
Fence Synthesis under the C11
Memory Model

Sanjana Singh1, Divyanjali Sharma1, Ishita Jaju2 and Subodh Sharma1

1 Indian Institute of Technology Delhi, India

2 Uppsala University, Sweden

ATVA 2023

Originally presented
in ATVA 2022

Order might be critical for correctness

Fence Synthesis under the C11 Memory Model Sanjana Singh, IIT Delhi ATVA 2023

R(y,1)

T1

R(x,1)

T2

W(x,1) W(y,1)

I(x,0) I(y,0)

Fence Synthesis under the C11 Memory Model Sanjana Singh, IIT Delhi ATVA 2023

R(y,1)

T1

R(x,1)

T2

W(x,1) W(y,1)

I(x,0) I(y,0)

Order might be critical for correctness

Fence Synthesis under the C11 Memory Model Sanjana Singh, IIT Delhi ATVA 2023

C/C++11 (C11) memory orders

Relaxed ordering

Release-acquire
ordering

Sequentially-
consistent ordering

Write

Read

memory_order_relaxed

memory_order_release

memory_order_acquire

memory_order_acq_rel

memory_order_seq_cst

No ordering restriction

Restore sequential consistency

x.store(1, memory_order_relaxed)
x.load(memory_order_relaxed)

x.store(1, memory_order_seq_cst)
x.load(memory_order_ seq_cst)

Fence Synthesis under the C11 Memory Model Sanjana Singh, IIT Delhi ATVA 2023

R(y,1, sc)

T1

R(x,1, sc)

T2

W(x,1, rlx) W(y,1,rlx)

I(x,0) I(y,0)

Order might be critical for correctness

R(y,1,sc)

T1

R(x,1,sc)

T2

W(x,1,sc) W(y,1,sc)

I(x,0) I(y,0)

R(y,1, sc)

T1

R(x,1, sc)

T2

W(x,1, sc) W(y,1,rlx)

I(x,0) I(y,0)

Fence Synthesis under the C11 Memory Model Sanjana Singh, IIT Delhi ATVA 2023

R(y,1, sc)

T1

R(x,1, sc)

T2

W(x,1, rlx) W(y,1,rlx)

I(x,0) I(y,0)

Order might be critical for correctness

R(y,1,sc)

T1

R(x,1,sc)

T2

W(x,1,sc) W(y,1,sc)

I(x,0) I(y,0)

R(y,1, sc)

T1

R(x,1, sc)

T2

W(x,1, sc) W(y,1,rlx)

I(x,0) I(y,0)

memory order specification to ensure performance and correctness should not be left to humans.
Oberhauser et al., ASPLOS’21

Fence Synthesis under the C11 Memory Model Sanjana Singh, IIT Delhi ATVA 2023

R(y,1)

T1

R(x,1)

T2

W(x,1) W(y,1)

I(x,0) I(y,0)

• Order might be critical for correctness
• Fences restore order

fence fence

Ordering with fences

Fence Synthesis under the C11 Memory Model Sanjana Singh, IIT Delhi ATVA 2023

Fence synthesis for automated repair

assert condition

------- fence -------

assert condition

Fensying

Fence Synthesis under the C11 Memory Model Sanjana Singh, IIT Delhi ATVA 2023

• Tools for ordering restrictions.
• Support degrees of ordering guarantees

C11 fences

Release-acquire
ordering

Sequentially-consistent
ordering

Fence

memory_order_release

memory_order_acquire

memory_order_acq_rel

memory_order_seq_cst

atomic_thread_fence(memory_order_acquire)

atomic_thread_fence(memory_order_seq_sct)

Fence Synthesis under the C11 Memory Model Sanjana Singh, IIT Delhi ATVA 2023

• Tools for ordering restrictions.
• Support degrees of ordering guarantees

C11 fences

Release-acquire
ordering

Sequentially-consistent
ordering

Fence

memory_order_release

memory_order_acquire

memory_order_acq_rel

memory_order_seq_cst

Synthesis challenges:

How many and where?
Which memory order?

Fence Synthesis under the C11 Memory Model Sanjana Singh, IIT Delhi ATVA 2023

• Imprecise (Existing techniques assume an axiomatic definition of ordering)

• Strong implicit ordering ⇒ miss C11 bugs + insufficient barriers

• Weak implicit ordering ⇒ unnecessarily strong barriers

• Reduced portability

Existing fence synthesis techniques

Fence Synthesis under the C11 Memory Model Sanjana Singh, IIT Delhi ATVA 2023

Existing fence synthesis techniques

Fence synthesis for C11
• Precisely detect C11 traces
• Synthesize portable C11 fences

• Imprecise (Existing techniques assume an axiomatic definition of ordering)

• Strong implicit ordering ⇒ miss C11 bugs + insufficient barriers

• Weak implicit ordering ⇒ unnecessarily strong barriers

• Reduced portability

Fence Synthesis under the C11 Memory Model Sanjana Singh, IIT Delhi ATVA 2023

Optimal fence synthesis

• Smallest set of fences
• Weakest type of fences

Fensying: Optimal C11 fence synthesis

solution not unique

Fence Synthesis under the C11 Memory Model Sanjana Singh, IIT Delhi ATVA 2023

Fensying technique

Rsc(y,1)

T1

Rsc(x,1)

T2

Wrlx(x,1) Wrlx(y,1)

I(x,0) I(y,0)

get the set of buggy traces

mo mo

rf rf

hbhb

buggy trace generator (BTG): CDSChecker, open source SMC [Norris and Demsky, OOPSLA’13]

Step 1

BTG

hb happens-before
rf reads-from
mo modification-order

Fence Synthesis under the C11 Memory Model Sanjana Singh, IIT Delhi ATVA 2023

Fensying technique

Rsc(y,1)

T1

Rsc(x,1)

T2

Wrlx(x,1) Wrlx(y,1)

I(x,0) I(y,0)

generate intermediate trace

mo mo

rf rf

sbsb

Step 2

fence

fence

fence

fence

fence

fence

hb happens-before
rf reads-from
mo modification-order

Fence Synthesis under the C11 Memory Model Sanjana Singh, IIT Delhi ATVA 2023

Fensying technique

Rsc(y,1)

T1

Rsc(x,1)

T2

Wrlx(x,1) Wrlx(y,1)

I(x,0) I(y,0)

generate intermediate trace

mo mo

rf rf

sbsb

Step 2

fence

fence

fence

fence

fence

fence
maximum possible fence ordering

(additional ordering with fences)

hb happens-before
rf reads-from
mo modification-order

Fence Synthesis under the C11 Memory Model Sanjana Singh, IIT Delhi ATVA 2023

Fensying technique

Rsc(y,1)

T1

Rsc(x,1)

T2

Wrlx(x,1) Wrlx(y,1)

I(x,0) I(y,0)

detect violations of coherence

mo mo

sbsb

Step 3

fence

fence

fence

fence

fence

fence

C11 coherence conditions:
hb is irreflexive
rf; hb is irreflexive
mo; hb is irreflexive
mo; rf; hb is irreflexive
mo; hb; rfinv is irreflexive
mo; rf; hb; rfinv is irreflexive
so is irreflexive

Fence Synthesis under the C11 Memory Model Sanjana Singh, IIT Delhi ATVA 2023

Fensying technique

Rsc(y,1)

T1

Rsc(x,1)

T2

Wrlx(x,1) Wrlx(y,1)

I(x,0) I(y,0)

detect violations of coherence

mo mo

sbsb

Step 3

fence

fence

fence

fence

fence

fence

[Lahav et al. PLDI 2017]

C11 coherence conditions:
hb is irreflexive
rf; hb is irreflexive
mo; hb is irreflexive
mo; rf; hb is irreflexive
mo; hb; rfinv is irreflexive
mo; rf; hb; rfinv is irreflexive
so is irreflexive

Fence Synthesis under the C11 Memory Model Sanjana Singh, IIT Delhi ATVA 2023

Fensying technique

Rsc(y,1)

T1

Rsc(x,1)

T2

Wrlx(x,1) Wrlx(y,1)

I(x,0) I(y,0)

detect violations of coherence

mo mo

sbsb

Step 3

fence

fence

fence

fence

fence

fence

Total-order on sc events

reflexive so ⇒ to not feasible

C11 coherence conditions:
hb is irreflexive
rf; hb is irreflexive
mo; hb is irreflexive
mo; rf; hb is irreflexive
mo; hb; rfinv is irreflexive
mo; rf; hb; rfinv is irreflexive
so is irreflexive

Fence Synthesis under the C11 Memory Model Sanjana Singh, IIT Delhi ATVA 2023

Fensying technique

Rsc(y,1)

T1

Rsc(x,1)

T2

Wrlx(x,1) Wrlx(y,1)

I(x,0) I(y,0)

detect violations of coherence

sbsb

Step 3

fence

fence

fence

fence

fence

fence

Rsc(y,1)

T1

Rsc(x,1)

T2

Wrlx(x,1) Wrlx(y,1)

I(x,0) I(y,0)

rf sbsb

fence

fence

fence

fence

fence

fence

hb

hb

hb hb

hb

Johnson’s algorithm
for cycle detection

[Johnson, D.B, SICOMP’1975]

C11 coherence conditions:
hb is irreflexive
rf; hb is irreflexive
mo; hb is irreflexive
mo; rf; hb is irreflexive
mo; hb; rfinv is irreflexive
mo; rf; hb; rfinv is irreflexive
so is irreflexive

Fence Synthesis under the C11 Memory Model Sanjana Singh, IIT Delhi ATVA 2023

Fensying technique

find the smallest set of fencesStep 4
min-model of a SAT query

Rsc(y,1)

T1

Rsc(x,1)

T2

Wrlx(x,1) Wrlx(y,1)

I(x,0) I(y,0)

sbsb

fence

fence

fence

fence

fence

fence

Rsc(y,1)

T1

Rsc(x,1)

T2

Wrlx(x,1) Wrlx(y,1)

I(x,0) I(y,0)

rf sbsb

fence

fence

fence

fence

fence

fence

hb

hb

hb hb

hb
1 2 1

Fence Synthesis under the C11 Memory Model Sanjana Singh, IIT Delhi ATVA 2023

Fensying technique

find the smallest set of fencesStep 4
min-model of a SAT query

Fence Synthesis under the C11 Memory Model Sanjana Singh, IIT Delhi ATVA 2023

Fensying technique

find the smallest set of fencesStep 4
min-model of a SAT query

Optimal fence synthesis
• Smallest set of fences
• Weakest type of fences

Fence Synthesis under the C11 Memory Model Sanjana Singh, IIT Delhi ATVA 2023

Fensying technique

find weakest orderStep 5 1

Rsc(y,1)

T1

Rsc(x,1)

T2

Wrlx(x,1) Wrlx(y,1)

I(x,0) I(y,0)

rfsbfence

hb

hb
rel

Optimal fence synthesis
• Smallest set of fences
• Weakest type of fences

Fence Synthesis under the C11 Memory Model Sanjana Singh, IIT Delhi ATVA 2023

Fensying technique

find weakest orderStep 5 1

Rsc(y,1)

T1

Rsc(x,1)

T2

Wrlx(x,1) Wrlx(y,1)

I(x,0) I(y,0)

rfsbfence

hb

hb
rel

Optimal fence synthesis
• Smallest set of fences
• Weakest type of fences

Weakest order to preserve this

Fence Synthesis under the C11 Memory Model Sanjana Singh, IIT Delhi ATVA 2023

Fensying technique

find weakest orderStep 5 1

Rsc(y,1)

T1

Rsc(x,1)

T2

Wrlx(x,1) Wrlx(y,1)

I(x,0) I(y,0)

rfsbfence

hb

hb
rel

fixed program

------- fence -------

Fence Synthesis under the C11 Memory Model Sanjana Singh, IIT Delhi ATVA 2023

Fensying technique

detect violations of coherenceStep 3

C11 coherence conditions:
hb is irreflexive
rf; hb is irreflexive
mo; hb is irreflexive
mo; rf; hb is irreflexive
mo; hb; rfinv is irreflexive
mo; rf; hb; rfinv is irreflexive
so is irreflexive

Rsc(y,0)

T1

Rsc(x,1)

T2

Wrlx(x,1) Wrlx(y,1)

I(x,0) I(y,0)

mo morf

rf

sbsb

fence

fence

fence

fence

fence

fence

not enough

ordering

cannot stop
buggy trace

Fence Synthesis under the C11 Memory Model Sanjana Singh, IIT Delhi ATVA 2023

• Smallest set of fences
• Weakest type of fences

Fensying: Optimal C11 fence synthesis

NP-hard [Taheri et al., DISC’19]

31.6% 68.4%

Timeout

Benchmarks source: Singh et al., TASE’21, Abdulla at al., PLDI’19, Abdulla at al., OOPSLA’18, Norris & Demsky, OOPSLA’13

Fence Synthesis under the C11 Memory Model Sanjana Singh, IIT Delhi ATVA 2023

fastFenSying : near-Optimal C11 fence synthesis

Fensying

• Sound
• Optimal
• Slow
• Doesn’t scale

fastFenSying

• Sound
• near-Optimal
• Fast
• Scales

Sound: stops every buggy trace that can be stopped.
Optimal: synthesizes minimal and weakest fences.
Near-optimal: provably optimal for one trace, and empirically optimal for all traces in 99.5% tests

input program

Fence Synthesis under the C11 Memory Model Sanjana Singh, IIT Delhi ATVA 2023

Fensying vs fastFenSying

Fensying

no
buggy
traces all buggy traces

BTG

input program

Fence Synthesis under the C11 Memory Model Sanjana Singh, IIT Delhi ATVA 2023

fastFensyingFensying

no
buggy
traces

no
buggy
tracesall buggy traces

BTG
one buggy trace

BTG

Fensying vs fastFenSying

Fence Synthesis under the C11 Memory Model Sanjana Singh, IIT Delhi ATVA 2023

Theorem: fastFensying is sound.

Theorem: Fensying is optimal.

Theorem: Fensying is sound.

Sound: stops a buggy trace that can be stopped.
Optimal: synthesizes precise fences.

Fensying vs fastFenSying

Fence Synthesis under the C11 Memory Model Sanjana Singh, IIT Delhi ATVA 2023

Experiments

tested on 1389 litmus tests of buggy C11 programs

Fensying and fastFensying

stop buggy traces
Fensying performs
optimally

Litmus tests source: Abdulla at al., OOPSLA’18

Fence Synthesis under the C11 Memory Model Sanjana Singh, IIT Delhi ATVA 2023

* tests that timeout for both Fensying and fastFensying

Experiments

Benchmarks source: Singh et al., TASE’21, Abdulla at al., PLDI’19, Abdulla at al., OOPSLA’18, Norris & Demsky, OOPSLA’13

Timeout
fastFensyingFensying

Fence Synthesis under the C11 Memory Model Sanjana Singh, IIT Delhi ATVA 2023

* tests that timeout for both Fensying and fastFensying

Experiments

Benchmarks source: Singh et al., TASE’21, Abdulla at al., PLDI’19, Abdulla at al., OOPSLA’18, Norris & Demsky, OOPSLA’13

Timeout
fastFensyingFensying

speedup

67x

Fence Synthesis under the C11 Memory Model Sanjana Singh, IIT Delhi ATVA 2023

* tests that timeout for both Fensying and fastFensying

Experiments

Benchmarks source: Singh et al., TASE’21, Abdulla at al., PLDI’19, Abdulla at al., OOPSLA’18, Norris & Demsky, OOPSLA’13

Timeout
fastFensyingFensying

speedup

67xspeedup
~41% tests

>100x

Fence Synthesis under the C11 Memory Model Sanjana Singh, IIT Delhi ATVA 2023

* tests that timeout for both Fensying and fastFensying

Experiments

Benchmarks source: Singh et al., TASE’21, Abdulla at al., PLDI’19, Abdulla at al., OOPSLA’18, Norris & Demsky, OOPSLA’13

Timeout
fastFensyingFensying

speedup

67xspeedup
~41% tests

>100x

fastFensying analysis

≤2 traces for ∼85% of tests

Fence Synthesis under the C11 Memory Model Sanjana Singh, IIT Delhi ATVA 2023

* tests that timeout for both Fensying and fastFensying

Experiments

Benchmarks source: Singh et al., TASE’21, Abdulla at al., PLDI’19, Abdulla at al., OOPSLA’18, Norris & Demsky, OOPSLA’13

Timeout
fastFensyingFensying

speedup

67xspeedup
~41% tests

>100x

non-optimal (fastFensying)

0.005% tests

extra fences (fastFensying)

1.57 average

Fence Synthesis under the C11 Memory Model Sanjana Singh, IIT Delhi ATVA 2023

Benefit of portability

Rsc(y,1)

T1

Rsc(x,1)

T2

Wrlx(x,1) Wrlx(y,1)

I(x,0) I(y,0)

rfsbDMB ish

hb

hb

ARMv8Rsc(y,1)

T1

Rsc(x,1)

T2

Wrlx(x,1) Wrlx(y,1)

I(x,0) I(y,0)

rfsbfence

hb

hb
rel

Rsc(y,1)

T1

Rsc(x,1)

T2

Wrlx(x,1) Wrlx(y,1)

I(x,0) I(y,0)

rfsb

hb

hb

x86

Fence Synthesis under the C11 Memory Model Sanjana Singh, IIT Delhi ATVA 2023

(fast)Fensying tool

open source
https://github.com/singhsanjana/fensying

https://github.com/singhsanjana/fensying

Fence Synthesis under the C11 Memory Model Sanjana Singh, IIT Delhi ATVA 2023

Future Directions

Improve BTG time
Improve fence
synthesis time

Fence Synthesis under the C11 Memory Model Sanjana Singh, IIT Delhi ATVA 2023

Future Directions

Improve BTG time
Improve fence
synthesis time

Total Time (fastFensying + model checker)

fastFensying model checker

Fence Synthesis under the C11 Memory Model Sanjana Singh, IIT Delhi ATVA 2023

Future Directions

Intermediate trace
generation

Cycle detection Min-model finding

Improve BTG time
Improve fence
synthesis time

Fence Synthesis under the C11 Memory Model Sanjana Singh, IIT Delhi ATVA 2023

Future Directions

Intermediate trace
generation

Cycle detection Min-model finding

Improve BTG time
Improve fence
synthesis time

O(|ε|+E).(C+1)

E: #pairs of events in ε, in O(|ε|2)
ε: set of events of buggy trace

C: #cycles of buggy trace, in O(|ε|!)

Fence Synthesis under the C11 Memory Model Sanjana Singh, IIT Delhi ATVA 2023

Thank You

Questions?

Looking for post-doc positions

"We still do not have an acceptable way to make our informal (since C++14) prohibition of out-of-thin-air results precise.
The primary practical effect of that is that formal verification of C++ programs using relaxed atomics remains unfeasible.

The paper [Lahav et al. PLDI’17] suggests a solution similar to
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3710.html .
We continue to ignore the problem here, but try to stay out of the way of such a solution."

source: https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0668r5.html
(Bullet 4. under 'Revising the C++ memory model')

Back-workingback-intro

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3710.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0668r5.html

sc-order (so)

detect violations of coherenceStep 3
(strong-fensying)

Rsc(y,1)

T1

Rsc(x,1)

T2

Wrlx(x,1) Wrlx(y,1)

I(x,0) I(y,0)

so

sbsb

fence

fence

fence

fence

fence

fence

assuming seq-cst ordered fences

introduce sc-order (so)
cycle in so ⇒ to cannot be formed

so
so so

inability to create a total-order

back

Alternate BTG

Improve BTG time
Improve fence
synthesis time

back

C11 fences do not restore sequential consistency

Fence synthesis vs event strengthening

top end

Interpreting barriers from memory orders is not precise

Fence synthesis vs event strengthening

top end

Interpreting barriers from memory orders is not precise

barriers on ARM barriers on ARMbarriers on power barriers on power

Fence synthesis vs event strengthening

top end

Interpreting barriers from memory orders is not precise

barriers on ARM barriers on ARMbarriers on power barriers on power

Fence synthesis vs event strengthening

top end

Soundness Assuming soundness of SAT solver and cycle detection

Weak-fensying: since all cycles are detected it is sound

Strong-fensying: violation of each of the following is caught as a cycle in so

back
[Vafeiadis et al., POPL 2015]

Optimality
Optimal solution is not in SAT Query

⇒ Cycle not detected

But, fences at all locations
⇒ all cycles formed

back

Assuming soundness of SAT solver and cycle detection

Verifying optimality

BTG
Optimality

verifier

fixed program
(post fence synthesis)

weaken 1 fence

remove 1 fence

no bugs found
fix not optimal

bug(s) found
optimal fix

back

Reason (≤2 traces for ∼85% of tests)

assert fail

1

a

2

b

c

assert fail

2

a

1

b

c

affect assert condition
does not affect assert condition

buggy trace 1 buggy trace 2

back

	Slide 1: Fence Synthesis under the C11 Memory Model
	Slide 2: Order might be critical for correctness
	Slide 3: Order might be critical for correctness
	Slide 4: C/C++11 (C11) memory orders
	Slide 5: Order might be critical for correctness
	Slide 6: Order might be critical for correctness
	Slide 7: Ordering with fences
	Slide 8: Fence synthesis for automated repair
	Slide 9: C11 fences
	Slide 10: C11 fences
	Slide 11: Existing fence synthesis techniques
	Slide 12: Existing fence synthesis techniques
	Slide 13: Fensying: Optimal C11 fence synthesis
	Slide 14: Fensying technique
	Slide 15: Fensying technique
	Slide 16: Fensying technique
	Slide 17: Fensying technique
	Slide 18: Fensying technique
	Slide 19: Fensying technique
	Slide 20: Fensying technique
	Slide 21: Fensying technique
	Slide 22: Fensying technique
	Slide 23: Fensying technique
	Slide 24: Fensying technique
	Slide 25: Fensying technique
	Slide 26: Fensying technique
	Slide 27: Fensying technique
	Slide 28: Fensying: Optimal C11 fence synthesis
	Slide 29: fastFenSying : near-Optimal C11 fence synthesis
	Slide 30: Fensying vs fastFenSying
	Slide 31
	Slide 32: Fensying vs fastFenSying
	Slide 33: Experiments
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39: Benefit of portability
	Slide 40: (fast)Fensying tool
	Slide 41: Future Directions
	Slide 42: Future Directions
	Slide 43: Future Directions
	Slide 44: Future Directions
	Slide 45
	Slide 46
	Slide 47: sc-order (so)
	Slide 48: Alternate BTG
	Slide 49: Fence synthesis vs event strengthening
	Slide 50: Fence synthesis vs event strengthening
	Slide 51: Fence synthesis vs event strengthening
	Slide 52: Fence synthesis vs event strengthening
	Slide 53: Soundness
	Slide 54: Optimality
	Slide 55: Verifying optimality
	Slide 56: Reason (≤2 traces for ∼85% of tests)

