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Abstract—We investigate the problem of runtime analysis of
concurrent C11 programs under Multi-Copy-Atomic semantics
(MCA ). Under MCA , one can analyze program outcomes solely
through interleaving and reordering of thread events. As a
result, obtaining intuitive explanations of program outcomes
becomes straightforward. Newer versions of ARM (ARMv8 and
later), Alpha, and Intel’s x-86 support MCA . Our tests reveal
that state-of-the-art dynamic verification techniques that analyze
program executions under the C11 memory model report safety
property violations that can be interpreted as false alarms under
MCA semantics. Sorting the true from false violations puts an
undesirable burden on the user.

In this work, we provide a dynamic verification technique
(MoCA) to analyze C11 program executions which are permitted
under the MCA model. We restrict C11 happens-before relation
and propose coherence rules to capture precisely those C11
program executions which are allowed under the MCA model.
MoCA’s exploration of the state-space is based on the state-of-
the-art dynamic verification algorithm, source-DPOR. Our ex-
periments validate that MoCA captures all coherent C11 program
executions, and is precise for the MCA model.

Keywords-C11 ; MCA ; stateless model checking;

I. INTRODUCTION

The relaxed memory orderings over concurrent memory

accesses introduced in the C/C++ 2011 ISO standard (C11 ) [1]

has been the object of intense study in the past decade The

axiomatic specification of C11 [2] defines relaxed program

behaviors as relations over memory accesses along with con-

straints on stores that can possibly affect each load. The

semantics are known to be complex and for a fragment of the

standard – release-acquire – the state-reachability problem is

shown to be undecidable [3]. More notable is that many of the

feasible program behaviors under C11 semantics may never

manifest on the underlying architectures.

Therefore, an important desideratum is to engineer analysis

tools/techniques to analyze C11 programs under restricted

hardware models with precision. In this work, we investigate

the problem of precise dynamic analysis of C11 programs

under Multi-Copy-Atomic model (MCA ) – a popular hardware

memory model, which is claimed to be supported in Intel’s x-

86 TSO, newer versions of ARM1(v8 and later) and Alpha

with varying degrees of permitted reorderings. A noteworthy

aspect of the MCA model is the assumption of a single

abstract view of shared memory between processing elements

(or threads), leading to the observation that permitted program

Initially, x = 0, y = 0

x := 1 if(x = 1)

a := y(0)

y := 1 if(y = 1)

b := x(0)

T1 T2 T3 T4

(IRIW)

behaviors under this model can be explained solely through

interleaving and reordering of thread events. As a result, one

can use existing dynamic analyses [4][5][6][7] (with suitable

adaptations) developed for memory consistency models where

program behaviors can be explained by program event inter-

leavings alone.

Several past works on designing efficient dynamic veri-

fiers (also referred to as stateless model checkers) for C11
concurrency (or its variants) exist such as CDSChecker [10]

and GenMC [11]. On the one hand, notwithstanding the

sophistication of their algorithms, some of the valid C11
outcomes flagged by these tools, would not occur when the

input program is executed on an MCA architecture. Consider

the program (IRIW). The initial value of x and y is 0 and the

value in brackets (i.e. y(0) and x(0)) indicate the value read

in local variables a and b. No two statements in the program

can reorder due to the control dependence between the read

statements of threads T2 and T4. The execution shown in the

program with a=0 ∧ b=0 is a valid C11 outcome if not

all statements in the program are sc (sequential consistency)

ordered. It is so because the dependencies shown via gray

dashed arrows may not hold under the C11 model, thus

leading to an acyclic dependence relation (explained further in

Section §IV). However, such an outcome cannot be explained

through any acyclic interleaving of events; therefore, is invalid

under the MCA model. Hence, if a property violation is

detected by a C11 verification technique it must be scrutinized

further for viability under the given hardware memory model.

The laborious task of sorting the feasible from infeasible

violations is a burden on the user. On the other hand, solutions

for MCA hardware memory models either ignore the C11
relaxation directives provided in the program such as [6][7]

for x-86 TSO or have been designed for a memory model [12]

proposed as a superset of existing hardware models (including

1ARMv8 calls its model other-MCA [8]. The difference with MCA is of
terminology, not semantics (as clarified by [9]).
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ARMv8), namely HMC [13].

Our contribution sits in this cross-section of C11 program

execution on MCA architectures. We design a sound and

precise dynamic verification technique called MoCA (pro-

nounced as moh·kaa), addressing the problem of C11 program

verification under MCA . The key contribution of our work

is in restricting C11 program behaviors to only those that

are permitted under the MCA model. To accomplish this, we

present happens-before and coherence rules (see §V). Another

central contribution of our work is to simulate the reordering

of events of a thread (either by the compiler or the hardware)

through a new event type, viz., shadow-writes. It updates the

shared memory for the store instructions in the program.

Our proposed contributions have several merits: (M1) our

formalization makes source-DPOR [4] (a powerful stateless

model checking algorithm) eminently usable without any mod-

ification; (M2) the use of shadow-writes simulates reordering

through interleaving and thus allows scheduling of execution

sequences that reflect the effects of reordering with simply

interleaving of program events.

The remaining paper is organized as follows: §II introduces

assumptions and notations used; §III describes the segments

of MCA operational semantics proposed by Colvin and

Smith [14] that are relevant to this work; §IV briefly introduces

the C11 model [1][2]; we present our proposed technique

in §V and §VI, where we formally introduce shadow-writes

and present MoCA’s happens-before relation along with the

coherence rules for soundness in §V; in §VI we explain the

working of MoCA technique; and, present our experimental

observations in §VII. To summarize, in this work we make

the following contributions:

• We introduce shadow-writes to precisely capture the

reordering semantics of MCA through interleaving.

• We propose a restriction of C11 happens-before relation

to disallow non-MCA behaviors, and establish coherence

rules to ensure exploration of only coherent C11 execu-

tion sequences.

• We establish the correctness and precision of our pro-

posed relations and rules with supporting theorems (see

Theorem 1, §V and Theorem 3, §VI).

• We present the MoCA technique that executes source-

DPOR utilizing our proposed happens-before restriction

(see §VI).

• We present a prototype implementation to validate our

technique and perform experiments to evaluate our claims

empirically (see §VII).

II. PRELIMINARIES

Concurrent program model: We consider an acyclic multi-

threaded program, P , as a finite set of program threads. A

thread i in P , uniquely identified by tidi, has deterministic

computation and terminating executions. The threads in P
access a fixed set of memory locations called objects (denoted

by O). Each thread executes a sequence of events that, in

essence, are actions on these objects. The set of actions

(denoted by A) include: write, read, rmw (or read-modify-

write), and fence. We extend this set with a special action

called shadow-write. In our model of computation, each write
or rmw action is now associated with a corresponding shadow-
write action. This action updates the shared memory with the

value of its corresponding write or rmw.

Let Σ be the set of global states of P with a given initial

state s0 ∈ Σ. We assume the standard definition of a state,

i.e., valuation of all shared and local objects of P , and the

program counter of all threads. In a global state σ ∈ Σ, shr σ
denotes the shared component comprising of (shared object,

value) pairs, and lcl σ denotes the local component comprising

of (local object, value) pairs.

Program execution and events. The set of all events of a

program P is denoted by E . An execution of P is, there-

fore, a sequence of events τ=e1.e2. . . . en s.t. ei ∈ E , for

i ∈ {1, 2, . . . , n}. The sequence of events of a thread tidi is

denoted by tidi:τ . The system upon execution of ei (which is

a sequence of internal operations on local objects followed by

a single operation on a shared object) transitions from a state

si−1 to the next state si (denoted by si−1
ei−→ si). Note that the

event ei must be enabled in state si−1 for the transition to take

place. Let s[τ ] represent the state reached after exploring the

execution sequence τ and prefix[τ ](e) represent the prefix

of τ up to (but not including) e. Two events e′, e ∈ Eτ (where

Eτ denotes the set of events in τ ) are related by a total order

<τ . For instance, e′<τe denotes that e′ occurs before e in τ .

An empty sequence is represented as 〈〉.
An event from thread thr at index idx in an execution τ

is a tuple 〈thr, act, obj, ord, idx〉, where act ∈ A represents

the action on a set of objects obj ⊆ O under the memory

ordering constraint ord ∈ M. Observe that obj can potentially

be a non-singleton for rmw events and empty set for fences.

The projections thr(e), act(e), obj(e), ord(e), and idx(e)
return the respective tuple elements of e. With the exception

of obj(e) when e is an rmw event, all other projections are

straightforward to interpret. When an rmw event e is a read of

o1 and write of o2, then obj(e) returns o1 when e is analysed

as a read event, and o2 otherwise.

Memory ordering constraints. Under the C11 model each

event has an associated memory order. A memory order spec-

ifies the ordering possibilities of an (atomic or non-atomic)

event around an atomic event; thereby restricting the freedom

available to compilers and underlying systems to reorder

events. Let M = {na, rlx, rel, acq, acq-rel, sc}
represent the set of memory orders – relaxed (rlx), release

(rel), acquire/consume (acq), acquire-release (acq-rel)

and sequentially-consistent (sc) – provided for atomic events

and na representing a non-atomic access. Let �⊆M×M be

a relation on memory orders such that m1�m2 denotes that

m2 is stricter than m1; thus, m2 may restrict certain program

outcomes that are otherwise possible with m1. The memory

orders in M are related as na � rlx � {acq,rel} �
acq-rel � sc. Accordingly, � represents strict or stricter

ordering. For instance, rel � rel. We overload the operators

�, � as unary operators that return the set of memory orders
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that are weaker. For instance, �rel = {na, rlx, rel }. The

set of events pertaining to a memory order m is represented

as E(m). We also use E(�m) (or E(�m)) to represent the set of

E(m1) ∪ ... ∪ E(mN ) where mi�m (or mi�m), eg E(�rlx) =

E(na) ∪ E(rlx). Similarly, E(�m) (or E(�m)) can be interpreted

as union of sets of events with ordering annotations stricter (or

at least as strict) than (as) m.

A note on event categories. For ease of explanation, we

categorise the set of events in E into: (i) set of writes (EW)

that issue a write (i.e., write events and rmws), (ii) the set of

modifiers (EM) that update the shared memory for an issued

write (ie, shadow-write events), (iii) the set of reads (ER) (i.e.,
read events and rmws), and (iv) the set of program fences

(EF). Note that the shared-read events and shared-write events

(including corresponding shadow-writes) can either be atomic

or non-atomic in nature. We use EW
τ , ER

τ , EM
τ and EF

τ for the

respective categories of the events in an execution τ . Similarly,

we write EW(m)
τ , ER(m)

τ , EM(m)
τ and EF(m)

τ to denote the set

of events with associated memory order m of the respective

action categories in the execution sequence τ .

Traces and equivalence relation: Given τ , if reversing the

order of execution of two co-enabled events e′, e ∈ Eτ does

not change the outcome of the program then e′, e are called

independent events [15]. All sequences that differ only in the

order of independent events are called equivalent sequences.

We use τ1 ∼ τ2 to denote that τ1 and τ2 are equivalent. A

set of equivalent sequences form an equivalence class known

as a program trace that represents a specific behavior of the

program. A sound analysis must explore at least one sequence

from each trace of P .

III. MULTI COPY ATOMIC MODEL

Under the MCA model if a write to object o from tidi

is observed by a different thread, tidj , then the write is

coherently observable to all other threads that access the object

o. It is, however, permitted for a thread to observe its own

writes prior to making them visible to other threads in the

system. The term observed refers to tidj becoming aware of

a write from tidi, either directly when a read of tidj reads-

from the write or indirectly through a chain of intra- and

inter-thread dependencies [8]. We formally revisit the term

observed and coherent access in §V after formally defining

event interactions.

We adapt the MCA model formalized by Colvin and

Smith [14] as a basis for our technique that relies on shadow-
writes. The model allows for a sequence of events tidi:τ of

thread tidi to be reordered to a sequence tidi:τ
′. Consider

two events, e′, e ∈ Etidi:τ . Assume that e originally occurred

after e′. The reordering such that e now occurs before e′ is

represented by e′ R⇐= e. The reordering e′ R⇐= e can take place

only if e′, e have distinct local and shared variables. To ensure

a semantic preserving reordering, the following must hold:

spr1 Etidi:τ ′ = Etidi:τ (the event sets are the same)

spr2 each read event of tidi:τ must have the same set of

writes to read from in tidi:τ as well as tidi:τ
′

(we call it thread semantics)

tidi:e.τ ′ e−→ tidi:τ e′
R⇐= e

tidi:e′.e.τ ′ e−→ tidi:e′.τ
(reordering)

p1
e−→ p′

1

p1‖p2
e−→ p′

1‖p2

p2
e−→ p′

2

p1‖p2
e−→ p1‖p′

2

(parcom)

τ ′ r:=x−−−→ τ shr σ(x) = v

(lcl σ·τ ′)
[x=v]−−−→ (lcl σ[r:=v]·τ)

(r-shared)

τ ′ x:=r−−−→ τ σ(r) = v

(lcl σ·τ ′)
x:=v−−−→ (lcl σ·τ)

(w-issue)

p
tidi::x:=v−−−−−−→ p′

(shr σ· p)
∗−→ (shr σ[x:=v]· p′)

(w-update)

Fig. 1: Semantics of MCA model [14]

spr3 tidi:τ ′ preserves the order of updates and accesses of

each shared variable with respect to tidi:τ
(we call it coherence-per-location).

The following language represents an MCA model [14].

processing element, p := (tidN lcl σ · tidN :τ) | p1 ‖ p2
system, s := (shr σ · p)

The key element of the language is a processing element. It is

identified by a unique identifier (tidN ), the local state (lcl σ),

and a sequence of events to be executed (tidN :τ ). The entity

system is identified with a shared state (shr σ) and a parallel

composition of processing elements. Thus, a system term is of

the form (shr σ ·(tid0 lcl σ ·tid0:τ0) ‖ (tid1 lcl σ ·tid1:τ1) ‖ . . .).

The operational semantics for a program P under MCA is

listed in Fig. 1.

MCA semantics. The (reordering) rule states that if an

event e can reorder before another event e′ (where e′<tidi:τe)

then the processing element tidi can execute e before e′ and

suitably update the remaining sequence to be executed later.

The rule (parcom) shows the parallel composition of the

processing elements. It states that one step of the system is

taken by one processing element at a time. The (r-shared)

rule captures the read of a shared variable from the shared

storage into a local variable. The (w-issue) rule shows that

a processing element initiates a write operation of value v to

a shared variable x, and moves to the next event. A write

initiated by tidi is updated to the shared storage by the system

as shown in rule (w-update). Notably, this rule captures the

effects of shadow-write events.

IV. C11 MEMORY MODEL SEMANTICS

In C11 memory model the behavior of an execution, τ ,

is usually defined through an acyclic and irreflexive happens-

before relation (→[c]::hb
τ ⊆ Eτ×Eτ ). The C11 model defines its

happens-before relation →[c]::hb = →[c]::sb
τ ∪→[c]::ithb

τ , where:

(i) →[c]::sb
τ (Sequenced-before) is the intra-thread order on

events, and (ii) →[c]::ithb
τ (Inter-thread hb) is the relation

between events of different threads (say tidi, tidj) formed by

a transitive closure of →[c]::sb
τ ∪ synchronizations (that occur
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ew1

ew2

(mo1)

[c]::mo[c]::hb

er1 er2

ew1 ew2

(mo2)

[c]::hb

[c]::mo

[c]::rf [c]::rf
er1 ew1

ew2

(mo3)

[c]::hb

[c]::mo[c]::rf

ew1 er1

ew2

(mo4)

[c]::hb

[c]::rf[c]::mo

esc1

esc2

(to)

[c]::mo/

[c]::hb
[c]::to

ewx

erx

(co)

[c]::hb[c]::rf

Fig. 2: C11 coherence rules

when a read of tidi with an ordering �acq reads from a write

event in a release sequence of some event e in tidj) [1].

In addition, all write events of an object in a sequence

τ must be related by a total order called modification-order
(→[c]::mo

τ ⊆ EW
τ ×EW

τ ). The →[c]::mo
τ relation is fundamentally

involved in specifying a set of sufficient conditions which

ensure that a C11 program execution is coherent. For ease

of understanding, we present diagrammatic representations of

these conditions in Fig. 2 (the rules are formally presented in

the extended version [16]). The conditions are as follows:

• (mo1): hb-ordered writes are also mo-ordered;

• (mo2): a read er2 hb-ordered after another read er1, either

reads-from the same source as er1’s or from a source mo-

ordered after the source of er1;

• (mo3): a read hb-ordered before a write reads-from a write

mo-ordered before that write;

• (mo4): a read hb-ordered after a write either reads-from

the write or from a write mo-ordered after that write;

• (to): all sc ordered events must form a total-order

(→[c]::to
τ ) wrt →[c]::mo

τ and →[c]::hb
τ ; and,

• (co): a read must take its data from a write event occur-

ring in the trace. The (co) rule ensures that a read does

not take a value from thin-air i.e. a value not generated

in the program execution.

Notice that shadow-write events are a particular constuct of

our technique; naturally, definitions of C11 relations do not

contain them. In §V, we shall present one of our main contri-

butions of redefining the above-mentioned relations (keeping

shadow-write events in consideration) which admit only the

MCA behaviors of a C11 program.

Reordering restrictions. For any two events e′, e ∈
Eτ s.t. thr(e) = thr(e′) ∧ e′<τe, we have the following: if

e ∈ EW(�rel), then it restricts events such as e′ from reorder-

ing after it. We denote this downward reordering restriction

on e′ by e as � (e, e
′). Similarly, if e′ ∈ ER(�acq), it restricts a

later event e from reordering before it. We denote this upward

reordering restriction on e by e′ as � (e
′, e). Furthermore, C11

also disallows reordering of events e′, e that share program

dependence (such as data, address and control), which we

represent by dep(e′, e).

V. MCA RESTRICTION FOR C11

We (i) re-formulate C11 ’s →[c]::hb
τ relation and (ii) define

trace coherence rules to accurately recognize C11 program

traces admissible under MCA . A principal contribution of

our technique is the introduction of a new event type called

shadow-writes that simulate reordering through interleaving

as explained below. Shadow-writes break a write operation

into two (not necessarily consecutive) events: (i) the write

event from the program that is visible only to events of

the same thread and (ii) the shadow-write event that updates

the shared memory with the write event’s value at a later

timestamp; thus, completing the write operation and making

it visible to all threads. In order to issue shadow-write events,

we introduce the notion of shadow-threads. We maintain a

separate shadow-thread per program thread per object. For an

event e ∈ EW, we use shw(e) to represent the shadow-write

event associated with e. Similarly, prw(e′) denotes the write

event corresponding to the shadow-write e′ ∈ EM. The set of

shadow-threads associated with thr(e) is denoted by sth(e).
Note that shadow-writes of the threads in sth(e) can interleave

with the events of thr(e) thereby enabling reordering through

interleaving.

(i)

sh
ar

ed
m

em
o
ry

τ = (a) <τ (a′) <τ (b=1) <τ (c) <τ (d=2) <τ (c′)
x

0

x

0

x

1

x

1

x

1

x

1

x

2

T1 T2

(a) x := 1 (b) l1 := x

(c) x := 2

(d) l2 := x

sthx(T1) sthx(T2)

(a′) shw(a) (c′) shw(c)

(ii) τ = (a) <τ (a′) <τ (b=1) <τ (c) <τ (d=2) <τ (c′)
rf rf

po po

(W-RWR)

Consider the example (W-RWR). Events labeled (a′) and (c′)
are the shadow-writes corresponding to the writes labeled

(a) and (c), respectively. The shadow-threads sthx(T1) and

sthx(T2) execute the shadow-write events. W-RWR(i) shows

an execution sequence τ where updates to the memory by

shadow-writes are illustrated.

As our second central contribution to realize the MCA re-

striction of C11 model, we define the relation →rf
τ based

on shadow-writes. Let LastW[τ ](o) represent the write corre-

sponding to the latest shadow-write of o in τ .

Definition 1. (→rf
τ relation) For er ∈ ER

τ , its →rf
τ relation is

now defined as:

(general case) LastW[τ ′](o)→rf
τ er; unless

(special case) ∃ew ∈ EW
τ , which is the latest write from

thr(er) of object obj(er) s.t. shw(LastW[τ ′](o))<τew<τer
then ew→rf

τ er.

Intuitively, a read event takes the data from the last write

whose shadow-write updated the shared memory, unless there

is a later write from the same thread.

Consider the execution sequence τ in example W-RWR(ii).

The event (b) reads from (a) (since LastW[a.a′](x) = (a));

however, for event (d) LastW[a.a′.b.c](x) = (a) but write (c)

from same thread occurs after (a), thus, (d) reads from (c).

HB relation. Based on →rf
τ and C11 ’s Release Sequence

[1] we tweak →[c]::hb
τ , and its constituent relations [1] to
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e′→po
τ e if e′→[c]::sb

τ e ∨ act(e′) = act(e) = shadow-write

∧ thr(e′) = thr(e) ∧ idx(e′) < idx(e)

e′→sw
τ e if e′ ∈ EW(�rel)

τ , e ∈ ER(�acq)
τ ∧ e′→rf

τ e

e′→dob
τ e if e′ ∈ EW(�rel)

τ , e ∈ ER(�acq)
τ ∧ ∃e′′ ∈ ERSτ (e′)

s.t. e′′→rf
τ e

e′→ithb
τ e if e′→sw

τ e ∨ e′→dob
τ e ∨ ∃e′′ s.t. (e′→sw

τ e′′ ∧
e′′→po

τ e) ∨ (e′→po
τ e′′ ∧ e′′→ithb

τ e) ∨ (e′→ithb
τ e′′

∧ e′′→ithb
τ e)

e′→hb
τ e if e′→po

τ e ∨ e′→ithb
τ e

e′�τe if e′→hb
τ e ∧ ¬ (e′→sw

τ e ∨ e′→dob
τ e)

Fig. 3: →hb
τ relation

shw(ew1) < shw(ew2)

ew1 ew2

(shmo)

mo

ew e

er

shw(ew) < shw(e)
(shmo1)

rf

er1 er2

ew1 ew2

shw(ew1) shw(ew2)<

(shmo2)

rfrf

hb ew1 er

ew2

shw(ew1) < shw(ew2)

(shmo3)

hb

rf

Fig. 4: →rf
τ based →mo

τ in MoCA

define a happens-before relation (→hb
τ ) for MoCA. Note that

→hb
τ ⊆ <τ . For the purpose of recognizing C11 behaviors

relevant to MCA , MoCA defines the following relations (refer

Fig. 3): program-order (→po
τ )2, dependency-ordered-before

(→dob
τ ), synchronizes-with (→sw

τ ) and inter-thread-happens-

before (→ithb
τ ). The relation non-racing-hb (�τ ) relates hb-

ordered events that do not race to access an object either

due to →po
τ ordering or due to synchronization between their

respective threads through events related by →sw
τ or →dob

τ . The

relations →sw
τ and →dob

τ are also formed between EF, similar

to C11 ’s relations. For brevity we skip the details in the paper,

please refer the extended version [16] for additional details.

Coherence rules. Read value coherence for MoCA is a deriva-

tive of →rf
τ and is interpreted as:

• (shco) a read event must take its value either from (i)

a valid write event whose shadow-write does not occur

after the read, or (ii) from a valid write event of the same

thread that does not occur after it (refer Fig. 5 for formal

definition).

The (shco) rule disallows the discussed behavior in IRIW (§I).

We introduce a set of MoCA-mo rules based on which MoCA
determines the order of occurrence of shadow-writes of an

object and help determine →mo
τ ; they are formally defined in

Fig. 5 and represented diagrammatically in Fig. 4.

• (shmo): writes ew1, ew2 are mo-ordered if shw(ew1)
occurs before shw(ew2).

• (shmo1): if a write ew is �τ or →rf
τ ordered with event

e from another thread, then either shw(ew) must occur

before shw(e) (if e ∈ EW) or before e (if e �∈ EW);

• (shmo2): if a read er1 is hb-ordered before another read

er2, then the shadow-write of er1’s source must occur

before the shadow-write of er2’s source;

2Some events of a thread are not ordered by →[c]::sb
τ (eg operands of ==).

We assume a total order (→po
τ ) on the events of a thread, similar to [10],

[17].

• (shmo3): shadow-write of a read’s source must occur after

shadow-writes of all writes hb-ordered before the read.

• (shrmo): To ensures atomicity, each rmw event must

read-from the immediately ordered before event in the

modification order.

The above rules assist MoCA in constructing coherent C11
sequences. Notably MoCA also maintains a total order relation

→to
τ on sc events. It does so in the following way: (i) all sc

events in →po
τ are also in →to

τ relation, and (ii) sc ordered

events from different threads are in →to
τ by their occurrence

order, except write events that are in →to
τ by the occurrence

order of their shadow-write. Based on →to
τ coherence on sc

events is maintained by rule (shto): all sc ordered events

must form a total-order (→to
τ ) wrt →mo

τ and →hb
τ .

A maximal sequence, τ , and the associated →hb
τ are coherent

and represent a MoCA trace if (shmo), (shmo1), (shmo2),

(shmo3), (shrmo), (shco) and (shto) are satisfied by τ .

Finally, through Theorem 1, we demonstrate that traces gen-

erated by MoCA are indeed coherent under C11 .

Theorem 1. ∀τ, →hb
τ ⊆ →[c]::hb

τ

Proof: The coherence rules of MoCA satisfy the coher-

ence rules of C11 [1]. Thus, MoCA traces are coherent C11
traces. See the extended version [16] for formal proof.

VI. C11 -MCA AWARE SOURCE-DPOR

MoCA explores all relevant program behaviors for detecting

safety assertion violations as well as non-atomic (na) data

races. Central to MoCA is source-DPOR (Algorithm 1 of [4]),

which is a near-optimal improvement over DPOR [5]. It is

noteworthy that source-DPOR algorithm used in MoCA is as
is, i.e., without any modification. This was feasible because of

several reasons:

• our design of a valid happens-before relation (Theorem 1)

for restricting C11 under MCA is directly pluggable in

source-DPOR,

• our proposal of shadow-threads and shadow-writes makes

it possible to avoid reordering instructions from a thread

during exploration and rely on interleaving model of

computation alone, and

• the parallel composition rule (parcom)(§III) satisfies

the requirement of source-DPOR that only one thread

executes at a time.

Source-DPOR is a non-chronological depth-first search of

a directed acyclic graph of execution states. Much like the

quintessential DPOR [5], source-DPOR maintains set of events

that should be explored at each state and a set of sleeping
threads. However, unlike the classical DPOR, source-DPOR
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(shco) ∀er ∈ ER

τ , if τ ′ = prefix[τ ](er) then, ∃ew ∈ EW

τ ′ s.t. (thr(ew) = thr(er) ∨ shw(ew) ∈ EM

τ ′), er takes its data from

ew ∧ er �hb
τ ew

(shmo) ∀e′, e ∈ EM

τ s.t. obj(e′) = obj(e), e′<τe ⇒ prw(e′)→mo
τ prw(e)

(shmo1) ∀ ew ∈ EW

τ , er ∈ ER

τ , e ∈ Eτ , s.t. thr(e) 
= thr(ew), ew�τe ∨ ew→rf
τ er�τe ⇒ shw(ew)<τe (if e 
∈ EW

τ ) ∧
shw(ew)<τshw(e) (if e ∈ EW

τ )

(shmo2) ∀er1, er2 ∈ ER

τ s.t. er1→hb
τ er2 if ∃ew1, ew2 ∈ EW

τ s.t. ew1→rf
τ er1∧ew2→rf

τ er2 where ew1 
= ew2 then shw(ew1)<τshw(ew2)
(shmo3) ∀ew1, ew2 ∈ EW

τ , er ∈ ER

τ s.t. ew1→hb
τ er ∧ ew2→rf

τ er where ew1 
= ew2, shw(ew1)<τshw(ew2)
(shrmo) ∀e ∈ Eτ , act(e) = rmw, ∃ew→rf

τ e s.t. ew→mo
τ e ∧ �e′w s.t. ew→mo

τ e′w→mo
τ e

Fig. 5: Coherence rules for traces in MoCA

computes much compact set of possible starts from a state

than persistent sets [15]. We invite the reader to refer to [4]

for source-DPOR details.

Shadow-threads and shadow-writes: The shadow-threads

introduced in our technique are handled in the following way

so that source-DPOR algorithm can be used as is: whenever

an event e ∈ EW of thread tidi is executed from a state

s[τ ], a corresponding shadow-write event shw(e) is generated

and added to the shadow-thread tidsi corresponding to obj(e).
Similar to program threads, execution of an enabled shadow-

write shw(e) of a shadow-thread tidsi from a state s[τ ] enables

the next event of tidsi at state s[τ.shw(e)].

The shadow-writes, as remarked before, enable reordering

through interleaving. Note, however, that a shadow-write is

created only after a corresponding program write has occurred.

As a result shadow-writes simulate the reordering of program

writes with later events from the same thread. An important

question that arises is: how MoCA covers the case of a

program write reordering with an earlier program event
from the same thread? MoCA implicitly assumes that the writes

are at the earliest location in the program possible (where

earlier refers to a lower event index). To meet this requirement

MoCA performs a static early-write transformation from input

program P to ̂P .

Early-write: The transformation rules for each thread

sequence tidi:τ of the original program, P , are:

if there exists a corresponding thread sequence tidi:τ
′ of the

transformed program then,

ewt1 Etidi:τ = Etidi:τ ′ (i.e., same event sets but their order of

occurrence may vary);

ewt2 if ∃e1, e2 s.t. e1<tidi:τe2 ∧ e2<tidi:τ ′e1, then e2 ∈
EW ∧ (�e3 ∈ Etidi:τ s.t. e1 ≤tidi:τ e3<tidi:τe2 ∧
(dep(e3, e2) ∨ � (e3, e2))) (i.e., e2 is a write and can

reorder above e1 only if there is no intervening e3
that either introduces program dependency with e2 or

creates upward reordering restriction).

We show through Theorem 2 that early-write transformation

does not alter the semantics of P . As a result, instead of P ,

the transformed program ̂P is provided to the source-DPOR

algorithm as input.

Theorem 2. Early-write (P to ̂P ) is semantics preserving.
Proof: We show that rules ewt1 and ewt2 are compliant

with semantic preserving reordering rules spr1, spr2 and spr3

defined for MCA model in §III; Refer the extended version

[16] for details.

Via Theorem 1, we established that any trace of P that

MoCA examines is a valid C11 trace. However, to show that

MoCA explores precisely the MCA traces of C11 program, we

present Theorem 3.

Theorem 3. MoCA traces are equivalent to C11 traces valid
over MCA

Proof: Case ←: ∀e′, e s.t. ¬(e′ R⇐= e) ⇒ dep(e′, e) ∨
� (e

′, e) ⇒ if e′<tidi:τe then e′<tidi:τ ′e. Further, if e′∈EW
τ , e

can observe its effect. (by construction of →rf
τ and shadow-

threads). Thus, reordering restricted by C11 over MCA is

also restricted by MoCA. inf (i). As early-write is semantic

preserving, thus reordering allowed under MoCA is allowed

under MCA . inf (ii). ew ∈ EW along with shw(ew) perform

(w-issue) and (w-update) while preserving semantics

(using (shco)). er ∈ ER perform (r-shared). Source-DPOR

algorithm ensures (parcom). inf (iii). Thus, from inf (i), (ii),

(iii), traces of MoCA have equivalent C11 MCA traces.

Case →: If e′<tidi:τe and e′<tidi:τ ′e then dep(e′, e) ∨
� (e

′, e) ⇒ ¬(e′ R⇐= e) and reordering of e′ and e is not

supported by C11 . Hence, reordering restricted by MoCA is

also restricted by C11 under MCA . inf (iv). ∀e′ R⇐= e ⇒
obj(e′) �= obj(e) and thus effect of e′, e can interleave under

MoCA. Hence, reordering allowed under MCA are allowed by

MoCA. inf (v). (r-shared) is performed by ER, (w-issue)

and (w-update) by EW and EM, (parcom) is ensured by

source-DPOR algorithm. inf (vi). Thus, from inf (iv), (v), (vi)

C11 MCA traces are valid MoCA traces.

Design complexity: The complexity of source-DPOR algo-

rithm is O(T 2|E|2S), where T is the number of threads

and S is the number of sequences explored. The relation

→hb
τ has the same computational complexity as in the orig-

inal source-DPOR work, i.e. O(|E|2). Addition of shadow-

threads, however, makes the worst-case complexity of MoCA
O(|O|2T 2|E|2S).

VII. EXPERIMENTAL VALIDATION

Implementation details. We present a prototype implementa-

tion to experimentally validate MoCA technique. The imple-

mentation is built on rInspect [7]. MoCA-tool takes a C11
program as input. The input program P is statically trans-

formed to ̂P by the early-write transformation (§VI). Further,
̂P is instrumented using LLVM to recognize newly enabled

events dynamically during execution of a sequence. The events

are communicated to MoCA scheduler, which orchestrates the

order of execution of events using source-DPOR algorithm.

MoCA-tool re-runs ̂P for every maximal sequence explored.

After analyzing the input program P , MoCA reports assert
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TABLE I: Comparative Results on litmus tests

Test
MoCA CDSChecker GenMC HMC

M N Time M N Time M N Time M N Time
WRC+addrs(7) 7 0 0.03s 7 1 0.01s 7 1 0.02s 7 1 0.03s
WR-ctrl(4) 7 0 0.03s 4 2 0.01s 4 2 0.02s 4 2 0.02s
Z6+poxxs(4) 18 0 0.12s 14 4 0.01s 4 4 0.03s 4 4 0.03s
IRIW+addrs(15) 15 0 0.07s 15 1 0.01s 15 1 0.02s 15 1 0.02s
WW+RR(15) 96 0 0.53s 15 66 0.02s 15 66 0.02s 15 66 0.02s

M: #MCA sequences, N: #non-MCA sequences

TABLE II: Comparative Results on benchmarks

Test
MoCA CDSChecker GenMC HMC

#Seq Time #Seq Time #Seq Time #Seq Time
mutex 5 0.02s 2-NVs 0.01s NV 0.03s NV 0.02s
peterson 13 0.15s 666-NVs 2.73s NV 0.02s NV 0.02s
RW-lock 246 0.52s 193-NVs 0.38s NV 0.02s NV 0.04s
spinlock 506 16.98s TO - NV 0.08s NV 0.15s
fibonacci-2 667 5.57s TO - NV 0.04s NV 0.03s
fibonacci-3 10628 2m14s TO - NV 0.06s NV 0.07s
fibonacci-4 92421 56m21s TO - NV 0.13s NV 0.31s
counter-5 3599 39.78s 25-NVs 0.31s NV 0.06s NV 0.03s
counter-10 55927 12m53s 100-NVs 9.21s NV 0.05s NV 0.07s
counter-15 TO - 225-NVs 50.31s NV 0.11s NV 0.16s
flipper-5 2489 20.19s 201-NVs 3.26s NV 0.03s NV 0.04s
flipper-10 96737 6m12s TO - NV 0.04s NV 0.02s
flipper-15 TO - TO - NV 0.03s NV 0.03s
prod-cons-10 9373 1m23s TO - NV 0.04s NV 0.04s
prod-cons-15 38593 6m46s TO - NV 0.02s NV 0.02s
prod-cons-20 109838 20m28s TO - NV 0.02s NV 0.02s
x-NVs: ‘x’ number of non-MCA violations (if #violations reported)
NV: non-MCA violation (if analysis halts at first violation, #NVs not known)
TO: timeout (60m)
Additionally, MoCA detected na races in tests mutex and counter.

violations if any. According to C11 standard if the order of

occurrence of a pair of na ordered events can potentially be

reversed in a trace, then the behavior of the trace is undefined.

Such a behavior can defy the coherence specification (shco),

(co) and produce invalid values. Thus, MoCA also reports data
races on non-atomic memory accesses.

Experiment details. We performed tests to validate correct-

ness wrt MCA using diy7 family of litmus tests [18] (sample

listed in Table III). To test C11 coherence, we synthesized 56

litmus tests relevant to the C11 coherence rules (eg. row 1-4,

Table IV) and borrowed multi-threaded benchmarks from the

SV-Comp benchmark suite [19] (eg. row 5-8, Table IV). We

remodeled them for C11 with the use of atomic data types and

C11 memory orders. We recorded time (column ‘Time’) and

the number of maximal sequences explored (column ‘#Seq’),

which includes at least one execution corresponding to each

trace and (possibly) few redundant executions owing to the

non-optimal nature of the underlying source-DPOR algorithm.

Further, if a test contains na races (column ‘race?’) then

we report the number of maximal sequences that contain na
race(s) (column ‘#Rseq’).

To demonstrate the effectiveness of MoCA, we used litmus

tests and benchmarks from the SV-Comp suite that produce

a strict subset of C11 behaviors when restricted to MCA .

We compared the outcome of such tests on MoCA-tool with

state-of-the-art stateless model checking tools for C11 (and

its variants) namely CDSChecker [10] and GenMC [20]; and

hardware model checker (HMC) [13].

Results’ analysis. Table I shows the results of comparative

study on litmus tests that would show additional behaviors

TABLE III: MCA tests

Test #Seq Time

CoRR(3) 3 0.02s
CO-RSDWI(3) 6 0.02s
R+fn+fn(2) 5 0.02s
RSDWI(6) 22 0.11s
WRR+2W(12) 29 0.12s
Luc17(12) 12 0.07s
Luc10(3) MV 0.02s
S-popl(3) MV 0.01s

MV: MCA violation(s) detected

TABLE IV: C11 tests

Test #Seq Time race? #Rseq

simple-sw(3) 3 0.006s Y 2
simple-ithb(4) 4 0.034s Y 2
RS-blk(10) MV 0.07s Y 8
CSE-no-blk(8) 12 0.158s N -
no-fence-sync(5) MV 0.054s Y 5
fib-no-assert 26 0.14 N -
fmax-cas 31 0.21s N -
flipper 1628 9.29s N -

MV: MCA violation(s) detected
race?: Does the test have a race on na events?
#Rseq: number of na races detected by MoCA

on non-MCA model. The table contains small tests with

15 or less traces. The number of valid C11 traces under

MCA have been shown in bracket accompanying the name

of the test. For instance, ‘WRC+addrs(7)’, shows that the test

‘WRC+addrs’ has 7 valid MCA C11 traces . These numbers

have been manually computed. We have reported the number

of MCA sequences (column ‘M’) and the number of non-

MCA sequences (column ‘N’) for each of the techniques

MoCA, CDSChecker, GenMC and HMC, along with the time

taken by the techniques for performing their analysis.

For larger benchmarks we have used assert statements to

catch non-MCA sequences and used ‘NV’ to indicate assert

violation(s) in non-MCA sequences. The results are shown in

Table II. An ‘NV’ result implies that the benchmark may have

a legitimate violaton under C11 model but not under MCA .

CDSChecker reports all sequences explored including ones

with assert violation, thus, for CDSChecker the collected

number of non-MCA violations have been reported as ‘x-

NVs’, indicating ‘x’ number of assert violations in non-MCA
sequences. GenMC and HMC halt at the first detection of

violation, thus, no such information is available for reporting.

Hence, for GenMC and HMC we have simply written ‘NV’.

As a consequence, the time reported for GenMC and HMC is

the time to encounter the first assert violation and is therefore

much lower than the time reported by CDSChecker and MoCA.

Due to such difference in tool design, the reported time

of analysis is incomparable and has been reported only for

reference. The value ‘TO’ indicates timeout set for 60 minutes.

Finally, we re-emphasize that the techniques CDSChecker

and GenMC are designed for C11 (or its variants) and HMC

is for a collection of hardware models subsuming MCA .

Naturally, these techniques explore a larger set of traces, and

the non-MCA violation(s) reported by them are indeed true

violations under their respective models. However, some of the

violations reported by them may never manifest on the under-

lying architecture. We can observe from Table I and Table II

that benchmarks can produce hundreds of assert violations that

may not be reproducible on an actual architecture. Thus, a

precise technique for MCA such as MoCA can be useful.

VIII. RELATED WORK

Stateless model checking: Stateless model checking (SMC)

with DPOR [5] has been used for (SC) [4][21][22] and weak

memory models (WMM) TSO, PSO [6][7], Power [23] and

C11 [10]. The techniques [17][20][24] have proposed SMC

for variants of C11 and [13] for a superset of architectural
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memory models (including MCA model).
Symoblic Analyses: Symbolic and predictive trace analysis

is investigated in [25][26][27] and has been applied to the

verification of MPI programs [28]. Static analysis using thread

modular analysis or abstract interpretation have been proposed

under SC [29][30] and WMM [31][32]. While these techniques

are sound, they may suffer from false alarms. Recent works

have also investigated bounded model checking under loop

and view bounds to analyze WMM [3][33].

IX. CONCLUDING REMARKS

We present MoCA, a dynamic verifier to analyze C11 pro-

gram traces valid under MCA model for assertion violations

na data races. The technique is shown to be sound and precise.

The empirical results demonstrate the utility of MoCA over

existing techniques for C11 .
Future Work: In future we would like to explore the exten-

sions of our work to reactive systems and include richer pro-

gram constructs such as locks and memory barriers. Another

area of possible investigation would be to combine current

work with symbolic trace verification so as to avoid re-runs

of the input program.
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