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Introduction to Functional Programming 
 

Prof Saroj Kaushik, CSE Department, IITD 
 
Functional Languages 
Focus on data values described by expressions built from function applications. 
Functional languages emphasize the evaluation of expressions, rather than execution of 
commands. Using functions to combine the basic values forms the expressions in these 
languages. A functional program can be considered as a mapping of inputs to outputs.  
A mathematical function also maps domain elements (inputs) to range elements (outputs).   
For example, define a function f  f : Domain --> Range, where Domain = {a, b, c}and 
Range = { p, q, r}. Let  f(a)  =  r; f(b) =  p; f(c) = q. The domain and range might be 
infinite. So one can define general rule of mapping. Consider a function square from 
Integer to Integer as follows: 
  square: Integer --> Integer 
  square(x) = x * x; x ∈ Integer. 
Here a variable x is called a parameter of the definition. It stands for any member of 
domain set. At the time application, a particular member of the domain is specified such 
as Square(3) = 9, Square(10) = 100.  

Combining other functions one can create new functions. The most common form 
of combining functions in mathematics is composition i.e., f  ≡  g  ο  h. Applying f to 
arguments is defined to be equivalent to applying h on arguments and then applying g to 
the result i.e.,  f(x)  ≡  g (h (x)). Functional programming is characterized by the 
programming with values, functions and functional forms. The compositional operator is 
an example of a functional form. Functional programming is based on the mathematical 
concept of a function. It includes a set of primitive functions and a set of functional 
forms. Pure functional languages perform all their computations via function application.    
The variables in functional languages are values rather than memory locations. So a 
variable in functional language means the same thing no matter where it appears in the 
body of a function. This makes it easier to understand the program.  A good point of 
functional programs is that they are small and concise. Functional program encourages 
thinking at higher levels of abstraction by providing higher-order functions. 

A higher-order function has inputs or outputs that could also be function 
abstractions.  It also has an ability to define functions in the form of equations by using of 
pattern matching. The list manipulations are simple because of its simple syntax.  
True functional languages treat functions as first-class values. Many theorem provers and 
other systems for mathematics by computer make use of functional languages.  

A functional program consists of an expression E (representing both the 
algorithm and the input). This expression E is subject to some reduction rules. Reduction 
consists of replacing some part P of E by another expression P' according to the given 
reduction rules. This process of reduction will be repeated until the resulting expression 
has no more parts that can be reduced. The expression E" thus obtained is called the 
normal form of E and constitutes the output of the functional program. LISP, Scheme, 
ML, Miranda and Haskell are just some of the languages to implement this elegant 
computational paradigm. The basic concepts of functional programming originated from 
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lambda calculus. It is widely agreed that languages such as Haskell and Miranda are 
purely functional, while SML and Scheme are not. However, there are some small 
differences of opinion about the precise technical motivation for this distinction.  Scheme 
and Standard ML are predominantly functional but also allow `side effects' 
(computational effects caused by expression evaluation that persist after the evaluation is 
completed). Sometimes, the term "purely functional" is also used in a broader sense to 
mean languages that might incorporate computational effects, but without altering the 
notion of `function' (as evidenced by the fact that the essential properties of functions are 
preserved.). Typically, the evaluation of an expression can yield a `task', which is then 
executed separately to cause computational effects. The evaluation and execution phases 
are separated in such a way that the evaluation phase does not compromise the standard 
properties of expressions and functions. Since all functional languages rely on implicit 
memory management, garbage collection is an important component in any 
implementation. Functional languages manage storage automatically. The user does not 
decide when to deallocate storage. The system scans the memory at intervals marking 
every thing that is accessible and reclaiming remaining. This operation is called garbage 
collection.  Well-structured software in functional programming is easy to write, easy to 
debug, and provides a collection of modules that can be re-used to reduce future 
programming costs. Conventional languages place conceptual limits on the way problems 
can be modularized. Functional languages push those limits back. Use of higher-order 
functions and lazy evaluation technique can contribute greatly to modularity. Since 
modularity is the key to successful programming, functional languages are very important 
to the real world. Functional languages facilitate the expression of concepts and 
structures at a high level of abstraction. A key property of functional languages is the 
referential transparency. The phrase 'referentially transparency' is used to describe 
notations where only the value of immediate component expressions is significant in 
determining the value of a compound expression.  Equal sub expressions can be 
interchanged in the context of a larger expression to give equal results. Hence the value 
of an expression depends only on the values of its constituent expressions (if any) and 
these sub expressions may be replaced freely by others possessing the same value. 
[Reade, Bird]. The meaning of an expression is its value and there are no other effects, 
hidden or otherwise, in any procedure for actually obtaining it. Functional programming 
languages are important for real-world applications in Artificial intelligence. Functional 
programming is useful for developing executable specifications and prototype 
implementations.  
 
Mathematical function verses Imperative Programming Function:  
The most important difference is based on the notion of a modifiable variable. 
Mathematical function parameters simply represent some value that is fixed at function 
application time. A function written in a truly functional language is a mathematical 
function, which evaluates an expression and returns its value. A function written in an 
imperative language, such as Fortran, Pascal, or C, which evaluates the same expression, 
may also change a value in a memory location having nothing to do with the expression 
being evaluated. While it may appear harmless, this side effect prevents the substitution 
of the expression's value for the invocation of the function that evaluates it.  Another 
difference is the way functions are defined. Programming functions are defined 
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procedurally whereas mathematical functions are defined in terms of expression or  
application of other functions. 
 
Logic and functional programming  
The interpretation of logic program cube (X,Y) <-- Y = X * X * X  is that  ∀X,∀Y, (Y is a 
cube of X if  Y = X*X*X). It asserts a condition that must hold between the 
corresponding domain and range elements of the function. Here cube is a predicate name. 
We can see that cube(2, 8) is true and cube(2,5) is false. 
 
In functional definition cube(X) = X * X * X introduces a functional object to which 
functional operations such as functional composition may be applied. Here cube is a 
function which when applied to domain value, gives a value in the range such as cube(2) 
gives 8 as a result.   
 
Problems with Functional languages: 
In functional languages, complexity (in terms of space and time) analysis is an area that 
has been more or less neglected until recently. One of the reasons for this is that it is 
rather different from ordinary complexity analysis. Some work has been done by Bror 
Bjerner's  and Sören Holmström. Functional languages (particularly lazy ones - those 
whose arguments are evaluated when needed) are difficult to implement efficiently. 
Because of the constraints such as memory management, garbage collection etc. as 
compared to imperative languages. Input/output and non-determinism are weak areas for 
functional languages. Arrays are a important data structure for some algorithms. 
Unfortunately the way they are traditionally used, i.e., with updating, does not fit well 
into a  pure functional world. A different approach to handling arrays where updates can 
be implemented as  in-place-updating.      
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Lambda Calculus 
 
 
Lambda Calculus (λ-calculus) is a functional notation introduced by Alonzo Church and 
Stephen Kleene in the early 1930s to formalize the notion of computability.  Church 
introduced pure lambda calculus to study the computation with functions. The lambda 
calculus is a formalization of the notion and a theory of functions. It is mainly concerned 
with functional applications and the evaluation of λ-expressions by techniques of 
substitution. The lambda-calculus is a simple language with few constructs and a simple 
semantics. But, it is expressive; it is sufficiently powerful to express all computable 
functions. It is an abstract model of computation equivalent to the Turing machine, 
recursive functions, and Markov chains. Unlike the Turning machine which is sequential 
in nature, they retain an implicit parallelism that is present in mathematical expressions. 
The pure lambda-calculus does not have any built-in functions or constants but these are 
included in applied lambda calculus. Different languages are obtained for different 
choices of functions and constants. Functional programming languages are based on 
applied λ-calculus. The lambda-calculus is rather minimal in form but as powerful as any 
other programming language for describing computations. Calculation in the lambda-
calculus is by rewriting (reducing) a lambda-expression to a normal form. For the pure 
lambda-calculus, lambda-expressions are reduced by substitution. That is, occurrences of 
the parameter in the body are replaced with (copies of) the argument. In our extended 
lambda-calculus we also apply the usual reduction rules.   
Historically, it precedes the development of all programming languages. It provides a 
very concise notation for functions, especially for list processing and has been used as the 
basis of LISP, SCHEME, POP-2, SML etc. LISP (LISt Processing) was designed by John 
McCarthy in 1958. It was developed keeping the interest of symbolic computation that is 
primarily used in the areas such as mechanizing theorem proving, modeling human 
intelligence, and natural language processing etc. In each of these areas, list processing 
was seen as a fundamental requirement. LISP was developed as a system for list 
processing based on recursive functions.  Scheme is a dialect of LISP. It is a relatively 
small language with static rather than dynamic scope rules. SML is acronym of Standard 
Meta Language. It is a functional programming language and is the newest member of 
the family of functional languages. It was initially  developed at Edinburgh by Mike 
Gordon, Robin Milner and Chris Wadsworth  around 1975. 
 
 
Pure Lambda Calculus 
 
Pure lambda calculus has mainly three constructs: variables, function application and function 
abstraction.  We use the following notational conventions. Lowercase  roman letter denotes a 
variable e.g., x, y, z, f,g etc. and capital roman letter denotes any arbitrary λ-term e.g., M, N, P, Q 
etc. 
  
Definition: λ-term is defined as follows: 

• All variables are λ-terms and are called atoms. 
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• If M and N are arbitrary λ-terms, then (MN) is a λ-term, called function application. 
More usual notation for function application is M(N) but historically (MN) has become 
standard in λ-calculus. 

• If M is any λ-term and x is any variable, then (λx .M) is a λ-term. This is called an 
function abstraction. 

 
Formally, the grammar of λ-term in pure lambda calculus is defined as: 

<λ-term> :: = x | (MN) | (λx .M) 
 Examples: Following are λ-terms. 
1. (λx . (xy)) 
2. ((λy . y) (λx . (xy))) 
3. (x(λx . (λx . x))) 
4. (λx . (yz)) 
 
Informal Interpretation of λ-term 
 
A term (λx . M) represents a function or an operator whose value at an argument N is calculated 
by substituting  N for all free occurrence of x in M. For example, (λx . x(xy))  represents an 
operation of applying a function twice to an object denoted by y e.g.,              (λx . x(xy)) N = 
N(Ny). 

If M has been interpreted as a function or operator, then (MN) is interpreted as the result 
of applying M to an argument N provided the result is meaningful. For example,  if M = (λx . xy), 
then MN = (λx . xy)N = Ny. 
 
Definition: The λ-expression of the form (λx . y) is called constant function which when  
applied to any argument N gives y as a result e.g.,(λx . y) N = y or (λx . y) M = y. 
 
Definition: The λ-expression of the form (λx .x) is called identity function which when  
applied to any argument N gives itself e.g., (λx . x) N = N. 
 

Pure lambda calculus is untyped and functions can be applied freely. The λ-term (xx) is valid, 
where variable x is applied to itself. In notion of computation, it may not be meaningful. For the 
sake of simplicity, the following syntactic conventions are used to minimize brackets. 

• MNPQ is same as (((MN)P)Q)  -  (left associative). 
• λx . MN is same as  (λx . (MN)) . 

 
Currying of function (λ - function with more arguments) : 
 
The lambda-calculus curries its functions of more than one variables into a function of single 
argument i.e. λ-function (λx1 x2  . . . xn .M) with more arguments can be expressed in terms of  λ-
function with one argument. It is right associative and written as: 

λx1 x2  . . . xn .M   = λx1 . (λx 2 . (… . (λxn .M) ) ..) 
When λ-function with n arguments is applied on one argument, then it reduces to a 

function of (n-1) arguments. For example, if (λxy . x y)  is applied to a single argument say, z  
then the result is λy.z y which is another function. A function of more than one argument is 
regarded as a function of one variable whose value is a function of the remaining variables. 
 
Definition: A term P is defined to be a sub term of Q (Q contains P) if one of the following  
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rules hold: 
• P occurs in P. 
• If  P occurs in M or N, then P occurs in (MN). 
• If  (P occurs in M) or  (P = x), then P occurs in (λx . M). 

 
Examples: 
1. (xy) and x are sub terms of ( (xy) (λx . (xy)) ) as there are two occurrences of (xy) and three 

occurrences of x. 
2. (ux), (yz), u, x, y, z are all subterms of ux(yz) whereas x(yz) is not. The term ux(yz) is 

represented as (ux)(yz).  
 
Definition:  For a particular occurrence of (λx . M) in a term P, the occurrence of M is  
called the scope of this particular λ. 
 
Example: Consider  a formula  (λ1y . yx (λ2x . y (λ3y . z)x))vw, the scopes of  various  
λ’s are given below: 

• Scope of  λ1
  is yx (λ2x . y (λ3y . z)x) 

• Scope of  λ2
  is  y(λ3y . z)x 

• Scope of  λ3
  is  z 

• vw does not fall under the scope of any λ . 
 
Definition: An occurrence of a variable x in a term P is bound if and only if, it is in a 
part of P with the form (λx . M) otherwise x is said to be free variable. 
 
If x has at least one free occurrence in a term P then it is called a free variable of P. The set of all 
such variables is denoted by FV(P). 
 
Definition: A term is closed if it does not have free variables.  
 
Examples: Consider the following λ-terms.  Find out the free variables in each case. 
1. N = xv(λy .y v)w , then,   FV(N) = {x,v,w} 
2. M = ( λy . y x (λx . y (λy . z) x) )v w,  then,   FV(M) = { x,z,v,w} 
  
Substitutions 
 
The notation [x | N]M means to obtain the result after substituting N for each free occurrence of x 
in a term M. The substitution is said to be valid if no free variable in  N becomes bound after 
substitution.  There are few substitution rules as given below: 
1. [x | N] x  =  N 
2. [x | N] y  =  y ,  ∀ y ≠ x  
3. [x | N](P Q)  =  ([x | N]P [x | N]Q) 
4. [x | N](λx . M) = λx . M (since x is bound in M and can not be replaced by N) 
5. [x | N](λy . M)  =  λy. [x | N]  M  , if  y ≠ x and {y ∉ FV(N)  or x ∉ FV(M) }. 
6. [x | N](λy . M)  =  λz. [x | N]  [z | y] M ,  if  y ≠ x and y ε  FV(N)  and x  ε  FV(M). 
 
Examples: Consider x, y and z to be distinct variables. Evaluate the following λ-expressions  
by using substitution rules. 
1. [x | z]  (λy . x) 
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We get  
λy . [x | z] x    {using rule (5) } 

  λy . z     {using rule (1) } 
Hence, [x | z]  (λy . x)  =  λy . z    

2. [x | y]  (λy . x)]  
We get, 

[x | y]  (λy . x) = λz. [x | y]  [y | z] x {using rule (6)},  
since rule (5) can not be applied as y ε  FV(N) =  {y}.   

    = λz. [x | y] x   {using rule (2)} 
    = λz . y   {using rule (1)} 

Hence,  [x | y]  (λy . x) = λz . y 
In both 1 and 2, (λy . x) represents a constant function. 

3. [ x | (λy . xy)]  (λy . x(λx . x) ) 
Let   N =  (λy . xy),  FV(N) = {x} 
and  M = x (λx . x),   FV(M) = {x} 

[ x | (λy . xy)]  (λy . x (λx . x) )  =  λy . [ x | (λy . xy)]  x (λx . x)  
         {using rule (5)} 

since y does not belong to FV(N)} 
= λy . (λy . xy) [x | (λy . xy)]  (λx . x)     {using rule (3) } 
= λy . (λy . xy) (λx . x)        { using rule (4)} 

Hence, [ x | (λy . xy)]  (λy . x(λx . x) ) = λy . (λy . xy) (λx . x) 
4. [x | (λy . vy)]  (y (λv . xv) ) 
     [x | (λy . vy)]  (y (λv . xv) )  

=  [x | (λy . vy)]  y [x | (λy . vy)]  (λv . xv)    {using  rule (3) } 
=  y [x | (λy . vy)]  (λv . xv)  
= y (λz . [x | (λy . vy)]  [v | z ]  xv)      {using rule (6) } 
= y (λz . [x | (λy . vy)]  xz) 
= y (λz . (λy . vy) z) 

Hence, [x | (λy . vy)]  (y (λv . xv) ) = y (λz . (λy . vy) z) 
 
Some obvious results: 
1. [x | x]M = M 
2. [x | N]M  =  M ,    if  x ∉ FV(M)    
3. FV([x | N]M) = FV(N) ∪ (FV(M) – {x}) ,   if  x ∈ FV(M)   
 
Lemma: Let x, y, v be distinct variables and bound variables in M are not free in v, P, Q. 
Then the following results hold true. 
1. [v | P ]  [x | v]M   = [x | P ]M if v ∉ FV(M)   
2. [v | x ]  [x | v ]M = M  if v ∉ FV(M)    
3. [x | P ]  [y | Q ]M  = [ y | ( [x | P ]Q) ]  [x | P]M  if  y ∉ FV(P)    
4. [x | P]  [y | Q ]M   =  [y | Q ]  [x | P ]M    if  y ∉ FV(P), x ∉ FV(Q)  
5. [x | P ]  [x | Q]M   = [ x | ( [x | P ]Q) ]  M 
 
 
 
λ-Conversion Rules 
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The λ-expression (λ-term) is simplified by using conversion or reduction rules. There are mainly 
two types of λ - conversions rules which make use of substitution explained above. 

• α-conversion 
• β-conversion 

 
Definition: Let a term P contains an occurrence of  (λx .M) and let y ∉ FV(M). The act of  
replacing (λx . M)  by  (λy . [x | y]  M) is called a change of bound variable in P.  
 
Definition: P α-converts to Q if and only if Q has been obtained from P by finite series of  
changes of bound variables. The terms P and Q have identical interpretations and play  
identical roles in any application of  λ-calculus. 
 
Definition: Two terms M and N are congruent if M α-converts to N. It is denoted by  
M  ≡αN. 
 
α-conversion rule :  
Any abstraction of the form λx . M can be converted to λy . [x | y]M provided this substitution is 
valid. This is called   α-conversion or α-reduction rule. 
 
Examples:  
1. λx . xy ≡α  λz . zy,  whereas  

λx . (xy) ≠α    λy . (yy)  
2. λxy . x(xy)  = λx . (λy . x(xy) )  (currying of function) 
  ≡α  λx . (λz . x(xz) ) 
  ≡α λu . (λz . u(uz) ) 
  ≡α λuz . u(uz)  
 
β-conversion rule:  
A λ-expression  (λx . M)N represents a function λx . M applied to an argument N. Any  λ- 
expression of the form (λx . M)N is reduced to [x | N]M  provided the substitution of N for x 
in M is valid. This type of reduction is called β-conversion or β-reduction rule. It is the  
most important  conversion rule . 
 
The informal interpretation of β-conversion rule is that the value of λx . M at N is calculated by 
substituting N for all free occurrence of x in M so (λx . M) N can be simplified to              [x | 
N]M. Rules for substitution are applied which are basically formed using  λ-conversion rules. 
 
Definition: Any term of the form (λx . M) N is called a β-redex (redex stands for reducible 
expression) and the corresponding term [x | N]M is called its contractum. 
 
Definition: If a term P contains an occurrence of (λx .M) N and if we replace that  
occurrence by [x | N]M to obtain a result Q , then we say that we have contracted the redex  
occurrence in P or P  β-contracts  to Q (denoted as  P ⇒β  Q). 
 
We say that P β-reduces to Q (P ⇒β  Q) if and only if Q is obtained from P by finite (perhaps 
empty) series of β-contractions.   
 
Examples: 
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1. (λx . x) y ⇒   [x | y] x   ⇒ y  
Hence,  (λx . x) y ⇒β  y 

2. (λx . x(xy)) N ⇒  [x | N] x(xy)   ⇒ N(Ny) 
Hence  (λx . x(xy)) N ⇒β   N(Ny) 

3. (λx . y) N ⇒   [x | N] y ⇒ y  
Hence   (λx . y) N ⇒β     y 

4. (λx . (λy . yx) z) v ⇒  [x | v]  ((λy . yx) z) 
⇒  (λy . yv) z 
⇒  [y | z]  (yv) 
⇒  zv 

Hence  (λx . (λy . yx) z) v ⇒β   zv 
 
Equality of λ-expressions 
 
Two λ-expressions M and N are equal if they can be transformed into each other by finite 
sequence of λ-conversions (forward or backward). The meaning of λ-expressions are preserved 
after applying any conversion rule. For example, λx. x is same as λz. z. We represent M equal to 
N by M = N. Equality satisfies the following properties (equivalence relation in set theory): 

• Idempotence:  A term M is equal to itself e.g., M = M. 
• Commutativity:  If M is equal to N, then N is also equal to M  

i.e., if M = N, then N = M. 
• Transitivity:  If M is equal to N and N is equal to P then M is equal to P  

i.e., if M = N and  N = P then M = P. 
 
Definition: Two λ-expressions M and N are identical, if they consists of same sequence of  
characters. For example, λx .xy  and λz .zy  are not identical but equal. So, identical  
expressions are equal but converse may not be true. 
 
 
Computation with Pure lambda Term 
 
Computation in the lambda-calculus is done by rewriting (reducing) a lambda-expression into  a 
simple form as far as possible. The result of computation is independent of the order in which 
reduction is applied. A reduction is any sequence of λ-conversions. If a term can not be further 
reduced, then it is said to be in a normal form. The normal form is formally defined as follows:    
 
Definition:  A lambda-expression is said to be in normal form if no beta-redex (a sub  
expression of the form (λx. M)N ) occurs in it. For example, the normal form of the  
λ-expression (λx . (λy . yx) z) v is zv. 
 

It is not necessary that all λ-expressions have the normal forms because λ-expression may not  
be terminating.  It is easy to see that λ-expression (λx . xxy ) (λx . xxy ) does not have a normal 
form because  it is non terminating. 

• (λx . xxy ) (λx . xxy ) ⇒  [(λx . xxy )  |  x]  (xxy) 
⇒  (λx . xxy ) (λx . xxy ) y 
⇒   (λx . xxy ) (λx . xxy ) yy 

: 
: 
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This reduction is nonterminating 
 
Reduction Order 
 
For a given λ-expression, the substitution and λ-conversion rules provide the mechanism to 
reduce a λ-expression to normal form but these do not tell us what order to apply the reductions 
when more than one redex is available. Mathematician Curry proved that if an expression has a 
normal form, then it can be found by leftmost reduction.  
 
Theorem: (Normalization theorem) 
If M has a normal form N then there is a leftmost reduction of M to N e.g., by repeatedly  
reducing leftmost redex of M, the reduction will terminate with an expression N which in the 
normal form which can not be further reduced.  
 

The leftmost reduction is called lazy reduction because it does not first evaluate the 
arguments but substitutes the arguments directly into the expression. Eager reduction is one 
where the arguments are reduced before substitution. These are explained in later chapter. 
 
Theorem: (Church Rosser)  
If  M reduces to N and to P then there exist R such that N and P both reduce to R i.e., 
 
   M  ⇒β  N,  M ⇒β   P 
 ∃ R such that   N  ⇒β  R, P ⇒β  R 
 
 
This theorem says that λ-expressions can be evaluated in any order. 
 
Corollaries to Church Rosser theorem:  

• If N and P are normal forms of M, then N is congruent to P i.e., N and P are same except 
that one is obtained from other by renaming of bound variables (using α-rule). 

• If the reduction terminates in normal form, then they are unique. 
• If M has a normal form and M = N, then N has a normal form. 

 
 
Applied Lambda Calculus 
 

Constants and predefined functions are added to pure lambda calculus in order to justify 
the claim that functional programming languages have been originated from lambda calculus. 
Because of adding constants, lambda calculus becomes applied lambda calculus. All the 
theorems, definitions, λ-conversion rules, substitution rules of pure lambda calculus are valid for 
applied calculus. The λ-term in applied lambda calculus is redefined as 

<λ-term> :: = c | x | (MN) | (λx .M),  
where c corresponds to any constant whose value does not change. 

 
Examples: 
1. (λx . x)c   ⇒  [x | c] x  ⇒  c 

Therefore,   (λx . x)c   ⇒β    c 
2. (λx . c)x ⇒   [x | c] c  ⇒  c 

Therefore,   (λx . c)x ⇒β    c 



 11

3. (λx . c) (xy)  ⇒ [x | (xy)] c ⇒  c 
Therefore,    (λx . c) (xy) ⇒β   c 

4. (λx . xc)  (λy . y) ⇒ [x | (λy . y) ] (xc) ⇒ (λy . y)c  ⇒   c 
Therefore,  (λx . xc)  (λy . y) ⇒β  c 

5. (λy.c)(( λx.x x x)( λx.x x x))  ⇒β  c  
 
 
Representation of Constants as λ-expressions   
 
We have extended the syntax of pure lambda to allow λ-term to be a constant and additional 
computation rules for replacing constants in expressions. Some of the constants are: 

true, false, if, or, and, not, numerals {0, 1,2,…}, arithmetic operators {+, -, *} and 
relational operators {<, >, =, <>} etc  

We must think of appropriate functions to represent all the constants we want. Let us begin with a 
well known representation for non negative integers. Consider a term of the form: 
  f(f( ....(f x)...) 
with n ( n ≥ 0) occurrence of f . We abbreviate such term as fnx. This means that apply f to x 
exactly n times. Abstract such term so that we get, λf . λx . fnx which expresses the idea of n-fold 
application. Such a term will be chosen as a representation for integer n.  

• n  =  λf . λx . fnx 
We can easily show that (fnx) can be written as (n f x) 
 
In particular, we get, 

• 0  =  λf . λx . f0x 
= λf . λx . x 

• 1 =    λf . λx . f (x) 
• 2  =   λf . λx . f (f (x)) 

Now let us see the suitable representation for the successor function. 
 succ n   =   n + 1 

= λf . λx . fn+1x 
= λf . λx .f (fnx) 
= λf . λx .f (n f  x)   

Therefore, 
• succ =  λn. (λf . λx .f (n f  x)) 

Similar reasoning leads to the definitions: 
• add = λn .λm . (λf . λx .f n (f m x)) 

= λn .λm . (λf . λx .n f (m f  x)) 
 

• mult = λn .λm . (λf . λx .((f m) n x)) 
= λn .λm . (λf . λx . n (f m  x)) 
= λn .λm . (λf . λx . n (m f  x)) 

 
Lambda expressions corresponding to following constants. 

• true = λx . λy .x  
• false = λx . λy .y  
• if = λx . λy . λz. x y z 
• or =  λx . λy . if x true y 
• and =  λx . λy . if x  y false  
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• not =  λx  . if x false true   
 

1. Reduction rule:  if true M N  ⇒β M 
Proof: if true M N   = (λx . λy . λz. x y z) true M N 
   ⇒  (λy. λz . true y z) M N 
   ⇒  (λz . true M z) N 
   ⇒ true M N = (λxy .x )  M N 

⇒  (λy . M ) N ⇒ M 
Therefore,  if true M N  ⇒β M 

 
2. Reduction rule: if false M N   ⇒β   N 
Proof: if false M N   = (λxyz . x y z) false M N 
   ⇒  (λyz . false y z) M N 
   ⇒ (λz . false M z) N 
   ⇒  false M N = (λxy .y )  M N 

⇒  (λy . y ) N ⇒ N 
Therefore,  if false M N   ⇒β   N 

 
Constant, if is a curried conditional. Above rules say that if with first argument as true reduces to 
second argument and with first argument as false reduces to third argument.   
 
3. Reduction rule:  or true y ⇒β    true 
Proof: or true y = (λxy  . if x true y) true y 
   ⇒  (λy  . if true true y) y 
   ⇒   if true true y  
   ⇒   true   
4. Reduction rule:  or false y ⇒β    y 
Proof: or false y = (λxy  . if x true y) false y 
   ⇒ (λy  . if false true y) y 
   ⇒    if false true y  

  ⇒    y 
5. Reduction rule: and true y ⇒β    y 
Proof: and true y = (λxy  . if x y false) true y 
   ⇒  (λy  . if true y false) y 
   ⇒   if true y false  
   ⇒   y 
6. Reduction rule: and false y ⇒β    false 
Proof: and false y = (λxy  . if x y false) false y 

  ⇒  (λy  . if false y  false) y 
   ⇒    if false y false  
   ⇒    false 
7. Reduction rule: not true  ⇒β    false 
Proof: not true  = (λx  . if x false true) true  
   ⇒    if true false true  
   ⇒    false 
8. Reduction rule: not false  ⇒β    true 
Proof: not false  = (λx  . if x false true) false  
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    ⇒    if false false true  
   ⇒    true 
 

Let us assume arithmetic and relational operators with usual meanings such as            3 + 
4 = 7,  (5 > 3) = true etc.  

 
Arithmetic expression: 
 
Arithmetic expression 3 + 7 is written in prefix notation as + 3 7. It is treated as an                 λ-
expression and written as: 
  (λxy . + x y) 3 7   (λy. +3 y) 7 ⇒  + 3 7 = 10 
 
       
Now onwards, we will use the following conventions: 

• infix notation for arithmetic expression such as 3 + 7 instead of + 3 7 for the sake of 
convenience. 

• Conditional expression in programming context as " if x then y else z"  instead    "if x 
y z' 

 
Examples: 
1.  (λ x . x + 5) 2   ⇒  [x | 2] (x + 5)  ⇒  7 

Thus, (λ x . x + 5) 2 ⇒β  7 
2. (λx . x * 4)  7 ⇒ [x | 7] (x * 4)   ⇒  28 

Thus, (λ x . x * 4) 7 ⇒β  28 
3. (λ y . y * y) 6  ⇒  [y | 6] (y * y)    ⇒ 6 * 6  =    36 

Thus, (λ y . y * y) 6 ⇒β  36 
4. (λxy. x + y - 4) 5 ⇒ [x | 5] (λy. x + y - 4)   ⇒  (λy . y + 1) 

Thus, (λxy. x + y - 4) 5 ⇒β  (λy . y + 1) 
5. (λ x. ((λ y . x + y ) 5 )) ⇒ (λ x. ([y | 5] (x + y ) ))  ⇒  λ x . x + 5   

Thus,  (λ x. ((λ y . x + y ) 5 ))  ⇒β    λ x . x + 5 
6.  (λf . f 2) (λy . y * 4) ⇒  [f | (λy . y * 4) ] (f 2)  

  ⇒  (λy . y * 4) 2 ⇒ [y | 2] (y * 4) ⇒   8 
 (λf . f 2) (λy . y * 4)   ⇒β  8 
7.  (λxy . y * x – (y + 2)) 2 3  

⇒ ([x | 2] (λy . y * x – (y + 2)) 3  
⇒  (λy . y * 2 – (y + 2)) 3 
⇒  [y | 3] (y * 2 – (y + 2))   
⇒ 3 * 2 – (3 + 2)   
= 6 – 5 = 1  

 (λxy . y * x – (y + 2)) 2 3  ⇒β  1 
8.  (λx . (λ y . x + y ) 5 ) ((λ y . y * y ) 6)   

⇒   [x | ((λ y . y * y ) 6) ] (λ y . x + y ) 5 ) 
⇒   [x | 36) ] (λ y . x + y ) 5  
⇒   (λ y . 36 + y ) 5  
⇒   [y | 5] (36 + y )  
⇒  36 + 5  =  41 

 (λx . (λ y . x + y ) 5 ) ((λ y . y * y ) 6) ⇒β  41 
9.  (λx . if  x > 4 then x + 2 else 1) 7 ⇒ [x | 7 ] (if  x > 4 then x + 2 else 1) 
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⇒ 9 
(λx . if  x > 4 then x + 2 else 1) 7 ⇒β   9 

10.  (λx . x * 4) ((λx . if  x > 4 then x + 2 else 1) 7)  
⇒ [x | ((λx . if  x > 4 then x + 2 else 1) 7)] (x * 4) 
⇒ [x | 9] (x * 4) 
⇒ 9 * 4 = 36 

(λx . x * 4) ((λx . if  x > 4 then x + 2 else 1) 7) ⇒β  36 
11. (λy . y * 2 – y / 5 + (y + 4) ) ( x * 3) 

⇒   [y | (x * 3) ] (y * 2 – y / 5 + (y + 4)) 
⇒      (x * 3) * 2 – (x * 3) / 5 + ( (x * 3) + 4) 

Therefore, we can write an expression (x * 3) * 2 – (x * 3) / 5 + ( (x * 3) + 4) using λ-notation as 
(λy . y * 2 – y / 5 + (y + 4) ) ( x * 3) 
 
 
Function definition using λ-notation 
 
λ-function can be named or unnamed. Unnamed function has to be applied directly to argument 
values as shown earlier whereas named function are applied by using function name along with 
the arguments. The λ-function has the following valid form. 
   fun_name ≡ λ list of arguments .  expression  

Expression can be simple or conditional. In conventional mathematical usage, the 
application of  n-argument function f to arguments x1, ...., xn is written as f (x1, ...., xn ). In λ-
calculus, there are two ways of representing such application. 
• (f x1....xn ) - it is a curried representation where f expects its argument one at a time. Important 

advantage of curried functions is that they can be partially applied. 
• Application of f to n-tuple (x1, ...., xn ) such as f(x1, ...., xn ), where all the arguments should be 

available to function at the first application of it. 
  
Examples: 
1. f   ≡  λx . 2 * x + 3 
  f 3  =  (λx . 2 * x + 3) 3  ⇒β   [x | 3] (2 * x + 3) 

⇒β   9 
Similarly,  f 1  =  5. 
2. g  ≡ λx . if x > 4 then f x  else –x 
3.    g 10  = (λx . if x > 4 then f x  else –x) 10 
   ⇒β     [x | 10] (if x > 4 then f x  else –x )  

⇒β   f 10  ⇒β   [x | 10] (2 * x + 3) 
 =  23. 

Similarly,  g 3   =  -3. 
4. plus   ≡   λxy . x + y 
5.   plus 5 7 = (plus 5)  7 = ((λxy . x + y) 5 ) 7 

= ((λx. λy . x + y) 5 ) 7 
   ⇒β [x | 5] (λy . x + y ) 7 
  ⇒β (λy . 5 + y ) 7 
  ⇒β [y | 7] (5 + y )  = 12 
6. times ≡   λxy . x * y 
  times 4 6 = (times 4) 6 = ((λxy . x * y) 4) 6   
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= ((λx. λy . x * y) 4 ) 6 
⇒β [x | 4] (λy . x * y ) 6 

   ⇒β (λy . 4 * y ) 6 
 ⇒β [y | 6] (4 * y )  = 24 

7. f1  ≡  (λx . times x x)  
f1 (plus 3 2)  = (λx . times x x) (plus 3 2) 

⇒β [x | (plus 3 2)]  (times x x) = [x | 5]  (times x x) 
⇒β  times 5 5 = 25 

8. g1  ≡  (λx . plus x 1)   
g1  ((λy . times y y) 3) = (λx . plus x 1) ((λy . times y y) 3) 

⇒β  [x | (λy . times y y) 3] (plus x 1 ) 
  ⇒β  [x | (times 3 3)] (plus x 1 ) 

⇒β  [x | 9] (plus x 1 ) 
⇒β  plus 9 1  =  10 

 
 
Recursive Definitions in λ - Notation 
 
We have seen that how we could use λ-expression to write an applicative expression which 
computes the same result as a sequence of assignments and conditional statements. However we 
can’t perform the equivalent of iteration or recursion which are important constructs of 
programming languages. To do this we must allow recursive definitions for λ-expression. We do 
not require new syntax except that we give a name to λ-expression so that we can apply it to 
itself. Also in order to make the recursion  terminate, we shall use conditional expressions. 
Recursion is achieved in two ways viz., Downgoing and Upgoing Recursion.  
 
Downgoing Recursion 
 
Downgoing style of recursion keeps breaking the problem down recursively into simpler version 
until a terminal case is reached. Then it starts building the result upward by passing intermediate 
results back to calling functions. While writing function using downgoing recursion, we should 
follow the following tips:  
• Definition for terminal case (0 – for numbers, [] – for list). 
• For non terminal case with argument ‘n’, assume we have definition for  (n-1), use this to 

construct the next case up. 
• Combine  above mentioned cases in a conditional expression. 
The following examples use downgoing recursion. Now onwards, we will use equality sign (=) 
instead of  ⇒β   for the sake of convenience. 
 
Examples: 
1. Write λ-function for computing factorial of n (positive integer) 
  fact  ≡  λn. if n = 0 then 1 else n * fact (n-1) 
   fact 3  =  (λn. if n = 0 then 1 else n * fact (n-1)) (3) 
    =   3 * fact 2 
    = 3 * 2 * fact 1 
    = 3 * 2 * 1 * fact 0 
    = 3 * 2 * 1 * 1 
    = 6  
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2. Write λ-function for computing combinatorial function (nCr) (n and r are positive integers) 
comb  ≡  λnr . fact (n) div (fact  r * fact (n-r)) 

 OR 
comb  ≡  λnr . if r = 1 then n else (n * comb (n-1) (r-1)) div r 

  comb 4 2  = 4 * comb 3 1 div 2 
     = 4 * 3 div 2 =  6 
3. Compare two whole numbers for equality 

equal ≡  λxy . if x = 0 then if y = 0 then true else false else equal (x-1) (y-1) 
   equal 2 3 = equal 1 2 
     = equal 0 1 
     = false 
Upgoing Recursion 
 
In upgoing recursion, the intermediate results are computed at each stage of recursion, thus 
building up the answer and passing it in a workspace parameter until the terminal case is reached. 
At this stage the final result is already computed. This style of recursion  is similar to iteration 
having same complexity in terms of space and computing time. We use the following tips. 
• Construct a new function with an additional workspace parameter  to build up the result. 
• Set workspace parameter equal to the value of the function for terminal case. 
• For non terminal case, call the function with new parameter expressed in terms of old. 

Let us write function for computing factorial using this approach. 
   fact   ≡ λn. factorial n 1 
   factorial  ≡ λnw. if n = 0 then w else factorial (n-1) (n * w) 

Here ‘w’ is a workspace parameter used to build up the results. Since original function 
‘fact’ has only one parameter ‘n’, we have to define an auxiliary function ‘factorial’ with extra 
parameter ‘w’. The function ‘fact’ calls ‘factorial with workspace parameter initialized to1.   Let 
us see the working of this function. 
   fact  3   =  factorial 3 1 

= factorial 2  (3*1) 
= factorial 1 (2*3) 
= factorial  0 (1*6) 
= 6 

  
 
Recursive List Processing 
 
Consider list processing applications which require a list constructor, often called cons, and 
written as an infix operator `::' in many functional languages. The constant nil denoted by [] 
represents the empty list. The functions car (for getting first element of the list) and cdr (for 
getting tail of the list) dismantle a list and help us to separate head from tail of the list. The 
function null  tests a list whether it is empty or not. A list is constructed using function cons 
whose car field contains first argument and cdr field points to second argument of cons function.   
For example,  a list  s = (cons 4 nil) has the following graphical representation. 
   s   
   
 

4  nil 
Example:  
1. Graphical representation of a list (cons 5 s), where s is a list shown above. 
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     s   
   
 

5   4  nil 
 
2. Graphical representation of a list p = cons 2 (cons 3 (cons 4 nil))   
  
p 
 
 
 2   3   4        nil 
Now, 
   car s = 2 
 cdr s = cons 3 (cons 4 nil) 
For the sake of convenience, we write a list cons 2 (cons 3 (cons 4 nil)) as [2,3,4], a conventional 
notation in functional programming languages.     
 
Important list functions using  λ - Notation 
 
1. Membership function: 

mem  ≡    λxs. if null s  then false else if  x = car s then true else mem x (cdr s)     
  mem 2 [3,4,2]   = mem 2 [4,2]   
    = mem 2  [2]   
    = true 
  
2. Write a function that selects nth element of the list. 

select  ≡ λns. if null s then nil else if n = 1 then car s else select (n-1)   (cdr s) 
select 2 [4,6,7,8]   =  select 1 [6,7,8] 

     = car [6,7,8] 
   = 6 
select 3 [4,6]    =  select 2 [6] 

     = select 1 [] 
     = nil 
3. Concatenating two lists.   

append   ≡  λmn. if null m  then n else cons (car m)  (append (cdr m)  n)     
append  [2,3]  [4,5,6,7]   = cons 2  (append [3]  [4,5,6,7] )    
   = cons 2  (cons 3  (append []  [4,5,6,7] )       

     = cons 2  (cons 3  [4,5,6,7] )     
   = cons 2  [3,4,5,6,7]   
   = [2,3,4,5,6,7] 

 
Here elements of the first list are copied and last node points to the second list. Therefore, the 

second list is no longer available. One can write another version of append where entirely new list 
is created and original lists are also available. The brackets are used for clarity otherwise they can 
be removed.  

 
4. Copy a list using both types of recursions  
Downgoing version: 

copy  ≡ λs. if null s then nil else  cons (car s)  (copy (cdr s))       
Upgoing version: 
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copy ≡ copy1  s [] 
copy1   ≡ λsw. if null s then w else   

copy1 (cdr s)  (append w (list (car s)))         
 
Here a function list is used to convert an element (head in this case) into list. Let us see the 
working of both the functions. 
 
Downgoing  version: 
  copy  [2,3,4]    = cons 2  (copy  [3,4])      
     = cons 2 (cons 3  (copy  [4]))        
     = cons 2 (cons 3 (cons 4  (copy  [])))          
     = cons 2 (cons 3 (cons 4  nil))         
     = cons 2 (cons 3 [4])     
     = cons 2 [3,4]   
     = [2,3,4] 
Upgoing version: 
  copy  [2,3,4]    = copy1 [2,3,4]  [] 
     = copy1 [3,4]  (append []  [2])     
     = copy1 [4]  (append [2]  [3])     
     = copy1 []  (append [2,3]  [4])     
     = [2,3,4] 
 
5. Reverse a given list: 
 
Downgoing  version: 

rev ≡ λs. if null s   then [] else append rev  (cdr s)  (list car s)       
 
Upgoing version: 
 rev ≡ rev1  s []   

rev1 ≡ λsw. if null s  then w else  rev1 (cdr s)   (cons (car s)  w)     
 
6. Find out common elements of two lists 

common  ≡  λmn. if null m then [] else if mem (car m)  n   then  cons (car m)   
(common (cdr m)  n) else common (cdr m)  n)   

 
Tree recursion 
 
Tree is represented using generalized list whose elements may be lists themselves.  
The representation of general tree is given as follows: 
 [root, br1,br2,...,brn], where bri  is ith branch of a root and is tree in itself. 
The representation of binary tree (tree with node having at most two branches) is special case of 
general representation.  

[root, left_br, right_br ], where left_br and  right_br are left and right binary sub trees. 
 
For example, the following binary tree is represented using list representation as follows: 
 root  7 
 

5    15 
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2  6  10 
     12 

 
[7,  [5, [2,  nil ,  nil ], [6,  nil ,  nil ]  ]  ,  [15, [10,  nil , [12,  nil ,  nil ]],  nil ] ] 
 

Examples: 
 
1. Count number of nodes in a binary tree. 

tcount    ≡ λt. if null t then 0  else  
1 + tcount  (car (cdr t))  +  tcount  (car (cdr( cdr t)))       

 
We need an extra function called atom which when applied on a binary tree becomes true if 
element of tree is an atom otherwise false for if it is list. Let us see the following  functions for 
creating mirror copy of a binary tree 
2. Copying a binary tree 

tcopy   ≡  λt. if atom t  then t else if null t then nil else   
cons  (tcopy  (car t))   (tcopy (cdr t))        

 
Binary Search Tree 
 
Definition: Binary search tree is a binary tree if all the keys on the left of any node  
(say, N) are numerically (alphabetically) less than the key in a node N and all the keys on  
the right of  N are numerically (alphabetically) greater than the key of a node N.  
  
3. Search for an element in binary search tree. 

bsearch ≡ λtx. if null t then false else if x = (car t)  then true  
else if x < (car t) then bsearch (car (cdr t))  x  
else bsearch  (car (cdr (cdr t)))  x 

 
4. Insert an element  

binsert ≡ λtx. if null t then (cons x t)  else if x < (car t)  then   
 binsert (car (cdr t))  x else binsert (car (cdr (cdr t)))  x 
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Introduction to SML 
 
  
 
SML is acronym of Standard Meta Language. It is a functional programming language and is the 
newest member of the family of functional languages. It was initially  developed at Edinburgh by 
Mike Gordon, Robin Milner and Chris Wadsworth  around 1975. Since then numerous variations 
and implementations have arisen.  SML has basic data objects as expressions, functions and list 
etc. Function is the first class data object that may be passed as an argument, returned as a result 
and stored in a variable. SML is interactive in nature where each data object is entered, analyzed, 
compiled and executed. The value of the object is reported along with its type. SML is strongly 
typed language meaning by that each data object has a type determined automatically from its 
constituents by the interpreter if not specified. SML has a polymorphic typing mechanism in 
which the type of data object is determined using the context. It is statically scoped language 
where the scope of a variable is determined at compile time that helps more efficient and modular 
programs development. It also has exception handling facilities using which one can handle 
unusual situations at run time.  SML also supports abstract data types that are useful mechanism 
for program modularization. 
 
 
Interaction with SML 
 
Basic form of interaction is read, evaluate and display. An expression is entered and terminated 
by semi colon (;). An expression is analysed, compiled and executed by SML interpreter and the 
result is printed on the terminal along with its type. In SML, the type is a collection of values. The 
basic types are int (integers), real (real), char (character), bool (boolean) and string (sequence of 
character). In addition to the basic types, SML also allows user defined types (discussed later). 
An expression in SML denotes a value and the type of an expression is uniquely determined from 
its constituents. If it does not succeed in identifying the type, then some error message is issued. 
   
Conventions: 
 
We have used the following conventions in order to distinguish between user input and SML 
system's response.  

• The SML system prompts with “ - “ for an expression to be entered by an user. 
• It displays the output after the symbol “ > “. The output is shown in  itellic.  
 

Examples:   
  - 2 + 5;    user's input 
  > val it = 7 : int   system's response 
  - 3 + 2.5; 

> Error: operator and operand don't agree 
 
The result starts with the reserved word val that indicates that the value has been computed and is 
assigned to system defined identifier it along with its type implicitly derived by the system from 
expression’s constituents.   
 
Example: 

- 2  > 5 ; 
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> val it = false : bool 

 
Each time a new expression is entered, the value of it gets changed. An expression is of  boolean 
type that gets evaluated to false value. This value is assigned to it followed by its type bool. Now 
the previous value of it is not available. Few examples are given below: 
 
Examples: 

- not false;    
> val it = true : bool 
- ~3.45 ;     {~ is unary minus } 
> val it =  ~3.45 : real 

   - (25 + 5) mod 2 ;   {mod  gives remainder} 
> val it =  0 : int 
- floor (3.5 + 2.7) ;      {floor gives integral part of real value} 
> val it =  6 : int 
- abs (~ 6);   {abs gives absolute value} 
> val it = 6 : int 

 
Value Declaration 
 
Value can be given a name called variable or identifier. The value of a variable can not be 
updated and the life time of a variable is until it is redefined. The keyword val is used to define 
the value of a variable.  

For example, the execution of a value declaration  val var = exp causes an   variable var 
to be bound to the value of an expression  exp . The name of a variable is formed by using 
alphanumeric characters [a – z, A – Z, numerals, underscore ( _ ) and primes ( ‘)] and it must start  
with letter. If value is named by a variable, then it is bound to that variable otherwise it is bound 
to system defined identifier  it . 

 
Examples: 
  - val x = 3 + 5 * 2 ;   user's input 
  > val  x =  13 : int   system's response 

- val y = x + 3; 
> val y =   16 : int 
- y + x ;    without value declaration 
> val it =  29 : int 

  - val  x = ~1.23E~8 ;  x is redefined 
> val x =   ~1.23E8 : real    {~1.23E8 denotes –1.23*108) 
- val t = y + x ; 
 > Error: operator and operand don't agree 

Bindings and Environments 
 
We have seen that a variable can be bound to the value of an expression on the right hand side. 
The collection of bindings at any particular state is called an environment of that state. Execution 
of any declaration causes extension or change in the environment. The notation used for 
environment is not of SML program but our own notation to explain the meaning of SML 
programs. For example, the execution of the value declaration  val x = 3 + 5 * 2  causes the 
environment    env =  [ x  |⇒  13 : int ].  Each execution creates updated environment. 
Examples: 

- val x = 3 + 5 * 2; 
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> val x =   13 : int 
env1 = [x  |⇒  13 : int ] 

-  val y = x + 3; 
> val y =   16 : int 

env2 = [x  |⇒  13 : int, y  |⇒  16 : int] 
- y + x ; 
> val it =  29 : int 

env3 = [x  |⇒  13 : int , y  |⇒  16 : int, it  |⇒  29 : int] 
- val  x = ~1.23E~8 ; 
> val x =   ~1.23E8 : real      

env4 = [y  |⇒  16 : int, it  |⇒  29 : int, x  |⇒ –1.23*108  : real ]  
  - y; 

> val it =  16 : int 
 
Multiple Bindings 
 
Multiple variables can be bound simultaneously using key word  and  as a separator.  It is also 
called simultaneous declaration. A  val  declaration for simultaneous declaration is of the form   
     val v1 = e1 and v2 = e2 and … and vn = en    .  
 
SML interpreter evaluates all the expressions e1, e2, … , en and then bounds the variables v1, v2,… 
,vn to have the corresponding values. Since the evaluations of expressions are done 
independently, the order is immaterial. Consider some more examples and continue with the 
previous environment  env5 = [y  |⇒  16 : int, x  |⇒ –1.23*108 : real, it  |⇒  16 : int] 
Examples: 

- val y =  3.5   and   x = y ;      
> val y =  3.5 : real 

  > val x = 16 : int    
env6 = [ it  |⇒  16 : int, y  |⇒  3.5 : real, x  |⇒  16 : int] 

 
In multiple value bindings, the values on right hand sides are evaluated first and then bound to the 
corresponding variable in the left hand sides. Therefore, in the above example x does not get the 
current value of y which is 3.5 but bound to the value 16 available from the previous environment 
env5. 
Examples: 
  - val y = y + 3.0 and  x = y ; 
  > val y = 6.5 : real 
  > val x = 3.5 : real 

env7 = [ it  |⇒  16 : int, y  |⇒  6.5 : real, x  |⇒  3.5 : real] 
 
Compound Declarations 
 
Two or more declarations can be combined and separated by semicolon. The general form of 
compound declaration is  D1; D2 ; …; Dn . SML first evaluates the first declaration D1 , produces 
an environment, then evaluates the second declaration D2 , updates the previous environment and 
proceeds further in the sequence. It must be noted that the subsequent declarations in sequential 
composition may override the identifiers declared in the left hand side declarations.  Consider few 
examples and consider the previous environment as  

env7 = [ it  |⇒  16 : int, y  |⇒  6.5 : real , x  |⇒  3.5 : real] 
 

Examples: 
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- val x = 34;  val x = true    and    z = x ;  val  z = x; 
> val x =   34 : int  

env8 = [ it  |⇒  16 : int, y  |⇒  6.5 : real, x  |⇒  34 : int] 
> val x =   true : bool 
> val z =   34 : int 

env9 = [it |⇒ 16 : int, y|⇒ 6.5: real, x|⇒  true:bool, z|⇒ 34 : int] 
> val z =  true : bool 

env10 = [ it|⇒ 16:int, y|⇒6.5:real, x|⇒ true:bool, z|⇒ true:bool] 
 
Expressions and Precedence  
 
Expressions in SML are evaluated according to operator precedence. The higher precedence 
means earlier evaluation. Equal precedence operators are evaluated from left to right. Operators 
are of two kinds viz., infix operator and unary operator. Infix operator is placed between two 
operands and is also called dyadic operator. An unnary operator is always written in front of an 
operand and has higher precedence than any infix operator.  It is also called monadic operator. in 
SML, infix minus is represented by - whereas unary minus represented by ~. Function application 
also has higher precedence than any infix operator.  Precedence of operators is shown below in 
decreasing order without mentioning the actual priority value. Operators enclosed in inner boxes 
indicate operators with equal priority values. 
 
   
  ( , ) functions   ~ *, /, div, mod  +, - =, <>, >, >=, <, <= 
    
 
For example,  fully parenthesized expression according to the precedence of operators for an 
expression         ~ 5 + 56 mod 4 * 10 > 34 - 45 div 3 + abs ~ 3  is    

((~ 5) + ((56 mod 4)  * 10) ) > ((34 - (45 div 3)) + (abs (~ 3))) 
  
Conditional Expressions 
 
The general form of conditional expression is  if E then E1 else E2 .  It is evaluated by evaluating 
first the boolean expression E and then depending on the value of E, either than part or else part 
(but not both) is evaluated i.e.,  if E is true then E1 is the value of the conditional expression 
otherwise E2 is the value. The type of E1 and E2 should be the same whereas the type of E is bool. 
Conditional expression depends on boolean expression (called condition in short). The condition 
is formed using arithmetic, relational, boolean and string operators. It is evaluated using 
precedence of operators and gives true or false value. Priority of operators is: arithmetic 
operators, relational operators followed by boolean / logical operators.  
 
Arithmetic Operators: (Precedence has been shown earlier) 

Integers :   +, -, *, div, mod, abs, ~ (unary minus) 
Real :   +, -, *, /, sqrt, floor, sin, cos etc. 

 Arithmetic operators +, -, and * are defined for both integers and reals and thus are overloaded. 
The operators are overloaded if defined for more than one type of datatypes. SML can deduce the 
type in most of the expressions, functions from the type of the constituents used. 
 
Relational Operators: (All operators have equal precedence) 

Integers & reals   < (less than),       
<=  (less or equal to),  
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>  (greater than),  
>= (greater or equal to) 

For all except reals  = (equal to),   
<> (not equal to) 

 
Boolean Operators: (Precedence is in decreasing order of not, andalso and orelse)  

not  (Logical  negation),   
andalso  (Logical   AND),  

and   orelse  (Logical  OR) 
 
The boolean operators andalso and orelse are evaluated using lazy evaluation strategy which 
means  that evaluate whenever it is required (explained in detail later). For example, a boolean 
expression or condition 2 + 3 > x - 2 andalso true orelse x = y  when evaluated gives true or 
false value. 
Examples:  
(for conditions): 

- val n = ~ 6 ; 
> val n = ~ 6 : int 

env = [ n  |⇒  ~ 6 : int] 
  - val x = true andalso false; 
  > val x = false : bool 

env = [ n  |⇒  ~ 6 : int, x  |⇒  false : bool ] 
  - val y = x orelse true;     

> val y = true : bool 
env = [ n  |⇒  ~ 6 : int, x  |⇒  false : bool, y |⇒  true : bool ] 

-  val z = x orelse not(y); 
  > val z = false : bool     

env = [n|⇒ ~ 6:int, x|⇒ false:bool, y|⇒ true 
(for conditional expressions): 

- val t = if n +3 > 0 orelse y then 10 else 16 ;   
> val t = 10 : int       

env = [ n |⇒  ~ 6 : int, x  |⇒  false : bool, y |⇒  true : bool, z |⇒  true : bool, t |⇒  10: int] 
-  val t2 = if x andalso y orelse z then n + 10 else 30;   
> val t = 30 : int 

env = [ n |⇒  ~ 6 : int, x  |⇒  false : bool, y |⇒  true : bool, z |⇒  true : bool, t |⇒  30: int] 
- val n = if x andalso y orelse not z then 10 else 23; 
> val  n = 10 : int 

for conditional expressions): 
- val t = if n +3 > 0 orelse y then 10 else 16 ;   
> val t = 10 : int       

env = [ n |⇒  ~ 6 : int, x  |⇒  false : bool, y |⇒  true : bool, z |⇒  true : bool, t |⇒  10: int] 
-  val t2 = if x andalso y orelse z then n + 10 else 30;   
> val t = 30 : int 

env = [ n |⇒  ~ 6 : int, x  |⇒  false : bool, y |⇒  true : bool, z |⇒  true : bool, t |⇒  30: int] 
- val n = if x andalso y orelse not z then 10 else 23; 
> val  n = 10 : int 

 
 
Characters and strings 
 
Characters are encoded using ASCII (American Standard Code for Information Interchange) 
coding scheme. In SML, a character is enclosed within double quotes and is preceded  by a 
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symbol #. A string is a sequence of characters except double quote and is also enclosed within 
double quotes. There are various built-in functions to manipulate strings. Some of the functions 
are size, ord, chr, ^ (symbol for concatenation of strings) etc.  

• Function size returns the length of a string. 
• An ordinal function denoted by ord yields ASCII code corresponding to a character 

as an integer between 0 – 127. 
• Function chr is an inverse function of ord, gives character corresponding to a code. 

For instance, 97 and 51 are ASCII codes for characters  "a"  and "3" respectively.  
• The concatenation operator ( ^ ) joins two strings.  

Few examples are given to illustrate the use of these built-in functions. Consider the previous 
environment and continue. 
 
Examples:   
  - val x = #”t” ; 

> val x =  #“t” : char 
env = [y |⇒  true : bool, z |⇒  true : bool, t |⇒  30: int, n |⇒  10: int, x |⇒  # "t" : char] 

- val y = “prog" ^ "ram” 
> val y = “program" : string 

env = [z |⇒  true : bool, t |⇒  30: int, n |⇒  10: int, x |⇒  # "t" : char, y |⇒ “program” : string] 
 - val t = size “testing” ;  

   > val t = 7 : int 
env = [z |⇒  true : bool, n |⇒  10: int, x |⇒  # "t" : char, y |⇒ “program” : string , t |⇒  10: int] 

- val n = size (“to” ^ “gether”) ; 
> val n = 8 : int 

env = [z |⇒  true : bool, x |⇒  # "t" : char, y |⇒ “program” : string , t |⇒  10: int, n |⇒  8: int] 
- val x = ord #“a” ;  
> val x = 97 : int 

env = [z |⇒  true : bool, y |⇒ “program” : string , t |⇒  10: int, n |⇒  8: int, x |⇒  97 : int] 
- val  z = chr 51; 
> val z =  #“3” : char 

env = [y |⇒ “program” : string , t |⇒  10: int, n |⇒  8: int, x |⇒  97 : int, z |⇒ #“3” : char] 
 
 
Function Declaration 
 
Functions are also values in SML and are defined in much the same way as in mathematics. A 
function declaration is a form of value declaration and so SML prints the value and its type. The 
general form of function definition is: 
  fun  fun_name (argument_list) = expression 
  
The keyword  fun  indicates that function is defined. fun_name is user defined variable and 
argument_list consists of arguments separated by comma. Let us write a function for calculating 
circumference of a circle with radius r.  
Examples: 

- val   pi  =  3.1414; 
  > pi = 3.1414 : real 

env = [ pi  |⇒  3.1414 : int ] 
- fun  circum  ( r ) = 2.0 * pi * r; 
> val  circum  = fn : real  → real 

env = [ pi  |⇒  3.1414 : int,  circum  |⇒   fn r ⇒ 2.0 * pi * r : real  → real] 
- circum (3.0); 
> val it = 18.8484 : real 
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env = [ pi  |⇒  3.1414 : int, circum  |⇒ fn r ⇒ 2 *3.1414 * r : real  → real, it  |⇒  18.8484 : real] 
 
Here  circum  is a function name that takes an argument of real type and returns real value. SML 
can infer the type of an argument from an expression ( 2.0 * pi * r). Since multiplication can be 
done between two real values as SML is strongly typed, so r is also real. If there is one argument 
of a function, then circular brackets can be removed. The same function can be written as:  
 
Examples: 

- fun  circum   r  = 2.0 * pi * r; 
> val  circum  = fn : real  → real 

env = [ pi  |⇒  3.1414 : int, it  |⇒  18.8484 : real, circum |⇒ fn r ⇒ 2 *3.1414 * r : real  → real] 
-  circum 1.5; 
> val  it = 9.4242 : real 

env = [ pi  |⇒  3.1414 : int, circum |⇒ fn r ⇒ 2 *3.1414 * r : real  → real, , it  |⇒  9.4242 : real] 
 
env = [circum |⇒ fn r ⇒ 2 *3.1414 * r : real  → real, pi  |⇒  1.0 : real, it  |⇒  9.4242 : real] 
 
If the function body contains identifiers which are not in the list of arguments, then they are 
called free variables. Variables appearing in the argument list are said to be bound. In the function  
circum , pi is a free identifier whereas r is bound.  
Examples: 

- val pi = 1.0; 
> val pi = 1.0 : real 

 env = [circum |⇒ fn r ⇒ 2 *3.1414 * r : real  → real, , it  |⇒  9.4242 : real, pi  |⇒  1.0 : real] 
- circum 1.5; 
> val it = 9.4242 : real 

 
We notice that the result of circum 1.5 is still 9.4242 even though pi is bound to new value to 1.0. 
The reason is that SML uses the environment valid at the time of declaration of function rather 
than the one available at the time of function application. This is called the  static binding of free 
variables in the function.  
Examples: 
   - pi;     

> val it = 1.0 : real 
env = [circum |⇒ fn r ⇒ 2 *3.1414 * r : real  → real, pi  |⇒  1.0 : real, it  |⇒ 1.0 : real] 

- val  circum = 2.5; 
> val circum = 2.5 : real 

env = [pi  |⇒  1.0 : real, it  |⇒ 1.0 : real, circum |⇒  2.5 : real] 
  -  val x = pi + circum; 
  > val x = 3.5 : real 

env = [pi  |⇒  1.0 : real, it  |⇒ 1.0 : real, circum |⇒  2.5 : real, x |⇒  3.5 : real] 
 
Since the variable circum gets new binding, the environment gets updated with the value of 
circum as 1.0 and function circum is removed from the modified environment.  
  
Unnamed Function 
 
Unnamed Function is defined using a functional expression. Its general form is: 

fn ( argument_list)   =>  expression ;   
If argument_list consists of one argument, then brackets are optional. 
 
Examples: 
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  - fn r   => 3.1414 * r * r ;   
> val  it  = fn : real  → real 

env = [ it |⇒   fn r  => 3.1414 * r * r : real  → real] 
- val  x = it 1.0; 
> val x = 3.1414 : real 

env = [it |⇒   fn r => 3.1414 * r * r : real  → real, x |⇒  3.1414 : real] 
- val f = it; 
> val f = fn : real  → real 

env = [it |⇒ fn r =>3.1414*r*r:real→real, x |⇒3.1414:real,f |⇒ fn r => 3.1414*r*r: real → real ] 
- (fn r  ⇒  3.14 * r * r) (2.0) ;   
> val  it  =  12.56636 : real 

 env = [x |⇒3.1414 : real, f |⇒ fn r => 3.1414 * r * r : real → real , it |⇒ 12.56636 : real] 
- val f = fn (p, q)   =>   2 + p * q ;   
> val f = fn : int * int -> int 

env = [x |⇒3.1414 : real , it |⇒ 12.56636 : real , f |⇒ fn (p, q) =>2 + p * q : int * int ] 
 -  f (3, 5); 
> val it = 17 : int 

env = [x |⇒3.1414 : real , f |⇒ fn (p, q) =>2 + p * q : int * int 
 
Function declaration is only a derived form of a particular kind of value declaration. The 
following value declaration of function has the same effect as of normal function declaration 
shown earlier. It can be easily seen from the environment created in both types of declarations. 
Examples:   

- val   pi  =  3.1414; 
  > pi = 3.1414 : real 

- val  circum = fn r  =>  2 * pi * r ;  
> val  circum  = fn : real  → real 

env = [ pi |⇒  3.1414, circum |⇒   fn r => 2 *  3.1414 * r ] 
 
Now onwards we will skip the environment for the sake of simplicity. There are different ways of 
defining functions given as follows: 
 
Examples: 
  - fun cube (x : real)  =  x * x * x ; 

type of an argument 
  - fun cube (x): real  =  x * x * x ; 
       type of result 
       type of result 

- fun cube x : real  =  x * x * x ;  
- fun cube x  =  x * x * x : real ; 

 
The system's output in all above cases is:  

> val cube = fn : real  → real 
Some SML systems assume basic arithmetic operators (+,-,*) as of  int type by default but some 
may flash error if unable to resolve overloading. From the body of the function given below,  it 
can not be derived whether * is used for integers or reals but as mentioned above it takes int type 
by default. 

- fun cube x  =  x * x * x; 
> val cube = fn : int  → int 

In the  definitions of average given below, the types have been deduced automatically by seeing 
the types of the constituents in the bodies. 
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Examples: 
- fun  average1 (x, y) = (x + y) / 2.0 ; 
> val average1 = fn : real * real  → real 

   - fun  average2 (x, y) = (x + y) div  2 ; 
> val average2 = fn : int * int  → int 

 
Curried Function 
 
A partially applicable function is called a curried function after the name of the logician H. B. 
Curry.  A partially applicable function is a function that returns as a result a more specialized 
function when applied on the first argument. Hence any function of n ( n > 1) arguments can be 
expressed as a curried function whose result is another function of    (n–1) arguments. Partially 
applicable functions are convenient to use and supports the search for powerful functions useful 
in variety of applications. The effect of such function is same when applied with the values of all 
arguments. 
  - fun  average x  y =  (x + y) / 2.0; 
  > val average = fn : real →  real →  real 
An arrow (→ ) associates to the right so the type of average  real →  real →  real is interpreted as  
real →  ( real →  real ). The function average takes a real argument and returns a function of the 
type real   →  real as a result. 
 
Examples:   

- val  p = average 2.0; 
  > val p = fn : real →  real 
  - p 6.4; 

> val it = 4.2 : real 
 
It is not necessary to introduce new name for the generated function. We can directly  apply it as 
follows: 

- (average  2.0)  6.4 ; 
  > val it = 4.2 : real 
Since function application associates to the left, the parenthesis can be avoided and we can write    
average  2.0  6.4   instead of    (average  2.0)  6.4 . Therefore, we can apply function with all the 
argument values without using brackets.  
  - average 2.0 6.4; 

> val it = 4.2 : real 
Few more examples are given below: 
 
Examples: 
  - fun  small x y = if x < y then x else y; 
  > val small = fn : int  →  int →   int 
  - fun  min x y z  = small  x ( small  y  z); 
   > val min = fn : int  →  int →   int  →   int 
  - val x = min 34 23 67; 
  > val x = 23 : int 
  - val x = min (34,23,67);   wrong 
 
Tuples  
 
The type α * β, where α and β are of any type, is the type of ordered pair whose first component 
is of type α and second component has type β. An ordered pair is written as  (e1, e2) where e1 and 
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e2 are expressions of any type. Similarly we can define n-tuple (e1 ,…, en), where each expression 
ei , (1 ≤ i ≤ n) is of type αi , (1 ≤ i ≤ n) and each expression is separated by comma. The type of n-
tuple is of the form α1 * ...* αn . 
 
Examples: 
   - val x = (2.3, true) ; 

> val x =  (2.3, true) : real * bool 
- val y =  (25 div 3, true, 2.34 + 1.2) ;  {div is integer division} 
> val y = (8, true, 3.54) : int * bool * real   
- val z = (25 div 3, (true, 2.34 + 1.2)) ;   
> val z = (8, (true, 3.54)) : int * (bool * real) 

  - val p = (x, y, z); 
  > val p = ((2.3, true), (8, true, 3.54), (8, (true, 3.54))) 

: (real * bool) * (int * bool * real) * (int * (bool * real)) 
 
Polymorphic Function Declarations 
 
Sometimes we see that type of the function is not deducible seeing the arguments or the body at 
the time of defining function. The arguments can be of any type say α and β. The actual type 
would be decided at the time of applying function. Such a type is called polytype and function 
using polytype is called polymorphic function. Such functions can be applied to arguments of any 
type. 
Examples: 
   - fun tuple_self  x = (x, x, x) ; 
  > val tuple_self  =  fn :  α  → α *  α *  α 

- val p = tuple_self  25; 
> val p = (25, 25, 25) : int * int * int 
- val p2 = tuple_self  true; 
> val p2 = (true, true, true) : bool * bool * bool 
- val p1 = tuple_self  (“hi”, 2); 
> val p1 = ((“hi”, 2), (“hi”, 2), (“hi”, 2))   

: (string * int) * (string * int) * (string * int)  
- fun pair (x, y) = (x, y); 

  > val pair = fn :  α *  β  →  α *  β  
  -  pair ((12, "test", 23.4), true); 

> val it = ((12,"test",23.4),true)  
: (int * string * real) * bool 

- fun first_of_pair  (x, y) = x ; 
  > val first_of_pair  =  fn :  α * β →  α  
  - fun second_of_pair  (x, y) = y ; 
  > val second_of_pair  =  fn :  α * β →  β  
  - val f = first_of_pair  p1; 
  > val f = (“hi”, 2) : string * int 

- val s = second_of_pair f ; 
> val s = 2 : int 
- val f1 = second_of_pair  (first_of_pair  p1); 
> val f1 = 2 : int 
- val f1 = second_of_pair  (first_of_pair  p2); 
> Error: invalid 
- fun fstfst x = first_of_pair (first_of_pair  x) ; 
> val fstfst  =  fn :  (α * β ) * τ →  α  
- fstfst p1; 
> val it = “hi” : string 
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Here in the definition of a function fstfst, the inner function first_of_pair has a type                 (α * 
β ) * τ →  α * β   whereas outer function  first_of_pair has a  type α * β  →  α.  A ploymorphic 
function can have different types within the same expression. In SML, the polymorphic type 
begins with a single quote followed by a character such as ‘a , ‘b etc.   
 
Equality test in Polymorphic Functions 
 
Test for equality (=) and inequality (<>) are restricted form of polymorphism. Since equality type 
is forbidden on real type, function type and abstract type (explained later), equality operator can’t 
be used on real numbers and we can not test if two functions are equal. The type variables with 
two primes ''a , ''b etc. are used to denote all those types which allow test for equality and 
inequality . A function’s type contains equality type variables if it performs polymorphic equality 
test directly or indirectly. Consider few examples to illustrate the use of equality test. 
Examples: 
  - fun equal (x, y) = if x = y then true else false ;  

> val equal = fn : ''a * ''a -> bool 
- equal (23, 33); 
> val it = false : bool 
- equal ((1,2), (1,2)); 
> val it = true : bool 
-  equal (2.3, 2.3); 
> Error: operator and operand don't agree  

   - fun notequal (x, y)  =  x <> y orelse false; 
> val notequal = fn : ''a * ''a -> bool      

 
Patterns 
 
A pattern is an expression consisting of variables, constructors and wildcards. The constructors 
comprises of constants (integer, character, bool and string), tuples, record formation, datatype 
constructors (explained later) etc. The simplest form of pattern matching is pattern = exp, where 
exp is an expression. When pattern = exp is evaluated, it gives true or false value depending upon 
whether pattern matches with an expression or not. 
  
Examples: 

- true = ( 2 < 3); 
> val it = true : bool 
-  23 = 10 + 14; 
> val it = false : bool 
-  "abcdefg" = "abc" ^ "defg"; 
> val it = true : bool 
- #”a” = # “c”; 
> val it = false : bool 
- (23, true) = (10+13, 2< 3); 
> val it = true : bool 
- val v = 3;    
> val v = 3 : int 
- v = 2 + 1; 
> val it = true : bool 
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The wildcard pattern can match to any data object. It is represented by underscore ( _ ) and has no 
name thus returns an empty environment. Use of wildcard (don’t care entry) will be explained 
later.  In SML, the pattern matching occurs in several contexts.  

• Pattern in value declaration. It is of the form val pat = exp. If pattern is a simple 
variable, then it is same as value declaration.    

• If patterns are Pairs, tuples, record structure, then they may be decomposed into their 
constituent parts using pattern matching. The result of matching changes the 
environment.  We go through a process of reduction to atomic value bindings, where 
an atomic bindings is one whose pattern is a variable pattern. The binding  val (pat1, 
…, patn ) = (val1, …, valn ) reduces to  

> val  pat1 =  val1  
 
 

> val patn = valn 
• This decomposition is repeated until all bindings are atomic. 

Examples: 
-  val ((p1, p2), (p3, p4 , p5)) = ((1,2), (3.4, “testing”, true)); 
> val p1 = 1 : int 
> val p2 = 2 : int 
> val p3 = 3.4 : real 
> val p4 = “testing” : string   

   > val p5 = true : bool 
-  val (p1, p2, _ , p4) =(12, 3.4, true, 67); 

     wildcard 
> val p1 = 12 : int  
> val p2 = 3.4 : real 

   > val p4 = 67 : int 
 
Alternative Pattern 
 
Functions can be defined using alternative patterns as follows: 
  fun  pat1 = exp1 | pat2 = exp2  | … | patn = expn ; 
Each pattern patk consists of same function name followed by arguments. The patterns are 
matched from top to bottom until the match is found. The corresponding expression is evaluated 
and the value is returned.  
 
Examples: 

- fun  fact 1 = 1  
| fact n = n * fact (n-1); 

> val fact = fn : int -> int 
- fact 3; 
> val it = 6 : int 
- fun  negation true = false  

| negation false = true; 
> val negation = fn : bool -> bool 

   - negation (2 > 3); 
   > val it = true : bool 
 
 
Case Expression 
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Case expression is a mechanism for pattern matching. Conditional expression takes care of only 
two cases whereas if we want to express more than two cases, then the nested if-then-else 
expression is used. Alternatively we can handle such situations using case expression. The 
general form of case expression is: 
  case  exp of   pat1 => exp1   
    pat2 => exp2 
   
    patn => expn   
The value of exp  is matched successively against the patterns pat1 , pat2 , … , patn . If patj is the 
first pattern  matched , then the corresponding expj is the value of the entire case expression. For 
example the nested nested if-then-else expression 

if  x = 0 then “zero” else if x = 1 then “one” else if x = 2 then “two” else “none” 
is equivalent to the following case expression     

case x of  0 => “zero”   
| 1 => “one”  
| 2 => “two”  
|  _ => “none”  

    wild card 
 
Consider another example. Given a month number from (1 - 12), corresponding string stating 
month name is returned as a result of the case expression. 
 
Example:   

- fun convert month  =  case  month of   
1 => “jan” | 2 => “feb” | 3 => “mar”  
| 4 => “apr” | 5 => “may” | 6 => “jun”  
| 7 => “july” | 8 => “aug” | 9 => “sept”  
| 10 => “oct” | 11 => “nov”|12=> “dec”   
| _  => "none"; 

  > val convert = fn : int -> string 
   - convert(12); 

> val it = "dec" : string 
   -  convert(13); 

> val it = "none" : string 
   
It should be noted that an expression exp is of enumerated type. Enumerated types are: int, bool, 
char and user defined datatype (explained later). 
 
 
Infix Operators 
 
An infix operator is a function that is written between two arguments. Most of the functional 
languages allow programmer to define their own infix operators. Let us define a boolean function 
implication imply as follows: 
 
Example: 
  - fun imply(x, y) = not x orelse y;     

> val imply = fn : bool * bool  → bool 
- val q = imply ( true, false); 
> val q = false : bool 

  - val  p = imply (true, true); 
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> val p = true : bool 
 
It is more convenient if we write infix operator between two arguments. SML provides directive 
called infix that helps user to define infix operator. Operator might be simple name or symbol.  
• Let us define boolean implication function denoted by symbol  as an infix operator 
Examples: 

- infix ; 
> infix   

  - fun x  y = not x orelse y;     
> val  = fn : bool * bool  → bool 

   - true  true; 
> val it = true : bool 

 - true  false; 
> val it = false : bool 
- false  true; 
> val it = true : bool 
- false  false; 
> val it = true : bool 
 

• Boolean AND operator denoted by  
 
Example: 

- infix &;   
> infix & 
- fun  true & b   = b 

            |  false & b  =  false; 
> val & = fn : bool * bool -> bool 
- val x = true & 3 < 5; 
> val x = true : bool 

 
• Boolean OR operator denoted by V 
 
Example: 

- infix V;  
  > infix V 

- fun  true V  b  = true 
            | false V  b  = b; 

> val V = fn : bool * bool -> bool 
-  3 > 5 V 4 >3; 

    > val it = true : bool 
 
Precedence of infix operator may be specified between 0 to 9. Default precedence is 0. The 
directive infix causes left association {a + b + c means (a + b) + c} whereas infixr causes right 
association (operator exponentiation is right associative).   

  
Records 
  
A record of n components is a n-tuple whose components are identified by labels. It is different 
from n-tuple as each component of n-tuple, is identified by its position from 1 to n. The 
components of a record are called fields. The general forms are given below: 
 Record type    

{label1 = type1, …, labeln = typen} 
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 e.g.,  {name : string, age : int, adult : bool} 
Record value   

{label1 = exp1, label2 = exp2, …, labeln = expn}  
 e.g.,  {name = "john", age = 35, adult = true}; 
Record pattern   

{label1 = pat1, …, labeln = patn} : {label1 = type1, …, labeln = typen},  
where, each patk has a type typek. for 1 ≤ k  ≤ n. 

e.g., {name="john", age=35, adult=true} : {name : string, age : int, adult : bool} 
 
SML system arranges labels of a record in alphabetical order.   
Examples: 

-  val x = {name = "john", age = 35, adult = true}; 
> val x = {adult=true, age=35, name = "john"}  

: {adult : bool, age : int, name : string} 
-  val p = 3; 
> val p = 3 : int 
-  val q = 4.5; 
> val q = 4.5 : real 
-  val t = { c = “record”, a = p + 5, b = q }; 
> val t = {a = 8, b = 4.5, c = “record”} : {a : int, b : real, c : string 

   
Accessing  values of labels 
 
The general form of accessing a particular label value from a record is:  

# label_name   rec_name 
The field label = identifier gives each identifier the value of the corresponding label.   
 
Examples: 

- val r = {a = 3, p = 2} ; 
> val r = {a = 3, p  =  2} : {a : int, p : int} 
-  val x1 = #a r  and x2 = #p r ;      
> val x1 = 3 : int 

  > val x2 = 2 : int 
  - val { a = a1, p = p1} = r; 

> val a1 = 3 : int 
> val p1 = 2 : int 

   - val {a = a1, p = p1} = { p = "trial", a =45.3}; 
> val a1 = 45.3 : real 
> val p1 = "trial" : string   

 
If we need the values of only few fields, then put three dots after listing the required fields.  
 
Examples: 
  - val s = {x = 3, a = 23.5, z = true}; 

> val s = {a = 23.5, x = 3, z = true} : {a : real, x : int, z : bool} 
   -  val {a = a1, z = z1, ...} =  s; 

> val a1 = 23.5 : real 
> val z1 = true : bool 

 
We can also use label names directly instead of identifiers.  
 
Examples: 
   - val {a, x, ...}  = s; 
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> val a = 23.5 : real 
> val x = 3 : int 

 
 
Expressing tuple as a record 
 
An n-tuple (x1, x2, …, xn) is just an abbreviation for a record with numbered fields as 
{ 1 = x1, 2 = x2, …, n = xn}. 
Examples: 

- val r = { 1 = 23, 2 = 3.4 3 = false}; 
> val r = (23, 3.4, false) : int * real * bool 
-  # 2 r; 
> val it = 3.4 : real 

 
 
Records can be compared for equality or inequality. 
 
Examples: 
   - {name = "shiva", age = 13}= {name = "jim", age= 45}; 

> val it = false : bool 
   - {name = "shiva", age = 13}<> {name = "jim", age= 45}; 
 
Local declarations 
 
In some programs, we require auxiliary declarations, which are valid locally. Hiding declarations 
while writing big programs is useful facility. Locally declared variables or functions can have the 
same names which are globally used without any problem as local declarations are not visible 
outside its scope. In SML there are two types of local declarations. The general forms of local 
declarations are given as follows:  
  
Let expression : (declarations  local  to an expression) 
 

let  D1; D2; …; Dn  in E   end    
 
Let expression is evaluated as follows:  
 
• Declaration D1 is visible in D2 , D1 & D2 are visible in D3 and  subsequently D1, …,Dn-1 are 

visible in Dn. All the declarations are visible in an expression E. E is called the scope of all 
declarations. 

• Environment env before executing let expression gets updated by each let declaration as env1; 
env2; …; envn , each environment envj contains previous environments env1,..,      envj-1. n 
expression E is evaluated in the last  environment envn and the value of expression is added to 
original environment env by undoing the environments obtained because of  let declarations. 

 
Examples: 

- let val x = 3; val y = 4 in x + y end; 
> val it = 7 : int 
- val x = 5; 
> val x = 5 : int 
-  val p = let val x = 3 in x * 2 end;  { x is local} 
> val p = 6 : int 
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-  p + x;   {x is global & its value is 5} 
> val it = 11 : int 
-   val q = let val x = 3 and y = 6; val z = 12 in x + y - z end; 
> val q = ~3 : int 
- fun area_triangle (x, y, z) = let val s = (x + y + z) / 2.0 in  

sqrt(s * (s - x) * (s - y) * (s - z)) end; 
> val area_triangle = fn : real * real * real -> real 

  - val p = s; 
  > Error: s is not defined 
 
Local declarations: (declarations local to other declarations)    
 

local  D1; D2; …;Dn  in D’1; D’2 ; …; D’m end    
 
 
Local declaration is executed as follows: 
 
• Declaration D1 is visible in D2 , D1, D2 in D3 and  subsequently D1, …,Dn-1 in Dn and all are 

visible in the declarations D1'. Further, D1, …,Dn-1, D1' in D2' and so on in Dm' .  
• New environments are created in the sequence env1, env2, …,envn , env1', env2', … and envm'  

each one including the previous environments. 
• After  executing local declaration, the resulting environment env’ is obtained  after removing 

the bindings obtained from the declarations D1, D2, … and Dn .  
 
Examples: 
   - local val x = 3; val y = 4  in val p = x * y  end; 

> val p = 12 : int 
- local val x = 3; val y =  x - 2 in val z = x * y; val w = z - y end; 
> val z = 3 : int 
> val w = 2 : int 

  - local fun divide(x, y) = x mod y = 0 in 
 fun leap (year) = divide(year, 4) ; 
fun millenium (year) = divide(year, 1000) end; 

> val leap = fn : int -> bool 
   > val millenium = fn : int -> bool 

- val p = leap (1900); 
> val p = true : bool 
- leap(1998); 
> val it = false : bool 
-  millenium(1000); 
> val it = true : bool 
-  val q = millenium(1900); 
> val q = false : bool 

 
Distinction between let expression and local declaration  
 
Let is used most frequently as compared to local declaration but problem can be solved using 
both. Few examples are given below: 
 
Examples: 

-  val p = 4; 
> val p = 4 : int 

   - val q = 3; 
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> val q = 3 : int 
  -  val y = let val x = p + q in x * x end; 
  > val y = 16 : int     same effect 

- local val x = p + q in val y = p * p end; 
> val y = 16 : int 

 
Example: Write a function to solve quadratic equations ax2 + bx + c= 0.  
 
Using let: 
  - fun q_solve(a, b, c) =  let val t = b * b – 4.0 * a * c  in   

if  t > 0.0 andalso a > 0.0 then 
       let  val t1 = Math.sqrt (t); 
        val t2 = 2.0 * a; 
        val t3 = ~ b 
       in ((t3 + t1) / t2, (t3 – t1) / t2) end 
       else  raise Invalid       
 

exception name  
          explained later  
      end;  
  > val q_solve = fn : real * real * real -> real * real 
   -   val root = q_solve(1.0, ~8.0, 15.0); 

> val root = (5.0,3.0) : real * real 
-  val root = q_solve(1.0, 4.0, ~21.0); 
> val root = (3.0,~7.0) : real * real 
-  q_solve(0.0, 2.3, 3.4); 
>  exception Invalid raised 
- q_solve(12.0, 2.3, 3.4);    
>  exception Invalid raised 

 
Using Local: 

- local   
fun discriminant (a, b, c) = b * b – 4.0 * a * c ; 
fun valid (a, b, c)  =  

discriminant (a, b, c) > 0.0 andalso  a > 0.0; 
    fun compute(a, b, c)  = Math.sqrt (discriminant (a, b, c)); 

fun double_a (a)  = 2.0 * a 
in  fun q_solve(a, b, c) =  if valid (a, b, c) then  

   ((~ b + compute(a, b, c)/double_a (a)), (~ b – compute(a, b, c)/double_a (a)))  
   else raise Invalid 
   end; 

> q_solve = fn : real * real * real -> real * real 
      -  val root = q_solve(0.0, 1.2, 3.2); 

> exception Invalid  raised   
-  val root = q_solve(23.5, 1.5, 3.4); 
> exception Invalid  raised   
-  val root = q_solve(1.0, 23.6, ~2.5); 
> val root = (0.105460931858,~23.7054609319) : real * real 
-   val root = q_solve(1.0, ~8.0, 15.0); 
> val root = (5.0,3.0) : real * real 
-  val root = q_solve(1.0, 4.0, ~21.0); 
> val root = (3.0,~7.0) : real * real 
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We see from the above example that local declaration is not convenient way of writing function  
as compared to  function written using let expression. 
• It is more straight forward and easy to understand using let expression.  
• The function is more efficient computationally using let expression. 
• Repetitive computations can be easily avoided using let expression    
 
Therefore, let expression is frequently used as compared to local declaration. 
 
SML provides library of mathematical functions in a structure called Math. Declarations are 
grouped to form a structure by enclosing them in the keywords struct and end. The structures are 
discussed in the next chapter in detail. An access to a functions definition defined in a structure is  
 

structure_name . function_name (actual arguments) 
 
The function sqrt defined in Math structure is accessed as Math.sqrt.   
 
 
Type Declaration 
 
In SML, the types are built from predefined types viz., int, real, char, string, bool and unit. We are 
familiar with all types except unit. The type unit consists of a single value, denoted by ( ). This 
type is used whenever an expression has no interesting value or function does not have 
arguments. The type declaration is defined in the same way as the data object is named in 
variable declaration. The general form of type declaration is: 
 
  type  var1 = type1 and var2 = type2  and … and varn = typen  
 
 

where each vark  is a type variable and typek  is a type expression.  
 
The type declaration can also be used to define alternative type for existing types. New as well as 
old types are available for use. Let us see the declarations made in the following examples: 
Examples: 

- type integer = int; 
> type integer = int 
-  type float = real and boolean = bool and character = char; 
> type float = real 
> type boolean = bool 
> type character = char 
-  type pair = integer * boolean; 
> type pair = integer * boolean 
-  (23, true) : pair; 
> val it = (23,true) : pair 
- type person_rec =  {name:string, age:float, address : string, salary:real}; 
> type person_rec ={address:string,age:float,name:string,salary: real} 
- val p={name="john",age=67,address="New Delhi", salary=2000.00}; 
> val p={address="NewDelhi",age=67,name="john", salary=2000.0} 

: {address : string, age : real, name : string, salary:real} 
 
Example: Function for getting the name of a person with age > 60. 

- fun get_name(x : person_rec) =  
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if # age x > 60.0 then #name x  else "sorry"; 
    > val get_name = fn : person_rec -> string 

-  get_name(p); 
> val it = "john" : string 

 
Datatype Declaration 
 
Datatype declaration provides a means to introduce a completely new user defined type 
constructors in the program along with one or more value constructors for the type constructor.  
• The type constructor may take zero or more arguments.  
• Each value constructor may also take zero or more arguments.  
• The type and value constructors are new and distinct from all other previously or system 

defined types.  
 
Here we discuss nullary type constructor which means a type constructor with zero argument, 
Nullary value constructor is a value constructor with zero argument. Such types are also called 
enumerated types where value constructors are enumerated. Advanced type constructors will be 
discussed in the next chapter. The gerneral form of datatype definition is as follows: 
 
  datatype  type_constructor_name  

= value_constructor1 | value_constructor2 | … | value_constructorn  
 

We use the following conventions. These are purely user defined conventions. 
• Name of type constructor is formed using  upper case letters. 
• Name of value constructor starts with upper case letter followed by lowercase letters.   
  
Enumerated types (Nullary Type Constructor with Nullary Value Constructors): 
Consider datatype for type constructor DAY that defines value constructors Mon, Tue, Wed , Thr, 
Fri , Sat and Sun with zero argument. Such value constructors are called nullary value 
constructors. 
 
Examples:  

-  datatype DAY = Mon | Tue | Wed | Thr | Fri | Sat | Sun; 
> datatype DAY = Fri | Mon | Sat | Sun | Thr | Tue | Wed 
- fun working_day (day :DAY) =  day <> Sat andalso day <> Sun; 
> val working_day = fn : DAY -> bool 

   -  val d = working_day(Tue); 
> val d = true : bool 

   - datatype MONTH  =  Jan | Feb | Mar | Apr | May | Jun |  July | Aug  
| Sept | Oct | Nov | Dec ;  

> datatype MONTH = Apr | Aug | Dec | Feb | Jan | July | Jun  
| Mar | May | Nov | Oct | Sept 

 
- fun month_days (month, year)  =  let 

               fun leap (year) = year mod 4 = 0; 
               val x = if leap(year) then 1 else 0 

in 
       case month of  

Jan => 31   | Feb =>28 + x  
| Mar => 31 | Apr => 30  
| May =>31  | Jun =>30   
|  July =>31  | Aug => 31  
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| Sept => 30  | Oct =>31  
| Nov =>30   | Dec =>31  
end ; 

> val month_days = fn : MONTH * int -> int 
   -  month_days(Mar, 1998); 

> val it = 31 : int 
-   month_days(Feb, 1999); 
> val it = 28 : int 
-  month_days(Feb, 2000); 
> val it = 29 : int 
     

Let us consider another example of user defined datatype named as RELATION with nullary 
value constructors as Less, Equal and Greater for handling real comparisons. The function grade 
defined below makes use of the newly defined value constructors in case expression.  
Examples: 

- datatype RELATION = Less | Equal | Greater; 
> datatype RELATION = Equal | Greater | Less 
- fun compare(x, y :real) : RELATION =  if x < y then Less  

else if x > y then Greater else Equal; 
> val compare = fn : real * real -> RELATION 

   - fun grade (marks) = case compare(marks, 80.0) of 
   Greater => “A” 

     | Equal  =>  “A” 
    | Less  => case compare(marks, 60.0) of 
     Greater => “B” 

      | Equal => “B” 
      | Less =>  case compare(marks,50.0) of 
       Greater => “C” 
       | Equal => “C” 

| Less => case compare(marks, 40.0) of   
Greater => “D” 

        | Equal => “D” 
       | Less =>  “F” ; 

> val grade = fn : real -> string 
-  grade(98.5); 
> val it = "A" : string 
-  grade(34.5); 
> val it = "F" : string 
-  grade(70.0); 
> val it = "B" : string 

 
Nullary type constructor with value constructors with more than zero arguments: 
 
Consider datatype for type constructor SHAPE that defines value constructor with more than zero 
arguments. These value constructors are all functions giving the values of type SHAPE when 
applied to the argument(s).  
 
Examples: 

- datatype SHAPE =  Circle of real   | Rectangle of real * real  
| Square of real ; 

> datatype SHAPE  
     Circle = fn: real → SHAPE 
      Rectangle = fn : real * real → SHAPE 
      Square =fn : real → SHAPE 
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- Circle 3.5; 
> val it = Circle 3.5 : SHAPE 
-  val s = Square 1.2; 
> val s = Square 1.2 : SHAPE 

 
Let us write function for calculating area of a geometrical figures mentioned above. 
Examples: 

- fun area (s: SHAPE) =  case s  of   
Circle r  => 3.14 * r * r 
| Rectangle (x, y) => x * y 
|  Square  side => side * side 
| _   => 0.0;  

  > val area = fn : SHAPE -> real 
 
Last pattern in the case expression is underscore to take care of values for undefined shapes. At 
this point exception can be raised. We will discuss exception in the next chapter. Let us call these 
functions. 
 
Examples: 
  -  area (Circle 1.2); 

> val it = 4.5216 : real 
-  area (Rectangle (2.3, 4.5)); 
> val it = 10.35 : real 
-  area (Square 4.5); 
> val it = 20.25 : real 
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 List and Advanced Features in SML 
 
 
 
List is an ordered sequence of data objects, all of which are of the same type. In SML, the list 
consists of finite sequence of values of type α and the entire list is of type α list. The elements of 
list are enclosed in square brackets and are separated by comma. The empty list denoted by [ ] 
that contains no elements. The order of elements is significant. List can contain varying number 
of elements of the same type whereas in tuples and records the number of elements are fixed and 
are of any type. The first element of the list is at 0 position. Typical lists are: 
 
Examples:

- [2, 3, 4] ;
> val it = [2,3,4] : int list
- [“john”, “mary”, “jack”] ;             list of strings
> val it = ["john","mary","jack"] : string list
- [(2, true), (4, false)] etc.                         list of pair
> val it = [(2,true),(4,false)] : (int * bool) list
- val x = [];                empty list
> val x = [ ] : 'a list
- val r = [2.3, 4.5 / 1.2, 8.9 + 2.3]; list of reals
> val r = [2.3,3.75,11.2] : real list
- val y = [[1,2], [3,4,5,6], [ ]];           list of list of int type
> val y = [[1,2],[3,4,5,6],[]] : int list list
- val p = [floor, round, trunc]; list of functions
> val p = [fn,fn,fn] : (real -> int) list  

   
Constructing a List 
 
A list is constructed by two primitives: one a constant nil (empty list denoted by [ ]) and other an 
infix operator cons represented by ::. A list is represented as head :: tail , where head is a first 
element of the list and tail is the remaining list. The operator cons builds a tree for a list from its 
head to tail.  For example, a list [2] can be represented as 2 :: nil.  
The tree representation for a list  head :: tail is as follows: 
    :: 
 
   head  tail 
 
A list can be constructed by adding an element in the beginning using cons operator. Few 
examples for constructing a list are given below:   
 
Examples:

- 4::nil;
> val it = [4] : int list
- val p = 3 :: [4];
> val p = [3,4] : int list
- val q = 2 :: p;
> val q = [2,3,4] : int list  

 
A list [x1, x2, …, xn ] can also be written as x1 :: … :: xn :: nil. It's tree representation is 
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::

x1 ::

x2 ::

::

xn  nil
 

 
Two lists can be compared for equality or inequality. They are equal if are of same size, type and 
all corresponding elements are equal. 
 
Examples:

- [1,2,3] = 1 :: 2 :: 3 :: nil;
> val it = true : bool
- val p = [2, 3, 4] <> [1+1, 4-1, 2+2];
> val p = false : bool  

 
Standard Functions  for List handling in SML 
 
There are only few standard functions for handling lists in SML 
• List constructor operator: (  denoted by :: ) 
 
 - 2 :: [3,4,5];

> val it = [2,3,4,5] : int list
- true :: [2>3, false];
> val it = [true, false, false] : bool list
- (1,2) :: [(3,4), (5,6)];
> val it = [(1,2), (3,4),(5,6)] : (int * int) list  

• Append operator :( denoted by @ )  
 

- [1,2,3] @ [4,5];
> val it = [1,2,3,4,5] : int list
- [[1,2], [3,4], [5]] @ [[7,8],[9]];
> val it = [[1,2],[3,4],[5],[7,8],[9]] : int list list
- [(1,"ab"), (2, "bc")] @ [(5, "we")];
> val it = [(1,"ab"),(2,"bc"),(5,"we")] : (int * string) list  

• Function for reversing the elements of a list: (rev)  
 

- rev [1,2,3];
> val it = [3,2,1] : int list
- rev [[1,2], [3,4], [5]];
> val it = [[5],[3,4],[1,2]] : int list list
- rev [(10,"abc"), (20, "bcd")];
> val it = [(20,"bcd"),(10,"abc")] : (int * string) list  

• Functions for finding Head and Tail of a list :( hd - for head  and tl - for tail)  
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- hd [(1,"ab"), (2, "bc")];
> val it = (1,"ab") : int * string
- hd [[1,2], [3,4], [5]];
> val it = [1,2] : int list
- tl  [(1,"ab"), (2, "bc")];
> val it = [(2,"bc")] : (int * string) list
- tl [[1,2], [3,4], [5]];
> val it = [[3,4],[5]] : int list list  

• Finding the length of a list: ( length) 
 

- length [1,2,3,6];
> val it = 4 : int
- length [(1,"ab"), (2, "bc")];
> val it = 2 : int
- length [[1,2], [3,4], [5]];
> val it = 3 : int  

• Conversion between strings and list of characters : (explode and implode) 
 

- val x = explode "abcdefg";
> val x = [#"a",#"b",#"c",#"d",#"e",#"f",#"g"] : char list
- implode x;
> val it = "abcdefg" : string  

 
 
Recursive functions for List 
 
Recursive function can be easily written for lists using induction principle of natural numbers. 
Empty list corresponds to zero and constructor operator :: corresponds to successor  function on 
natural numbers. Recursion on list is defined as follows:  

• Define a function for base case. 
• Assumption that function computes correct result for a list 'xs'. Find how to compute the 

result for a list x :: xs.   
The skeleton of recursive function for a list is as follows: 
  - fun   recursive_fun  []   =  ? 
    | recursive_fun (x :: xs)  = ?    
 
We will see variations of the basic scheme but the idea remains same.  If we have to write 
function with several arguments, then the following definition can be observed. 
  - fun  multiple_arg_fun ([], ys) = ? 
    | multiple_arg_fun (x :: xs, ys) = ? 
  
 Some commonly used recursive functions for handling lists are defined below:  
 
List Generations    
• Create a list of elements from n to m, where n and m are integers and m ≥ n. 

- fun create_list (n, m) = if n>m then [] else n::create_list (n+1, m);
> val create_list = fn : int * int -> int list

 - create_list (2, 7);
> val it = [2,3,4,5,6,7] : int list
- create_list (~2, 5);
> val it = [~2,~1,0,1,2,3,4,5] : int list
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• Create a list of elements from 1 to n, n ≥ 1 
 

 - fun oneto 1 = [1]
| oneto n = oneto (n-1) @ [n];

> val oneto = fn : int -> int list
- oneto 6;
> val it = [1,2,3,4,5,6] : int list

Alternatively, 
- fun oneto (n) = create_list(1,n); {call another function create_list }

 
• Create a list of even numbers starting from 2 for a given size. 
   

- fun     gen 1 = [2]
       | gen n = gen (n-1) @ [2*n];

> val gen = fn : int -> int list
- gen 4;
> val it = [2,4,6,8] : int list
- gen 6;
> val it = [2,4,6,8,10,12] : int list

 
 
Varoius other important list functions 
 
• Adding all the elements of a list 
 

- fun     add []  = 0
        | add (x::xs) =  x + add xs;

> val add  =  fn : int list -> int
- add [2,3,4,7,8];
> val it = 24 : int  

 
• Multiplying all the elements of  a list  
 

- fun     mult  [] = 0
     | mult [x] = x
        | mult (x::xs) = x * mult xs ;

> val multl = fn : int list -> int
- mult [2,3,4];
> val it = 24 : int

 
 
• Merging two integer lists in increasing order assuming original lists are in increasing order. 
 

- fun     merge ([], ys:int list) = ys
        | merge (xs, []) = xs
       | merge ((x::xs), (y::ys)) =  if  x < y then

(x::(merge (xs, (y::ys))))
else (y::(merge ((x::xs), ys)));

> val merge = fn : int list * int list -> int list
- merge ( [2,4,6], [1,2,5,7,9] );
> val it = [1,2,2,4,5,6,7,9] : int list  

 
• Selecting a particular position value from a list 
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- fun     select (n, []) = 0

| select (n, (x::xs)) = if n = 1 then x else select ((n-1), xs);
> val select = fn : int * int list -> int
- select (2,  [3, 4, 5]);
> val it =  4 : int  

• Finding  the maximum value of the elements in a list 
 

- fun     max [] = 0
        | max [x]  = x
        | max (x::y::xs) =  if x > y then max (x::xs)

else max (y::xs);
> val max = fn : int list -> int
- max [3,9,1,3,56,7];
> val it = 56 : int  

 
 
Functions with Polymorphic  Equality Type  
 
• Check whether an element is a member of a list or not 
 

- fun     mem (x, []) = false
        | mem (x, (y::ys)) = if x =y  then true else mem (x, ys);
 > val mem = fn : ''a * ''a list -> bool

- mem (3, [1,2,3,4]);
> val it = true : bool
- mem ((2, true),  [(1, false), (2, false)]);
> val it = false : bool
- mem ({name = "asdg", age = 23} ,

[{name = "asdg", age = 23},{name = "VVBB", age= 45}]);
> val it = true : bool  

• Delete an element  from a given list   
- fun     delete (x, []) = []

| delete (x, (y::ys)) = if x = y then delete (x, ys)
else (y:: delete (x, ys));

> val delete = fn : ''a * ''a list -> ''a list
- delete (3, [1,2,3,4,3,3]);
> val it = [1,2,4] : int list
- delete (3, [5,6,7,8]);
> val it = [5,6,7,8] : int list  

• Whether two lists are disjoint or not   
 

- fun     disjoint ([], x) = true
        | disjoint ((x::xs), ys) = if  (mem (x, ys)) then false
                          else  disjoint (xs, ys);

> val disjoint = fn : ''a list * ''a list -> bool
- disjoint ([2,3], [5,6] );
> val it = true : bool
- disjoint ([{name = "hi", age = 5}] , [{name ="hi",age = 5}] );

 > val it = false : bool  
• Find the common elements of  two lists 
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- fun common ( [], ys) = []
        | common ( xs, [] ) = []

| common ((x::xs), ys) = if mem (x, ys)  then
(x:: common (xs, ys))
else common (xs, ys);

 > val common = fn : ''a list * ''a list -> ''a list
- common ( [2,3], [1,2,3] );
> val it = [2,3] : int list

 - common ( [(1,2), (3,4)] , [(2,3), (3,4), (5,6)] );
 > val it = [(3,4)] : (int * int) list  
 
• Compare two lists for equality: (equal) 
 

- infix equal;
> infix equal
- fun ( [] equal [] ) = true

        | ((a::x) equal (b::y)) = (a = b) andalso (x equal y)
        | ((a::x) equal []) = false
        | ([] equal (b::y)) = false;

> val equal = fn : ''a list * ''a list -> bool
 - [(1,2), (3,4)] equal [(1,2), (4,3)];

> val it = false : bool
List equality (denoted by =) is available in SML.  

 
Functions with polymorphic type 
 
• Pairing corresponding elements of two lists of same size.   

- fun     pair ([],[]) = []
       | pair (x::n, y::m) = [(x,y)] @ pair (n, m);
 > val pair = fn : 'a list * 'b list -> ('a * 'b) list
 -  pair ([2,3,4], ["ad", "rw", "j"]);

> val it = [(2,"ad"),(3,"rw"),(4,"j")] : (int * string) list
- pair ([(12,2.3), (34, 12.3)], [(23, 2.3), (21, 6.7)]);
> val it = [((12,2.3),(23,2.3)),((34,12.3),(21,6.7))]

 : ((int * real) * (int * real)) list  
• Make identical copy of a given list 
 

- fun copy [] = []
        | copy (x::xs)  =  x::copy xs;

> val copy = fn : 'a list -> 'a list
- copy [10.2,20.3,30.6,40.7];
> val it = [10.2,20.3,30.6,40.7] : real list  

• Reverse  a given list 
 

- fun reverse [] = []
| reverse (x::xs) =    (reverse xs) @ [x];

> val reverse = fn : 'a list -> 'a list
- reverse [3,4,6,7];
> val it = [7,6,4,3] : int list
- reverse ["cat", "rat", "dog"];
> val it = ["dog","rat","cat"] : string list
- reverse [(2.3,14), (4.5,12)];
> val it = [(4.5,12),(2.3,14)] : (real * int) list  
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• Appending two lists 
 

- fun append ( [], ys) = ys
| append ( (x::xs), ys)  = x:: append (xs, ys);

> val append = fn : 'a list * 'a list -> 'a list
- append ( [2,3,4] , [1,8,9,5,6] );
> val it = [2,3,4,1,8,9,5,6] : int list
- append ( [(1,2),(3,4)] , [(9,8),(7,6)] );
> val it = [(1,2),(3,4),(9,8),(7,6)] : (int * int) list  

 
Graphs as an Application of a List 
 
A Graph is defined to be collection of nodes and edges. A pair (x, y) can be used to  
represent edge from a node x to node y of a directed graph. A list of pairs is used to  
represent a directed graph. 
   
Representation of Graphs in SML 

a

b c

d e

f

 
- val  graph_list =   [ (“a”, “d”), (“a”, “e”), (“a”, “c”), (“b”, “a”), (“b”, “d”),  

(“d”, “f”), (“e”, “c”), (“e”, “f”), (“f”, “a”) ]; 
> val  graph_list = [("a","d"),("a","e"),("a","c"),("b","a"),("b","d"),("d","f"), 

("e","c"), ("e","f"), ("f","a") ] :(string * string) list 
 
• Find the successor of a given node: (Nodes of graph have equality type) 
 

- fun  succ (x, []) = []
| succ (x, (p, q) :: xs) = if x = p  then  q :: succ(x, xs)

else succ (x, xs) ;
> val succ = fn : ''a * (''a * 'b) list -> 'b list
- succ ("a", graph_list); graph_list is a graph defined above
> val it = ["d","e","c"] : string list
- succ ("b", graph_list) @ succ ("e", graph_list);
> val it = ["a","d","c","f"] : string list  

Traversal of graph using depth first search (DFS) algorithm 
 
In depth first search (dfs), the nodes of a graph not yet traversed reachable from the start  
node are fully explored and then backtrack to immediate predecessor node and search  
starts in dfs order until all nodes have been visted.  

The function df_search defined below takes a list of all the nodes, graph and the list of 
nodes visted (initially empty) and returns a list of nodes reachable from the first node in the list. 
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- fun df_search ([], graph, visted)  =  rev (visted)
| df_search ( (x :: xs), graph, visted) =   if mem (x, visted)

then  df_search (xs, graph, visted)
else

df_search (succ(x, graph) @ xs, graph, (x::visted));
 > val df_search = fn : ''a list * (''a * ''a) list * ''a list -> ''a list

- df_search (["a", "b", "c", "d", "e", "f"], graph_list, []);
> val it = ["a","d","f","e","c","b"] : string list
- df_search ( [ "c", "d", "e", "f", "b", "a"], g, []);

 > val it = ["c","d","f","a","e","b"] : string list  
 
Exercise: Find the path between two nodes of a graph. 
 
  
Recursive Datatype Declarations 
 
We have seen that the recursive functions are defined in terms of themselves. Similarly datatypes 
can also be defined recursively for specially those data structures which are recursive in nature. 
The natural numbers, lists, trees are few examples of recursive data structures. SML allows two 
kinds of  recursive definition for datatype declarations. 

• Ordinary recursive definition where datatype constructor is defined in terms of itself. 
• Parameterized type constructor which may have polymorphic types and contains type 

variables specified in front of the type constructor in the datatype declaration.  
Consider a datatype definition for natural numbers.  Natural numbers are constructed by using 
two constructors Zero (nullary value constructor) and Succ of the type NATURAL -> 
NATURAL. This means that Succ is a function that takes argument of the type NATURAL and 
produces a value again of type NATURAL. This definition is recursive in nature and is non 
parameterized.  
 

- datatype NATURAL = Zero | Succ of NATURAL;
> datatype NATURAL = Succ of NATURAL | Zero
- Zero;
> val it = Zero : NATURAL
- Succ (Zero);
> val it = Succ Zero : NATURAL
- Succ (Succ (Zero));
> val it = Succ (Succ Zero) : NATURAL  

 
Polymorphic recursive datatype (Parameterized type constructor) 
 
We have already seen earlier that a list is constructed using two constructors namely, :: 
(constructor) and [] (empty list). Let us define our own list that is of polymorphic type with two 
value constructors Nil of type 'a LIST and Cons of the type ‘a * ‘a LIST -> 'a LIST . Recursive 
datatype definition of a list is as follows: 
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- datatype ‘a LIST = Nil |  Cons of ‘a * ‘a LIST;
 > datatype 'a LIST = Cons of  'a * 'a LIST | Nil

- Cons;
> val it = fn : 'a * 'a LIST -> 'a LIST
- Nil;
> val it = Nil : 'a LIST
- Cons (2, Nil);
> val it = Cons (2,Nil) : int LIST
- Cons (3, it);
> val it = Cons (3,Cons (2,Nil)) : int LIST

 - Cons (("pair", 3), Nil);
> val it = Cons (("pair",3),Nil) : (string * int) LIST  

 
 
Trees in SML 
 
Tree is a nonlinear data structure consisting of nodes and branches to sub trees. The binary tree is 
a specialized tree with at most two branches. Each node of a binary tree consists of a data, left 
link pointing to left sub tree and right link pointing to sub tree.   We  define recursive datatype for 
a binary tree as follows: 
  - datatype  'a  BT  =  Null  | Node of  ‘a BT * ‘a  * 'a BT; 

> datatype 'a BT = Null | Node of ‘a BT * ‘a * 'a BT 
 
Consider the following binary tree. 

  b_tree
1

2 3

4 5 6

 
According to the above definition of binary tree, it is represented as: 

- val b_tree = Node(Node (Node (Null, 4, Null), 2, Null),  1,  
Node(Node(Null,5, Null),  3, Node(Null, 6, Null))); 

> val b_tree = Node(Node (Node #, 2, Null), 1, Node (Node #,3,Node #)) : int BT 
  
Here # represents the entire corresponding sub tree. Complete tree is not displayed by the system. 
The node values of binary tree of height 2 are shown and remaining values are represented by #. 
 
Binary Tree Traversal 
 
Nodes of a binary tree can be visted in three ways: preorder (root, left sub tree in preorder, right 
sub tree in preorder), inorder (left sub tree in inorder, root,  right sub tree in inorder), postorder 
(left sub tree in  postorder, right sub tree in  postorder, root).  Let us define all these functions and 
apply them on a tree t defined above. 

- fun  preorder  Null   = [] 
| preorder (Node (left, data,  right))=  [data] @ preorder left  

@  preorder right; 
> val preorder = fn : 'a BT -> 'a list 
- preorder b_tree; 
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> val it = [1,2,4,3,5,6] : int list 
- fun  inorder  Null    = [] 

| inorder( Node(left, data,  right))     =  inorder left @ [data] @ 
inorder right; 

> val inorder = fn : 'a BT -> 'a list 
-  inorder b_tree; 
> val it = [4,2,1,5,3,6] : int list 
- fun  postorder  Null   = [] 

            | postorder(Node(left, data, right))  =  postorder left @  
postorder right @ [data]; 

   > val postorder = fn : 'a BT -> 'a list 
-  postorder b_tree; 
> val it = [4,2,5,6,3,1] : int list 

  
 
 Useful functions for manipulating binary trees 
 
• find the depth (height) of a binary tree 

 
- fun  depth Null    = 0 

            | depth(Node(left, data, right))  = 1 + let  
val l_depth = depth left; 
val r_depth = depth right 

in if l_depth < r_depth  then r_depth else l_depth end; 
> val depth = fn : 'a BT -> int 
-  depth b_tree;  
> val it = 3 : int 

 
• Count the  number of nodes in  a binary tree 

 
- fun  count  Null   = 0 

| count (Node (left, data, right)) =    1  + (count left)  
+(count right); 

> val count = fn : 'a BT -> int 
  - val num = count b_tree; 

> val num = 6 : int 
 
• Create mirror image (swap) of a binary tree 

 
- fun  swap  Null    = Null 

     | swap (Node (left, data, right))  =   
Node (swap right, data, swap left); 

> val swap = fn : 'a BT -> 'a BT 
   - val t1 = swap t; 

> val b_tree1 = Node (Node (Node #, 3, Node #), 1,  
Node (Null, 2, Node #)) : int BT 

  -  swap b_tree1 = b_tree;   comparing two trees for equality 
> val it = true : bool 

  
• Generate a full binary tree of depth n labeling the nodes from 1 to 2n -1 

 
- fun full (k, 0) = Null 

    | full (k, n)  = Node (full (2*k, n-1), k,  
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       full (2 * k +1, n-1) ); 
> val full = fn : int * int -> int BT 
- fun full_tree (n) = full(1,n); 
> val full_tree = fn : int -> int BT 
-  val t = full_tree (2); 
> val t = Node (Node (Null,2,Null), 1, Node (Null,3,Null)) :int BT 
- inorder(t); 
 > val it = [2,1,3] : int list 
- val t1= full_tree(3); 
> val t1= Node(Node (Node#,2,Node #),1,Node(Node #,3,Node #)) : int BT 
- inorder(t1); 
> val it = [4,2,5,1,6,3,7] : int list 
- val t2 = full_tree(4); 
> val t2 = Node(Node(Node #,2,Node#),1,Node (Node #,3,Node #)): int BT 
- inorder(t2); 
> val it = [8,4,9,2,10,5,11,1,12,6,13,3,14,7,15] : int list 

 
 
Height Balanced Binary Tree 
 
Definition: A height balanced binary tree is one in which each node satisfies the  
property that |count left_subtree – count right_subtree| ≤ 1. 
 
• Construct  a height balanced binary tree from a list containing its preorder sequence.   

We make use of functions take and drop which are of the type  ‘a list * ‘a -> ‘a list. These are 
defined in predefined structure called List.   

i. List.take (list, n)   - returns first n elements of the list 
ii. List.drop (list, n)  - returns a list after dropping first n  elements of a list. 

  
- fun bal_tree [] = Null 

    | bal_tree (x :: xs)= let  val n = length xs div 2 in  
Node (bal_tree (List.take(xs, n)), x , bal_tree(List.drop (xs, n)))  

end; 
> val bal_tree = fn : 'a list -> 'a BT 
- bal_tree([1,2,3]); 
> val it = Node (Node (Null,2,Null),1,Node (Null,3,Null)) : int BT 
-  val bt =bal_tree ([1,2,3,4,5,6,7,8]); 
> val bt = Node(Node(Node #,2,Node#),1,Node(Node #,5,Node #)): int BT 
-  preorder bt; 
> val it = [1,2,3,4,5,6,7,8] : int list 
-  inorder bt; 
> val it = [3,2,4,1,6,5,7,8] : int list 
-  postorder bt; 
> val it = [3,4,2,6,8,7,5,1] : int list 
-  val bt1 = swap bt; 
> val bt1 = Node(Node(Node#,5,Node #),1,Node(Node#,2,Node #)): int BT 
-  preorder bt1; 
> val it = [1,5,7,8,6,2,4,3] : int list 
-  inorder bt1; 
> val it = [8,7,5,6,1,4,2,3] : int list 
-  postorder bt; 
> val it = [3,4,2,6,8,7,5,1] : int list 
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Binary Search Tree 
 
Definition: Binary search tree is a binary tree if all the keys on the left of any node  
(say, N) are numerically (alphabetically) less than the key in a node N and all the keys on  
the right of  N are numerically (alphabetically) greater than the key of a node N.  
 
If binary search tree is traversed in inorder, then the elements in the form of (key, value) pair are 
listed in increasing order of key. 
 
• Insert a pair of key and value as (key, value) in a binary search tree (BST). 
 

- fun   insert((key, value), Null) = Node (Null, (key, value), Null) 
| insert ((key, value), Node (left, (k, v), right)) = if key < k  

then Node( insert ((key, value), left), (k, v), right)  
else Node(left, (k, v), insert ((key, value), right)); 

> val insert = fn : (int * 'a) * (int * 'a) BT -> (int * 'a) BT 
- insert ((8,12.3),Null) ; 
> val it = Node (Null,(8,12.3),Null) : (int * real) BT 
- insert((2, 23.4), it); 
> val it = Node (Node (Null, (#, #),Null) , (8,12.3), Null): (int * real) BT 
- insert((7, 11.2), it); 
> val it = Node (Node (Null,(#,#),Node #),(8,12.3),Null) : (int * real) BT 
- insert((9,16.6), it); 
> val it = Node(Node (Null, (#,#), Node #),(8,12.3), Node  

(Null,(#,#),Null)):(int * real) BT 
- val st = insert ((5, 22.3), it); 
> val st = Node (Node (Null,(#, #),Node #), (8,12.3), Node  

(Null,(#,#),Null))  : (int * real) BT    
- preorder st; 
> val it = [(8,12.3),(2,23.4),(7,11.2),(5,22.3),(9,16.6)] : (int * real) list 
- inorder st; 
> val it = [(2,23.4),(5,22.3),(7,11.2),(8,12.3),(9,16.6)] : (int * real) list 
- postorder st; 
> val it = [(5,22.3),(7,11.2),(2,23.4),(9,16.6),(8,12.3)] : (int * real) list 

 
• Searching for a key in a binary search tree 
 
If key is found, then return the key and value pair otherwise return ~1.0 instead of value. 
Exceptional cases can also be handled by exceptions to be discussed later. 
 
   - fun   search (key, Null)   = (key, ~1.0)   

| search (key, Node (left, (k, v), right)) =  if key = k   
then (k, v) else  if key > k then 

search (key, right)  
else search (key, left); 

 
> val search = fn : int * (int * real) BT -> int * real 
- search (3, st); 
> val it = (3,~1.0) : int * real 
- search (2, st); 
> val it = (2,23.4) : int * real 
- search (8, st); 
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> val it = (8,12.3) : int * real 
  
• Delete a node from a binary search tree 
 
Deletion requires a function that deletes the smallest element from BST. Note that the smallest 
element in a BST is the leftmost leaf-node (if it exists, otherwise it is the root) and  returns the 
(key, value) pair of the smallest element to enable tree reordering for deletion.  
  

- fun     delmin (Null)   =   (_, Null) 
            | delmin (Node ( Null, x, right))  =  (x, right) 

                 | delmin (Node (left, x, right))  =      let  
val (z, L) = delmin (left) 
in (z, Node (L, x, right)) end ; 

> val delmin = fn : 'a BT -> 'a * 'a BT 
- fun     delete (k,  Null)     =  Null 

| delete (k, Node (left, (k1,v), right))  =  if (k = k1)  
then if left =  Null  then right  
else if right = Null then left  else  

let val (z, R) = delmin (right)  in  Node (left, z , R) end 
else if k < k1 then Node (delete (k, left), (k1,v), right) 

else Node (left, (k1,v), delete (k, right)); 
> val delete = fn : int * (int * ''a) BT -> (int * ''a) BT 

  
 
Functional Array 
 
An array of type ‘a array is a data structure having contiguous memory locations each holding 
the values of the type ‘a. These locations are numbered by indices 0, 1, …n-1, where n is the 
length of the array. The possible operations on array are update and retrieve value at kth index. 
The size of array is always fixed and access to array element is random in contrast to list where 
the size is variable and access is sequential. The conventional programming languages support 
array as a predefined data structure.  

SML does not support array directly but we can implement it using binary tree. We call it 
as a functional array that provides a mapping from index to value with an update operation that 
creates a new array  B as follows: 

• B = update (A, k, value), such that B(k) = value and B(j) = A(j) , ∀ j ≠ k   
• Array A continues to exist and additional array is created from it.    

 
Implementation of Functional array in SML using height balanced binary tree 
 
We can implement functional array using binary tree. If we can ensure that binary tree is height 
balanced then the retrieval time will be of O(log2 n). The conventional array takes constant 
amount of time for retrieval but in SML we can not implement conventional array. The best could 
be that if we can store elements of an array in such a way that retrieval time is much lesser than 
that of retrieving an element from a list. Assuming the previous datatype definition of a binary 
tree, the elements of a functional array are stored in binary tree as follows: 

• First index value of an array is the root of a binary tree. 
• For any index k, the position in a binary tree is determined by starting from the root 

and repeatedly dividing k by 2 until it is reduced to 1.  
• Each time when remainder is 0, move to left sub tree else if it is 1, then move to right 

sub tree 
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The binary tree corresponding to an array of 10 elements is shown below.  
 

1
0 1
2 3

0     1 0    1

4 6 5 7
0 0         0

8 10 9

 
  
For example, an element at index 8 is stored as follows: 
 

8 4 2 1 Quotient (k div 2)
0 0 0 Remainder (k mod 2)

Node with index 8 will be stored / retrieved from root as left, left, left and node with index  k = 9 
is stored as follows from root is:  right, left, left  : 
 

9 4 2 1 Quotient (k div 2)
1 0 0 Remainder (k mod 2)

Therefore, the path traversed in a binary tree to store or retrieve an element at index 8 and 9 is as 
follows:  
 

root

1

2

4

8 9

This method is used to store, update or retrieve the value corresponding to an index in a binary 
tree. It is noted that the tree comes out to be a height balanced binary tree. Few functions to 
manipulate functional array are given below: 
 
• Create an array of size n with each index containing fixed value ‘v’   

 
- fun  create (0, _ )  =  Null 

| create(n, v)  =  if n=1 then update(Null,1,v)  
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else update(create(n-1, v),n,v); 
> val create = fn : int * 'a -> 'a BT 
-  val p = create(5,0); 
> val p = Node (Node (Node #,0,Null),0,Node (Node #,0,Null)) : int BT 

 
• Function for updating the value of a given index  in an array 
 

- fun   update (Null, index, value) =  if (index = 1) then  
Node(Null,value,Null) else Null  

| update (Node(left,data,right), index, value) = if (index = 1) 
then Node(left, value,right) else  
if index mod 2 = 0 then  

Node(update(left, index div 2,value), data, right) 
else Node(left, d, update(right, index div 2, value)) ; 

> val update = fn : 'a BT * int * 'a -> 'a BT 
- update(Null,1,23); 
> val it = Node (Null,23,Null) : int BT 
-  update(it,2,45); 
> val it = Node (Node (Null,45,Null),23,Null) : int BT 
-  update(it,3,22); 
> val it = Node (Node (Null,45,Null),23,Node (Null,22,Null)) : int BT 
-  update(it,4,55); 
> val it = Node (Node (Node #,45,Null),23, Node (Null,22,Null))  : int BT 
-  update(it,5,11); 
> val it = Node (Node (Node #,45,Null),23,Node (Node #,22,Null)) : int BT 
-  update(it, 6,78); 
> val it =Node(Node(Node#,45,Node #),23,Node (Node #,22,Null)): int BT 
-  update(it,7,33); 
> val it = Node  (Node  (Node #,  45,  Node # ),  23 ,Node (Node  #, 22,  

Node #)) : int BT 
-  val arr = update(it,8,99); 
> val arr = Node (Node (Node #,45,Node #),23,Node (Node #,22, 

Node #)) : int BT 
- preorder arr; 
> val it = [23,45,55,99,78,22,11,33] : int list 
-  inorder arr; 

  > val it = [99,55,45,78,23,11,22,33] : int list 
-  postorder arr; 
> val it = [99,55,78,45,11,33,22,23] : int list 

   -  val arr1 = update(arr, 4,40);             changing the value at 4th index 
> val arr1 = Node (Node (Node #,45,Node #),23, Node  

(Node #,22,Node #)): int BT 
  -  arr = arr1;            array comparison for equality 

> val it = false : bool 
  
• Retrieving a corresponding value from a given  index of an array 
   

- fun  retrieve (Null, _) = ~10000  exceptional case 
| retrieve (index, Node(left, data, right)) = if index = 1 then  

data else  if  index mod 2 = 0 then  
retrieve ( index div 2, left)  
else retrieve (index div 2, right); 

> val retrieve = fn : int * int BT  -> int 
-  retrieve(2, arr); 
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> val it = 45 : int 
- retrieve(4, arr); 
> val it = 55 : int 
-  retrieve(4, arr1); 
> val it = 40 : int 
- retrieve(9, arr); 
> val it = ~10000 : int 

 
• Delete a subtree index n and replace it by null. 
   

- fun  delete (n, Null)  =  [] 
    | delete (n, Node (left, data, right)) =  if n = 1  

then Null else if n mod 2 = 0 then 
    Node(delete(n div 2, left), data, right) 

      else Node (left, data, delete(n div 2, right)); 
> val delete = fn :int * 'a BT  -> 'a BT 

  
  
Exception Handling 
 
Exceptions are  datatypes of  error values used to minimize explicit testing. Exceptions are raised 
when the failures are discovered and appropriately handled elsewhere. General form of exception 
declaration is:  exception  exception_name. Exception name is a new constructor of the built-in 
type exn   similar to value constructor in datatype declaration. Exception constructor can be used 
in pattern or expression in the same way as value constructors are used. We use a convention that 
exception_name  should start with capital letter. Exception can also be a function. 
 

- exception Fail; 
> exception Fail = Fail : exn  

  -  exception Failure of string; 
> exception Failure  = fn : string -> exn      
-  exception Badvalues of int; 
> exception Badvalues = fn :  int -> exn 

 
In SML, the exception declaration can declare one or more exception names and these can be 
raised by a construct called raise to force a computation to terminate with an error signal..   
 
Raising of an exception 
 
The general form of  exception raising is:  raise  exception_name. It creates an exception packet 
containing a value of built-in type exn.  
 

- exception Bad; 
> exception Bad = Bad : exn 

  - fun  divide (x, y)  = if y = 0 then raise Bad else x div y; 
  > val divide = fn : int * int -> int 

-  divide (12,3); 
> val it = 4 : int 
-  divide(34,0); 
> uncaught exception Bad raised 

 



 58

Let us define  our own functions head and tail for getting head and tail of a given list.  These 
functions should take care of the situations when applied on empty list. For this purpose we 
define exceptions and raise them suitably.  
 

- exception Head; 
> exception Head = Head : exn 
- exception Tail; 
> exception Tail = Tail : exn 
- fun   head (x::_) = x 

            | head []  = raise Head; 
> val head = fn : 'a list -> 'a 
- head [2,3,4]; 
> val it = 2 : int 
-  head []; 
> uncaught exception Head  raised   

  -  hd [];  system defined head function 
   > uncaught exception Empty raised           system defined exception name 

- fun     tail (_::xs)= xs 
            | tail [] = raise Tail; 

> val head = fn : 'a list -> 'a list 
- tail [2,3,4,5]; 
> val it = [3,4,5] : int list 
-  tail []; 
> uncaught exception Tail  raised   

  -  tl [];             system defined function for tail 
  > uncaught exception Empty  raised           system defined exception name 
 
 
Exception handling 
 
An exception handler tests whether the result of an expression is an exception packet or not. The 
exception handler is always placed after an expression.  The general form is: 
  exp   handle <pat1>   => exp1 
    | <pat2>  => exp2 
    | <patn>  => expn 
An exception handler catches a raised exception if one of the pattern matches the value of an 
exception and then corresponding expression is evaluated under this binding. Hence if exp returns 
a normal value, then the handler simply passes this value on. If exp returns an exception packet’s 
content (because of raising exception) then its contents are matched against the pattern. If patk is 
the first pattern to match then the result is the value of an expression expk  (1≤ k ≤ n). It should be 
noted that  exp, exp1 ,… and expn   must be of the same type. If we define our own exception 
names then declare them before their use otherwise built in exceptions can also be directly raised. 
The handlers are provided in the functions which  use other functions directly or indirectly having 
exception raised in them.  
 

- fun len x = 1 + len (tail x) handle Tail =>0; 
  > val len = fn : 'a list -> int 
  - len [2,3,4]; 

> val it = 3 : int 
-  len []; 
> val it = 0 : int 

 - fun  head_list  x = head x handle Hd=>0; 
 > val head_list = fn : int list -> int 
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  - head_list [3,4,5]; 
 > val it = 3 : int 

  -  head_list []; 
> val it = 0 : int 
- fun tail_list x = tail x handle Tail =>[0]; 
> val tail_list = fn : int list -> int list 
-  tail_list []; 
> val it = [0] : int list 

 
• Function for finding nth element of the list assuming first element is stored at 0th index 

 
- exception Subscript;  
> exception Subscript = Subscript :exn 
- fun  nth (x::_, 0) = x 

            | nth (x::xs, n) = if n>0 then nth(xs, n-1)else raise Subscript 
          | nth _ =  raise Subscript; 
> val nth = fn : 'a list * int -> 'a 
-  nth ([2,3,4,5],0); 
> val it = 2 : int 
-  nth ([1,3,5,6], 5); 
> uncaught exception Subscript 

 
• Handling of raised exception 
 

- fun findnth (l,n)=nth (l,n) handle Subscript =>0; 
> val findnth = fn : int list * int -> int 
-  findnth ([34,56,12,33],6); 
> val it = 0 : int 
-  findnth ([34,56,12,33],2); 
> val it = 12 : int 

 
• Function for computing the sum of a list’s elements at position n, f(n), f(f(n), …. The sequence 

of integer terminates at the first value out of range using exception. 
 

- fun f (n) = n-2; 
   > val f = fn : int -> int 

- fun chain (x, n)=nth(x,n) + chain(x, f(n)) handle Subscript => 0; 
> val chain = fn : int list * int -> int 
-  chain ([23,45,65,12],2); 
> val it = 88 : int 
-  chain ([23,45,67],1); 
> val it = 45 : int 

 
• Check whether a given positive integer is a square. Display false if number is negative 

integer 
 

- exception Neg; 
  > exception Neg = Neg : exn 

- fun sq x:int = x*x; 
  > val sq = fn : int -> int 

   - fun issq i = if i > 0 then   sq (round  (Math.sqrt (real i))) = i 
else raise Neg; 

> val issq = fn : int -> bool 
  - issq ~45;    exception is raised in this function 
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> uncaught exception Neg 
- fun is_sq i = issq i handle Neg => false; 
> val is_sq = fn : int -> bool 
-  is_sq 64; 
> val it = true : bool 
-  is_sq 32; 
> val it = false : bool 

  -  is_sq ~64;  exception is handled in this function 
> val it = false : bool 

   
 
Benefits of the exception mechanism  
 
• We are forced to consider the exceptional cases otherwise we will get an uncaught exception 

at run time.  
• We can separate the special cases from the normal case in the code rather than putting 

explicit checks.  
• Another typical use of exception is to implement backtracking which requires exhaustive 

search of a state space.  
 
Backtracking using Exception Mechanism 
 
Let us consider the following example which implements backtracking. Exceptions are raised and 
handled in the same function. When exception is raised, it backtracks to previous solution with 
the help of handle exception. The function convert converts a given amount in number of coins 
starting from the highest to the lowest in the best possible way. The list of coins is passed as an 
argument along with the amount. 
  

- exception Invalid of int; 
> exception  Invalid = fn :  int -> exn 
- fun  convert (xs,0) =[] 

            | convert ([], amount) =  raise Invalid (1) 
| convert (x::xs, amount) =    

if amount < 0 then raise Invalid (2) else  
if x > amount then convert (xs, amount) 

else x::convert(c::xs,(amount-x))) 
     handle Invalid (1) =>  convert (xs, amount); 
        

for backtracking 
> val  convert = fn : int list * int -> int list 
- convert([5,3,2],56); 
> val it = [5,5,5,5,5,5,5,5,5,5,3,3] : int list 
- convert([5],~23); 
> uncaught exception Invalid raised  
- convert([],23); 
 > uncaught exception Invalid  raised  
-  convert([5,3],4); 
> uncaught exception Invalid raised 

 
This function  raises exception when amount is negative. It is handled in another function which 
makes use of a function convert.   
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- fun  convert1 ([], amount) = [] 
            | convert1 (list,amount) = convert(list,amount) 
              handle Invalid (2) => []; 

> val  convert1 = fn : int list * int -> int list 
- convert1 ([5,3,2],56); 
> val it = [5,5,5,5,5,5,5,5,5,5,3,3] : int list 
- convert1([5],~23); 
> val it = [] : int list 
- convert1([],23); 
> val it = [] : int list 
- convert1([5,3],4); 

 > uncaught exception Invalid raised  
 
The function convert1 raises exception when the amount can't be expressed by any combination 
of coins. This situation can further be handled in yet another function which calls convert1 and 
handles the exception raised in convert1. 
 

- fun  convert2 ([], amount) = [] 
            | convert2 (list, amount) = convert1(list, amount) 

handle Invalid (1) => [];       
> val  convert2 = fn : int list * int -> int list  
- convert2 ([5,3,2],56); 
> val it = [5,5,5,5,5,5,5,5,5,5,3,3] : int list 

 - convert2 ([5],~23); 
> val it = [ ] : int list 
- convert2([],23); 
> val it = [] : int list 
- convert2([5,3],4); 
> val it = [] : int list 

 
 
Structure Declaration 
 
Declarations (value, function, type, datatype, etc.) can be grouped to form a structure by 
enclosing them in the keywords struct and end. The general form of structure declaration is: 
  structure struct_name  =   structure_expression 
where, 
  structure_expression   =  struct 
        declarations 
       end 
 
The result of structure_expression is be bound to struct_name. The structure declaration binds the 
sturct_name to two environments, one a type environment containing bindings for the type / 
datatype  constructors  and  other a value environment containing val, fun declarations inside the 
structure expression. All identifiers are available for the user via composite identifiers such as 
struct_name . val_name.  
 
Definition: Queue is a special type of list in which addition of an element is done at one  
end called rear and deletion at another end called front.   
 
We use pre-defined data type list for implementing queue.  

structure  Queue1  =  struct  
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type 'a queue = 'a list;  
exception Qerror;  
val emptyq = [];  
fun  nullq ([]) = true  

| nullq (_::_) = false ;  
fun  addq (q, x) = q @ [x];  
fun  delq (x::q) = q  

| delq [] = raise Qerror ;  
fun  headq [] = raise Qerror  

| headq (x::q) = x;  
end;  

 
We notice that a function for adding an element in the queue takes time linear to the length of the 
queue whereas both delq  and headq  take constant amount of time. In queue, ideally all the 
operations should be done in constant amount of time but since queue is implemented using 
predefined datatype list adding an element at the rear end can not be achieved in constant time. Of 
course one can think of implementing queues using altogether different datatype shown later. 
 
The  above structure can be stored in a file named (say) program1 using some editor and is 
opened at SML prompt by use primitive as follows: 
 

-  use "program1"; 
> [opening program1] 

structure Queue1 : 
    sig 

        type 'a queue = 'a list 
exception Qerror 
val addq : 'a list * 'a -> 'a list 

       val delq : 'a list -> 'a list 
        val emptyq : 'a list 
        val headq : 'a list -> 'a 

      val nullq : 'a list -> bool 
     end 

val it = () : unit     
-  Queue1.nullq []; 
> val it = true : bool 
-  Queue1.nullq [2,3,4]; 
> val it = false : bool 
-   Queue1.delq []; 

  > uncaught exception Qerror  raised   
-   Queue1.delq [2,3,4]; 
> val it = [3,4] : int list 

   -   Queue1.addq ([3,4],9); 
> val it = [3,4,9] : int list 

 
If we open a structure at SML by using open struct_name, then all the identifiers are used without 
prefixing  structure name. Let us open earlier defined structure Queue1. 
 

-  open Queue1;                  
> opening Queue1 

     type 'a queue = 'a list 
     exception Qerror 

    val addq : 'a list * 'a -> 'a list 
     val delq : 'a list -> 'a list 
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val emptyq : 'a list 
val headq : 'a list -> 'a 
val nullq : 'a list -> bool     

-  delq [4,5,6,7];  
> val it = [5,6,7] : int list 

   -  addq([1,2,3],6); 
> val it = [1,2,3,6] : int list      

 
Let us define another structure containing a new datatype defining queue. Here addq will take a 
constant amount of time but both delq and headq are linear in the length of the queue. 
  

structure  Queue2  =  struct  
datatype 'a queue = emptyq | addq of 'a queue * 'a;  

    exception Qerror;  
fun  nullq (emptyq) = true  

| nullq (addq (_,_)) = false ;  
fun  delq (emptyq) = raise Qerror  

| delq (addq (emptyq, x)) = emptyq  
| delq ( addq (q, x)) = addq (delq (q), x) ;  

fun  headq (emptyq) = raise Qerror  
| headq (addq (emptyq, x)) = x  
| headq (addq (q, x)) = headq (q) ;  

end;  
 
Since both the structures defined above are not efficient, we define yet another structure.   Most 
of the time, the overall cost of adding and deleting an element is less than linear time in this 
representation.  Here a peculiar representation of queues has been used. The function "normal" is 
special to this particular representation and  is not visible to the user of the queue. The concept of 
information hiding is used.  
 

structure  Queue3   =  struct  
datatype  'a queue = Queue of ('a list * 'a list);  
val emptyq = Queue ([], []);  
fun reverse (L) = let   fun rev ([], M) = M  

| rev (x::xs, M) = rev (xs, x::M) ;  
in rev (L, []) end ;  

fun  normal (Queue ([], tails)) = Queue (reverse (tails), [])  
| normal (q) = q ;  

fun  addq (Queue (heads, tails), x) =  
normal (Queue (heads, x::tails));  

exception Qerror;  
fun  delq (Queue (x::heads, tails)) =  

normal (Queue (heads, tails))  
| delq (Queue ([], _)) = raise Qerror ;  

fun  headq (Queue (x::heads, tails)) = x  
| headq (Queue ([], _)) = raise Qerror ;  

end;  
 
Let us store both the structures in a file named program2. File can be opened 
 

- use "program2"; 
> [opening program2] 

structure Queue2 : 
sig 
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        datatype 'a queue = addq of 'a queue * 'a | emptyq 
        exception Qerror 

 val delq : 'a queue -> 'a queue 
 val headq : 'a queue -> 'a 
 val nullq : 'a queue -> bool 

   end 
    structure Queue3 : 

   sig 
        datatype 'a queue = Queue of 'a list * 'a list 

 exception Qerror 
 val addq : 'a queue * 'a -> 'a queue 
 val delq : 'a queue -> 'a queue 
 val emptyq : 'a queue 
 val headq : 'a queue -> 'a 
 val normal : 'a queue -> 'a queue 
 val reverse : 'a list -> 'a list 

   end 
val it = () : unit 

-  Queue2.addq( Queue2.emptyq,3); 
> val it = addq (emptyq,3) : int Queue2.queue 
-  Queue2.addq(it,5); 
> val it = addq (addq (emptyq,3),5) : int Queue2.queue 
-  Queue2.addq(it,2); 
> val it = addq (addq (addq #,5),2) : int Queue2.queue 

  -  val q = it;      earlier constructed queue is assigned to q 
> val q = addq (addq (addq #,5),2) : int Queue2.queue 
- Queue2.delq (q); 
> val it = addq (addq (emptyq,5),2) : intQueue2.queue 

  - Queue2.headq q; 
> val it = 3 : int 
- open Queue2; 
> opening Queue2 

     datatype 'a queue = addq of 'a queue * 'a | emptyq 
     exception Qerror 

    val delq : 'a queue -> 'a queue 
     val headq : 'a queue -> 'a 
     val nullq : 'a queue -> bool 

-  delq q; 
> val it = addq (addq (emptyq,5),2) : int queue 
- open Queue3; 
> opening Queue3 

     datatype 'a queue = Queue of 'a list * 'a list 
    exception Qerror 

     val addq : 'a queue * 'a -> 'a queue 
     val delq : 'a queue -> 'a queue 

    val emptyq : 'a queue 
     val headq : 'a queue -> 'a 
     val normal : 'a queue -> 'a queue 

    val reverse : 'a list -> 'a list 
-  emptyq; 
> val it = Queue ([],[]) : 'a queue 
-  addq(it, 3); 
> val it = Queue ([3],[]) : int queue 
-  addq(it, 4); 
> val it = Queue ([3],[4]) : int queue 
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-  addq(it,7); 
  > val it = Queue ([3],[7,4]) : int queue 

   - addq(it,9); 
> val it = Queue ([3],[9,7,4]) : int queue 
-  val p = it; 
> val p = Queue ([3],[9,7,4]) : int queue 
-  headq p; 
> val it = 3 : int 
-  delq p; 
> val it = Queue ([4,7,9],[]) : int queue 
-  delq it; 
> val it = Queue ([7,9],[]) : int queue 
-  addq (it,1); 
> val it = Queue ([7,9],[1]) : int queue 
-  addq(it,10); 
> val it = Queue ([7,9],[10,1]) : int queue 
-  addq(it, 12); 
> val it = Queue ([7,9],[12,10,1]) : int queue 
> val p = Queue ([7,9],[12,10,1]) : int queue 
-  delq p; 
> val it = Queue ([9],[12,10,1]) : int queue 

   - delq it; 
> val it = Queue ([1,10,12],[]) : int queue 
-  delq it; 
> val it = Queue ([10,12],[]) : int queue 
-  delq it; 
> val it = Queue ([12],[]) : int queue 
-  delq it; 
> val it = Queue ([],[]) : int queue 
-  delq it; 
> uncaught exception Qerror  raised 

 
Functions & variables can have the same names in different structures as they are accessed with 
their structure name. 
 
 
Signature 
 
A signature is used to give user's view of a structure. In SML, the abstraction is captured in 
signature by specifying the type constructors and value declarations. General form of s signature 
declaration is: 

signature  sig_name  =   signature_expression.  
signature_expression  = sig  specifications  end  

 
A signature should contain all those specifications of declaration which user wants to know. 
Signature is used along with structure. A module is constructed by matching a signature with a 
structure. The matching checks that each sig_name is declared in the structure. The struct_name 
is an instance of sig_name written as struct_name . sig_name . In this way the user's view of 
structures in SML is determined by the signature. Thus all those functions definitions, type 
constructors, value definitions etc., which are not relevant to user and are local to structures are 
not included in the signature. The user is only allowed to use whatever is shown in the signature 
expression. The structure declaration must contain a declaration for each identifier specified in 
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the signature. . The structure and signature names can be same also.  Let us consider an example 
of constructing signature and its use in structure for manipulating stack.  
 
Definition: Stack is a special type of list where addition or deletion of an element is done  
at only one end. Other end is sealed. The various operations on stack are: push (adding an  
element at the top), pop (deleting a top element), top (getting top element). 
 

signature  Stack   =  
sig 
type 'a stack 
exception Serror 
val null : 'a stack 
val null_stack : 'a stack -> bool 
val push: 'a stack * 'a -> 'a stack 
val pop: 'a stack -> 'a stack 
val top : 'a stack -> 'a 
end; 

structure  Stack : Stack   = struct 
type 'a stack = 'a list;  
exception Serror;  
val null = []; 
fun  null_stack ([]) = true  

| null_stack (_::_) = false ;  
fun  push (x, s) = s @ [x];  
fun  del (x::s) = s  

|  del [] = raise Serror ;  
fun   pop (s) = del (s)  handle Serror => [];  
fun  top [] = raise Serror  

| top (x::s) = x;  
end;  

 
Store signature and structure in a file named "sprogram". At SML prompt, if we type use 
"sprogram", signature is opened. 
  

> [opening sprogram] 
    signature Stack = 

sig 
        type 'a stack 

       exception Serror 
        val null_stack : 'a stack -> bool 
        val push : 'a * 'a stack -> 'a stack 
        val pop : 'a stack -> 'a stack 

       val top : 'a stack -> 'a 
     end 

  structure Stack : Stack 
- open Stack; 
> opening Stack 

type 'a stack = 'a list 
exception Serror 
val null : 'a stack 
val null_stack : 'a stack -> bool 
val push : 'a * 'a stack -> 'a stack 
val pop : 'a stack -> 'a stack 
val top : 'a stack -> 'a 
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- push(12, null); 
> val it = [12] : int stack 
-  push(43,it); 
> val it = [12,43] : int stack 
-  push(10,it); 
> val it = [12,43,10] : int stack 
-  val s = pop(it); 
> val s = [43,10] : int stack 
-  pop(s); 
> val it = [10] : int stack 
-  top(it); 
> val it = 10 : int 
-  null_stack(s); 
> val it = false : bool 

 
There are two  ways to match signatures and structures. 
 
Transparent signature matching 
 
Matching defined in above example is of transparent signature matching type. It gives weak 
support for hiding of the details of the structure. From the system's response as val s = [43,10] : 
int stack, user gets information about the structure of stack (implemented as list) even though it is 
not specified in the signature. We can hide even such details using the following type of 
signature. 
 
Opaque signature matching: 
 
This type of signature matching is more strict. We can hide the actual definition of stack by the 
user defined in the structure. The following declaration is to be made: 
  structure   struct_name :>  sig_name  = structure_expression   
Consider the previous example of stack. The signature definition remains the same. The structure 
definition will include opaque signature matching as follows: 
 structure  Stack :> Stack  = struct  (* entire body as above *)  end; 
 Given below is the interactive session using stack structure.  
 

-  Stack.push(12, Stack.null); 
> val it = - : int Stack.stack 
-  Stack.push(13,it); 
> val it = - : int Stack.stack 
-  val s = Stack.push(54,it); 
> val s = - : int Stack.stack 
-  Stack.top(s); 
> val it = 12 : int 
-  Stack.pop(s); 
> val it = - : int Stack.stack 

 
Here we notice that actual implementation structure of stack is hidden. If structure Stack is 
opened as "open Stack", then identifiers available for use are not to be prefixed by structure 
name.    
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Eager and Lazy Evaluation 
 
 
 
When a program executes, computation generally proceed via different evaluation orders, 
according to which one of many different evaluation strategies is being pursued. The evaluation 
strategies, are differentiated according to the method of passing arguments to functions.  Mainly, 
parameter passing methods are call by value, call by reference, call by name and call by need a 
variance of call by name.  

Call by value is a computation rule of programming language where the arguments are 
fully evaluated before outer function applications are evaluated. Therefore, corresponding to the 
arguments of functions, only values are passed. That is why this strategy is called call-by-value. It 
is used in imperative languages such as Java, C, Pascal and functional programming languages 
such as SML, Scheme etc.  

In call by reference the address (reference / pointer) of actual arguments are passed to 
functions instead of the values. This computation rule is available in all imperative programming 
languages.  Arrays are passed by reference in all imperative languages. In call by name the 
arguments are passed unevaluated and  are evaluated every time when needed in the body of the 
function.  If the argument is not needed, then it will not be evaluated at all.  

Call by need is an optimization of call-by-name such that an expression corresponding to 
an argument is evaluated at most once, if at all required. That means once it is evaluated, then the 
result is remembered and the next access to the corresponding formal parameter uses this value. 
Historically, all imperative languages employ call by value, and call by reference parameter 
passing mechanism and many provide call-by-name facilities as well.  
 
 
Evaluation Strategies 
 
Let us illustrate different evaluation strategies using the following SML functions 
 

 - fun constant (x) = 1; 
 > val constant = fn : 'a -> int 

  - fun cube (x : int) = x * x * x; 
 > val cube = fn : int -> int 

 
Call by value: (value of argument of a function is evaluated) 
Case1:   Call to constant function 

 - val p  =  constant (cube (cube (cube (2)))); 
  > val p = 1 
 
Evaluation of the function is done as follows: 
  p  =  constant (cube (cube (cube (2)))) 
  = constant (cube (cube (2*2*2))) = constant (cube (cube (8))) 
  = constant (cube (8*8*8))   =  constant (cube (512)) 
  = constant (512*512*512)   =  constant (134217728) 
  = 1 
Case2:  Call to cube function. 
  - val q = cube (cube (cube (2))); 
  > val q = 134217728 : int 
 
Evaluation: 
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 q = cube (cube (cube (2))) 
  = cube (cube (2*2*2))  =   cube (cube (8)) 
  = cube (8*8*8)    =    cube (512) 
  = 512*512*512    =    134217728  

We notice that the amount of time required in both the cases is same, whereas in case1, 
we have done calculation in vain as the result is independent of what we have calculated. Let us 
see other mechanisms for evaluation which are not available in SML 
 
Call by name:  (outermost reduction order).   
Case1:  Call to constant function 
  - val p = constant (cube (cube (cube (2)))); 
  > val p = 1  at one step 
Case2:  Call to cube function 
  - val q = cube (cube (cube (2))); 
  > val q = 134217728 : int 
Evaluation: 
 q = cube (cube (cube (2)))          outermost cube is evaluated 
  = cube (cube (2)) * cube (cube (2)) * cube (cube (2)) 
  = cube (2) * cube (2) * cube (2) * cube (cube (2)) * cube (cube (2)) 
  = (2*2*2) * cube (2) * cube (2) * cube (cube (2)) * cube (cube (2)) 
  = 8 * (2*2*2) * cube (2) * cube (cube (2)) * cube (cube (2)) 
  = 64 * (2*2*2) * cube (cube (2)) * cube (cube (2)) 
     
     

Here, the result of function in case1 is instant, whereas in case2, lots of computations are 
repeated and time required in this case is much higher than as compared to call by value (eager 
evaluation) method. Best of both the methods are combined in call by need (lazy evaluation).  Let 
us see the way call by need handles such computations. 
 
Call by need:  (similar to call by name except that the repetitions are avoided )  
Case1:  
  - val p = constant (cube (cube (cube (2)))); 
  > val p = 1  at one step 
Case2:  
  - val q = cube (cube (cube (2))); 
  > val q = 134217728 : int 
Evaluation: 
  q = cube (cube (cube (2))) 
 Let,  x = cube (cube (2))  and  y =  cube (2) = 2 * 2 * 2 = 8  

Then, x = cube (y) = y * y * y  = 8 * 8 * 8  =   512 
  Finally, q = cube (x) = x * x * x = 512 * 512 * 512 =      134217728 
           
There are broadly two categories of evaluation strategies in functional languages viz., eager 
evaluation and lazy evaluation. 
 
Eager Evaluation Strategy 
 
Any evaluation strategy where evaluation of all function arguments is done before their values are 
required. Call-by-value is a typical example of such evaluation where the values of all arguments 
are evaluated and are passed. In Functional languages, this type of evaluation strategy is called 
eager evaluation. Eager evaluation does not specify exactly when argument evaluation takes 
place. The reduction of the innermost redex forces evaluation of arguments before applications 
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are performed. It is also called applicative reduction order. The term eager evaluation was 
invented by Carl Hewitt and Henry Baker. Eager evaluation is used to implement strict functions. 
SML, Scheme have eager evaluation method. 
 
Definition: A function is said to be strict if the result is undefined when it is applied to  
undefined argument(s) and said to be non-strict otherwise. 
 
Lazy Evaluation Strategy     
  
Lazy evaluation is one where evaluation of an argument only starts when it is required first time. 
This evaluation strategy combines normal order evaluation with updating. Call by need uses lazy 
evaluation strategy. 
 
Definition: Normal order evaluation means that an expression is evaluated only when its  
value is needed in order for the program to return (the next part of) its result. Call by name  
uses normal order evaluation method. 
 
Definition: Updating means that if an expression's value is needed more than once (i.e. it is  
shared), the result of the first evaluation is remembered and subsequent requests for it will  
return the remembered value immediately without further evaluation.  
 

Lazy evaluation is one evaluation strategy used to implement non-strict functions. 
Choosing a particular evaluation strategy is not trivial. The implications are wide-ranging and, in 
some cases, quite subtle. It affects execution efficiency, programming style, interaction, etc. Lazy 
evaluation is a very desirable property of a functional language. This means for instance that an 
expression being a function argument is not evaluated at the point of call (as is usually the case 
with traditional languages and non-lazy functional ones). Instead the expression is evaluated 
when its value is needed, if at all. Lazy evaluation makes it possible to have infinite lists, infinite 
trees, etc, where the evaluation is done incrementally on demand. Lazy evaluation is must for 
interactive input/output in a pure functional language (explained later).  

Functional languages can be eager, lazy or a mix of the two. Functional language SML 
uses eager evaluation whereas languages like Haskell and Miranda use lazy evaluation scheme. 
Functional programming languages which employs lazy evaluation strategies are called lazy 
languages otherwise non lazy languages. 

In lazy languages, function arguments may be infinite data structures (especially lists), 
the components of which are evaluated as needed. Lazy evaluation can lead to a less constrained 
programming style. It helps in delay of unnecessary computation (explained later). Full Laziness 
is obtained by further optimizing a lazy evaluation by transforming a program by evaluating all 
those sub expressions in a function body which do not depend on the function's arguments.    
  Generally, in non lazy languages, it is essential that conditional expressions have special 
form whose evaluation does not require full evaluation. Exceptions to the rule of strict (eager) 
evaluation for the conditional expression if E then E1 else E2 are given below. Let us assume that 
the symbol ϖ denotes undefined expression. 
   Conditional  expression   Evaluated value 
   If  E = true then E1  else  ϖ     E1 
   If  E = false then  ϖ else E2    E2  
   If  E = ϖ  then E1  else E2       ϖ 
 



 71

If  non lazy languages do not provide lazy evaluation of conditional expression, then it could be 
simulated (explained later). In lazy functional languages, conditional expressions can be treated 
as ordinary functions such as 
  - fun  conditional (true,  x,  y)  = x 
    | conditional (false,  x,  y)  = y 
  >  val conditional = fn : bool * 'a * 'a -> 'a 
 
The evaluation of a function call conditional (E , E1, E2) has the same behaviour as   
if E then E1 else E2  under lazy evaluation strategy. 

It is evident that common style of programming is not possible for both lazy and eager  
evaluations because of subtle differences. Some commonality can be achieved by 
transformational approach to program construction. 

 
      
Lazy Evaluation in SML 
 
The evaluation rule in SML is eager (strict) evaluation, while most of pure functional languages 
adopt lazy evaluation. SML provides lazy evaluation of conditional expressions and infix boolean 
operators.  
 
Conditional expression 
 
As a special case, SML evaluates conditional expression using lazy strategy. Consider 
if_then_else  conditional expression if E then E1 else E2  that is interpreted as follows: 

• If E is true then E1 is evaluated and E2 is not. 
• If E is false then E2 is evaluated and E1 is not. 

Examples: 
  - if true then 4 else (23 div 0)     ;  
  > val it = 4 : int    undefined 

- if false then        (4 div 0)       else 5; 
 > val it = 5 : int 

 
Boolean Operators 
 
In SML, boolean infix operators andalso, orelse are not functions but are conditional expressions, 
so are evaluated using lazy strategy. All other SML infixes are really functions. Evaluation of  E1 
andalso E2  amounts to basically evaluating if E1 then E2 else false, where E1 and E2 are 
expressions. So an expression E2 is evaluated if required or needed. Similarly  E1 orelse E2 is 
equivalent to if E1 then true else E2. In SML infix operator andalso is defined as follows: 
  infix  andalso 
  fun  true andalso  b =  b 
   | false    andalso  b =  false      
      b is not evaluated 
   - false andalso  4 >    (6 div 0); 
  > val it = false : bool  undefined 
  -  true orelse  4 >    (6 div 0); 
  > val it = true : bool 
 
Delaying Evaluation of an expression   
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We know that function bodies are not evaluated until the functions are applied. This means that 
the evaluation of any expression can also be delayed by embedding the expression within the 
body of a function whose argument is dummy (unused value). Normally, empty tuple  ( ) : unit is 
used for this purpose.   
  - fun delay ( ) = Exp     

 > val delay = fn : unit -> 'a 
 
Here 'a is the type of an expression Exp.  An application of delay to an empty tuple will require 
an evaluation of Exp. 
 
 
Simulation of Normal Order Evaluation 
 
It is possible to simulate lazy evaluation within an eager languages by making use of higher-order 
functions which means that the functions are passed in place of simple arguments. But the 
resulting programs are more difficult to write, read and maintain.  Delay mechanism helps 
simulating normal order evaluation (call by name) in non lazy languages. The function compute 
defined below have arguments of the type 'a list.  Here the lists are evaluated at the time of 
applying compute function as eager evaluation is used in SML. 
 
  - fun   compute (x,  y)  =  if  null (x) then [] else hd(x) :: y ; 
  > val compute = fn : 'a list * 'a list -> 'a list 
  - val p = compute([3,4,5],[6,7,8,9]); 
  > val p = [3,6,7,8,9] : int list  
  - val q = compute ([], [1,2,3,4,5]); 
  > val q = [ ] : int list 
 
If we want to delay the evaluation of lists at the time of applying function, we can modify above 
function as follows: 
 
  - fun delayf (fun1, fun2) =  if  null ( fun1( )) then [] else hd(fun1( )):: fun2( ); 
  > val delayf = fn : (unit -> 'a list) * (unit -> 'a list) -> 'a list   
 
The functions compute and delayf are similar except that the arguments of function compute are 
of the type 'a list and that of delayf are functions of the type unit -> 'a list. Calls to both the 
functions are:   

• compute(a, b) 
• delayf (( fn( )  ⇒ a), (fn( )  ⇒ b)).  

 
They produce the same result but the evaluation of a and b are delayed until the arguments to 
delayf are applied. In particular if the value of a is null then b is not evaluated.   Few calls to both 
the functions are given below: 
  -  val x =[3,4,5]; 
  > val x = [3,4,5] : int list 
  -  val y = [6,7,8,9]; 
  > val y = [6,7,8,9] : int list   
  - fun fun1( ) = x; 
  > val fun1 = fn : unit -> 'a list 
  - fun fun2( ) = y; 
   > val fun2 = fn : unit -> 'a list  
The following segments of SML statements are equivalent.  
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- val p = delayf ( (fn( ) =>x), (fn( ) =>y) );
> val p = [3,6,7,8,9] : int list
- val q = delayf ((fn( ) =>y), (fn( ) =>p) );
> val q = [6,3,6,7,8,9] : int list
- val  r = delayf ((fn ( ) => [ ] ), (fn ( ) => q));
> val r = [ ] : int list

- val p = compute ( x, y );
> val p = [3,6,7,8,9] : int list
- val q = compute (y, p);
> val q = [6,3,6,7,8,9] : int list
- val  r =  compute([ ], q);
> val r = [ ] : int list

 
Therefore, the functions as arguments to other functions delay evaluation until the 

function argument is applied. If function argument is applied more than once then in this kind of 
simulation, function argument is evaluated as many times as it is applied. This is basically a 
simulation of call by name and not call by need (lazy evaluation). If we want to avoid repetition 
of evaluation of function arguments, then this can be achieved by using local definition (let in 
SML) to compute the value at the time of first application and then use that local variable when 
ever it is required. Consider the following function. 
Non lazy version: 
  - fun comp (x, y) = if null(x) then [] else y @ y @y; 
  > val comp = fn : 'a list * 'b list -> 'b list 
Simulated version: 
  - fun delay1 (fun1,fun2) = if null(fun1( ))  then []  
      else fun2( ) @ fun2( ) @ fun2( ); 
  > val delay1 = fn : (unit -> 'a list) * (unit -> 'b list) -> 'b list 
 
Here if fun1( ) is not null then fun2( ) is evaluated thrice. To avoid this repetition, let us rewrite 
another version of the same function. 
Lazy version: 
  - fun delay_lazy (fun1,fun2) = if null(fun1( ))  then []  
    else let val temp = fun2 ( ) in temp @ temp @ temp end; 
  > val delay_lazy = fn : (unit -> 'a list) * (unit -> 'b list) -> 'b list 
 
The function, delay_lazy simulates the lazy evaluation strategy. 
 
Eagerly evaluated conditional expression in non lazy languages could also be easily simulated  by 
using delay mechanism as follows: 
    
  - fun cond (x, y, z) = if x then y( ) else z( ); 
  > val cond = fn : bool * (unit -> 'a) * (unit -> 'a) -> 'a 
   -  val n = cond (true, (fn( ) => 4), (fn( ) => (34 div 0) )) ; 
  > val n = 4 : int      
         undefined 
It is evident that the second argument (undefined) of application of function cond has not been 
evaluated. The effect is same as that of lazy evaluation and the function is behaving as non strict 
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function. The evaluation has been delayed by using function as an argument. Similarly, the first 
argument is not evaluated in the following application of cond in the following case. 
  -  val n = cond (false, (fn() => (4 div 0 ) ), (fn() => 34 ) ); 
  > val n = 34 : int 
       undefined 
 
 
Advantages of Lazy evaluation  
 
There are numerous advantages as explained below.  The functions are written in SML for 
illustration. 
 
• Avoids unnecessary computation 
 
Lazy languages avoid unnecessary computations. If long computations are not needed, they will 
not be done in lazy evaluation environment.Let us consider a case of lists equality.  If we 
compute an equality of two long lists with different first items, then their tails are not evaluated in 
lazy languages. 
 i.   Comparing two lists: 
  - infix equal; 
  > infix equal 
   - fun   ([] equal [])  =  true 
    | ((a::x) equal (b::y))=   (a = b) andalso (x equal y) 
    |  ((a::x)  equal []) = false 
    |  ([] equal (b::y)) = false; 

 > val equal = fn : 'a list * 'a list -> bool 
In strict language such as SML, tails are also evaluated even if  a ≠ b because equal is strict 
function and requires both the arguments to be evaluated before executing its body.   
 
ii.   Comparing two binary trees for preorder sequence equality.  

Here we make use of equality function defined for list. 
- datatype  'a  BT  =  Null  | Node of  ‘a BT * ‘a  * 'a BT; 
> datatype 'a BT = Null | Node of ‘a BT * ‘a * 'a BT 
- fun  preorder  Null   = [ ] 

| preorder (Node (left, data,  right)) =  
[data] @ preorder left @  preorder right; 

> val preorder = fn : 'a BT -> 'a list  {list equality} 
  - fun tequality(t1, t2) = preorder (t1) equal preorder (t2);  
  > val tequality = fn : ''a btree * ''a btree -> bool 

- val t = Node(Node (Node (Null, 3, Null), 2, Null),  1, 
Node(Node(Null,5, Null),  4, Node(Null, 6, Null))); 

> val t = Node(Node (Node #, 2, Null), 1, Node (Node #,4,Node #)) : int BT 
- val t1 = Node(Node (Null, 2, Null),1, Node(Node(Null,4, Null),3,  

Node(Node(Null,6,Null), 5, Null))); 
> val t1= Node(Node (Node #, 2, Null), 1, Node (Node #,3,Node #)) : int BT 

 - val x = tequality (t, t1); 
  > val x = true : bool 

 - tequality (Node(Null, 6, Null),  Node (Node(Null, 4, Null), 2, Null))  
  > val it = false : bool 
 
Evaluation:  
tequality (Node(Null, 6, Null),  Node (Node(Null, 4, Null), 2, Null))   

= preorder (Node(Null, 6, Null))  equal preorder (Node (Node(Null, 4, Null), 2, Null)) 
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=  [6] @ preorder(Null) @ preorder(Null)  
   equal  
  [2] @ preorder(Node (Node(Null, 4, Null)) @ preorder(Null) 

= (6:: [] @ preorder(Null) @ preorder(Null)  
   equal 

 (2 :: [] @ preorder(Node (Node(Null, 4, Null)) @ preorder(Null) 
= (6 = 2)  andalso ([] @ preorder(Null) @ preorder(Null) )  

   equal 
 ([] @ preorder(Node (Node(Null, 4, Null)) @ preorder(Null) 

 = false  andalso  ......    equal  ....... 
= false      

not evaluated 
 
During lazy evaluation, calls to functions moves back and forth to give rise co-routine like 
behaviour whereby each function is driven by request for some output from another function 
requiring some input. Therefore,  the functions call each other and returns values as and when 
required. For example, in tree equality, if first value of both the trees in preorder sequence are 
equal then second element of first tree is computed followed by second element of second tree 
and so on otherwise false is returned. So at no point in time both the lists are computed 
completely thus avoiding redundant computation.  
 
• Avoids non termination 
 
If a function terminates via any reduction order, then the result will be the same using lazy 
evaluation.  
i. The functions which are non terminating in non lazy languages can terminate in lazy 

languages.  
For example, define a function for computing factorial as follows: 
  - fun conditional (x, y, z) = if x then y else z; 
  > conditional = fn : bool * 'a * 'a -> 'a 
  - fun  fact n = conditional (n = 0, 1,  n * fact(n-1)); 
  > val fact = fn : int -> int 
 
Eager evaluation: 
The function fact is non terminating in non lazy (eager) languages. If we call fact(0), it goes into 
non termination as the arguments of function  conditional gets evaluated before its body is 
executed. 
  - val x = fact (0); 
      Non terminating 
  - val y = fact (2); 
       
Examples:    
 i. fact (0)  =  conditional (true, 1, 0 * fact(-1) )   non termination  

ii. y   =  fact(2)    
    = conditional(false, 1, 2 * fact(1)) 
    = conditional (false,1, 2 *  conditional (false, 1, 1 * fact(0)))  
       
 
Because of fact (0) in the argument of conditional it goes into non termination as explained 
above. 
  
Lazy evaluation:  
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  - val x = fact (0); 
  > val x = 1 : int 
  - val x = fact (4); 
  > val y = 24 : int 
 
It gives result as 1 for fact(0) because 0 * fact(-1) will not be evaluated at all. 
 
As already mentioned earlier, lazy evaluation can be simulated to some extend in eager 
languages. The same function fact is rewritten using delay mechanism for eager languages. Of 
course the function becomes difficult to be understood. We make use of function cond that 
simulated lazy evaluation. 
  - fun fact n = cond ( n = 0, (fn() => 1), (fn() => n* fact (n-1))); 

> val fact = fn : int -> int 
-  fact 0; 
> val it = 1 : int 
-  fact 4; 

 > val it = 24 : int 
 
 

ii. Define a function to obtain first n elements of an infinite list generated. 
 
Let us write a function named gen that generates an infinite list of integers in increasing order 
starting from some initial value as follows: 

 - fun gen(n) = n::gen(n+1); 
  > val gen = fn : int -> int list 
Now we will use gen function to obtain  first n elements as follows: 
  - fun  get (1, x::xs)  =  [x] 
    | get (n, [])  = [0] 
    | get (n, x::xs) = x:: get(n-1, xs); 

  > val get = fn : int * int list -> int list 
 
Eager evaluation:  
  - val x = get (3, gen(1) );   non termination 
Evaluation: 
 x = get (3, gen(1) )  = get(3, 1 :: gen(2)) 
  = get(3, 1 :: 2 :: gen(3)) = get(3, 1 :: 2 :: 3 :: gen(4)) 
 
 
 
It is non terminating because of infinite list as an argument of function get. The argument is to be 
evaluated before executing the body of get.  
 
Lazy evaluation: 
  - val x = get (3, gen(1) );  

 > val x = [1,2,3] 
 
It gives a list of first 3 elements from infinite list generated by function gen because the elements 
in a list are only evaluated when required by another function. 
Evaluation:  
 x = get(3, gen(1))  = get(3, 1 :: gen(2))  
  = 1 :: get(2, gen(2)) = 1 :: get(2, 2::gen(3)) 
  = 1 :: 2 :: get(1, gen(3)) = 1 :: 2 :: get(1, 3::gen(4)) 
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  = 1 :: 2 :: [3]  = [1,2,3] 
 
iii. Consider another problem of generating infinite sequence of numbers in increasing order 

using the following the following formula.  
  Number = 2n  *  3m , ∀ n, m ≥ 0 
The list of numbers can be defined informally as:  

• 1 is valid number, 
• if x is a valid number, then 2x and 3x are also valid numbers.  

 
Thus, an infinite sequence of numbers generated by above definition is 1, 2, 3, 4, 6, 8, 9, 12, 16, 
18, 24, 27, 32, 36  ..... In most of the languages, this is quite complex but using lazy evaluation 
technique it can be easily expressed.  
 
We define a function seq that generates an infinite list of numbers in increasing order stated as 
above using another function get_next. The function merge is used in get_next that takes two 
ascending lists and merges them maintaining the ordering and removing duplicates. 
  
  - fun  seq ( ) = get_next  [1]; 

 > val seq = fn : unit -> int list 
  - fun  get_next (x :: xs) = x :: get_next (merge ( [2*x, 3*x], xs )); 

 > val get_next = fn : int list -> int list 
 
Eager evaluation: 

 - val  t = get (5, seq( ));  non termination 
 
Lazy evaluation: 

 - val  t = get (5, seq( )); 
 > val t = [1,2,3,4,6] : int list 

Evaluation: 
 t  = get (5, seq ( ))   

=  get(5, get_next [1])  
  =  get (5, 1 :: get_next (merge([2,3], []))) 
  = 1 :: get (4, get_next ([2,3]))  
  =  1 :: get (4, 2 :: get_next(merge([4,6], [3]) ))  
  = 1 :: 2 :: get(3, get_next([3,4,6])) 
  = 1 :: 2 :: get(3, 3 :: get_next(merge([6,9], [4,6])))  
  = 1 :: 2 :: 3 :: get (2, get_next ([4,6,9] ) ) 
  = 1 :: 2 :: 3 :: get (2, 4 :: get_next (merge([8,12], [6,9]))) 
  = 1 :: 2 :: 3 :: 4 :: get (1, get_next([6, 8, 9, 12])) 
  = 1 :: 2 :: 3 :: 4 :: get (1, 6 :: get_next(merge ([12, 18],[8, 9, 12]))) 
  =  1 :: 2 :: 3 :: 4 :: 6   
  = [1,2,3,4,6] 
 
iv. Generate a list of prime numbers using Eratosthenes sieve method   

The numbers using Eratosthenes sieve method are generated as follows: 
• Initially, assume that 2 is a prime number.  
• Find prime numbers by removing the non prime numbers from a list of integers 

generated from 2 onwards.  
• Non prime number is one which is a multiple of some previously generated prime 

number.  
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Alternatively, we can state the method as follows: 
• Get a number from a infinite list generated from 2 onwards and check if it is non 

prime. If not, then attach this number to the list of primes generated otherwise 
generate new number. Repeat this method as many time as you want. 

 
- fun not_multiple x y = (y mod x <> 0); 
> val not_multiple = fn : int -> int -> bool 
 - fun  filter  f [] = [] 

        | filter f (x::xs) = if f (x) then x :: filter f xs else filter f xs; 
 > val filter = fn : ('a -> bool) -> 'a list -> 'a list  

  - fun  remove x []  = [] 
    | remove x xs   = filter (not_multiple x)  xs; 

> val remove = fn : int -> int list -> int list 
 - fun main (x ::xs) = x :: main(remove x  xs); 

> val main = fn : int list -> int list 
 - fun  primes ( )  = main (gen 2); 

  > val primes = fn : unit -> int list 
 
Eager evalaution: 
  - get(4, primes( ));   non terminating 
 
Lazy evaluation: 
  - get(4, primes( )); 
  > val it = [2,3,5,7] : int list 
 
• Handling of infinite data structures  
 
Lazy languages also include lazy constructors, hence provide one of the most important benefits 
of lazy evaluation i.e., the ability to handle infinite data structures. So far we have seen function 
and data types being defined recursively. It is very useful if we define infinite data structure like 
list, trees, infinite series and any infinite mathematical structure and assign them directly to the 
variables and use them directly in the program. Further, lazy evaluation helps in creating cyclic 
data structures, which would terminate. The following are recursive definition of some infinite 
data structures.   
 
 i. Define a variable inf_list  which is an infinite list of 1.    
 

- val  rec  inf_list  = 1:: inf_list;
> val rec inf_list =  1:: inf_list : int LIST
- val x = get(10, inf_list);

inf_list = 1 ::  (       ) > val x = [1,1,1,1,1,1,1,1,1,1] : int list

- val rec pair_list = (1,2) :: pair_list;
> val rec pair_list = (1, 2) :: pair_list : (int * int) LIST
- val y = inf_list equal pair_list;

pair_list = (1,2) :: (    ) > val y = false : bool
- val z = get(3, pair_list);
> val z = [(1,2), (1,2), (1,2)] : int list  

 
Infinite list can be constructed and easily used in lazy languages as arguments of other functions. 
Functions get and equal are defined earlier.  
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• Cyclic structures 
 

- val rec  x = f(x, y);

f x
y

Define a variable inf_tree for infinite binary tree with all nodes having value 6.  
 

6

6 6
6 6 6 6

- val rec inf_tree = Node (inf_tree, 6, inf_tree);
> val rec inf_tree = Node (inf_tree, 6, inf_tree) :  int BT
- val x = get (5, preorder (inf_tree));
> val x = [6,6,6,6,6] : int list

 
• Recursive definition of the following infinite binary tree 
 

t
5

4 5

4 5

4 5

- val  rec  t  = Node (Node (Null, 4, Null), 5, t);
> val rec  t  =  Node (Node (Null, 4, Null), 5, t) : int BT  

 
i. Recursive definition for an infinite sequence of numbers in increasing order using the 

following formula.  
  Number = 2n  *  3m , ∀ n, m ≥ 0 
This problem has also been discussed earlier and was solved by using recursive function. 
Alternatively the problem is stated as:  

i. 1 is valid number, 
ii. if x is a valid number, then 2x and 3x are also valid numbers.  

  - val  rec  seq_num  =  
    1:: merge ((map(times 2) seq_num), (map(times 3)  seq_num)) 
  > val rec seq_num =  1::  

merge ((map(times 2) seq_num), (map(times 3)  seq_num)):int list 
 
The function map multiplies 2 or 3 whichever the case might be to the head of recursive list  
seq_num  whenever there is a need. It is defined as follows: 
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  - fun  map  f  []  =  []  
    | map f (x :: xs) = f x :: map f  xs ; 
  > val map = fn : ('a -> 'b) -> 'a list -> 'b list 
   
List is constructed as follows: 
 
seq_num = 1:: merge ((map(times 2) seq_num), (map(times 3)  seq_num)) 
  = 1 :: merge (2 :: (map(times 2) seq_num), 3 :: (map(times 3)  seq_num)) 
  = 1 :: 2 :: merge ((map(times 2) seq_num), 3 :: (map(times 3)  seq_num)) 

 = 1::2::merge (4 :: (map(times 2) seq_num), 3 :: (map(times 3)  seq_num)) 
  = 1::2::3 :: merge (4 :: (map(times 2) seq_num), (map(times 3)  seq_num)) 
    
 
 
 
• Lazy evaluation for generating solution using numerical techniques 
 
Writing algorithms for numerical techniques finding solution(s) by successive refinement till the 
difference between previous solution and the current solution is negligible is more elegant and 
concise. Newton Raphson is numerical technique for solving equation of the form f(x) = 0. It 
starts with good initial approximate solution and  converges rapidly to the solution. Computing 
square root of a real number is an application of Newton Raphson method. The following 
equation is solved for finding square root of a real number say, a. 
   f(x) = x2  - a = 0 
   x2  - a = 0 
   x2  = a  
   x  =  √a 
 
Consider initial solution to be  x0 = 1.0 and next solution is obtained by the following formula. 
  xi  =  (x(i-1)  +  a / x(i-1)  ) / 2.0 
Termination condition is:  (xi  - x(i-1) )  <  .000001 

 
 - fun gen (a, n) = n :: gen(a, (n + a / n) / 2.0); 

  > val gen = fn : real * real -> real list 
 - fun findroot (a) = gen (a, 1.0); 

  > val findroot = fn : real -> real list 
 - fun terminate(x::y::xs) = if (x-y ) < 0.00001 then x else terminate (y :: xs); 

  > val terminate = fn : real list -> real 
  - fun sqrt (a) = terminate (findroot (a)); 
  > val sqrt = fn : real -> real 
 
A function sqrt calls a function terminate which is a higher order function. Argument of terminate 
is another function findroot that generate a list of possible solutions by using function gen.  In 
eager evaluation, sqrt is a non terminating function but it terminates for lazy evaluation. 
 
• Separation of data and control 
  
The lazy functions can be written without containing operational control as evaluation is demand-
driven. Therefore, Laziness can help in separating data from control.  It gives a pipeline approach 
to a program construction. For example, given the following components:  
 
   - fun  cube []     = [] 
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        | cube (n:: ns) = n*n*n :: cube ns; 
  > val cube = fn : int list -> int list 
  - fun      double []     = [] 
    | double (n::ns) = n + n :: double ns; 
  > val double = fn : int list -> int list 

 - fun positive  x  =  if x > 0 then true else false; 
  > val positive = fn : int -> bool  

 - fun  main ( )  = double (cube(filter  positive (get_list))); 
  > val main = fn : unit -> int list 
   
We can compose them simply to create a pipeline that filters out positive numbers from a list, 
cube them and then double them. The function filters is defined earlier. The important point is 
that function main has been written without knowing the size of the list. Lazy evaluation has 
therefore freed the programmer from operational control issues like exiting from a loop in 
imperative languages. Here get_list operates on demand and supplies an element of a list (of 
unknown size). 

This pipeline style generally leads to clearer, more maintainable solutions and prompts the 
observation that laziness may provide important links in the convergence of functional 
programming, visual programming and analysis and design methods. 
 
 
• Interactive program  
 
Lazy evaluation forms the basis for effective, elegant interaction. Consider an interaction at the 
highest level as a function taking responses and returning requests on the demand.  
  
 rsponses    function      requests 
 
Demand driven evaluation with suspensions can be regarded as a special case of several 
components of a program working independently and communicating via demand. It gives rise 
coroutine kind of behaviour  whereby each process is driven by demand for some output from 
another process requiring some input. Processes are suspended as soon as the demand is satisfied 
but may resume when further demands are placed on them.  

A interactive program reads in different values of  X (requests) and outputs the values 
(responses) at different  stages can  easily be expressed as a function which takes a list of values 
for X and produces a list of responses. 
 
  x1 :: x2:: x3:: ...      r1:: r2:: r3 :: .... 
  from keyboard  function  to screen 
            
In order to generate requests before receiving responses, the program must be lazy with its 
argument otherwise it would hang forever waiting for responses that haven't yet been requested. 
Even though there is a large semantic gap between a purely functional program and the outside 
world. The goal is to provide elegant, purely functional mechanisms for input/output and 
sequencing. Recent research advances, however, such as the Haskell I/O system [HPW92], have 
tamed many of these problems and a variety of effective bridges now exist  
 
 
Simulation of infinite data structures in SML 
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As already mentioned earlier, evaluation can be delayed in eager languages by using higher order 
functions. In eager evaluation, only functions can be defined recursively and recursive data 
structures can not be defined directly because of non termination problem. But infinite data 
structure can be simulated with eager evaluation by use of higher order functions which expand 
the structure bit by bit i.e., a data structure containing functions can represent an infinite object 
such as infinite lists, trees etc.  
 
Lists with lazy evaluation mechanism 
 
In order to avoid unnecessary computation in comparing two lists, one can simulate lazy 
comparison in SML (in any eager language). We define below the datatype for lazy list whose 
element is constructed by applying function of the type (unit ->'a * 'a lazy_list). E_list represents 
an empty list. 
  

 -  datatype 'a lazy_list = ML_list of (unit ->'a * 'a lazy_list) | E_list; 
  > datatype 'a lazy_list = E_list | ML_list of unit -> 'a * 'a lazy_list 
  
• Various functions for lists  
 
  - fun cons x xs = let fun f( ) = (x, xs) in ML_list f end; 

 > val cons = fn : 'a -> 'a lazy_list -> 'a lazy_list 
- fun  head E_list = ~1   

    | head (ML_list f) = let val (x, xs) = f( ) in x end; 
 > val head = fn : int lazy_list -> int 

  - fun  tail E_list = E_list 
    | tail (ML_list f ) = let val (x, xs) = f( ) in xs end; 

 > val tail = fn : 'a lazy_list -> 'a lazy_list 
  - fun null E_list = true 

| null (ML_list f) = false; 
 > val null = fn : 'a lazy_list -> bool 

 
Function for comparing two lists for equality   
 

- infix eq 
> infix eq  
- fun (E_list eq E_list ) = true 

            | (ML_list f) eq (ML_list g) =  let 
  val (x, xs) = f( ); val (y, ys) = g( ) 

                                     in  (x = y) andalso (xs eq ys ) end 
           | ((ML_list f) eq E_list) = false 

    | (E_list eq (ML_list f)) = false; 
 >  val eq = fn : ''a lazy_list * ''a lazy_list -> bool  

 
Construction of a list and its operations 
 

 - cons 4 E_list; 
> val it = ML_list fn : int lazy_list 
-  cons 4 it; 
> val it = ML_list fn : int lazy_list 
-  cons 7 it; 
> val it = ML_list fn : int lazy_list 
-  val p = cons 8 it; 
> val p = ML_list fn : int lazy_list  
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- head p; 
> val it = 8 : int 
-  tail p; 
> val it = ML_list fn : int lazy_list 
- p eq it; 
> val it = false : bool 
- val q = p; 
> val q = ML_list fn : int list1 
-  p eq q; 
> val it = true : bool 

 
• Construction of infinite lists: (list of ones, list of natural numbers etc.) 
 
The same datatype definition is used for constructing infinite lists.  
 

- val inf_ones = let fun f( ) = (1, ML_list f) in ML_list f end; 
> val inf_ones = ML_list fn : int lazy_list 
- fun gen n = let fun f ( ) = (n, gen (n+1)) in ML_list f end; 
> val gen = fn : int -> int lazy_list 
- val nat = gen 1; 
> val nat = ML_list fn : int lazy_list 
- val from10 = gen 10; 
> val from10 = ML_list fn : int list1 

 
Function for getting finite number of elements from infinite list 
 

- fun front n s = get_first(lazy_get n s); 
> val front = fn : int -> 'a lazy_list -> 'a list 

 
where get_first and lazy_get are defined below: 
 

- fun  lazy_get 0 s = ([], s) 
            | lazy_get n E_list = ([],E_list) 
       | lazy_get n (ML_list f) = let val (x, xs) = f(); 
                                      val (y,ys) = lazy_get (n-1) xs 
                               in (x::y, xs) end; 

> val lazy_get = fn : int -> 'a lazy_list -> 'a list * 'a lazy_list 
- fun get_first (x, y) = x ; 
> val get_first = fn : 'a * 'b -> 'a 

 
Extracting finite values using front function   
         

- front 5 inf_ones; 
> val it = [1,1,1,1,1] : int list 
-  front 10 inf_ones; 
> val it = [1,1,1,1,1,1,1,1,1,1] : int list 
-  front 6 nat; 
> val it = [1,2,3,4,5,6] : int list 
- front 10 from10; 
> val it = [10,11,12,13,14,15,16,17,18,19] : int list 

 
 
Tree comparison using lazy evaluation mechanism 
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With eager evaluation, earlier function for comparing two trees in preorder  gives wasteful 
computation by getting preorders of both the lists and then comparing these lists using list 
comparison function. If we combine the actions of flattening binary trees and comparing lists, 
then in case when elements of both the binary trees in the preorder sequence are not equal, 
remaining portions of the trees could be avoided for computation.  

- datatype 'a BT = Null | Node of 'a BT * 'a * 'a BT; 
  > datatype 'a BT = Node of 'a BT * 'a * 'a BT | Null 
The   function tree_eq makes use of  another function stack_compare which compares values in 
two stacks each consisting of binary trees. Initially stack contains binary trees. Get top element of 
both the stacks and compare the value at the root. If they are equal then both the trees are split 
into sub trees (left and right) and stored in their respective stacks. The process is repeated till the 
stacks are empty or values do not match. The processing of sub trees when the values do not 
match is delayed. 

 
- fun  stack_compare [] [] = true 

| stack_compare [] (a::x) = if a = Null then stack_compare [] x else false 
| stack_compare (a::x) [] = if a = Null then stack_compare x []  else false 
| stack_compare (Null::x) y = stack_compare x y 
| stack_compare x (Null::y)= stack_compare x y 
| stack_compare (Node(l1,d1,r1)::x) (Node(l2,d2,r2)::y) =  

if (d1 = d2)   then stack_compare (l1 ::r1::x) (l2::r2::y) else false; 
> val stack_compare = fn : ''a BT list -> ''a BT list -> bool 
- fun tree_eq t1 t2 = stack_compare [t1] [t2]; 

 > val tree_eq = fn : ''a BT -> ''a BT -> bool 
 
• Creating binary trees as follows 

 
- val t = Node(Node(Node (Null,3,Null),2,Null),1, 

Node(Node(Null,5, Null),  4, Node(Null, 6, Null))); 
> val t = Node (Node (Node #,2,Null),1,Node (Node #,4,Node #)) : int BT 

  - val t1= Node (Node (Null,1,Null),2,Node(Node(Null,4, Null, 3, Node  
        (Node(Null,6,Null), 5, Null))); 

> val t1 = Node (Node (Null,2,Null),1,Node (Node #,3,Node #)) : int BT 
- val x = Node(Node(Node (Null,2,Null),1,Node(Node(Null,5, Null),  4, Null)); 
> val x = Node (Node (Null,2,Null),1,Node (Node #,4,Null)) : int BT 

  - val y = Node (Node (Null,1,Null),2,Node(Null, 3, Null)); 
  > val y = Node (Node (Null,1,Null),2,Node (Null,3,Null)) : int BT 
 
• Comparing two binary trees   
  - val p = tree_eq t t1; 

 > val p = true : bool 
- val q = tree_eq x y; 

 > val q = false : bool 
 
 
Construction of infinite trees and their comparisons 
 
Define datatype for binary tree using function as an argument. The binary tree is either Null or 
(Node f ), where f is a function of type unit -> 'a BT * 'a  * 'a BT. Usinf function one can delay 
evaluation of a node. Node is evaluated only when function is applied. 
   - datatype        'a  BT  =       Null   | Node of (unit -> 'a BT * 'a  * 'a BT); 

> datatype 'a BT = Node of unit -> 'a BT * 'a * 'a BT | Null 



 85

 
One can construct a binary search tree using following delayed_insert function defined below: 
 

- fun      delayed_insert(key, Null) = let fun f() = (Null, key,  Null)  
in  Node f end 

| delayed_insert (key, Node f) = let val  (left, k, right) = f ( )  
in if key < k then let  

fun g (  )= (delayed_insert (key,left), k,right) in Node g end 
else let fun h( ) = (left, k, delayed_insert (key, right)) in Node 
h end end; 

> val insert = fn : int * int BT -> int BT 
 
• Functions for traversing binary trees  
 

- fun      preorder        Null    =        [] 
            | preorder (Node f)=  let val (left, data, right) = f( ) in  

[data] @ preorder left  @  preorder right end; 
> val preorder = fn : 'a BT -> 'a list 
- fun      inorder         Null =        [] 

       | inorder( Node f)  =   let val (left, data, right) = f( )   in 
inorder left @ [data] @ inorder right end; 

> val inorder = fn : 'a BT -> 'a list 
- fun      postorder       Null    =       [] 

| postorder(Node f)  = let val (left, data, right) = f( )   in 
                          postorder left @  postorder right @ [data] end; 
> val postorder = fn : 'a BT -> 'a list 

 
Definitions of various infinite binary trees 
 

- val tree6 = let fun f () = (Node f, 6, Node f) in Node f end; 
> val tree6 = Node fn : int BT 

tree6

6

6 6

6 6 6 6

- val tree23 = let fun g ( ) = (Node f, 2, Null) and  f ( ) = (Node g, 3, Null)   
in Node g end; 

   > val tree23 = Node fn : int BT 
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tree23
2

3
2

3

 - val t = let fun f ( ) = (Null, 1, Node f) in Node f end;
> val t = Node fn : int BT

t

1

Null 1

Null 1

Null

Function for getting fixed number of values from infinite binary tree in preorder sequence.  
- fun  l_get 0 s  =  ([], s) 

| l_get n Null  =  ([], Null) 
| l_get n (Node f) =   let val (l,d,r) = f( ); 

val (d1, xs) = if null l then l_get (n-1) r  
else l_get (n-1) l  in (d::d1, l) end  ; 

> val l_get = fn : int -> 'a BT -> 'a list * 'a BT 
- fun fst (x, y) = x ; 

 > val fst = fn : 'a * 'b -> 'a 
- fun front n s = fst(l_get n s); 
> val front = fn : int -> 'a BT -> 'a list 
- front 6 t; 
> val it = [1,1,1,1,1,1] : int list 
- front 5 tree6; 
> val it = [6,6,6,6,6] : int list 
- front 8 tree23; 
> val it = [2,3,2,3,2,3,2,3] : int list 

 
• Comparing two infinite binary tree   
 

- fun  delayed_stack_eq [] []   =  true 
| delayed_stack_eq [] ((Node f)::x)  =  false 
| delayed_stack_eq ((Node f)::x) []  =  false 
| delayed_stack_eq (Null::x) y  =  delayed_stack_eq x y 
| delayed_stack_eq x (Null::y) =  delayed_stack_eq x y 
| delayed_stack_eq ((Node f)::x) ((Node g)::y) =  let 

val (l1,d1,r1) = f(); val (l2,d2,r2) = g() in  if 
(d1 = d2) then   delayed_stack_eq (l1::r1::x) 
(l2::r2::y)  
else false end; 

> val equal = fn : ''a BT list -> ''a BT list -> bool 
- fun tree_equality t1 t2 = delayed_stack_eq [t1] [t2]; 
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> val tree_equality = fn : ''a BT -> ''a BT -> bool 
- tree_equality  t tree6; 
> val it = false : bool 

 
The function tree_equality gives rise false value as soon as it does not match two corresponding 
values in binary trees but goes into non termination if trees are equal. 
 
Disadvantages of Lazy evaluation 
 
• Although functional languages allow user to ignore the underlying mechanism that manages 

data, the system must still manage that memory. When laziness is introduced, the situation 
becomes more complex, and there is conflicting evidence as to whether it helps or hinders 
memory management. Laziness undoubtedly adds a memory management overhead, although 
some case studies identify situations when memory management allows lazy functional 
languages to beat not only eager ones, but imperative languages as well (see [KoOt93]). 

 
• Traditionally, lazy functional languages executes slower than eager ones. This is due to 

overheads required to handle closures or equivalent constructs. But in some cases, it largely 
depends on the nature of algorithm. A well-designed lazy programs execute faster than eager 
ones. Laziness can be exploited to make a simple dynamic-programming algorithm run 
quickly as explained in [All92]. Execution efficiency can also be viewed as trade off between 
fast eager code against better engineered lazy code from software engineering point of view. 

 
• Garbage collection  is a problem in functional programs which may effect run-time 

performance of functional programs in terms of both time and space.     
 
• Lazy evaluation computational model is harder to interpret and analyze. 
 
  
  
 


