Function Declaration

Functions are also values in SML and are defined in much the same way as in mathematics. A
function declaration is a form of value declaration and so SML prints the value and its type. The
general form of function definition is:
 fun fun_name (argument_list) = expression

The keyword fun indicates that function is defined. fun_name is user defined variable and
argument_list consists of arguments separated by comma. Let us write a function for calculating
circumference of a circle with radius r.
Examples:

- val pi = 3.1414;
 > pi = 3.1414 : real

env = [pi |⇒ 3.1414 : int]
- fun circum (r) = 2.0 * pi * r;
> val circum = fn : real → real

env = [pi |⇒ 3.1414 : int, circum |⇒ fn r ⇒ 2.0 * pi * r : real → real]
- circum (3.0);
> val it = 18.8484 : real

 26

env = [pi |⇒ 3.1414 : int, circum |⇒ fn r ⇒ 2 *3.1414 * r : real → real, it |⇒ 18.8484 : real]

Here circum is a function name that takes an argument of real type and returns real value. SML
can infer the type of an argument from an expression (2.0 * pi * r). Since multiplication can be
done between two real values as SML is strongly typed, so r is also real. If there is one argument
of a function, then circular brackets can be removed. The same function can be written as:

Examples:

- fun circum r = 2.0 * pi * r;
> val circum = fn : real → real

env = [pi |⇒ 3.1414 : int, it |⇒ 18.8484 : real, circum |⇒ fn r ⇒ 2 *3.1414 * r : real → real]
- circum 1.5;
> val it = 9.4242 : real

env = [pi |⇒ 3.1414 : int, circum |⇒ fn r ⇒ 2 *3.1414 * r : real → real, , it |⇒ 9.4242 : real]

env = [circum |⇒ fn r ⇒ 2 *3.1414 * r : real → real, pi |⇒ 1.0 : real, it |⇒ 9.4242 : real]

If the function body contains identifiers which are not in the list of arguments, then they are
called free variables. Variables appearing in the argument list are said to be bound. In the function
circum , pi is a free identifier whereas r is bound.
Examples:

- val pi = 1.0;
> val pi = 1.0 : real

 env = [circum |⇒ fn r ⇒ 2 *3.1414 * r : real → real, , it |⇒ 9.4242 : real, pi |⇒ 1.0 : real]
- circum 1.5;
> val it = 9.4242 : real

We notice that the result of circum 1.5 is still 9.4242 even though pi is bound to new value to 1.0.
The reason is that SML uses the environment valid at the time of declaration of function rather
than the one available at the time of function application. This is called the static binding of free
variables in the function.
Examples:
 - pi;

> val it = 1.0 : real
env = [circum |⇒ fn r ⇒ 2 *3.1414 * r : real → real, pi |⇒ 1.0 : real, it |⇒ 1.0 : real]

- val circum = 2.5;
> val circum = 2.5 : real

env = [pi |⇒ 1.0 : real, it |⇒ 1.0 : real, circum |⇒ 2.5 : real]
 - val x = pi + circum;
 > val x = 3.5 : real

env = [pi |⇒ 1.0 : real, it |⇒ 1.0 : real, circum |⇒ 2.5 : real, x |⇒ 3.5 : real]

Since the variable circum gets new binding, the environment gets updated with the value of
circum as 1.0 and function circum is removed from the modified environment.

Unnamed Function

Unnamed Function is defined using a functional expression. Its general form is:

fn (argument_list) => expression ;
If argument_list consists of one argument, then brackets are optional.

Examples:

 27

 - fn r => 3.1414 * r * r ;
> val it = fn : real → real

env = [it |⇒ fn r => 3.1414 * r * r : real → real]
- val x = it 1.0;
> val x = 3.1414 : real

env = [it |⇒ fn r => 3.1414 * r * r : real → real, x |⇒ 3.1414 : real]
- val f = it;
> val f = fn : real → real

env = [it |⇒ fn r =>3.1414*r*r:real→real, x |⇒3.1414:real,f |⇒ fn r => 3.1414*r*r: real → real]
- (fn r ⇒ 3.14 * r * r) (2.0) ;
> val it = 12.56636 : real

 env = [x |⇒3.1414 : real, f |⇒ fn r => 3.1414 * r * r : real → real , it |⇒ 12.56636 : real]
- val f = fn (p, q) => 2 + p * q ;
> val f = fn : int * int -> int

env = [x |⇒3.1414 : real , it |⇒ 12.56636 : real , f |⇒ fn (p, q) =>2 + p * q : int * int]
 - f (3, 5);
> val it = 17 : int

env = [x |⇒3.1414 : real , f |⇒ fn (p, q) =>2 + p * q : int * int

Function declaration is only a derived form of a particular kind of value declaration. The
following value declaration of function has the same effect as of normal function declaration
shown earlier. It can be easily seen from the environment created in both types of declarations.
Examples:

- val pi = 3.1414;
 > pi = 3.1414 : real

- val circum = fn r => 2 * pi * r ;
> val circum = fn : real → real

env = [pi |⇒ 3.1414, circum |⇒ fn r => 2 * 3.1414 * r]

Now onwards we will skip the environment for the sake of simplicity. There are different ways of
defining functions given as follows:

Examples:
 - fun cube (x : real) = x * x * x ;

type of an argument
 - fun cube (x): real = x * x * x ;
 type of result
 type of result

- fun cube x : real = x * x * x ;
- fun cube x = x * x * x : real ;

The system's output in all above cases is:

> val cube = fn : real → real
Some SML systems assume basic arithmetic operators (+,-,*) as of int type by default but some
may flash error if unable to resolve overloading. From the body of the function given below, it
can not be derived whether * is used for integers or reals but as mentioned above it takes int type
by default.

- fun cube x = x * x * x;
> val cube = fn : int → int

In the definitions of average given below, the types have been deduced automatically by seeing
the types of the constituents in the bodies.

 28

Examples:
- fun average1 (x, y) = (x + y) / 2.0 ;
> val average1 = fn : real * real → real

 - fun average2 (x, y) = (x + y) div 2 ;
> val average2 = fn : int * int → int

Curried Function

A partially applicable function is called a curried function after the name of the logician H. B.
Curry. A partially applicable function is a function that returns as a result a more specialized
function when applied on the first argument. Hence any function of n (n > 1) arguments can be
expressed as a curried function whose result is another function of (n–1) arguments. Partially
applicable functions are convenient to use and supports the search for powerful functions useful
in variety of applications. The effect of such function is same when applied with the values of all
arguments.
 - fun average x y = (x + y) / 2.0;
 > val average = fn : real → real → real
An arrow (→) associates to the right so the type of average real → real → real is interpreted as
real → (real → real). The function average takes a real argument and returns a function of the
type real → real as a result.

Examples:

- val p = average 2.0;
 > val p = fn : real → real
 - p 6.4;

> val it = 4.2 : real

It is not necessary to introduce new name for the generated function. We can directly apply it as
follows:

- (average 2.0) 6.4 ;
 > val it = 4.2 : real
Since function application associates to the left, the parenthesis can be avoided and we can write
average 2.0 6.4 instead of (average 2.0) 6.4 . Therefore, we can apply function with all the
argument values without using brackets.
 - average 2.0 6.4;

> val it = 4.2 : real
Few more examples are given below:

Examples:
 - fun small x y = if x < y then x else y;
 > val small = fn : int → int → int
 - fun min x y z = small x (small y z);
 > val min = fn : int → int → int → int
 - val x = min 34 23 67;
 > val x = 23 : int
 - val x = min (34,23,67); wrong

Tuples

The type α * β, where α and β are of any type, is the type of ordered pair whose first component
is of type α and second component has type β. An ordered pair is written as (e1, e2) where e1 and

 29

e2 are expressions of any type. Similarly we can define n-tuple (e1 ,…, en), where each expression
ei , (1 ≤ i ≤ n) is of type αi , (1 ≤ i ≤ n) and each expression is separated by comma. The type of n-
tuple is of the form α1 * ...* αn .

Examples:
 - val x = (2.3, true) ;

> val x = (2.3, true) : real * bool
- val y = (25 div 3, true, 2.34 + 1.2) ; {div is integer division}
> val y = (8, true, 3.54) : int * bool * real
- val z = (25 div 3, (true, 2.34 + 1.2)) ;
> val z = (8, (true, 3.54)) : int * (bool * real)

 - val p = (x, y, z);
 > val p = ((2.3, true), (8, true, 3.54), (8, (true, 3.54)))

: (real * bool) * (int * bool * real) * (int * (bool * real))

Polymorphic Function Declarations

Sometimes we see that type of the function is not deducible seeing the arguments or the body at
the time of defining function. The arguments can be of any type say α and β. The actual type
would be decided at the time of applying function. Such a type is called polytype and function
using polytype is called polymorphic function. Such functions can be applied to arguments of any
type.
Examples:
 - fun tuple_self x = (x, x, x) ;
 > val tuple_self = fn : α → α * α * α

- val p = tuple_self 25;
> val p = (25, 25, 25) : int * int * int
- val p2 = tuple_self true;
> val p2 = (true, true, true) : bool * bool * bool
- val p1 = tuple_self (“hi”, 2);
> val p1 = ((“hi”, 2), (“hi”, 2), (“hi”, 2))

: (string * int) * (string * int) * (string * int)
- fun pair (x, y) = (x, y);

 > val pair = fn : α * β → α * β
 - pair ((12, "test", 23.4), true);

> val it = ((12,"test",23.4),true)
: (int * string * real) * bool

- fun first_of_pair (x, y) = x ;
 > val first_of_pair = fn : α * β → α
 - fun second_of_pair (x, y) = y ;
 > val second_of_pair = fn : α * β → β
 - val f = first_of_pair p1;
 > val f = (“hi”, 2) : string * int

- val s = second_of_pair f ;
> val s = 2 : int
- val f1 = second_of_pair (first_of_pair p1);
> val f1 = 2 : int
- val f1 = second_of_pair (first_of_pair p2);
> Error: invalid
- fun fstfst x = first_of_pair (first_of_pair x) ;
> val fstfst = fn : (α * β) * τ → α
- fstfst p1;
> val it = “hi” : string

 30

Here in the definition of a function fstfst, the inner function first_of_pair has a type (α *
β) * τ → α * β whereas outer function first_of_pair has a type α * β → α. A ploymorphic
function can have different types within the same expression. In SML, the polymorphic type
begins with a single quote followed by a character such as ‘a , ‘b etc.

Equality test in Polymorphic Functions

Test for equality (=) and inequality (<>) are restricted form of polymorphism. Since equality type
is forbidden on real type, function type and abstract type (explained later), equality operator can’t
be used on real numbers and we can not test if two functions are equal. The type variables with
two primes ''a , ''b etc. are used to denote all those types which allow test for equality and
inequality . A function’s type contains equality type variables if it performs polymorphic equality
test directly or indirectly. Consider few examples to illustrate the use of equality test.
Examples:
 - fun equal (x, y) = if x = y then true else false ;

> val equal = fn : ''a * ''a -> bool
- equal (23, 33);
> val it = false : bool
- equal ((1,2), (1,2));
> val it = true : bool
- equal (2.3, 2.3);
> Error: operator and operand don't agree

 - fun notequal (x, y) = x <> y orelse false;
> val notequal = fn : ''a * ''a -> bool

Patterns

A pattern is an expression consisting of variables, constructors and wildcards. The constructors
comprises of constants (integer, character, bool and string), tuples, record formation, datatype
constructors (explained later) etc. The simplest form of pattern matching is pattern = exp, where
exp is an expression. When pattern = exp is evaluated, it gives true or false value depending upon
whether pattern matches with an expression or not.

Examples:

- true = (2 < 3);
> val it = true : bool
- 23 = 10 + 14;
> val it = false : bool
- "abcdefg" = "abc" ^ "defg";
> val it = true : bool
- #”a” = # “c”;
> val it = false : bool
- (23, true) = (10+13, 2< 3);
> val it = true : bool
- val v = 3;
> val v = 3 : int
- v = 2 + 1;
> val it = true : bool

 31

The wildcard pattern can match to any data object. It is represented by underscore (_) and has no
name thus returns an empty environment. Use of wildcard (don’t care entry) will be explained
later. In SML, the pattern matching occurs in several contexts.

• Pattern in value declaration. It is of the form val pat = exp. If pattern is a simple
variable, then it is same as value declaration.

• If patterns are Pairs, tuples, record structure, then they may be decomposed into their
constituent parts using pattern matching. The result of matching changes the
environment. We go through a process of reduction to atomic value bindings, where
an atomic bindings is one whose pattern is a variable pattern. The binding val (pat1,
…, patn) = (val1, …, valn) reduces to

> val pat1 = val1

> val patn = valn
• This decomposition is repeated until all bindings are atomic.

Examples:
- val ((p1, p2), (p3, p4 , p5)) = ((1,2), (3.4, “testing”, true));
> val p1 = 1 : int
> val p2 = 2 : int
> val p3 = 3.4 : real
> val p4 = “testing” : string

 > val p5 = true : bool
- val (p1, p2, _ , p4) =(12, 3.4, true, 67);

 wildcard
> val p1 = 12 : int
> val p2 = 3.4 : real

 > val p4 = 67 : int

Alternative Pattern

Functions can be defined using alternative patterns as follows:
 fun pat1 = exp1 | pat2 = exp2 | … | patn = expn ;
Each pattern patk consists of same function name followed by arguments. The patterns are
matched from top to bottom until the match is found. The corresponding expression is evaluated
and the value is returned.

Examples:

- fun fact 1 = 1
| fact n = n * fact (n-1);

> val fact = fn : int -> int
- fact 3;
> val it = 6 : int
- fun negation true = false

| negation false = true;
> val negation = fn : bool -> bool

 - negation (2 > 3);
 > val it = true : bool

Case Expression

 32

Case expression is a mechanism for pattern matching. Conditional expression takes care of only
two cases whereas if we want to express more than two cases, then the nested if-then-else
expression is used. Alternatively we can handle such situations using case expression. The
general form of case expression is:
 case exp of pat1 => exp1
 pat2 => exp2

 patn => expn
The value of exp is matched successively against the patterns pat1 , pat2 , … , patn . If patj is the
first pattern matched , then the corresponding expj is the value of the entire case expression. For
example the nested nested if-then-else expression

if x = 0 then “zero” else if x = 1 then “one” else if x = 2 then “two” else “none”
is equivalent to the following case expression

case x of 0 => “zero”
| 1 => “one”
| 2 => “two”
| _ => “none”

 wild card

Consider another example. Given a month number from (1 - 12), corresponding string stating
month name is returned as a result of the case expression.

Example:

- fun convert month = case month of
1 => “jan” | 2 => “feb” | 3 => “mar”
| 4 => “apr” | 5 => “may” | 6 => “jun”
| 7 => “july” | 8 => “aug” | 9 => “sept”
| 10 => “oct” | 11 => “nov”|12=> “dec”
| _ => "none";

 > val convert = fn : int -> string
 - convert(12);

> val it = "dec" : string
 - convert(13);

> val it = "none" : string

It should be noted that an expression exp is of enumerated type. Enumerated types are: int, bool,
char and user defined datatype (explained later).

Infix Operators

An infix operator is a function that is written between two arguments. Most of the functional
languages allow programmer to define their own infix operators. Let us define a boolean function
implication imply as follows:

Example:
 - fun imply(x, y) = not x orelse y;

> val imply = fn : bool * bool → bool
- val q = imply (true, false);
> val q = false : bool

 - val p = imply (true, true);

 33

> val p = true : bool

It is more convenient if we write infix operator between two arguments. SML provides directive
called infix that helps user to define infix operator. Operator might be simple name or symbol.
• Let us define boolean implication function denoted by symbol as an infix operator
Examples:

- infix ;
> infix

 - fun x y = not x orelse y;
> val = fn : bool * bool → bool

 - true true;
> val it = true : bool

 - true false;
> val it = false : bool
- false true;
> val it = true : bool
- false false;
> val it = true : bool

• Boolean AND operator denoted by

Example:

- infix &;
> infix &
- fun true & b = b

 | false & b = false;
> val & = fn : bool * bool -> bool
- val x = true & 3 < 5;
> val x = true : bool

• Boolean OR operator denoted by V

Example:

- infix V;
 > infix V

- fun true V b = true
 | false V b = b;

> val V = fn : bool * bool -> bool
- 3 > 5 V 4 >3;

 > val it = true : bool

Precedence of infix operator may be specified between 0 to 9. Default precedence is 0. The
directive infix causes left association {a + b + c means (a + b) + c} whereas infixr causes right
association (operator exponentiation is right associative).

Records

A record of n components is a n-tuple whose components are identified by labels. It is different
from n-tuple as each component of n-tuple, is identified by its position from 1 to n. The
components of a record are called fields. The general forms are given below:
 Record type

{label1 = type1, …, labeln = typen}

 34

 e.g., {name : string, age : int, adult : bool}
Record value

{label1 = exp1, label2 = exp2, …, labeln = expn}
 e.g., {name = "john", age = 35, adult = true};
Record pattern

{label1 = pat1, …, labeln = patn} : {label1 = type1, …, labeln = typen},
where, each patk has a type typek. for 1 ≤ k ≤ n.

e.g., {name="john", age=35, adult=true} : {name : string, age : int, adult : bool}

SML system arranges labels of a record in alphabetical order.
Examples:

- val x = {name = "john", age = 35, adult = true};
> val x = {adult=true, age=35, name = "john"}

: {adult : bool, age : int, name : string}
- val p = 3;
> val p = 3 : int
- val q = 4.5;
> val q = 4.5 : real
- val t = { c = “record”, a = p + 5, b = q };
> val t = {a = 8, b = 4.5, c = “record”} : {a : int, b : real, c : string

Accessing values of labels

The general form of accessing a particular label value from a record is:

label_name rec_name
The field label = identifier gives each identifier the value of the corresponding label.

Examples:

- val r = {a = 3, p = 2} ;
> val r = {a = 3, p = 2} : {a : int, p : int}
- val x1 = #a r and x2 = #p r ;
> val x1 = 3 : int

 > val x2 = 2 : int
 - val { a = a1, p = p1} = r;

> val a1 = 3 : int
> val p1 = 2 : int

 - val {a = a1, p = p1} = { p = "trial", a =45.3};
> val a1 = 45.3 : real
> val p1 = "trial" : string

If we need the values of only few fields, then put three dots after listing the required fields.

Examples:
 - val s = {x = 3, a = 23.5, z = true};

> val s = {a = 23.5, x = 3, z = true} : {a : real, x : int, z : bool}
 - val {a = a1, z = z1, ...} = s;

> val a1 = 23.5 : real
> val z1 = true : bool

We can also use label names directly instead of identifiers.

Examples:
 - val {a, x, ...} = s;

 35

> val a = 23.5 : real
> val x = 3 : int

Expressing tuple as a record

An n-tuple (x1, x2, …, xn) is just an abbreviation for a record with numbered fields as
{ 1 = x1, 2 = x2, …, n = xn}.
Examples:

- val r = { 1 = 23, 2 = 3.4 3 = false};
> val r = (23, 3.4, false) : int * real * bool
- # 2 r;
> val it = 3.4 : real

Records can be compared for equality or inequality.

Examples:
 - {name = "shiva", age = 13}= {name = "jim", age= 45};

> val it = false : bool
 - {name = "shiva", age = 13}<> {name = "jim", age= 45};

Local declarations

In some programs, we require auxiliary declarations, which are valid locally. Hiding declarations
while writing big programs is useful facility. Locally declared variables or functions can have the
same names which are globally used without any problem as local declarations are not visible
outside its scope. In SML there are two types of local declarations. The general forms of local
declarations are given as follows:

Let expression : (declarations local to an expression)

let D1; D2; …; Dn in E end

Let expression is evaluated as follows:

• Declaration D1 is visible in D2 , D1 & D2 are visible in D3 and subsequently D1, …,Dn-1 are

visible in Dn. All the declarations are visible in an expression E. E is called the scope of all
declarations.

• Environment env before executing let expression gets updated by each let declaration as env1;
env2; …; envn , each environment envj contains previous environments env1,.., envj-1. n
expression E is evaluated in the last environment envn and the value of expression is added to
original environment env by undoing the environments obtained because of let declarations.

Examples:

- let val x = 3; val y = 4 in x + y end;
> val it = 7 : int
- val x = 5;
> val x = 5 : int
- val p = let val x = 3 in x * 2 end; { x is local}
> val p = 6 : int

 36

- p + x; {x is global & its value is 5}
> val it = 11 : int
- val q = let val x = 3 and y = 6; val z = 12 in x + y - z end;
> val q = ~3 : int
- fun area_triangle (x, y, z) = let val s = (x + y + z) / 2.0 in

sqrt(s * (s - x) * (s - y) * (s - z)) end;
> val area_triangle = fn : real * real * real -> real

 - val p = s;
 > Error: s is not defined

Local declarations: (declarations local to other declarations)

local D1; D2; …;Dn in D’1; D’2 ; …; D’m end

Local declaration is executed as follows:

• Declaration D1 is visible in D2 , D1, D2 in D3 and subsequently D1, …,Dn-1 in Dn and all are

visible in the declarations D1'. Further, D1, …,Dn-1, D1' in D2' and so on in Dm' .
• New environments are created in the sequence env1, env2, …,envn , env1', env2', … and envm'

each one including the previous environments.
• After executing local declaration, the resulting environment env’ is obtained after removing

the bindings obtained from the declarations D1, D2, … and Dn .

Examples:
 - local val x = 3; val y = 4 in val p = x * y end;

> val p = 12 : int
- local val x = 3; val y = x - 2 in val z = x * y; val w = z - y end;
> val z = 3 : int
> val w = 2 : int

 - local fun divide(x, y) = x mod y = 0 in
 fun leap (year) = divide(year, 4) ;
fun millenium (year) = divide(year, 1000) end;

> val leap = fn : int -> bool
 > val millenium = fn : int -> bool

- val p = leap (1900);
> val p = true : bool
- leap(1998);
> val it = false : bool
- millenium(1000);
> val it = true : bool
- val q = millenium(1900);
> val q = false : bool

Distinction between let expression and local declaration

Let is used most frequently as compared to local declaration but problem can be solved using
both. Few examples are given below:

Examples:

- val p = 4;
> val p = 4 : int

 - val q = 3;

 37

> val q = 3 : int
 - val y = let val x = p + q in x * x end;
 > val y = 16 : int same effect

- local val x = p + q in val y = p * p end;
> val y = 16 : int

Example: Write a function to solve quadratic equations ax2 + bx + c= 0.

Using let:
 - fun q_solve(a, b, c) = let val t = b * b – 4.0 * a * c in

if t > 0.0 andalso a > 0.0 then
 let val t1 = Math.sqrt (t);
 val t2 = 2.0 * a;
 val t3 = ~ b
 in ((t3 + t1) / t2, (t3 – t1) / t2) end
 else raise Invalid

exception name
 explained later
 end;
 > val q_solve = fn : real * real * real -> real * real
 - val root = q_solve(1.0, ~8.0, 15.0);

> val root = (5.0,3.0) : real * real
- val root = q_solve(1.0, 4.0, ~21.0);
> val root = (3.0,~7.0) : real * real
- q_solve(0.0, 2.3, 3.4);
> exception Invalid raised
- q_solve(12.0, 2.3, 3.4);
> exception Invalid raised

Using Local:

- local
fun discriminant (a, b, c) = b * b – 4.0 * a * c ;
fun valid (a, b, c) =

discriminant (a, b, c) > 0.0 andalso a > 0.0;
 fun compute(a, b, c) = Math.sqrt (discriminant (a, b, c));

fun double_a (a) = 2.0 * a
in fun q_solve(a, b, c) = if valid (a, b, c) then

 ((~ b + compute(a, b, c)/double_a (a)), (~ b – compute(a, b, c)/double_a (a)))
 else raise Invalid
 end;

> q_solve = fn : real * real * real -> real * real
 - val root = q_solve(0.0, 1.2, 3.2);

> exception Invalid raised
- val root = q_solve(23.5, 1.5, 3.4);
> exception Invalid raised
- val root = q_solve(1.0, 23.6, ~2.5);
> val root = (0.105460931858,~23.7054609319) : real * real
- val root = q_solve(1.0, ~8.0, 15.0);
> val root = (5.0,3.0) : real * real
- val root = q_solve(1.0, 4.0, ~21.0);
> val root = (3.0,~7.0) : real * real

 38

We see from the above example that local declaration is not convenient way of writing function
as compared to function written using let expression.
• It is more straight forward and easy to understand using let expression.
• The function is more efficient computationally using let expression.
• Repetitive computations can be easily avoided using let expression

Therefore, let expression is frequently used as compared to local declaration.

SML provides library of mathematical functions in a structure called Math. Declarations are
grouped to form a structure by enclosing them in the keywords struct and end. The structures are
discussed in the next chapter in detail. An access to a functions definition defined in a structure is

structure_name . function_name (actual arguments)

The function sqrt defined in Math structure is accessed as Math.sqrt.

Type Declaration

In SML, the types are built from predefined types viz., int, real, char, string, bool and unit. We are
familiar with all types except unit. The type unit consists of a single value, denoted by (). This
type is used whenever an expression has no interesting value or function does not have
arguments. The type declaration is defined in the same way as the data object is named in
variable declaration. The general form of type declaration is:

 type var1 = type1 and var2 = type2 and … and varn = typen

where each vark is a type variable and typek is a type expression.

The type declaration can also be used to define alternative type for existing types. New as well as
old types are available for use. Let us see the declarations made in the following examples:
Examples:

- type integer = int;
> type integer = int
- type float = real and boolean = bool and character = char;
> type float = real
> type boolean = bool
> type character = char
- type pair = integer * boolean;
> type pair = integer * boolean
- (23, true) : pair;
> val it = (23,true) : pair
- type person_rec = {name:string, age:float, address : string, salary:real};
> type person_rec ={address:string,age:float,name:string,salary: real}
- val p={name="john",age=67,address="New Delhi", salary=2000.00};
> val p={address="NewDelhi",age=67,name="john", salary=2000.0}

: {address : string, age : real, name : string, salary:real}

Example: Function for getting the name of a person with age > 60.

- fun get_name(x : person_rec) =

 39

if # age x > 60.0 then #name x else "sorry";
 > val get_name = fn : person_rec -> string

- get_name(p);
> val it = "john" : string

Datatype Declaration

Datatype declaration provides a means to introduce a completely new user defined type
constructors in the program along with one or more value constructors for the type constructor.
• The type constructor may take zero or more arguments.
• Each value constructor may also take zero or more arguments.
• The type and value constructors are new and distinct from all other previously or system

defined types.

Here we discuss nullary type constructor which means a type constructor with zero argument,
Nullary value constructor is a value constructor with zero argument. Such types are also called
enumerated types where value constructors are enumerated. Advanced type constructors will be
discussed in the next chapter. The gerneral form of datatype definition is as follows:

 datatype type_constructor_name

= value_constructor1 | value_constructor2 | … | value_constructorn

We use the following conventions. These are purely user defined conventions.
• Name of type constructor is formed using upper case letters.
• Name of value constructor starts with upper case letter followed by lowercase letters.

Enumerated types (Nullary Type Constructor with Nullary Value Constructors):
Consider datatype for type constructor DAY that defines value constructors Mon, Tue, Wed , Thr,
Fri , Sat and Sun with zero argument. Such value constructors are called nullary value
constructors.

Examples:

- datatype DAY = Mon | Tue | Wed | Thr | Fri | Sat | Sun;
> datatype DAY = Fri | Mon | Sat | Sun | Thr | Tue | Wed
- fun working_day (day :DAY) = day <> Sat andalso day <> Sun;
> val working_day = fn : DAY -> bool

 - val d = working_day(Tue);
> val d = true : bool

 - datatype MONTH = Jan | Feb | Mar | Apr | May | Jun | July | Aug
| Sept | Oct | Nov | Dec ;

> datatype MONTH = Apr | Aug | Dec | Feb | Jan | July | Jun
| Mar | May | Nov | Oct | Sept

- fun month_days (month, year) = let

 fun leap (year) = year mod 4 = 0;
 val x = if leap(year) then 1 else 0

in
 case month of

Jan => 31 | Feb =>28 + x
| Mar => 31 | Apr => 30
| May =>31 | Jun =>30
| July =>31 | Aug => 31

 40

| Sept => 30 | Oct =>31
| Nov =>30 | Dec =>31
end ;

> val month_days = fn : MONTH * int -> int
 - month_days(Mar, 1998);

> val it = 31 : int
- month_days(Feb, 1999);
> val it = 28 : int
- month_days(Feb, 2000);
> val it = 29 : int

Let us consider another example of user defined datatype named as RELATION with nullary
value constructors as Less, Equal and Greater for handling real comparisons. The function grade
defined below makes use of the newly defined value constructors in case expression.
Examples:

- datatype RELATION = Less | Equal | Greater;
> datatype RELATION = Equal | Greater | Less
- fun compare(x, y :real) : RELATION = if x < y then Less

else if x > y then Greater else Equal;
> val compare = fn : real * real -> RELATION

 - fun grade (marks) = case compare(marks, 80.0) of
 Greater => “A”

 | Equal => “A”
 | Less => case compare(marks, 60.0) of
 Greater => “B”

 | Equal => “B”
 | Less => case compare(marks,50.0) of
 Greater => “C”
 | Equal => “C”

| Less => case compare(marks, 40.0) of
Greater => “D”

 | Equal => “D”
 | Less => “F” ;

> val grade = fn : real -> string
- grade(98.5);
> val it = "A" : string
- grade(34.5);
> val it = "F" : string
- grade(70.0);
> val it = "B" : string

Nullary type constructor with value constructors with more than zero arguments:

Consider datatype for type constructor SHAPE that defines value constructor with more than zero
arguments. These value constructors are all functions giving the values of type SHAPE when
applied to the argument(s).

Examples:

- datatype SHAPE = Circle of real | Rectangle of real * real
| Square of real ;

> datatype SHAPE
 Circle = fn: real → SHAPE
 Rectangle = fn : real * real → SHAPE
 Square =fn : real → SHAPE

 41

- Circle 3.5;
> val it = Circle 3.5 : SHAPE
- val s = Square 1.2;
> val s = Square 1.2 : SHAPE

Let us write function for calculating area of a geometrical figures mentioned above.
Examples:

- fun area (s: SHAPE) = case s of
Circle r => 3.14 * r * r
| Rectangle (x, y) => x * y
| Square side => side * side
| _ => 0.0;

 > val area = fn : SHAPE -> real

Last pattern in the case expression is underscore to take care of values for undefined shapes. At
this point exception can be raised. We will discuss exception in the next chapter. Let us call these
functions.

Examples:
 - area (Circle 1.2);

> val it = 4.5216 : real
- area (Rectangle (2.3, 4.5));
> val it = 10.35 : real
- area (Square 4.5);
> val it = 20.25 : real

 42

 List and Advanced Features in SML

List is an ordered sequence of data objects, all of which are of the same type. In SML, the list
consists of finite sequence of values of type α and the entire list is of type α list. The elements of
list are enclosed in square brackets and are separated by comma. The empty list denoted by []
that contains no elements. The order of elements is significant. List can contain varying number
of elements of the same type whereas in tuples and records the number of elements are fixed and
are of any type. The first element of the list is at 0 position. Typical lists are:

Examples:

- [2, 3, 4] ;
> val it = [2,3,4] : int list
- [“john”, “mary”, “jack”] ; list of strings
> val it = ["john","mary","jack"] : string list
- [(2, true), (4, false)] etc. list of pair
> val it = [(2,true),(4,false)] : (int * bool) list
- val x = []; empty list
> val x = [] : 'a list
- val r = [2.3, 4.5 / 1.2, 8.9 + 2.3]; list of reals
> val r = [2.3,3.75,11.2] : real list
- val y = [[1,2], [3,4,5,6], []]; list of list of int type
> val y = [[1,2],[3,4,5,6],[]] : int list list
- val p = [floor, round, trunc]; list of functions
> val p = [fn,fn,fn] : (real -> int) list

Constructing a List

A list is constructed by two primitives: one a constant nil (empty list denoted by []) and other an
infix operator cons represented by ::. A list is represented as head :: tail , where head is a first
element of the list and tail is the remaining list. The operator cons builds a tree for a list from its
head to tail. For example, a list [2] can be represented as 2 :: nil.
The tree representation for a list head :: tail is as follows:
 ::

 head tail

A list can be constructed by adding an element in the beginning using cons operator. Few
examples for constructing a list are given below:

Examples:

- 4::nil;
> val it = [4] : int list
- val p = 3 :: [4];
> val p = [3,4] : int list
- val q = 2 :: p;
> val q = [2,3,4] : int list

A list [x1, x2, …, xn] can also be written as x1 :: … :: xn :: nil. It's tree representation is

 43

::

x1 ::

x2 ::

::

xn nil

Two lists can be compared for equality or inequality. They are equal if are of same size, type and
all corresponding elements are equal.

Examples:

- [1,2,3] = 1 :: 2 :: 3 :: nil;
> val it = true : bool
- val p = [2, 3, 4] <> [1+1, 4-1, 2+2];
> val p = false : bool

Standard Functions for List handling in SML

There are only few standard functions for handling lists in SML
• List constructor operator: (denoted by ::)

 - 2 :: [3,4,5];

> val it = [2,3,4,5] : int list
- true :: [2>3, false];
> val it = [true, false, false] : bool list
- (1,2) :: [(3,4), (5,6)];
> val it = [(1,2), (3,4),(5,6)] : (int * int) list

• Append operator :(denoted by @)

- [1,2,3] @ [4,5];
> val it = [1,2,3,4,5] : int list
- [[1,2], [3,4], [5]] @ [[7,8],[9]];
> val it = [[1,2],[3,4],[5],[7,8],[9]] : int list list
- [(1,"ab"), (2, "bc")] @ [(5, "we")];
> val it = [(1,"ab"),(2,"bc"),(5,"we")] : (int * string) list

• Function for reversing the elements of a list: (rev)

- rev [1,2,3];
> val it = [3,2,1] : int list
- rev [[1,2], [3,4], [5]];
> val it = [[5],[3,4],[1,2]] : int list list
- rev [(10,"abc"), (20, "bcd")];
> val it = [(20,"bcd"),(10,"abc")] : (int * string) list

• Functions for finding Head and Tail of a list :(hd - for head and tl - for tail)

 44

- hd [(1,"ab"), (2, "bc")];
> val it = (1,"ab") : int * string
- hd [[1,2], [3,4], [5]];
> val it = [1,2] : int list
- tl [(1,"ab"), (2, "bc")];
> val it = [(2,"bc")] : (int * string) list
- tl [[1,2], [3,4], [5]];
> val it = [[3,4],[5]] : int list list

• Finding the length of a list: (length)

- length [1,2,3,6];
> val it = 4 : int
- length [(1,"ab"), (2, "bc")];
> val it = 2 : int
- length [[1,2], [3,4], [5]];
> val it = 3 : int

• Conversion between strings and list of characters : (explode and implode)

- val x = explode "abcdefg";
> val x = [#"a",#"b",#"c",#"d",#"e",#"f",#"g"] : char list
- implode x;
> val it = "abcdefg" : string

Recursive functions for List

Recursive function can be easily written for lists using induction principle of natural numbers.
Empty list corresponds to zero and constructor operator :: corresponds to successor function on
natural numbers. Recursion on list is defined as follows:

• Define a function for base case.
• Assumption that function computes correct result for a list 'xs'. Find how to compute the

result for a list x :: xs.
The skeleton of recursive function for a list is as follows:
 - fun recursive_fun [] = ?
 | recursive_fun (x :: xs) = ?

We will see variations of the basic scheme but the idea remains same. If we have to write
function with several arguments, then the following definition can be observed.
 - fun multiple_arg_fun ([], ys) = ?
 | multiple_arg_fun (x :: xs, ys) = ?

 Some commonly used recursive functions for handling lists are defined below:

List Generations
• Create a list of elements from n to m, where n and m are integers and m ≥ n.

- fun create_list (n, m) = if n>m then [] else n::create_list (n+1, m);
> val create_list = fn : int * int -> int list

 - create_list (2, 7);
> val it = [2,3,4,5,6,7] : int list
- create_list (~2, 5);
> val it = [~2,~1,0,1,2,3,4,5] : int list

 45

• Create a list of elements from 1 to n, n ≥ 1

 - fun oneto 1 = [1]
| oneto n = oneto (n-1) @ [n];

> val oneto = fn : int -> int list
- oneto 6;
> val it = [1,2,3,4,5,6] : int list

Alternatively,
- fun oneto (n) = create_list(1,n); {call another function create_list }

• Create a list of even numbers starting from 2 for a given size.

- fun gen 1 = [2]
 | gen n = gen (n-1) @ [2*n];

> val gen = fn : int -> int list
- gen 4;
> val it = [2,4,6,8] : int list
- gen 6;
> val it = [2,4,6,8,10,12] : int list

Varoius other important list functions

• Adding all the elements of a list

- fun add [] = 0
 | add (x::xs) = x + add xs;

> val add = fn : int list -> int
- add [2,3,4,7,8];
> val it = 24 : int

• Multiplying all the elements of a list

- fun mult [] = 0
 | mult [x] = x
 | mult (x::xs) = x * mult xs ;

> val multl = fn : int list -> int
- mult [2,3,4];
> val it = 24 : int

• Merging two integer lists in increasing order assuming original lists are in increasing order.

- fun merge ([], ys:int list) = ys
 | merge (xs, []) = xs
 | merge ((x::xs), (y::ys)) = if x < y then

(x::(merge (xs, (y::ys))))
else (y::(merge ((x::xs), ys)));

> val merge = fn : int list * int list -> int list
- merge ([2,4,6], [1,2,5,7,9]);
> val it = [1,2,2,4,5,6,7,9] : int list

• Selecting a particular position value from a list

 46

- fun select (n, []) = 0

| select (n, (x::xs)) = if n = 1 then x else select ((n-1), xs);
> val select = fn : int * int list -> int
- select (2, [3, 4, 5]);
> val it = 4 : int

• Finding the maximum value of the elements in a list

- fun max [] = 0
 | max [x] = x
 | max (x::y::xs) = if x > y then max (x::xs)

else max (y::xs);
> val max = fn : int list -> int
- max [3,9,1,3,56,7];
> val it = 56 : int

Functions with Polymorphic Equality Type

• Check whether an element is a member of a list or not

- fun mem (x, []) = false
 | mem (x, (y::ys)) = if x =y then true else mem (x, ys);
 > val mem = fn : ''a * ''a list -> bool

- mem (3, [1,2,3,4]);
> val it = true : bool
- mem ((2, true), [(1, false), (2, false)]);
> val it = false : bool
- mem ({name = "asdg", age = 23} ,

[{name = "asdg", age = 23},{name = "VVBB", age= 45}]);
> val it = true : bool

• Delete an element from a given list
- fun delete (x, []) = []

| delete (x, (y::ys)) = if x = y then delete (x, ys)
else (y:: delete (x, ys));

> val delete = fn : ''a * ''a list -> ''a list
- delete (3, [1,2,3,4,3,3]);
> val it = [1,2,4] : int list
- delete (3, [5,6,7,8]);
> val it = [5,6,7,8] : int list

• Whether two lists are disjoint or not

- fun disjoint ([], x) = true
 | disjoint ((x::xs), ys) = if (mem (x, ys)) then false
 else disjoint (xs, ys);

> val disjoint = fn : ''a list * ''a list -> bool
- disjoint ([2,3], [5,6]);
> val it = true : bool
- disjoint ([{name = "hi", age = 5}] , [{name ="hi",age = 5}]);

 > val it = false : bool
• Find the common elements of two lists

 47

- fun common ([], ys) = []
 | common (xs, []) = []

| common ((x::xs), ys) = if mem (x, ys) then
(x:: common (xs, ys))
else common (xs, ys);

 > val common = fn : ''a list * ''a list -> ''a list
- common ([2,3], [1,2,3]);
> val it = [2,3] : int list

 - common ([(1,2), (3,4)] , [(2,3), (3,4), (5,6)]);
 > val it = [(3,4)] : (int * int) list

• Compare two lists for equality: (equal)

- infix equal;
> infix equal
- fun ([] equal []) = true

 | ((a::x) equal (b::y)) = (a = b) andalso (x equal y)
 | ((a::x) equal []) = false
 | ([] equal (b::y)) = false;

> val equal = fn : ''a list * ''a list -> bool
 - [(1,2), (3,4)] equal [(1,2), (4,3)];

> val it = false : bool
List equality (denoted by =) is available in SML.

Functions with polymorphic type

• Pairing corresponding elements of two lists of same size.

- fun pair ([],[]) = []
 | pair (x::n, y::m) = [(x,y)] @ pair (n, m);
 > val pair = fn : 'a list * 'b list -> ('a * 'b) list
 - pair ([2,3,4], ["ad", "rw", "j"]);

> val it = [(2,"ad"),(3,"rw"),(4,"j")] : (int * string) list
- pair ([(12,2.3), (34, 12.3)], [(23, 2.3), (21, 6.7)]);
> val it = [((12,2.3),(23,2.3)),((34,12.3),(21,6.7))]

 : ((int * real) * (int * real)) list
• Make identical copy of a given list

- fun copy [] = []
 | copy (x::xs) = x::copy xs;

> val copy = fn : 'a list -> 'a list
- copy [10.2,20.3,30.6,40.7];
> val it = [10.2,20.3,30.6,40.7] : real list

• Reverse a given list

- fun reverse [] = []
| reverse (x::xs) = (reverse xs) @ [x];

> val reverse = fn : 'a list -> 'a list
- reverse [3,4,6,7];
> val it = [7,6,4,3] : int list
- reverse ["cat", "rat", "dog"];
> val it = ["dog","rat","cat"] : string list
- reverse [(2.3,14), (4.5,12)];
> val it = [(4.5,12),(2.3,14)] : (real * int) list

 48

• Appending two lists

- fun append ([], ys) = ys
| append ((x::xs), ys) = x:: append (xs, ys);

> val append = fn : 'a list * 'a list -> 'a list
- append ([2,3,4] , [1,8,9,5,6]);
> val it = [2,3,4,1,8,9,5,6] : int list
- append ([(1,2),(3,4)] , [(9,8),(7,6)]);
> val it = [(1,2),(3,4),(9,8),(7,6)] : (int * int) list

Graphs as an Application of a List

A Graph is defined to be collection of nodes and edges. A pair (x, y) can be used to
represent edge from a node x to node y of a directed graph. A list of pairs is used to
represent a directed graph.

Representation of Graphs in SML

a

b c

d e

f

- val graph_list = [(“a”, “d”), (“a”, “e”), (“a”, “c”), (“b”, “a”), (“b”, “d”),

(“d”, “f”), (“e”, “c”), (“e”, “f”), (“f”, “a”)];
> val graph_list = [("a","d"),("a","e"),("a","c"),("b","a"),("b","d"),("d","f"),

("e","c"), ("e","f"), ("f","a")] :(string * string) list

• Find the successor of a given node: (Nodes of graph have equality type)

- fun succ (x, []) = []
| succ (x, (p, q) :: xs) = if x = p then q :: succ(x, xs)

else succ (x, xs) ;
> val succ = fn : ''a * (''a * 'b) list -> 'b list
- succ ("a", graph_list); graph_list is a graph defined above
> val it = ["d","e","c"] : string list
- succ ("b", graph_list) @ succ ("e", graph_list);
> val it = ["a","d","c","f"] : string list

Traversal of graph using depth first search (DFS) algorithm

In depth first search (dfs), the nodes of a graph not yet traversed reachable from the start
node are fully explored and then backtrack to immediate predecessor node and search
starts in dfs order until all nodes have been visted.

The function df_search defined below takes a list of all the nodes, graph and the list of
nodes visted (initially empty) and returns a list of nodes reachable from the first node in the list.

 49

- fun df_search ([], graph, visted) = rev (visted)
| df_search ((x :: xs), graph, visted) = if mem (x, visted)

then df_search (xs, graph, visted)
else

df_search (succ(x, graph) @ xs, graph, (x::visted));
 > val df_search = fn : ''a list * (''a * ''a) list * ''a list -> ''a list

- df_search (["a", "b", "c", "d", "e", "f"], graph_list, []);
> val it = ["a","d","f","e","c","b"] : string list
- df_search (["c", "d", "e", "f", "b", "a"], g, []);

 > val it = ["c","d","f","a","e","b"] : string list

Exercise: Find the path between two nodes of a graph.

Recursive Datatype Declarations

We have seen that the recursive functions are defined in terms of themselves. Similarly datatypes
can also be defined recursively for specially those data structures which are recursive in nature.
The natural numbers, lists, trees are few examples of recursive data structures. SML allows two
kinds of recursive definition for datatype declarations.

• Ordinary recursive definition where datatype constructor is defined in terms of itself.
• Parameterized type constructor which may have polymorphic types and contains type

variables specified in front of the type constructor in the datatype declaration.
Consider a datatype definition for natural numbers. Natural numbers are constructed by using
two constructors Zero (nullary value constructor) and Succ of the type NATURAL ->
NATURAL. This means that Succ is a function that takes argument of the type NATURAL and
produces a value again of type NATURAL. This definition is recursive in nature and is non
parameterized.

- datatype NATURAL = Zero | Succ of NATURAL;
> datatype NATURAL = Succ of NATURAL | Zero
- Zero;
> val it = Zero : NATURAL
- Succ (Zero);
> val it = Succ Zero : NATURAL
- Succ (Succ (Zero));
> val it = Succ (Succ Zero) : NATURAL

Polymorphic recursive datatype (Parameterized type constructor)

We have already seen earlier that a list is constructed using two constructors namely, ::
(constructor) and [] (empty list). Let us define our own list that is of polymorphic type with two
value constructors Nil of type 'a LIST and Cons of the type ‘a * ‘a LIST -> 'a LIST . Recursive
datatype definition of a list is as follows:

 50

- datatype ‘a LIST = Nil | Cons of ‘a * ‘a LIST;
 > datatype 'a LIST = Cons of 'a * 'a LIST | Nil

- Cons;
> val it = fn : 'a * 'a LIST -> 'a LIST
- Nil;
> val it = Nil : 'a LIST
- Cons (2, Nil);
> val it = Cons (2,Nil) : int LIST
- Cons (3, it);
> val it = Cons (3,Cons (2,Nil)) : int LIST

 - Cons (("pair", 3), Nil);
> val it = Cons (("pair",3),Nil) : (string * int) LIST

Trees in SML

Tree is a nonlinear data structure consisting of nodes and branches to sub trees. The binary tree is
a specialized tree with at most two branches. Each node of a binary tree consists of a data, left
link pointing to left sub tree and right link pointing to sub tree. We define recursive datatype for
a binary tree as follows:
 - datatype 'a BT = Null | Node of ‘a BT * ‘a * 'a BT;

> datatype 'a BT = Null | Node of ‘a BT * ‘a * 'a BT

Consider the following binary tree.

 b_tree
1

2 3

4 5 6

According to the above definition of binary tree, it is represented as:

- val b_tree = Node(Node (Node (Null, 4, Null), 2, Null), 1,
Node(Node(Null,5, Null), 3, Node(Null, 6, Null)));

> val b_tree = Node(Node (Node #, 2, Null), 1, Node (Node #,3,Node #)) : int BT

Here # represents the entire corresponding sub tree. Complete tree is not displayed by the system.
The node values of binary tree of height 2 are shown and remaining values are represented by #.

Binary Tree Traversal

Nodes of a binary tree can be visted in three ways: preorder (root, left sub tree in preorder, right
sub tree in preorder), inorder (left sub tree in inorder, root, right sub tree in inorder), postorder
(left sub tree in postorder, right sub tree in postorder, root). Let us define all these functions and
apply them on a tree t defined above.

- fun preorder Null = []
| preorder (Node (left, data, right))= [data] @ preorder left

@ preorder right;
> val preorder = fn : 'a BT -> 'a list
- preorder b_tree;

 51

> val it = [1,2,4,3,5,6] : int list
- fun inorder Null = []

| inorder(Node(left, data, right)) = inorder left @ [data] @
inorder right;

> val inorder = fn : 'a BT -> 'a list
- inorder b_tree;
> val it = [4,2,1,5,3,6] : int list
- fun postorder Null = []

 | postorder(Node(left, data, right)) = postorder left @
postorder right @ [data];

 > val postorder = fn : 'a BT -> 'a list
- postorder b_tree;
> val it = [4,2,5,6,3,1] : int list

 Useful functions for manipulating binary trees

• find the depth (height) of a binary tree

- fun depth Null = 0

 | depth(Node(left, data, right)) = 1 + let
val l_depth = depth left;
val r_depth = depth right

in if l_depth < r_depth then r_depth else l_depth end;
> val depth = fn : 'a BT -> int
- depth b_tree;
> val it = 3 : int

• Count the number of nodes in a binary tree

- fun count Null = 0

| count (Node (left, data, right)) = 1 + (count left)
+(count right);

> val count = fn : 'a BT -> int
 - val num = count b_tree;

> val num = 6 : int

• Create mirror image (swap) of a binary tree

- fun swap Null = Null

 | swap (Node (left, data, right)) =
Node (swap right, data, swap left);

> val swap = fn : 'a BT -> 'a BT
 - val t1 = swap t;

> val b_tree1 = Node (Node (Node #, 3, Node #), 1,
Node (Null, 2, Node #)) : int BT

 - swap b_tree1 = b_tree; comparing two trees for equality
> val it = true : bool

• Generate a full binary tree of depth n labeling the nodes from 1 to 2n -1

- fun full (k, 0) = Null

 | full (k, n) = Node (full (2*k, n-1), k,

 52

 full (2 * k +1, n-1));
> val full = fn : int * int -> int BT
- fun full_tree (n) = full(1,n);
> val full_tree = fn : int -> int BT
- val t = full_tree (2);
> val t = Node (Node (Null,2,Null), 1, Node (Null,3,Null)) :int BT
- inorder(t);
 > val it = [2,1,3] : int list
- val t1= full_tree(3);
> val t1= Node(Node (Node#,2,Node #),1,Node(Node #,3,Node #)) : int BT
- inorder(t1);
> val it = [4,2,5,1,6,3,7] : int list
- val t2 = full_tree(4);
> val t2 = Node(Node(Node #,2,Node#),1,Node (Node #,3,Node #)): int BT
- inorder(t2);
> val it = [8,4,9,2,10,5,11,1,12,6,13,3,14,7,15] : int list

Height Balanced Binary Tree

Definition: A height balanced binary tree is one in which each node satisfies the
property that |count left_subtree – count right_subtree| ≤ 1.

• Construct a height balanced binary tree from a list containing its preorder sequence.

We make use of functions take and drop which are of the type ‘a list * ‘a -> ‘a list. These are
defined in predefined structure called List.

i. List.take (list, n) - returns first n elements of the list
ii. List.drop (list, n) - returns a list after dropping first n elements of a list.

- fun bal_tree [] = Null

 | bal_tree (x :: xs)= let val n = length xs div 2 in
Node (bal_tree (List.take(xs, n)), x , bal_tree(List.drop (xs, n)))

end;
> val bal_tree = fn : 'a list -> 'a BT
- bal_tree([1,2,3]);
> val it = Node (Node (Null,2,Null),1,Node (Null,3,Null)) : int BT
- val bt =bal_tree ([1,2,3,4,5,6,7,8]);
> val bt = Node(Node(Node #,2,Node#),1,Node(Node #,5,Node #)): int BT
- preorder bt;
> val it = [1,2,3,4,5,6,7,8] : int list
- inorder bt;
> val it = [3,2,4,1,6,5,7,8] : int list
- postorder bt;
> val it = [3,4,2,6,8,7,5,1] : int list
- val bt1 = swap bt;
> val bt1 = Node(Node(Node#,5,Node #),1,Node(Node#,2,Node #)): int BT
- preorder bt1;
> val it = [1,5,7,8,6,2,4,3] : int list
- inorder bt1;
> val it = [8,7,5,6,1,4,2,3] : int list
- postorder bt;
> val it = [3,4,2,6,8,7,5,1] : int list

 53

Binary Search Tree

Definition: Binary search tree is a binary tree if all the keys on the left of any node
(say, N) are numerically (alphabetically) less than the key in a node N and all the keys on
the right of N are numerically (alphabetically) greater than the key of a node N.

If binary search tree is traversed in inorder, then the elements in the form of (key, value) pair are
listed in increasing order of key.

• Insert a pair of key and value as (key, value) in a binary search tree (BST).

- fun insert((key, value), Null) = Node (Null, (key, value), Null)
| insert ((key, value), Node (left, (k, v), right)) = if key < k

then Node(insert ((key, value), left), (k, v), right)
else Node(left, (k, v), insert ((key, value), right));

> val insert = fn : (int * 'a) * (int * 'a) BT -> (int * 'a) BT
- insert ((8,12.3),Null) ;
> val it = Node (Null,(8,12.3),Null) : (int * real) BT
- insert((2, 23.4), it);
> val it = Node (Node (Null, (#, #),Null) , (8,12.3), Null): (int * real) BT
- insert((7, 11.2), it);
> val it = Node (Node (Null,(#,#),Node #),(8,12.3),Null) : (int * real) BT
- insert((9,16.6), it);
> val it = Node(Node (Null, (#,#), Node #),(8,12.3), Node

(Null,(#,#),Null)):(int * real) BT
- val st = insert ((5, 22.3), it);
> val st = Node (Node (Null,(#, #),Node #), (8,12.3), Node

(Null,(#,#),Null)) : (int * real) BT
- preorder st;
> val it = [(8,12.3),(2,23.4),(7,11.2),(5,22.3),(9,16.6)] : (int * real) list
- inorder st;
> val it = [(2,23.4),(5,22.3),(7,11.2),(8,12.3),(9,16.6)] : (int * real) list
- postorder st;
> val it = [(5,22.3),(7,11.2),(2,23.4),(9,16.6),(8,12.3)] : (int * real) list

• Searching for a key in a binary search tree

If key is found, then return the key and value pair otherwise return ~1.0 instead of value.
Exceptional cases can also be handled by exceptions to be discussed later.

 - fun search (key, Null) = (key, ~1.0)

| search (key, Node (left, (k, v), right)) = if key = k
then (k, v) else if key > k then

search (key, right)
else search (key, left);

> val search = fn : int * (int * real) BT -> int * real
- search (3, st);
> val it = (3,~1.0) : int * real
- search (2, st);
> val it = (2,23.4) : int * real
- search (8, st);

 54

> val it = (8,12.3) : int * real

• Delete a node from a binary search tree

Deletion requires a function that deletes the smallest element from BST. Note that the smallest
element in a BST is the leftmost leaf-node (if it exists, otherwise it is the root) and returns the
(key, value) pair of the smallest element to enable tree reordering for deletion.

- fun delmin (Null) = (_, Null)
 | delmin (Node (Null, x, right)) = (x, right)

 | delmin (Node (left, x, right)) = let
val (z, L) = delmin (left)
in (z, Node (L, x, right)) end ;

> val delmin = fn : 'a BT -> 'a * 'a BT
- fun delete (k, Null) = Null

| delete (k, Node (left, (k1,v), right)) = if (k = k1)
then if left = Null then right
else if right = Null then left else

let val (z, R) = delmin (right) in Node (left, z , R) end
else if k < k1 then Node (delete (k, left), (k1,v), right)

else Node (left, (k1,v), delete (k, right));
> val delete = fn : int * (int * ''a) BT -> (int * ''a) BT

Functional Array

An array of type ‘a array is a data structure having contiguous memory locations each holding
the values of the type ‘a. These locations are numbered by indices 0, 1, …n-1, where n is the
length of the array. The possible operations on array are update and retrieve value at kth index.
The size of array is always fixed and access to array element is random in contrast to list where
the size is variable and access is sequential. The conventional programming languages support
array as a predefined data structure.

SML does not support array directly but we can implement it using binary tree. We call it
as a functional array that provides a mapping from index to value with an update operation that
creates a new array B as follows:

• B = update (A, k, value), such that B(k) = value and B(j) = A(j) , ∀ j ≠ k
• Array A continues to exist and additional array is created from it.

Implementation of Functional array in SML using height balanced binary tree

We can implement functional array using binary tree. If we can ensure that binary tree is height
balanced then the retrieval time will be of O(log2 n). The conventional array takes constant
amount of time for retrieval but in SML we can not implement conventional array. The best could
be that if we can store elements of an array in such a way that retrieval time is much lesser than
that of retrieving an element from a list. Assuming the previous datatype definition of a binary
tree, the elements of a functional array are stored in binary tree as follows:

• First index value of an array is the root of a binary tree.
• For any index k, the position in a binary tree is determined by starting from the root

and repeatedly dividing k by 2 until it is reduced to 1.
• Each time when remainder is 0, move to left sub tree else if it is 1, then move to right

sub tree

 55

The binary tree corresponding to an array of 10 elements is shown below.

1
0 1
2 3

0 1 0 1

4 6 5 7
0 0 0

8 10 9

For example, an element at index 8 is stored as follows:

8 4 2 1 Quotient (k div 2)
0 0 0 Remainder (k mod 2)

Node with index 8 will be stored / retrieved from root as left, left, left and node with index k = 9
is stored as follows from root is: right, left, left :

9 4 2 1 Quotient (k div 2)
1 0 0 Remainder (k mod 2)

Therefore, the path traversed in a binary tree to store or retrieve an element at index 8 and 9 is as
follows:

root

1

2

4

8 9

This method is used to store, update or retrieve the value corresponding to an index in a binary
tree. It is noted that the tree comes out to be a height balanced binary tree. Few functions to
manipulate functional array are given below:

• Create an array of size n with each index containing fixed value ‘v’

- fun create (0, _) = Null

| create(n, v) = if n=1 then update(Null,1,v)

 56

else update(create(n-1, v),n,v);
> val create = fn : int * 'a -> 'a BT
- val p = create(5,0);
> val p = Node (Node (Node #,0,Null),0,Node (Node #,0,Null)) : int BT

• Function for updating the value of a given index in an array

- fun update (Null, index, value) = if (index = 1) then
Node(Null,value,Null) else Null

| update (Node(left,data,right), index, value) = if (index = 1)
then Node(left, value,right) else
if index mod 2 = 0 then

Node(update(left, index div 2,value), data, right)
else Node(left, d, update(right, index div 2, value)) ;

> val update = fn : 'a BT * int * 'a -> 'a BT
- update(Null,1,23);
> val it = Node (Null,23,Null) : int BT
- update(it,2,45);
> val it = Node (Node (Null,45,Null),23,Null) : int BT
- update(it,3,22);
> val it = Node (Node (Null,45,Null),23,Node (Null,22,Null)) : int BT
- update(it,4,55);
> val it = Node (Node (Node #,45,Null),23, Node (Null,22,Null)) : int BT
- update(it,5,11);
> val it = Node (Node (Node #,45,Null),23,Node (Node #,22,Null)) : int BT
- update(it, 6,78);
> val it =Node(Node(Node#,45,Node #),23,Node (Node #,22,Null)): int BT
- update(it,7,33);
> val it = Node (Node (Node #, 45, Node #), 23 ,Node (Node #, 22,

Node #)) : int BT
- val arr = update(it,8,99);
> val arr = Node (Node (Node #,45,Node #),23,Node (Node #,22,

Node #)) : int BT
- preorder arr;
> val it = [23,45,55,99,78,22,11,33] : int list
- inorder arr;

 > val it = [99,55,45,78,23,11,22,33] : int list
- postorder arr;
> val it = [99,55,78,45,11,33,22,23] : int list

 - val arr1 = update(arr, 4,40); changing the value at 4th index
> val arr1 = Node (Node (Node #,45,Node #),23, Node

(Node #,22,Node #)): int BT
 - arr = arr1; array comparison for equality

> val it = false : bool

• Retrieving a corresponding value from a given index of an array

- fun retrieve (Null, _) = ~10000 exceptional case
| retrieve (index, Node(left, data, right)) = if index = 1 then

data else if index mod 2 = 0 then
retrieve (index div 2, left)
else retrieve (index div 2, right);

> val retrieve = fn : int * int BT -> int
- retrieve(2, arr);

 57

> val it = 45 : int
- retrieve(4, arr);
> val it = 55 : int
- retrieve(4, arr1);
> val it = 40 : int
- retrieve(9, arr);
> val it = ~10000 : int

• Delete a subtree index n and replace it by null.

- fun delete (n, Null) = []
 | delete (n, Node (left, data, right)) = if n = 1

then Null else if n mod 2 = 0 then
 Node(delete(n div 2, left), data, right)

 else Node (left, data, delete(n div 2, right));
> val delete = fn :int * 'a BT -> 'a BT

Exception Handling

Exceptions are datatypes of error values used to minimize explicit testing. Exceptions are raised
when the failures are discovered and appropriately handled elsewhere. General form of exception
declaration is: exception exception_name. Exception name is a new constructor of the built-in
type exn similar to value constructor in datatype declaration. Exception constructor can be used
in pattern or expression in the same way as value constructors are used. We use a convention that
exception_name should start with capital letter. Exception can also be a function.

- exception Fail;
> exception Fail = Fail : exn

 - exception Failure of string;
> exception Failure = fn : string -> exn
- exception Badvalues of int;
> exception Badvalues = fn : int -> exn

In SML, the exception declaration can declare one or more exception names and these can be
raised by a construct called raise to force a computation to terminate with an error signal..

Raising of an exception

The general form of exception raising is: raise exception_name. It creates an exception packet
containing a value of built-in type exn.

- exception Bad;
> exception Bad = Bad : exn

 - fun divide (x, y) = if y = 0 then raise Bad else x div y;
 > val divide = fn : int * int -> int

- divide (12,3);
> val it = 4 : int
- divide(34,0);
> uncaught exception Bad raised

 58

Let us define our own functions head and tail for getting head and tail of a given list. These
functions should take care of the situations when applied on empty list. For this purpose we
define exceptions and raise them suitably.

- exception Head;
> exception Head = Head : exn
- exception Tail;
> exception Tail = Tail : exn
- fun head (x::_) = x

 | head [] = raise Head;
> val head = fn : 'a list -> 'a
- head [2,3,4];
> val it = 2 : int
- head [];
> uncaught exception Head raised

 - hd []; system defined head function
 > uncaught exception Empty raised system defined exception name

- fun tail (_::xs)= xs
 | tail [] = raise Tail;

> val head = fn : 'a list -> 'a list
- tail [2,3,4,5];
> val it = [3,4,5] : int list
- tail [];
> uncaught exception Tail raised

 - tl []; system defined function for tail
 > uncaught exception Empty raised system defined exception name

Exception handling

An exception handler tests whether the result of an expression is an exception packet or not. The
exception handler is always placed after an expression. The general form is:
 exp handle <pat1> => exp1
 | <pat2> => exp2
 | <patn> => expn
An exception handler catches a raised exception if one of the pattern matches the value of an
exception and then corresponding expression is evaluated under this binding. Hence if exp returns
a normal value, then the handler simply passes this value on. If exp returns an exception packet’s
content (because of raising exception) then its contents are matched against the pattern. If patk is
the first pattern to match then the result is the value of an expression expk (1≤ k ≤ n). It should be
noted that exp, exp1 ,… and expn must be of the same type. If we define our own exception
names then declare them before their use otherwise built in exceptions can also be directly raised.
The handlers are provided in the functions which use other functions directly or indirectly having
exception raised in them.

- fun len x = 1 + len (tail x) handle Tail =>0;
 > val len = fn : 'a list -> int
 - len [2,3,4];

> val it = 3 : int
- len [];
> val it = 0 : int

 - fun head_list x = head x handle Hd=>0;
 > val head_list = fn : int list -> int

 59

 - head_list [3,4,5];
 > val it = 3 : int

 - head_list [];
> val it = 0 : int
- fun tail_list x = tail x handle Tail =>[0];
> val tail_list = fn : int list -> int list
- tail_list [];
> val it = [0] : int list

• Function for finding nth element of the list assuming first element is stored at 0th index

- exception Subscript;
> exception Subscript = Subscript :exn
- fun nth (x::_, 0) = x

 | nth (x::xs, n) = if n>0 then nth(xs, n-1)else raise Subscript
 | nth _ = raise Subscript;
> val nth = fn : 'a list * int -> 'a
- nth ([2,3,4,5],0);
> val it = 2 : int
- nth ([1,3,5,6], 5);
> uncaught exception Subscript

• Handling of raised exception

- fun findnth (l,n)=nth (l,n) handle Subscript =>0;
> val findnth = fn : int list * int -> int
- findnth ([34,56,12,33],6);
> val it = 0 : int
- findnth ([34,56,12,33],2);
> val it = 12 : int

• Function for computing the sum of a list’s elements at position n, f(n), f(f(n), …. The sequence

of integer terminates at the first value out of range using exception.

- fun f (n) = n-2;
 > val f = fn : int -> int

- fun chain (x, n)=nth(x,n) + chain(x, f(n)) handle Subscript => 0;
> val chain = fn : int list * int -> int
- chain ([23,45,65,12],2);
> val it = 88 : int
- chain ([23,45,67],1);
> val it = 45 : int

• Check whether a given positive integer is a square. Display false if number is negative

integer

- exception Neg;
 > exception Neg = Neg : exn

- fun sq x:int = x*x;
 > val sq = fn : int -> int

 - fun issq i = if i > 0 then sq (round (Math.sqrt (real i))) = i
else raise Neg;

> val issq = fn : int -> bool
 - issq ~45; exception is raised in this function

 60

> uncaught exception Neg
- fun is_sq i = issq i handle Neg => false;
> val is_sq = fn : int -> bool
- is_sq 64;
> val it = true : bool
- is_sq 32;
> val it = false : bool

 - is_sq ~64; exception is handled in this function
> val it = false : bool

Benefits of the exception mechanism

• We are forced to consider the exceptional cases otherwise we will get an uncaught exception

at run time.
• We can separate the special cases from the normal case in the code rather than putting

explicit checks.
• Another typical use of exception is to implement backtracking which requires exhaustive

search of a state space.

Backtracking using Exception Mechanism

Let us consider the following example which implements backtracking. Exceptions are raised and
handled in the same function. When exception is raised, it backtracks to previous solution with
the help of handle exception. The function convert converts a given amount in number of coins
starting from the highest to the lowest in the best possible way. The list of coins is passed as an
argument along with the amount.

- exception Invalid of int;
> exception Invalid = fn : int -> exn
- fun convert (xs,0) =[]

 | convert ([], amount) = raise Invalid (1)
| convert (x::xs, amount) =

if amount < 0 then raise Invalid (2) else
if x > amount then convert (xs, amount)

else x::convert(c::xs,(amount-x)))
 handle Invalid (1) => convert (xs, amount);

for backtracking
> val convert = fn : int list * int -> int list
- convert([5,3,2],56);
> val it = [5,5,5,5,5,5,5,5,5,5,3,3] : int list
- convert([5],~23);
> uncaught exception Invalid raised
- convert([],23);
 > uncaught exception Invalid raised
- convert([5,3],4);
> uncaught exception Invalid raised

This function raises exception when amount is negative. It is handled in another function which
makes use of a function convert.

 61

- fun convert1 ([], amount) = []
 | convert1 (list,amount) = convert(list,amount)
 handle Invalid (2) => [];

> val convert1 = fn : int list * int -> int list
- convert1 ([5,3,2],56);
> val it = [5,5,5,5,5,5,5,5,5,5,3,3] : int list
- convert1([5],~23);
> val it = [] : int list
- convert1([],23);
> val it = [] : int list
- convert1([5,3],4);

 > uncaught exception Invalid raised

The function convert1 raises exception when the amount can't be expressed by any combination
of coins. This situation can further be handled in yet another function which calls convert1 and
handles the exception raised in convert1.

- fun convert2 ([], amount) = []
 | convert2 (list, amount) = convert1(list, amount)

handle Invalid (1) => [];
> val convert2 = fn : int list * int -> int list
- convert2 ([5,3,2],56);
> val it = [5,5,5,5,5,5,5,5,5,5,3,3] : int list

 - convert2 ([5],~23);
> val it = [] : int list
- convert2([],23);
> val it = [] : int list
- convert2([5,3],4);
> val it = [] : int list

Structure Declaration

Declarations (value, function, type, datatype, etc.) can be grouped to form a structure by
enclosing them in the keywords struct and end. The general form of structure declaration is:
 structure struct_name = structure_expression
where,
 structure_expression = struct
 declarations
 end

The result of structure_expression is be bound to struct_name. The structure declaration binds the
sturct_name to two environments, one a type environment containing bindings for the type /
datatype constructors and other a value environment containing val, fun declarations inside the
structure expression. All identifiers are available for the user via composite identifiers such as
struct_name . val_name.

Definition: Queue is a special type of list in which addition of an element is done at one
end called rear and deletion at another end called front.

We use pre-defined data type list for implementing queue.

structure Queue1 = struct

 62

type 'a queue = 'a list;
exception Qerror;
val emptyq = [];
fun nullq ([]) = true

| nullq (_::_) = false ;
fun addq (q, x) = q @ [x];
fun delq (x::q) = q

| delq [] = raise Qerror ;
fun headq [] = raise Qerror

| headq (x::q) = x;
end;

We notice that a function for adding an element in the queue takes time linear to the length of the
queue whereas both delq and headq take constant amount of time. In queue, ideally all the
operations should be done in constant amount of time but since queue is implemented using
predefined datatype list adding an element at the rear end can not be achieved in constant time. Of
course one can think of implementing queues using altogether different datatype shown later.

The above structure can be stored in a file named (say) program1 using some editor and is
opened at SML prompt by use primitive as follows:

- use "program1";
> [opening program1]

structure Queue1 :
 sig

 type 'a queue = 'a list
exception Qerror
val addq : 'a list * 'a -> 'a list

 val delq : 'a list -> 'a list
 val emptyq : 'a list
 val headq : 'a list -> 'a

 val nullq : 'a list -> bool
 end

val it = () : unit
- Queue1.nullq [];
> val it = true : bool
- Queue1.nullq [2,3,4];
> val it = false : bool
- Queue1.delq [];

 > uncaught exception Qerror raised
- Queue1.delq [2,3,4];
> val it = [3,4] : int list

 - Queue1.addq ([3,4],9);
> val it = [3,4,9] : int list

If we open a structure at SML by using open struct_name, then all the identifiers are used without
prefixing structure name. Let us open earlier defined structure Queue1.

- open Queue1;
> opening Queue1

 type 'a queue = 'a list
 exception Qerror

 val addq : 'a list * 'a -> 'a list
 val delq : 'a list -> 'a list

 63

val emptyq : 'a list
val headq : 'a list -> 'a
val nullq : 'a list -> bool

- delq [4,5,6,7];
> val it = [5,6,7] : int list

 - addq([1,2,3],6);
> val it = [1,2,3,6] : int list

Let us define another structure containing a new datatype defining queue. Here addq will take a
constant amount of time but both delq and headq are linear in the length of the queue.

structure Queue2 = struct
datatype 'a queue = emptyq | addq of 'a queue * 'a;

 exception Qerror;
fun nullq (emptyq) = true

| nullq (addq (_,_)) = false ;
fun delq (emptyq) = raise Qerror

| delq (addq (emptyq, x)) = emptyq
| delq (addq (q, x)) = addq (delq (q), x) ;

fun headq (emptyq) = raise Qerror
| headq (addq (emptyq, x)) = x
| headq (addq (q, x)) = headq (q) ;

end;

Since both the structures defined above are not efficient, we define yet another structure. Most
of the time, the overall cost of adding and deleting an element is less than linear time in this
representation. Here a peculiar representation of queues has been used. The function "normal" is
special to this particular representation and is not visible to the user of the queue. The concept of
information hiding is used.

structure Queue3 = struct
datatype 'a queue = Queue of ('a list * 'a list);
val emptyq = Queue ([], []);
fun reverse (L) = let fun rev ([], M) = M

| rev (x::xs, M) = rev (xs, x::M) ;
in rev (L, []) end ;

fun normal (Queue ([], tails)) = Queue (reverse (tails), [])
| normal (q) = q ;

fun addq (Queue (heads, tails), x) =
normal (Queue (heads, x::tails));

exception Qerror;
fun delq (Queue (x::heads, tails)) =

normal (Queue (heads, tails))
| delq (Queue ([], _)) = raise Qerror ;

fun headq (Queue (x::heads, tails)) = x
| headq (Queue ([], _)) = raise Qerror ;

end;

Let us store both the structures in a file named program2. File can be opened

- use "program2";
> [opening program2]

structure Queue2 :
sig

 64

 datatype 'a queue = addq of 'a queue * 'a | emptyq
 exception Qerror

 val delq : 'a queue -> 'a queue
 val headq : 'a queue -> 'a
 val nullq : 'a queue -> bool

 end
 structure Queue3 :

 sig
 datatype 'a queue = Queue of 'a list * 'a list

 exception Qerror
 val addq : 'a queue * 'a -> 'a queue
 val delq : 'a queue -> 'a queue
 val emptyq : 'a queue
 val headq : 'a queue -> 'a
 val normal : 'a queue -> 'a queue
 val reverse : 'a list -> 'a list

 end
val it = () : unit

- Queue2.addq(Queue2.emptyq,3);
> val it = addq (emptyq,3) : int Queue2.queue
- Queue2.addq(it,5);
> val it = addq (addq (emptyq,3),5) : int Queue2.queue
- Queue2.addq(it,2);
> val it = addq (addq (addq #,5),2) : int Queue2.queue

 - val q = it; earlier constructed queue is assigned to q
> val q = addq (addq (addq #,5),2) : int Queue2.queue
- Queue2.delq (q);
> val it = addq (addq (emptyq,5),2) : intQueue2.queue

 - Queue2.headq q;
> val it = 3 : int
- open Queue2;
> opening Queue2

 datatype 'a queue = addq of 'a queue * 'a | emptyq
 exception Qerror

 val delq : 'a queue -> 'a queue
 val headq : 'a queue -> 'a
 val nullq : 'a queue -> bool

- delq q;
> val it = addq (addq (emptyq,5),2) : int queue
- open Queue3;
> opening Queue3

 datatype 'a queue = Queue of 'a list * 'a list
 exception Qerror

 val addq : 'a queue * 'a -> 'a queue
 val delq : 'a queue -> 'a queue

 val emptyq : 'a queue
 val headq : 'a queue -> 'a
 val normal : 'a queue -> 'a queue

 val reverse : 'a list -> 'a list
- emptyq;
> val it = Queue ([],[]) : 'a queue
- addq(it, 3);
> val it = Queue ([3],[]) : int queue
- addq(it, 4);
> val it = Queue ([3],[4]) : int queue

 65

- addq(it,7);
 > val it = Queue ([3],[7,4]) : int queue

 - addq(it,9);
> val it = Queue ([3],[9,7,4]) : int queue
- val p = it;
> val p = Queue ([3],[9,7,4]) : int queue
- headq p;
> val it = 3 : int
- delq p;
> val it = Queue ([4,7,9],[]) : int queue
- delq it;
> val it = Queue ([7,9],[]) : int queue
- addq (it,1);
> val it = Queue ([7,9],[1]) : int queue
- addq(it,10);
> val it = Queue ([7,9],[10,1]) : int queue
- addq(it, 12);
> val it = Queue ([7,9],[12,10,1]) : int queue
> val p = Queue ([7,9],[12,10,1]) : int queue
- delq p;
> val it = Queue ([9],[12,10,1]) : int queue

 - delq it;
> val it = Queue ([1,10,12],[]) : int queue
- delq it;
> val it = Queue ([10,12],[]) : int queue
- delq it;
> val it = Queue ([12],[]) : int queue
- delq it;
> val it = Queue ([],[]) : int queue
- delq it;
> uncaught exception Qerror raised

Functions & variables can have the same names in different structures as they are accessed with
their structure name.

Signature

A signature is used to give user's view of a structure. In SML, the abstraction is captured in
signature by specifying the type constructors and value declarations. General form of s signature
declaration is:

signature sig_name = signature_expression.
signature_expression = sig specifications end

A signature should contain all those specifications of declaration which user wants to know.
Signature is used along with structure. A module is constructed by matching a signature with a
structure. The matching checks that each sig_name is declared in the structure. The struct_name
is an instance of sig_name written as struct_name . sig_name . In this way the user's view of
structures in SML is determined by the signature. Thus all those functions definitions, type
constructors, value definitions etc., which are not relevant to user and are local to structures are
not included in the signature. The user is only allowed to use whatever is shown in the signature
expression. The structure declaration must contain a declaration for each identifier specified in

 66

the signature. . The structure and signature names can be same also. Let us consider an example
of constructing signature and its use in structure for manipulating stack.

Definition: Stack is a special type of list where addition or deletion of an element is done
at only one end. Other end is sealed. The various operations on stack are: push (adding an
element at the top), pop (deleting a top element), top (getting top element).

signature Stack =
sig
type 'a stack
exception Serror
val null : 'a stack
val null_stack : 'a stack -> bool
val push: 'a stack * 'a -> 'a stack
val pop: 'a stack -> 'a stack
val top : 'a stack -> 'a
end;

structure Stack : Stack = struct
type 'a stack = 'a list;
exception Serror;
val null = [];
fun null_stack ([]) = true

| null_stack (_::_) = false ;
fun push (x, s) = s @ [x];
fun del (x::s) = s

| del [] = raise Serror ;
fun pop (s) = del (s) handle Serror => [];
fun top [] = raise Serror

| top (x::s) = x;
end;

Store signature and structure in a file named "sprogram". At SML prompt, if we type use
"sprogram", signature is opened.

> [opening sprogram]
 signature Stack =

sig
 type 'a stack

 exception Serror
 val null_stack : 'a stack -> bool
 val push : 'a * 'a stack -> 'a stack
 val pop : 'a stack -> 'a stack

 val top : 'a stack -> 'a
 end

 structure Stack : Stack
- open Stack;
> opening Stack

type 'a stack = 'a list
exception Serror
val null : 'a stack
val null_stack : 'a stack -> bool
val push : 'a * 'a stack -> 'a stack
val pop : 'a stack -> 'a stack
val top : 'a stack -> 'a

 67

- push(12, null);
> val it = [12] : int stack
- push(43,it);
> val it = [12,43] : int stack
- push(10,it);
> val it = [12,43,10] : int stack
- val s = pop(it);
> val s = [43,10] : int stack
- pop(s);
> val it = [10] : int stack
- top(it);
> val it = 10 : int
- null_stack(s);
> val it = false : bool

There are two ways to match signatures and structures.

Transparent signature matching

Matching defined in above example is of transparent signature matching type. It gives weak
support for hiding of the details of the structure. From the system's response as val s = [43,10] :
int stack, user gets information about the structure of stack (implemented as list) even though it is
not specified in the signature. We can hide even such details using the following type of
signature.

Opaque signature matching:

This type of signature matching is more strict. We can hide the actual definition of stack by the
user defined in the structure. The following declaration is to be made:
 structure struct_name :> sig_name = structure_expression
Consider the previous example of stack. The signature definition remains the same. The structure
definition will include opaque signature matching as follows:
 structure Stack :> Stack = struct (* entire body as above *) end;
 Given below is the interactive session using stack structure.

- Stack.push(12, Stack.null);
> val it = - : int Stack.stack
- Stack.push(13,it);
> val it = - : int Stack.stack
- val s = Stack.push(54,it);
> val s = - : int Stack.stack
- Stack.top(s);
> val it = 12 : int
- Stack.pop(s);
> val it = - : int Stack.stack

Here we notice that actual implementation structure of stack is hidden. If structure Stack is
opened as "open Stack", then identifiers available for use are not to be prefixed by structure
name.

 68

Eager and Lazy Evaluation

When a program executes, computation generally proceed via different evaluation orders,
according to which one of many different evaluation strategies is being pursued. The evaluation
strategies, are differentiated according to the method of passing arguments to functions. Mainly,
parameter passing methods are call by value, call by reference, call by name and call by need a
variance of call by name.

Call by value is a computation rule of programming language where the arguments are
fully evaluated before outer function applications are evaluated. Therefore, corresponding to the
arguments of functions, only values are passed. That is why this strategy is called call-by-value. It
is used in imperative languages such as Java, C, Pascal and functional programming languages
such as SML, Scheme etc.

In call by reference the address (reference / pointer) of actual arguments are passed to
functions instead of the values. This computation rule is available in all imperative programming
languages. Arrays are passed by reference in all imperative languages. In call by name the
arguments are passed unevaluated and are evaluated every time when needed in the body of the
function. If the argument is not needed, then it will not be evaluated at all.

Call by need is an optimization of call-by-name such that an expression corresponding to
an argument is evaluated at most once, if at all required. That means once it is evaluated, then the
result is remembered and the next access to the corresponding formal parameter uses this value.
Historically, all imperative languages employ call by value, and call by reference parameter
passing mechanism and many provide call-by-name facilities as well.

Evaluation Strategies

Let us illustrate different evaluation strategies using the following SML functions

 - fun constant (x) = 1;
 > val constant = fn : 'a -> int

 - fun cube (x : int) = x * x * x;
 > val cube = fn : int -> int

Call by value: (value of argument of a function is evaluated)
Case1: Call to constant function

 - val p = constant (cube (cube (cube (2))));
 > val p = 1

Evaluation of the function is done as follows:
 p = constant (cube (cube (cube (2))))
 = constant (cube (cube (2*2*2))) = constant (cube (cube (8)))
 = constant (cube (8*8*8)) = constant (cube (512))
 = constant (512*512*512) = constant (134217728)
 = 1
Case2: Call to cube function.
 - val q = cube (cube (cube (2)));
 > val q = 134217728 : int

Evaluation:

 69

 q = cube (cube (cube (2)))
 = cube (cube (2*2*2)) = cube (cube (8))
 = cube (8*8*8) = cube (512)
 = 512*512*512 = 134217728

We notice that the amount of time required in both the cases is same, whereas in case1,
we have done calculation in vain as the result is independent of what we have calculated. Let us
see other mechanisms for evaluation which are not available in SML

Call by name: (outermost reduction order).
Case1: Call to constant function
 - val p = constant (cube (cube (cube (2))));
 > val p = 1 at one step
Case2: Call to cube function
 - val q = cube (cube (cube (2)));
 > val q = 134217728 : int
Evaluation:
 q = cube (cube (cube (2))) outermost cube is evaluated
 = cube (cube (2)) * cube (cube (2)) * cube (cube (2))
 = cube (2) * cube (2) * cube (2) * cube (cube (2)) * cube (cube (2))
 = (2*2*2) * cube (2) * cube (2) * cube (cube (2)) * cube (cube (2))
 = 8 * (2*2*2) * cube (2) * cube (cube (2)) * cube (cube (2))
 = 64 * (2*2*2) * cube (cube (2)) * cube (cube (2))

Here, the result of function in case1 is instant, whereas in case2, lots of computations are
repeated and time required in this case is much higher than as compared to call by value (eager
evaluation) method. Best of both the methods are combined in call by need (lazy evaluation). Let
us see the way call by need handles such computations.

Call by need: (similar to call by name except that the repetitions are avoided)
Case1:
 - val p = constant (cube (cube (cube (2))));
 > val p = 1 at one step
Case2:
 - val q = cube (cube (cube (2)));
 > val q = 134217728 : int
Evaluation:
 q = cube (cube (cube (2)))
 Let, x = cube (cube (2)) and y = cube (2) = 2 * 2 * 2 = 8

Then, x = cube (y) = y * y * y = 8 * 8 * 8 = 512
 Finally, q = cube (x) = x * x * x = 512 * 512 * 512 = 134217728

There are broadly two categories of evaluation strategies in functional languages viz., eager
evaluation and lazy evaluation.

Eager Evaluation Strategy

Any evaluation strategy where evaluation of all function arguments is done before their values are
required. Call-by-value is a typical example of such evaluation where the values of all arguments
are evaluated and are passed. In Functional languages, this type of evaluation strategy is called
eager evaluation. Eager evaluation does not specify exactly when argument evaluation takes
place. The reduction of the innermost redex forces evaluation of arguments before applications

 70

are performed. It is also called applicative reduction order. The term eager evaluation was
invented by Carl Hewitt and Henry Baker. Eager evaluation is used to implement strict functions.
SML, Scheme have eager evaluation method.

Definition: A function is said to be strict if the result is undefined when it is applied to
undefined argument(s) and said to be non-strict otherwise.

Lazy Evaluation Strategy

Lazy evaluation is one where evaluation of an argument only starts when it is required first time.
This evaluation strategy combines normal order evaluation with updating. Call by need uses lazy
evaluation strategy.

Definition: Normal order evaluation means that an expression is evaluated only when its
value is needed in order for the program to return (the next part of) its result. Call by name
uses normal order evaluation method.

Definition: Updating means that if an expression's value is needed more than once (i.e. it is
shared), the result of the first evaluation is remembered and subsequent requests for it will
return the remembered value immediately without further evaluation.

Lazy evaluation is one evaluation strategy used to implement non-strict functions.
Choosing a particular evaluation strategy is not trivial. The implications are wide-ranging and, in
some cases, quite subtle. It affects execution efficiency, programming style, interaction, etc. Lazy
evaluation is a very desirable property of a functional language. This means for instance that an
expression being a function argument is not evaluated at the point of call (as is usually the case
with traditional languages and non-lazy functional ones). Instead the expression is evaluated
when its value is needed, if at all. Lazy evaluation makes it possible to have infinite lists, infinite
trees, etc, where the evaluation is done incrementally on demand. Lazy evaluation is must for
interactive input/output in a pure functional language (explained later).

Functional languages can be eager, lazy or a mix of the two. Functional language SML
uses eager evaluation whereas languages like Haskell and Miranda use lazy evaluation scheme.
Functional programming languages which employs lazy evaluation strategies are called lazy
languages otherwise non lazy languages.

In lazy languages, function arguments may be infinite data structures (especially lists),
the components of which are evaluated as needed. Lazy evaluation can lead to a less constrained
programming style. It helps in delay of unnecessary computation (explained later). Full Laziness
is obtained by further optimizing a lazy evaluation by transforming a program by evaluating all
those sub expressions in a function body which do not depend on the function's arguments.
 Generally, in non lazy languages, it is essential that conditional expressions have special
form whose evaluation does not require full evaluation. Exceptions to the rule of strict (eager)
evaluation for the conditional expression if E then E1 else E2 are given below. Let us assume that
the symbol ϖ denotes undefined expression.
 Conditional expression Evaluated value
 If E = true then E1 else ϖ E1
 If E = false then ϖ else E2 E2
 If E = ϖ then E1 else E2 ϖ

 71

If non lazy languages do not provide lazy evaluation of conditional expression, then it could be
simulated (explained later). In lazy functional languages, conditional expressions can be treated
as ordinary functions such as
 - fun conditional (true, x, y) = x
 | conditional (false, x, y) = y
 > val conditional = fn : bool * 'a * 'a -> 'a

The evaluation of a function call conditional (E , E1, E2) has the same behaviour as
if E then E1 else E2 under lazy evaluation strategy.

It is evident that common style of programming is not possible for both lazy and eager
evaluations because of subtle differences. Some commonality can be achieved by
transformational approach to program construction.

Lazy Evaluation in SML

The evaluation rule in SML is eager (strict) evaluation, while most of pure functional languages
adopt lazy evaluation. SML provides lazy evaluation of conditional expressions and infix boolean
operators.

Conditional expression

As a special case, SML evaluates conditional expression using lazy strategy. Consider
if_then_else conditional expression if E then E1 else E2 that is interpreted as follows:

• If E is true then E1 is evaluated and E2 is not.
• If E is false then E2 is evaluated and E1 is not.

Examples:
 - if true then 4 else (23 div 0) ;
 > val it = 4 : int undefined

- if false then (4 div 0) else 5;
 > val it = 5 : int

Boolean Operators

In SML, boolean infix operators andalso, orelse are not functions but are conditional expressions,
so are evaluated using lazy strategy. All other SML infixes are really functions. Evaluation of E1
andalso E2 amounts to basically evaluating if E1 then E2 else false, where E1 and E2 are
expressions. So an expression E2 is evaluated if required or needed. Similarly E1 orelse E2 is
equivalent to if E1 then true else E2. In SML infix operator andalso is defined as follows:
 infix andalso
 fun true andalso b = b
 | false andalso b = false
 b is not evaluated
 - false andalso 4 > (6 div 0);
 > val it = false : bool undefined
 - true orelse 4 > (6 div 0);
 > val it = true : bool

Delaying Evaluation of an expression

 72

We know that function bodies are not evaluated until the functions are applied. This means that
the evaluation of any expression can also be delayed by embedding the expression within the
body of a function whose argument is dummy (unused value). Normally, empty tuple () : unit is
used for this purpose.
 - fun delay () = Exp

 > val delay = fn : unit -> 'a

Here 'a is the type of an expression Exp. An application of delay to an empty tuple will require
an evaluation of Exp.

Simulation of Normal Order Evaluation

It is possible to simulate lazy evaluation within an eager languages by making use of higher-order
functions which means that the functions are passed in place of simple arguments. But the
resulting programs are more difficult to write, read and maintain. Delay mechanism helps
simulating normal order evaluation (call by name) in non lazy languages. The function compute
defined below have arguments of the type 'a list. Here the lists are evaluated at the time of
applying compute function as eager evaluation is used in SML.

 - fun compute (x, y) = if null (x) then [] else hd(x) :: y ;
 > val compute = fn : 'a list * 'a list -> 'a list
 - val p = compute([3,4,5],[6,7,8,9]);
 > val p = [3,6,7,8,9] : int list
 - val q = compute ([], [1,2,3,4,5]);
 > val q = [] : int list

If we want to delay the evaluation of lists at the time of applying function, we can modify above
function as follows:

 - fun delayf (fun1, fun2) = if null (fun1()) then [] else hd(fun1()):: fun2();
 > val delayf = fn : (unit -> 'a list) * (unit -> 'a list) -> 'a list

The functions compute and delayf are similar except that the arguments of function compute are
of the type 'a list and that of delayf are functions of the type unit -> 'a list. Calls to both the
functions are:

• compute(a, b)
• delayf ((fn() ⇒ a), (fn() ⇒ b)).

They produce the same result but the evaluation of a and b are delayed until the arguments to
delayf are applied. In particular if the value of a is null then b is not evaluated. Few calls to both
the functions are given below:
 - val x =[3,4,5];
 > val x = [3,4,5] : int list
 - val y = [6,7,8,9];
 > val y = [6,7,8,9] : int list
 - fun fun1() = x;
 > val fun1 = fn : unit -> 'a list
 - fun fun2() = y;
 > val fun2 = fn : unit -> 'a list
The following segments of SML statements are equivalent.

 73

- val p = delayf ((fn() =>x), (fn() =>y));
> val p = [3,6,7,8,9] : int list
- val q = delayf ((fn() =>y), (fn() =>p));
> val q = [6,3,6,7,8,9] : int list
- val r = delayf ((fn () => []), (fn () => q));
> val r = [] : int list

- val p = compute (x, y);
> val p = [3,6,7,8,9] : int list
- val q = compute (y, p);
> val q = [6,3,6,7,8,9] : int list
- val r = compute([], q);
> val r = [] : int list

Therefore, the functions as arguments to other functions delay evaluation until the

function argument is applied. If function argument is applied more than once then in this kind of
simulation, function argument is evaluated as many times as it is applied. This is basically a
simulation of call by name and not call by need (lazy evaluation). If we want to avoid repetition
of evaluation of function arguments, then this can be achieved by using local definition (let in
SML) to compute the value at the time of first application and then use that local variable when
ever it is required. Consider the following function.
Non lazy version:
 - fun comp (x, y) = if null(x) then [] else y @ y @y;
 > val comp = fn : 'a list * 'b list -> 'b list
Simulated version:
 - fun delay1 (fun1,fun2) = if null(fun1()) then []
 else fun2() @ fun2() @ fun2();
 > val delay1 = fn : (unit -> 'a list) * (unit -> 'b list) -> 'b list

Here if fun1() is not null then fun2() is evaluated thrice. To avoid this repetition, let us rewrite
another version of the same function.
Lazy version:
 - fun delay_lazy (fun1,fun2) = if null(fun1()) then []
 else let val temp = fun2 () in temp @ temp @ temp end;
 > val delay_lazy = fn : (unit -> 'a list) * (unit -> 'b list) -> 'b list

The function, delay_lazy simulates the lazy evaluation strategy.

Eagerly evaluated conditional expression in non lazy languages could also be easily simulated by
using delay mechanism as follows:

 - fun cond (x, y, z) = if x then y() else z();
 > val cond = fn : bool * (unit -> 'a) * (unit -> 'a) -> 'a
 - val n = cond (true, (fn() => 4), (fn() => (34 div 0))) ;
 > val n = 4 : int
 undefined
It is evident that the second argument (undefined) of application of function cond has not been
evaluated. The effect is same as that of lazy evaluation and the function is behaving as non strict

 74

function. The evaluation has been delayed by using function as an argument. Similarly, the first
argument is not evaluated in the following application of cond in the following case.
 - val n = cond (false, (fn() => (4 div 0)), (fn() => 34));
 > val n = 34 : int
 undefined

Advantages of Lazy evaluation

There are numerous advantages as explained below. The functions are written in SML for
illustration.

• Avoids unnecessary computation

Lazy languages avoid unnecessary computations. If long computations are not needed, they will
not be done in lazy evaluation environment.Let us consider a case of lists equality. If we
compute an equality of two long lists with different first items, then their tails are not evaluated in
lazy languages.
 i. Comparing two lists:
 - infix equal;
 > infix equal
 - fun ([] equal []) = true
 | ((a::x) equal (b::y))= (a = b) andalso (x equal y)
 | ((a::x) equal []) = false
 | ([] equal (b::y)) = false;

 > val equal = fn : 'a list * 'a list -> bool
In strict language such as SML, tails are also evaluated even if a ≠ b because equal is strict
function and requires both the arguments to be evaluated before executing its body.

ii. Comparing two binary trees for preorder sequence equality.

Here we make use of equality function defined for list.
- datatype 'a BT = Null | Node of ‘a BT * ‘a * 'a BT;
> datatype 'a BT = Null | Node of ‘a BT * ‘a * 'a BT
- fun preorder Null = []

| preorder (Node (left, data, right)) =
[data] @ preorder left @ preorder right;

> val preorder = fn : 'a BT -> 'a list {list equality}
 - fun tequality(t1, t2) = preorder (t1) equal preorder (t2);
 > val tequality = fn : ''a btree * ''a btree -> bool

- val t = Node(Node (Node (Null, 3, Null), 2, Null), 1,
Node(Node(Null,5, Null), 4, Node(Null, 6, Null)));

> val t = Node(Node (Node #, 2, Null), 1, Node (Node #,4,Node #)) : int BT
- val t1 = Node(Node (Null, 2, Null),1, Node(Node(Null,4, Null),3,

Node(Node(Null,6,Null), 5, Null)));
> val t1= Node(Node (Node #, 2, Null), 1, Node (Node #,3,Node #)) : int BT

 - val x = tequality (t, t1);
 > val x = true : bool

 - tequality (Node(Null, 6, Null), Node (Node(Null, 4, Null), 2, Null))
 > val it = false : bool

Evaluation:
tequality (Node(Null, 6, Null), Node (Node(Null, 4, Null), 2, Null))

= preorder (Node(Null, 6, Null)) equal preorder (Node (Node(Null, 4, Null), 2, Null))

 75

= [6] @ preorder(Null) @ preorder(Null)
 equal
 [2] @ preorder(Node (Node(Null, 4, Null)) @ preorder(Null)

= (6:: [] @ preorder(Null) @ preorder(Null)
 equal

 (2 :: [] @ preorder(Node (Node(Null, 4, Null)) @ preorder(Null)
= (6 = 2) andalso ([] @ preorder(Null) @ preorder(Null))

 equal
 ([] @ preorder(Node (Node(Null, 4, Null)) @ preorder(Null)

 = false andalso equal
= false

not evaluated

During lazy evaluation, calls to functions moves back and forth to give rise co-routine like
behaviour whereby each function is driven by request for some output from another function
requiring some input. Therefore, the functions call each other and returns values as and when
required. For example, in tree equality, if first value of both the trees in preorder sequence are
equal then second element of first tree is computed followed by second element of second tree
and so on otherwise false is returned. So at no point in time both the lists are computed
completely thus avoiding redundant computation.

• Avoids non termination

If a function terminates via any reduction order, then the result will be the same using lazy
evaluation.
i. The functions which are non terminating in non lazy languages can terminate in lazy

languages.
For example, define a function for computing factorial as follows:
 - fun conditional (x, y, z) = if x then y else z;
 > conditional = fn : bool * 'a * 'a -> 'a
 - fun fact n = conditional (n = 0, 1, n * fact(n-1));
 > val fact = fn : int -> int

Eager evaluation:
The function fact is non terminating in non lazy (eager) languages. If we call fact(0), it goes into
non termination as the arguments of function conditional gets evaluated before its body is
executed.
 - val x = fact (0);
 Non terminating
 - val y = fact (2);

Examples:
 i. fact (0) = conditional (true, 1, 0 * fact(-1)) non termination

ii. y = fact(2)
 = conditional(false, 1, 2 * fact(1))
 = conditional (false,1, 2 * conditional (false, 1, 1 * fact(0)))

Because of fact (0) in the argument of conditional it goes into non termination as explained
above.

Lazy evaluation:

 76

 - val x = fact (0);
 > val x = 1 : int
 - val x = fact (4);
 > val y = 24 : int

It gives result as 1 for fact(0) because 0 * fact(-1) will not be evaluated at all.

As already mentioned earlier, lazy evaluation can be simulated to some extend in eager
languages. The same function fact is rewritten using delay mechanism for eager languages. Of
course the function becomes difficult to be understood. We make use of function cond that
simulated lazy evaluation.
 - fun fact n = cond (n = 0, (fn() => 1), (fn() => n* fact (n-1)));

> val fact = fn : int -> int
- fact 0;
> val it = 1 : int
- fact 4;

 > val it = 24 : int

ii. Define a function to obtain first n elements of an infinite list generated.

Let us write a function named gen that generates an infinite list of integers in increasing order
starting from some initial value as follows:

 - fun gen(n) = n::gen(n+1);
 > val gen = fn : int -> int list
Now we will use gen function to obtain first n elements as follows:
 - fun get (1, x::xs) = [x]
 | get (n, []) = [0]
 | get (n, x::xs) = x:: get(n-1, xs);

 > val get = fn : int * int list -> int list

Eager evaluation:
 - val x = get (3, gen(1)); non termination
Evaluation:
 x = get (3, gen(1)) = get(3, 1 :: gen(2))
 = get(3, 1 :: 2 :: gen(3)) = get(3, 1 :: 2 :: 3 :: gen(4))

It is non terminating because of infinite list as an argument of function get. The argument is to be
evaluated before executing the body of get.

Lazy evaluation:
 - val x = get (3, gen(1));

 > val x = [1,2,3]

It gives a list of first 3 elements from infinite list generated by function gen because the elements
in a list are only evaluated when required by another function.
Evaluation:
 x = get(3, gen(1)) = get(3, 1 :: gen(2))
 = 1 :: get(2, gen(2)) = 1 :: get(2, 2::gen(3))
 = 1 :: 2 :: get(1, gen(3)) = 1 :: 2 :: get(1, 3::gen(4))

 77

 = 1 :: 2 :: [3] = [1,2,3]

iii. Consider another problem of generating infinite sequence of numbers in increasing order

using the following the following formula.
 Number = 2n * 3m , ∀ n, m ≥ 0
The list of numbers can be defined informally as:

• 1 is valid number,
• if x is a valid number, then 2x and 3x are also valid numbers.

Thus, an infinite sequence of numbers generated by above definition is 1, 2, 3, 4, 6, 8, 9, 12, 16,
18, 24, 27, 32, 36 In most of the languages, this is quite complex but using lazy evaluation
technique it can be easily expressed.

We define a function seq that generates an infinite list of numbers in increasing order stated as
above using another function get_next. The function merge is used in get_next that takes two
ascending lists and merges them maintaining the ordering and removing duplicates.

 - fun seq () = get_next [1];

 > val seq = fn : unit -> int list
 - fun get_next (x :: xs) = x :: get_next (merge ([2*x, 3*x], xs));

 > val get_next = fn : int list -> int list

Eager evaluation:

 - val t = get (5, seq()); non termination

Lazy evaluation:

 - val t = get (5, seq());
 > val t = [1,2,3,4,6] : int list

Evaluation:
 t = get (5, seq ())

= get(5, get_next [1])
 = get (5, 1 :: get_next (merge([2,3], [])))
 = 1 :: get (4, get_next ([2,3]))
 = 1 :: get (4, 2 :: get_next(merge([4,6], [3])))
 = 1 :: 2 :: get(3, get_next([3,4,6]))
 = 1 :: 2 :: get(3, 3 :: get_next(merge([6,9], [4,6])))
 = 1 :: 2 :: 3 :: get (2, get_next ([4,6,9]))
 = 1 :: 2 :: 3 :: get (2, 4 :: get_next (merge([8,12], [6,9])))
 = 1 :: 2 :: 3 :: 4 :: get (1, get_next([6, 8, 9, 12]))
 = 1 :: 2 :: 3 :: 4 :: get (1, 6 :: get_next(merge ([12, 18],[8, 9, 12])))
 = 1 :: 2 :: 3 :: 4 :: 6
 = [1,2,3,4,6]

iv. Generate a list of prime numbers using Eratosthenes sieve method

The numbers using Eratosthenes sieve method are generated as follows:
• Initially, assume that 2 is a prime number.
• Find prime numbers by removing the non prime numbers from a list of integers

generated from 2 onwards.
• Non prime number is one which is a multiple of some previously generated prime

number.

 78

Alternatively, we can state the method as follows:
• Get a number from a infinite list generated from 2 onwards and check if it is non

prime. If not, then attach this number to the list of primes generated otherwise
generate new number. Repeat this method as many time as you want.

- fun not_multiple x y = (y mod x <> 0);
> val not_multiple = fn : int -> int -> bool
 - fun filter f [] = []

 | filter f (x::xs) = if f (x) then x :: filter f xs else filter f xs;
 > val filter = fn : ('a -> bool) -> 'a list -> 'a list

 - fun remove x [] = []
 | remove x xs = filter (not_multiple x) xs;

> val remove = fn : int -> int list -> int list
 - fun main (x ::xs) = x :: main(remove x xs);

> val main = fn : int list -> int list
 - fun primes () = main (gen 2);

 > val primes = fn : unit -> int list

Eager evalaution:
 - get(4, primes()); non terminating

Lazy evaluation:
 - get(4, primes());
 > val it = [2,3,5,7] : int list

• Handling of infinite data structures

Lazy languages also include lazy constructors, hence provide one of the most important benefits
of lazy evaluation i.e., the ability to handle infinite data structures. So far we have seen function
and data types being defined recursively. It is very useful if we define infinite data structure like
list, trees, infinite series and any infinite mathematical structure and assign them directly to the
variables and use them directly in the program. Further, lazy evaluation helps in creating cyclic
data structures, which would terminate. The following are recursive definition of some infinite
data structures.

 i. Define a variable inf_list which is an infinite list of 1.

- val rec inf_list = 1:: inf_list;
> val rec inf_list = 1:: inf_list : int LIST
- val x = get(10, inf_list);

inf_list = 1 :: () > val x = [1,1,1,1,1,1,1,1,1,1] : int list

- val rec pair_list = (1,2) :: pair_list;
> val rec pair_list = (1, 2) :: pair_list : (int * int) LIST
- val y = inf_list equal pair_list;

pair_list = (1,2) :: () > val y = false : bool
- val z = get(3, pair_list);
> val z = [(1,2), (1,2), (1,2)] : int list

Infinite list can be constructed and easily used in lazy languages as arguments of other functions.
Functions get and equal are defined earlier.

 79

• Cyclic structures

- val rec x = f(x, y);

f x
y

Define a variable inf_tree for infinite binary tree with all nodes having value 6.

6

6 6
6 6 6 6

- val rec inf_tree = Node (inf_tree, 6, inf_tree);
> val rec inf_tree = Node (inf_tree, 6, inf_tree) : int BT
- val x = get (5, preorder (inf_tree));
> val x = [6,6,6,6,6] : int list

• Recursive definition of the following infinite binary tree

t
5

4 5

4 5

4 5

- val rec t = Node (Node (Null, 4, Null), 5, t);
> val rec t = Node (Node (Null, 4, Null), 5, t) : int BT

i. Recursive definition for an infinite sequence of numbers in increasing order using the

following formula.
 Number = 2n * 3m , ∀ n, m ≥ 0
This problem has also been discussed earlier and was solved by using recursive function.
Alternatively the problem is stated as:

i. 1 is valid number,
ii. if x is a valid number, then 2x and 3x are also valid numbers.

 - val rec seq_num =
 1:: merge ((map(times 2) seq_num), (map(times 3) seq_num))
 > val rec seq_num = 1::

merge ((map(times 2) seq_num), (map(times 3) seq_num)):int list

The function map multiplies 2 or 3 whichever the case might be to the head of recursive list
seq_num whenever there is a need. It is defined as follows:

 80

 - fun map f [] = []
 | map f (x :: xs) = f x :: map f xs ;
 > val map = fn : ('a -> 'b) -> 'a list -> 'b list

List is constructed as follows:

seq_num = 1:: merge ((map(times 2) seq_num), (map(times 3) seq_num))
 = 1 :: merge (2 :: (map(times 2) seq_num), 3 :: (map(times 3) seq_num))
 = 1 :: 2 :: merge ((map(times 2) seq_num), 3 :: (map(times 3) seq_num))

 = 1::2::merge (4 :: (map(times 2) seq_num), 3 :: (map(times 3) seq_num))
 = 1::2::3 :: merge (4 :: (map(times 2) seq_num), (map(times 3) seq_num))

• Lazy evaluation for generating solution using numerical techniques

Writing algorithms for numerical techniques finding solution(s) by successive refinement till the
difference between previous solution and the current solution is negligible is more elegant and
concise. Newton Raphson is numerical technique for solving equation of the form f(x) = 0. It
starts with good initial approximate solution and converges rapidly to the solution. Computing
square root of a real number is an application of Newton Raphson method. The following
equation is solved for finding square root of a real number say, a.
 f(x) = x2 - a = 0
 x2 - a = 0
 x2 = a
 x = √a

Consider initial solution to be x0 = 1.0 and next solution is obtained by the following formula.
 xi = (x(i-1) + a / x(i-1)) / 2.0
Termination condition is: (xi - x(i-1)) < .000001

 - fun gen (a, n) = n :: gen(a, (n + a / n) / 2.0);

 > val gen = fn : real * real -> real list
 - fun findroot (a) = gen (a, 1.0);

 > val findroot = fn : real -> real list
 - fun terminate(x::y::xs) = if (x-y) < 0.00001 then x else terminate (y :: xs);

 > val terminate = fn : real list -> real
 - fun sqrt (a) = terminate (findroot (a));
 > val sqrt = fn : real -> real

A function sqrt calls a function terminate which is a higher order function. Argument of terminate
is another function findroot that generate a list of possible solutions by using function gen. In
eager evaluation, sqrt is a non terminating function but it terminates for lazy evaluation.

• Separation of data and control

The lazy functions can be written without containing operational control as evaluation is demand-
driven. Therefore, Laziness can help in separating data from control. It gives a pipeline approach
to a program construction. For example, given the following components:

 - fun cube [] = []

 81

 | cube (n:: ns) = n*n*n :: cube ns;
 > val cube = fn : int list -> int list
 - fun double [] = []
 | double (n::ns) = n + n :: double ns;
 > val double = fn : int list -> int list

 - fun positive x = if x > 0 then true else false;
 > val positive = fn : int -> bool

 - fun main () = double (cube(filter positive (get_list)));
 > val main = fn : unit -> int list

We can compose them simply to create a pipeline that filters out positive numbers from a list,
cube them and then double them. The function filters is defined earlier. The important point is
that function main has been written without knowing the size of the list. Lazy evaluation has
therefore freed the programmer from operational control issues like exiting from a loop in
imperative languages. Here get_list operates on demand and supplies an element of a list (of
unknown size).

This pipeline style generally leads to clearer, more maintainable solutions and prompts the
observation that laziness may provide important links in the convergence of functional
programming, visual programming and analysis and design methods.

• Interactive program

Lazy evaluation forms the basis for effective, elegant interaction. Consider an interaction at the
highest level as a function taking responses and returning requests on the demand.

 rsponses function requests

Demand driven evaluation with suspensions can be regarded as a special case of several
components of a program working independently and communicating via demand. It gives rise
coroutine kind of behaviour whereby each process is driven by demand for some output from
another process requiring some input. Processes are suspended as soon as the demand is satisfied
but may resume when further demands are placed on them.

A interactive program reads in different values of X (requests) and outputs the values
(responses) at different stages can easily be expressed as a function which takes a list of values
for X and produces a list of responses.

 x1 :: x2:: x3:: ... r1:: r2:: r3 ::
 from keyboard function to screen

In order to generate requests before receiving responses, the program must be lazy with its
argument otherwise it would hang forever waiting for responses that haven't yet been requested.
Even though there is a large semantic gap between a purely functional program and the outside
world. The goal is to provide elegant, purely functional mechanisms for input/output and
sequencing. Recent research advances, however, such as the Haskell I/O system [HPW92], have
tamed many of these problems and a variety of effective bridges now exist

Simulation of infinite data structures in SML

 82

As already mentioned earlier, evaluation can be delayed in eager languages by using higher order
functions. In eager evaluation, only functions can be defined recursively and recursive data
structures can not be defined directly because of non termination problem. But infinite data
structure can be simulated with eager evaluation by use of higher order functions which expand
the structure bit by bit i.e., a data structure containing functions can represent an infinite object
such as infinite lists, trees etc.

Lists with lazy evaluation mechanism

In order to avoid unnecessary computation in comparing two lists, one can simulate lazy
comparison in SML (in any eager language). We define below the datatype for lazy list whose
element is constructed by applying function of the type (unit ->'a * 'a lazy_list). E_list represents
an empty list.

 - datatype 'a lazy_list = ML_list of (unit ->'a * 'a lazy_list) | E_list;
 > datatype 'a lazy_list = E_list | ML_list of unit -> 'a * 'a lazy_list

• Various functions for lists

 - fun cons x xs = let fun f() = (x, xs) in ML_list f end;

 > val cons = fn : 'a -> 'a lazy_list -> 'a lazy_list
- fun head E_list = ~1

 | head (ML_list f) = let val (x, xs) = f() in x end;
 > val head = fn : int lazy_list -> int

 - fun tail E_list = E_list
 | tail (ML_list f) = let val (x, xs) = f() in xs end;

 > val tail = fn : 'a lazy_list -> 'a lazy_list
 - fun null E_list = true

| null (ML_list f) = false;
 > val null = fn : 'a lazy_list -> bool

Function for comparing two lists for equality

- infix eq
> infix eq
- fun (E_list eq E_list) = true

 | (ML_list f) eq (ML_list g) = let
 val (x, xs) = f(); val (y, ys) = g()

 in (x = y) andalso (xs eq ys) end
 | ((ML_list f) eq E_list) = false

 | (E_list eq (ML_list f)) = false;
 > val eq = fn : ''a lazy_list * ''a lazy_list -> bool

Construction of a list and its operations

 - cons 4 E_list;
> val it = ML_list fn : int lazy_list
- cons 4 it;
> val it = ML_list fn : int lazy_list
- cons 7 it;
> val it = ML_list fn : int lazy_list
- val p = cons 8 it;
> val p = ML_list fn : int lazy_list

 83

- head p;
> val it = 8 : int
- tail p;
> val it = ML_list fn : int lazy_list
- p eq it;
> val it = false : bool
- val q = p;
> val q = ML_list fn : int list1
- p eq q;
> val it = true : bool

• Construction of infinite lists: (list of ones, list of natural numbers etc.)

The same datatype definition is used for constructing infinite lists.

- val inf_ones = let fun f() = (1, ML_list f) in ML_list f end;
> val inf_ones = ML_list fn : int lazy_list
- fun gen n = let fun f () = (n, gen (n+1)) in ML_list f end;
> val gen = fn : int -> int lazy_list
- val nat = gen 1;
> val nat = ML_list fn : int lazy_list
- val from10 = gen 10;
> val from10 = ML_list fn : int list1

Function for getting finite number of elements from infinite list

- fun front n s = get_first(lazy_get n s);
> val front = fn : int -> 'a lazy_list -> 'a list

where get_first and lazy_get are defined below:

- fun lazy_get 0 s = ([], s)
 | lazy_get n E_list = ([],E_list)
 | lazy_get n (ML_list f) = let val (x, xs) = f();
 val (y,ys) = lazy_get (n-1) xs
 in (x::y, xs) end;

> val lazy_get = fn : int -> 'a lazy_list -> 'a list * 'a lazy_list
- fun get_first (x, y) = x ;
> val get_first = fn : 'a * 'b -> 'a

Extracting finite values using front function

- front 5 inf_ones;
> val it = [1,1,1,1,1] : int list
- front 10 inf_ones;
> val it = [1,1,1,1,1,1,1,1,1,1] : int list
- front 6 nat;
> val it = [1,2,3,4,5,6] : int list
- front 10 from10;
> val it = [10,11,12,13,14,15,16,17,18,19] : int list

Tree comparison using lazy evaluation mechanism

 84

With eager evaluation, earlier function for comparing two trees in preorder gives wasteful
computation by getting preorders of both the lists and then comparing these lists using list
comparison function. If we combine the actions of flattening binary trees and comparing lists,
then in case when elements of both the binary trees in the preorder sequence are not equal,
remaining portions of the trees could be avoided for computation.

- datatype 'a BT = Null | Node of 'a BT * 'a * 'a BT;
 > datatype 'a BT = Node of 'a BT * 'a * 'a BT | Null
The function tree_eq makes use of another function stack_compare which compares values in
two stacks each consisting of binary trees. Initially stack contains binary trees. Get top element of
both the stacks and compare the value at the root. If they are equal then both the trees are split
into sub trees (left and right) and stored in their respective stacks. The process is repeated till the
stacks are empty or values do not match. The processing of sub trees when the values do not
match is delayed.

- fun stack_compare [] [] = true

| stack_compare [] (a::x) = if a = Null then stack_compare [] x else false
| stack_compare (a::x) [] = if a = Null then stack_compare x [] else false
| stack_compare (Null::x) y = stack_compare x y
| stack_compare x (Null::y)= stack_compare x y
| stack_compare (Node(l1,d1,r1)::x) (Node(l2,d2,r2)::y) =

if (d1 = d2) then stack_compare (l1 ::r1::x) (l2::r2::y) else false;
> val stack_compare = fn : ''a BT list -> ''a BT list -> bool
- fun tree_eq t1 t2 = stack_compare [t1] [t2];

 > val tree_eq = fn : ''a BT -> ''a BT -> bool

• Creating binary trees as follows

- val t = Node(Node(Node (Null,3,Null),2,Null),1,

Node(Node(Null,5, Null), 4, Node(Null, 6, Null)));
> val t = Node (Node (Node #,2,Null),1,Node (Node #,4,Node #)) : int BT

 - val t1= Node (Node (Null,1,Null),2,Node(Node(Null,4, Null, 3, Node
 (Node(Null,6,Null), 5, Null)));

> val t1 = Node (Node (Null,2,Null),1,Node (Node #,3,Node #)) : int BT
- val x = Node(Node(Node (Null,2,Null),1,Node(Node(Null,5, Null), 4, Null));
> val x = Node (Node (Null,2,Null),1,Node (Node #,4,Null)) : int BT

 - val y = Node (Node (Null,1,Null),2,Node(Null, 3, Null));
 > val y = Node (Node (Null,1,Null),2,Node (Null,3,Null)) : int BT

• Comparing two binary trees
 - val p = tree_eq t t1;

 > val p = true : bool
- val q = tree_eq x y;

 > val q = false : bool

Construction of infinite trees and their comparisons

Define datatype for binary tree using function as an argument. The binary tree is either Null or
(Node f), where f is a function of type unit -> 'a BT * 'a * 'a BT. Usinf function one can delay
evaluation of a node. Node is evaluated only when function is applied.
 - datatype 'a BT = Null | Node of (unit -> 'a BT * 'a * 'a BT);

> datatype 'a BT = Node of unit -> 'a BT * 'a * 'a BT | Null

 85

One can construct a binary search tree using following delayed_insert function defined below:

- fun delayed_insert(key, Null) = let fun f() = (Null, key, Null)
in Node f end

| delayed_insert (key, Node f) = let val (left, k, right) = f ()
in if key < k then let

fun g ()= (delayed_insert (key,left), k,right) in Node g end
else let fun h() = (left, k, delayed_insert (key, right)) in Node
h end end;

> val insert = fn : int * int BT -> int BT

• Functions for traversing binary trees

- fun preorder Null = []
 | preorder (Node f)= let val (left, data, right) = f() in

[data] @ preorder left @ preorder right end;
> val preorder = fn : 'a BT -> 'a list
- fun inorder Null = []

 | inorder(Node f) = let val (left, data, right) = f() in
inorder left @ [data] @ inorder right end;

> val inorder = fn : 'a BT -> 'a list
- fun postorder Null = []

| postorder(Node f) = let val (left, data, right) = f() in
 postorder left @ postorder right @ [data] end;
> val postorder = fn : 'a BT -> 'a list

Definitions of various infinite binary trees

- val tree6 = let fun f () = (Node f, 6, Node f) in Node f end;
> val tree6 = Node fn : int BT

tree6

6

6 6

6 6 6 6

- val tree23 = let fun g () = (Node f, 2, Null) and f () = (Node g, 3, Null)
in Node g end;

 > val tree23 = Node fn : int BT

 86

tree23
2

3
2

3

 - val t = let fun f () = (Null, 1, Node f) in Node f end;
> val t = Node fn : int BT

t

1

Null 1

Null 1

Null

Function for getting fixed number of values from infinite binary tree in preorder sequence.
- fun l_get 0 s = ([], s)

| l_get n Null = ([], Null)
| l_get n (Node f) = let val (l,d,r) = f();

val (d1, xs) = if null l then l_get (n-1) r
else l_get (n-1) l in (d::d1, l) end ;

> val l_get = fn : int -> 'a BT -> 'a list * 'a BT
- fun fst (x, y) = x ;

 > val fst = fn : 'a * 'b -> 'a
- fun front n s = fst(l_get n s);
> val front = fn : int -> 'a BT -> 'a list
- front 6 t;
> val it = [1,1,1,1,1,1] : int list
- front 5 tree6;
> val it = [6,6,6,6,6] : int list
- front 8 tree23;
> val it = [2,3,2,3,2,3,2,3] : int list

• Comparing two infinite binary tree

- fun delayed_stack_eq [] [] = true
| delayed_stack_eq [] ((Node f)::x) = false
| delayed_stack_eq ((Node f)::x) [] = false
| delayed_stack_eq (Null::x) y = delayed_stack_eq x y
| delayed_stack_eq x (Null::y) = delayed_stack_eq x y
| delayed_stack_eq ((Node f)::x) ((Node g)::y) = let

val (l1,d1,r1) = f(); val (l2,d2,r2) = g() in if
(d1 = d2) then delayed_stack_eq (l1::r1::x)
(l2::r2::y)
else false end;

> val equal = fn : ''a BT list -> ''a BT list -> bool
- fun tree_equality t1 t2 = delayed_stack_eq [t1] [t2];

 87

> val tree_equality = fn : ''a BT -> ''a BT -> bool
- tree_equality t tree6;
> val it = false : bool

The function tree_equality gives rise false value as soon as it does not match two corresponding
values in binary trees but goes into non termination if trees are equal.

Disadvantages of Lazy evaluation

• Although functional languages allow user to ignore the underlying mechanism that manages

data, the system must still manage that memory. When laziness is introduced, the situation
becomes more complex, and there is conflicting evidence as to whether it helps or hinders
memory management. Laziness undoubtedly adds a memory management overhead, although
some case studies identify situations when memory management allows lazy functional
languages to beat not only eager ones, but imperative languages as well (see [KoOt93]).

• Traditionally, lazy functional languages executes slower than eager ones. This is due to

overheads required to handle closures or equivalent constructs. But in some cases, it largely
depends on the nature of algorithm. A well-designed lazy programs execute faster than eager
ones. Laziness can be exploited to make a simple dynamic-programming algorithm run
quickly as explained in [All92]. Execution efficiency can also be viewed as trade off between
fast eager code against better engineered lazy code from software engineering point of view.

• Garbage collection is a problem in functional programs which may effect run-time

performance of functional programs in terms of both time and space.

• Lazy evaluation computational model is harder to interpret and analyze.

