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Order might be critical for correctness
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Order might be critical for correctness
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C/C++11 (C11) memory orders

Relaxed ordering

Release-acquire 
ordering

Sequentially-
consistent ordering

Write

Read

memory_order_relaxed

memory_order_release

memory_order_acquire

memory_order_acq_rel

memory_order_seq_cst

No ordering restriction

Restore sequential consistency

x.store(1, memory_order_relaxed)
x.load(memory_order_relaxed)

x.store(1, memory_order_seq_cst)
x.load(memory_order_ seq_cst)
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memory order specification to ensure performance and correctness should not be left to humans.
Oberhauser et al., ASPLOS’21
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• Order might be critical for correctness
• Fences restore order

fence fence

Ordering with fences
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Fence synthesis for automated repair

assert condition

------- fence -------

assert condition

Fensying
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• Tools for ordering restrictions.
• Support degrees of ordering guarantees 

C11 fences

Release-acquire 
ordering

Sequentially-consistent 
ordering

Fence

memory_order_release

memory_order_acquire

memory_order_acq_rel

memory_order_seq_cst

atomic_thread_fence(memory_order_acquire)

atomic_thread_fence(memory_order_seq_sct)
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• Tools for ordering restrictions.
• Support degrees of ordering guarantees 

C11 fences

Release-acquire 
ordering

Sequentially-consistent 
ordering

Fence

memory_order_release

memory_order_acquire

memory_order_acq_rel

memory_order_seq_cst

Synthesis challenges:

How many and where?
Which memory order?
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• Imprecise (Existing techniques assume an axiomatic definition of ordering)

• Strong implicit ordering ⇒ miss C11 bugs + insufficient barriers

• Weak implicit ordering ⇒ unnecessarily strong barriers

• Reduced portability

Existing fence synthesis techniques
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Existing fence synthesis techniques

Fence synthesis for C11
• Precisely detect C11 traces
• Synthesize portable C11 fences

• Imprecise (Existing techniques assume an axiomatic definition of ordering)

• Strong implicit ordering ⇒ miss C11 bugs + insufficient barriers

• Weak implicit ordering ⇒ unnecessarily strong barriers

• Reduced portability
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Optimal fence synthesis

• Smallest set of fences
• Weakest type of fences

Fensying: Optimal C11 fence synthesis

solution not unique
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Fensying technique
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get the set of buggy traces

mo mo

rf rf

hbhb

buggy trace generator (BTG): CDSChecker, open source SMC [Norris and Demsky, OOPSLA’13]

Step 1

BTG

hb happens-before
rf    reads-from
mo modification-order
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Fensying technique
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generate intermediate trace

mo mo

rf rf

sbsb

Step 2

fence

fence

fence

fence

fence

fence

hb happens-before
rf    reads-from
mo modification-order
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Fensying technique
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generate intermediate trace

mo mo

rf rf

sbsb

Step 2

fence

fence

fence

fence

fence

fence
maximum possible fence ordering

(additional ordering with fences)

hb happens-before
rf    reads-from
mo modification-order
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Fensying technique
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detect violations of coherence

mo mo

sbsb

Step 3

fence

fence

fence

fence

fence

fence

C11 coherence conditions:
hb is irreflexive
rf; hb is irreflexive
mo; hb is irreflexive
mo; rf; hb is irreflexive
mo; hb; rfinv is irreflexive
mo; rf; hb; rfinv is irreflexive
so is irreflexive
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Fensying technique
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detect violations of coherence

mo mo
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Step 3

fence

fence

fence

fence

fence

fence

[Lahav et al. PLDI 2017]    

C11 coherence conditions:
hb is irreflexive
rf; hb is irreflexive
mo; hb is irreflexive
mo; rf; hb is irreflexive
mo; hb; rfinv is irreflexive
mo; rf; hb; rfinv is irreflexive
so is irreflexive



Fence Synthesis under the C11 Memory Model  Sanjana Singh, IIT Delhi ATVA 2023

Fensying technique
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detect violations of coherence

mo mo
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Step 3

fence

fence

fence

fence

fence

fence

Total-order on sc events

reflexive so ⇒ to not feasible

C11 coherence conditions:
hb is irreflexive
rf; hb is irreflexive
mo; hb is irreflexive
mo; rf; hb is irreflexive
mo; hb; rfinv is irreflexive
mo; rf; hb; rfinv is irreflexive
so is irreflexive
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Fensying technique
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detect violations of coherence
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Step 3

fence

fence

fence

fence

fence

fence
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rf sbsb

fence

fence

fence

fence

fence

fence

hb

hb

hb hb

hb

Johnson’s algorithm 
for cycle detection 

[Johnson, D.B, SICOMP’1975] 

C11 coherence conditions:
hb is irreflexive
rf; hb is irreflexive
mo; hb is irreflexive
mo; rf; hb is irreflexive
mo; hb; rfinv is irreflexive
mo; rf; hb; rfinv is irreflexive
so is irreflexive
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Fensying technique

find the smallest set of fencesStep 4
min-model of a SAT query
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fence

fence
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fence
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rf sbsb

fence

fence

fence

fence

fence

fence

hb

hb

hb hb

hb
1 2 1
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Fensying technique

find the smallest set of fencesStep 4
min-model of a SAT query
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Fensying technique

find the smallest set of fencesStep 4
min-model of a SAT query

Optimal fence synthesis
• Smallest set of fences
• Weakest type of fences
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Fensying technique

find weakest orderStep 5 1
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Optimal fence synthesis
• Smallest set of fences
• Weakest type of fences
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Fensying technique

find weakest orderStep 5 1
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Optimal fence synthesis
• Smallest set of fences
• Weakest type of fences

Weakest order to preserve this
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Fensying technique

find weakest orderStep 5 1
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fixed program

------- fence -------
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Fensying technique

detect violations of coherenceStep 3

C11 coherence conditions:
hb is irreflexive
rf; hb is irreflexive
mo; hb is irreflexive
mo; rf; hb is irreflexive
mo; hb; rfinv is irreflexive
mo; rf; hb; rfinv is irreflexive
so is irreflexive

Rsc(y,0)

T1

Rsc(x,1)

T2

Wrlx(x,1) Wrlx(y,1)

I(x,0) I(y,0)

mo morf

rf

sbsb

fence

fence

fence

fence

fence

fence

not enough 

ordering

cannot stop 
buggy trace
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• Smallest set of fences
• Weakest type of fences

Fensying: Optimal C11 fence synthesis

NP-hard [Taheri et al., DISC’19]

31.6% 68.4%

Timeout

Benchmarks source: Singh et al., TASE’21, Abdulla at al., PLDI’19, Abdulla at al., OOPSLA’18, Norris & Demsky, OOPSLA’13 
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fastFenSying : near-Optimal C11 fence synthesis

Fensying

• Sound 
• Optimal
• Slow
• Doesn’t scale

fastFenSying

• Sound 
• near-Optimal
• Fast
• Scales

Sound:                stops every buggy trace that can be stopped.
Optimal:             synthesizes minimal and weakest fences.
Near-optimal:   provably optimal for one trace, and empirically optimal for all traces in 99.5% tests 



input program
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Fensying vs fastFenSying

Fensying

no 
buggy 
traces all buggy traces

BTG



input program
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fastFensyingFensying

no 
buggy 
traces

no 
buggy 
tracesall buggy traces

BTG
one buggy trace

BTG

Fensying vs fastFenSying
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Theorem: fastFensying is sound.

Theorem: Fensying is optimal.

Theorem: Fensying is sound.

Sound:     stops a buggy trace that can be stopped.
Optimal:  synthesizes precise fences.

Fensying vs fastFenSying
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Experiments

tested on 1389 litmus tests of buggy C11 programs

Fensying and fastFensying

stop buggy traces
Fensying performs 
optimally

Litmus tests source: Abdulla at al., OOPSLA’18
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* tests that timeout for both Fensying and fastFensying

Experiments

Benchmarks source: Singh et al., TASE’21, Abdulla at al., PLDI’19, Abdulla at al., OOPSLA’18, Norris & Demsky, OOPSLA’13 

Timeout
fastFensyingFensying
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* tests that timeout for both Fensying and fastFensying

Experiments

Benchmarks source: Singh et al., TASE’21, Abdulla at al., PLDI’19, Abdulla at al., OOPSLA’18, Norris & Demsky, OOPSLA’13 

Timeout
fastFensyingFensying

speedup

67x
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* tests that timeout for both Fensying and fastFensying

Experiments

Benchmarks source: Singh et al., TASE’21, Abdulla at al., PLDI’19, Abdulla at al., OOPSLA’18, Norris & Demsky, OOPSLA’13 

Timeout
fastFensyingFensying

speedup

67xspeedup
~41% tests

>100x
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* tests that timeout for both Fensying and fastFensying

Experiments

Benchmarks source: Singh et al., TASE’21, Abdulla at al., PLDI’19, Abdulla at al., OOPSLA’18, Norris & Demsky, OOPSLA’13 

Timeout
fastFensyingFensying

speedup

67xspeedup
~41% tests

>100x

fastFensying analysis

≤2 traces for ∼85% of tests
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* tests that timeout for both Fensying and fastFensying

Experiments

Benchmarks source: Singh et al., TASE’21, Abdulla at al., PLDI’19, Abdulla at al., OOPSLA’18, Norris & Demsky, OOPSLA’13 

Timeout
fastFensyingFensying

speedup

67xspeedup
~41% tests

>100x

non-optimal (fastFensying)

0.005% tests

extra fences (fastFensying) 

1.57 average



Fence Synthesis under the C11 Memory Model Sanjana Singh, IIT Delhi ATVA 2023

Benefit of portability
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(fast)Fensying tool

open source
https://github.com/singhsanjana/fensying

https://github.com/singhsanjana/fensying
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Future Directions

Improve BTG time
Improve fence 
synthesis time
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Future Directions

Improve BTG time
Improve fence 
synthesis time

Total Time (fastFensying + model checker)

fastFensying model checker
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Future Directions

Intermediate trace 
generation

Cycle detection Min-model finding

Improve BTG time
Improve fence 
synthesis time
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Future Directions

Intermediate trace 
generation

Cycle detection Min-model finding

Improve BTG time
Improve fence 
synthesis time

O(|ε|+E).(C+1)

E: #pairs of events in ε, in O(|ε|2) 
ε: set of events of buggy trace

C: #cycles of buggy trace, in O(|ε|!)
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Thank You

Questions?

Looking for post-doc positions



"We still do not have an acceptable way to make our informal (since C++14) prohibition of out-of-thin-air results precise. 
The primary practical effect of that is that formal verification of C++ programs using relaxed atomics remains unfeasible. 

The paper [Lahav et al. PLDI’17] suggests a solution similar to
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3710.html . 
We continue to ignore the problem here, but try to stay out of the way of such a solution."

source: https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0668r5.html
(Bullet 4. under 'Revising the C++ memory model')

Back-workingback-intro

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3710.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0668r5.html


sc-order (so)

detect violations of coherenceStep 3
(strong-fensying)

Rsc(y,1)

T1

Rsc(x,1)

T2

Wrlx(x,1) Wrlx(y,1)

I(x,0) I(y,0)

so

sbsb

fence

fence

fence

fence

fence

fence

assuming seq-cst ordered fences

introduce sc-order (so)
cycle in so ⇒ to cannot be formed

so
so so

inability to create a total-order

back



Alternate BTG

Improve BTG time
Improve fence 
synthesis time

back



C11 fences do not restore sequential consistency

Fence synthesis vs event strengthening

top end



Interpreting barriers from memory orders is not precise

Fence synthesis vs event strengthening

top end



Interpreting barriers from memory orders is not precise

barriers on ARM barriers on ARMbarriers on power barriers on power

Fence synthesis vs event strengthening

top end



Interpreting barriers from memory orders is not precise

barriers on ARM barriers on ARMbarriers on power barriers on power

Fence synthesis vs event strengthening

top end



Soundness Assuming soundness of SAT solver and cycle detection

Weak-fensying: since all cycles are detected it is sound

Strong-fensying: violation of each of the following is caught as a cycle in so

back
[Vafeiadis et al., POPL 2015]



Optimality
Optimal solution is not in SAT Query

⇒ Cycle not detected

But, fences at all locations
⇒ all cycles formed

back

Assuming soundness of SAT solver and cycle detection



Verifying optimality

BTG
Optimality 

verifier

fixed program
(post fence synthesis)

weaken 1 fence

remove 1 fence

no bugs found
fix not optimal

bug(s) found
optimal fix

back



Reason (≤2 traces for ∼85% of tests)

assert fail

1

a

2

b

c

assert fail

2

a

1

b

c

affect assert condition
does not affect assert condition

buggy trace 1 buggy trace 2

back
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