Extending Process Algebra with an undefined action http://www.cse.iitd.ac.in/~sak/

S. Arun-Kumar

Department of Computer Science and Engineering
I. I. T. Delhi, Hauz Khas, New Delhi 110016.
(כ) S. Arun-Kumar
July 8, 2022

Outline

- Motivation
- Process Model
- Basic Extended Process Algera
- Prebisimilarity
- Logical Characterisation: PHML
- Conclusion

Divergence, Livelock and Deadlock

$\bullet \approx[8]$ and weaker equivalences [4] are insensitive to " τ-cycles".

- " τ-cycles" $(T \Leftarrow \tau . T)$ are identified with divergence [11] and has the same solution as $X \Leftarrow X$.
- " τ-cycles" could also be due to "livelock" i.e. infinite "internal chatter". $P \Leftarrow a . P, Q \Leftarrow \bar{a} . Q, R=(P \mid Q) \backslash a \sim \tau . R$
- In SCCS [7] the solution of $X \Leftarrow X$ is identified with deadlock.

Theoretical Computer Sclence 25 (1983) 267-310 North-Holland	
CALCULI FOR SYNCHRONY AND ASYNCHRONY*	
Robin MILNER Deparment of Computer Science. Edinburgh Universiry. Edinburgh EH9 3JZ, United Kingdom	
Communicated by M. Niva! Received February 1982	

\square
\square , \rightarrow $\rightarrow \quad$ July 8, 2022 Go BaCK Full Screen Close \square 3 of 27 \square Quit

Divergence (Ω). The least solution of $X \Leftarrow X$ (modulo \sim) should be a totally "undefined" process.
Livelock. The least solution (modulo \sim) of $T \Leftarrow \tau . T$ should be a process that can only perform " τ-cycles".
Deadlock (0). A deadlocked process performs no computation unlike a livelocked process which consumes computational cycles and energy.
Hence any strong behavioural relation on processes should ensure that

- divergence, deadlock and livelock are distinguished from each other.
- Ω is the least defined process (modulo \sim),
- Deadlock (0) and livelock $(T \Leftarrow \tau . T)$ are both well-defined processes and mutually incomparable.

- $\mathbb{Q}[L]=\langle S, L, \longrightarrow\rangle$
- $s \xrightarrow{\ell}{ }_{-}=\{t \in S \mid s \xrightarrow{\ell} t\}$ is the set of ℓ-successors of s.
- $L(s)=\{\ell \in L \mid \exists t[s \xrightarrow{\ell} t]\}$ is the set of labels from s.
- $\operatorname{Succ}(s)=\bigcup_{\ell \in L} s \xrightarrow{\ell}{ }_{-}=\{t \mid \exists \ell \in L[s \xrightarrow{\ell} t]\}$ is the set of successors of s
- Targets $(\longrightarrow)=\{t \in S \mid \exists s \in S[t \in \operatorname{Succ}(s)]\}$.
- $\operatorname{Der}(s)=\{s\} \cup \bigcup_{t \in \operatorname{Succ}(s)} \operatorname{Der}(t)$ is the set of derivatives of s.

A sub-LTS of $\mathbb{L}[L]$ at a state $s_{0} \in S$ is the rooted $\operatorname{LTS}\left\langle\operatorname{Der}\left(s_{0}\right), L, \longrightarrow, s_{0}\right\rangle$. By convention $s \xrightarrow{\epsilon} s$ and for any $x=a y \in L^{+}, s \xrightarrow{x} s^{\prime}$ if $s \xrightarrow{a} s^{\prime \prime} \xrightarrow{y} s^{\prime}$ for some $s^{\prime \prime} \in S$.

Natural Bisimilarity

Definition 0.1: Natural bisimulation

A symmetric binary relation $\mathcal{R} \subseteq S \times T$ between (sub-)LTSs $\mathbb{Q}[L]=\langle S, L, \longrightarrow\rangle$ and $\mathbb{M}[L]=\langle T, L, \longrightarrow\rangle$ such that $s \mathcal{R} t$ implies for all labels $\ell \in L, s \xrightarrow{\ell} s^{\prime} \Rightarrow \exists t^{\prime} \in T\left[t \xrightarrow{\ell} t^{\prime} \wedge s^{\prime} \mathcal{R} t^{\prime}\right]$. Notation: $\left.\mathcal{R} \vdash s \sim t\right)$.

Fact 0.1

Unions, relational converses and (relational) compositions of natural bisimulations are also natural bisimulations. Natural bisimilarity (\sim) is the largest natural bisimulation and is an equivalence relation.

Actions and Traces

Definition 0.2: Actions

$A_{\perp}=A \cup\{\perp\}$ where A is a countable set of (uninterpreted but) welldefined actions and $\perp \notin A$ is a special undefined action with $\perp<a$ for each $a \in A$.

- Ω can perform only \perp.
- Traces are words from $A^{*} \perp^{*}$.
- $A^{*} \perp^{?}:=A^{*} \perp^{*} /(x \perp \perp=x \perp)$ the set of normal forms of traces.

Definition 0.3: Ordering

$\leq \subseteq A^{*} \stackrel{?}{?} \times A^{*}$? be the smallest relation such that for all $x, y \in A^{*}, x \leq x$ and $x \perp \leq x y \perp \leq x y . u<v$ if $u \leq v \not \leq u$ for all $u, v \in A^{*} \perp$?

Definition 0.4: Process

- A (partial) process is a sub-LTS $\left\langle\operatorname{Der}\left(s_{0}\right), A_{\perp}, \longrightarrow, s_{0}\right\rangle$ satisfying the irrecoverability constraint

$$
\begin{equation*}
\forall s \in \operatorname{Der}\left(s_{0}\right)\left[s \xrightarrow{\perp} s^{\prime} \Rightarrow A_{\perp}\left(s^{\prime}\right)=\{\perp\}\right] \tag{1}
\end{equation*}
$$

- The process is total if $s \xrightarrow{\nrightarrow} s^{\prime}$ for all $s, s^{\prime} \in \operatorname{Der}\left(s_{0}\right)$.
- If $s_{0} \xrightarrow{u} t$ for $t \in \operatorname{Der}\left(s_{0}\right)$ and $u \in A^{*}$? , then $s_{0} \xrightarrow{u} t$ is a behaviour of the process.

Fact 0.2: Closed-under-transitions

If $\left\langle S, A_{\perp}, \longrightarrow, s_{0}\right\rangle$ is a process then so is $\left\langle\operatorname{Der}(s), A_{\perp}, \longrightarrow, s\right\rangle$ for any $s \in S$.

Definition 0.5: Basic Extended Process Algebra (BXPA)

$\mathbf{P}\left[A_{\perp}\right]=\left\langle\mathbb{P}\left[A_{\perp}\right], \Omega, \mathbf{0},\{a .-\mid a \in A\}, \sum\right\rangle$ where

- $\Omega \stackrel{d f}{=}\left\langle\left\{s_{0}\right\}, A_{\perp},\left\{s_{0} \xrightarrow{\perp} s_{0}\right\}, s_{0}\right\rangle$ the totally undefined process,
$\bullet 0 \stackrel{d f}{=}\left\langle\left\{s_{0}\right\}, A_{\perp}, \emptyset, s_{0}\right\rangle$ is the "terminated" or "deadlocked" process.
- $a . P \stackrel{d f}{=}\left\langle S \cup\left\{s_{0}^{\prime}\right\}, A_{\perp}, \longrightarrow \cup\left\{s_{0}^{\prime} \xrightarrow{a} s_{0}\right\}, s_{0}^{\prime}\right\rangle, \quad$ for any $P=$ $\left\langle S, A_{\perp}, \longrightarrow, s_{0}\right\rangle, a \in A$, and $s_{0}^{\prime} \notin S$,
- $\sum_{i \in I} P_{i} \stackrel{\text { df }}{=}\left\langle S, A_{\perp}, \longrightarrow s_{0}\right\rangle$ where $P_{i}=\left\langle S^{i}, A_{\perp}, \longrightarrow i, s_{0}^{i}\right\rangle, i \in I$ and
$-s_{0} \notin \bigcup_{i \in I} S^{i}$ and $S=\operatorname{Der}\left(s_{0}\right)=\left\{s_{0}\right\} \cup \biguplus_{i \in I} \operatorname{Targets}\left(\longrightarrow_{i}\right)$, $-s_{0} \xrightarrow{a} t$ if for some $P_{i}, i \in I, s_{0}^{i} \xrightarrow{a}_{i} t \in S^{i}$,
$-s \xrightarrow{a} t$ if $s \xrightarrow{a}_{i} t$ for some $i \in I, s, t \in \operatorname{Der}\left(s_{0}\right)$.

Example: Summation 1

Example: Summation 2

BXPA: Basic Identities

Proposition 0.1

$\mathbb{P}\left[A_{\perp}\right]$ is an idempotent abelian monoid under + with $\mathbf{0}$ as identity. Further 1. $P \xrightarrow{a} P^{\prime}, a \in A$ implies $P \sim a . P^{\prime}+P$.
2. $P \xrightarrow{\perp} P^{\prime}$ implies $P^{\prime} \sim \Omega$ and hence $P \sim \Omega+P$.
3. (Canonical form modulo \sim). $\quad P \sim[\Omega+] \sum_{a \in A, P \xrightarrow{a} P_{a}} a \cdot P_{a}$ where " $[\Omega+]$ " indicates that Ω occurs only if $P \xrightarrow{\perp}$.

Composition

Strictness condition (see irrecoverability)

$$
\begin{equation*}
\left(P \xrightarrow{\perp_{-}} \vee Q \xrightarrow{\perp_{-}}\right) \Longrightarrow((P \otimes Q \xrightarrow{\perp} \Omega) \wedge(Q \otimes P \xrightarrow{\perp} \Omega)) \tag{2}
\end{equation*}
$$

guarantees that $\mathbb{P}\left[A_{\perp}\right]$ is closed under \otimes. Hence expansion laws under the various composition operators (e.g. $\|\|, \mid\|,, \times$) continue to hold.

Lifted Strong Bisimulation (LSB)

Definition 0.6: lifted strong bisimulations (LSB)

A binary relation \mathcal{R} on processes is a lifted strong bisimulation (LSB) if for all states s, t, sRt implies for all $a, b \in A_{\perp, \epsilon}$,

$$
\begin{align*}
& s \xrightarrow{a} s^{\prime} \Rightarrow \exists b, t^{\prime}\left[a \leq b \wedge t \xrightarrow{b} t^{\prime} \wedge s^{\prime} \mathcal{R} t^{\prime}\right] \tag{3}\\
& t \xrightarrow{b} t^{\prime} \Rightarrow \exists a, s^{\prime}\left[a \leq b \wedge s \xrightarrow{a} s^{\prime} \wedge s^{\prime} \mathcal{R} t^{\prime}\right] \tag{4}
\end{align*}
$$

- $s \sqsubseteq t$ (equivalently $t \sqsupseteq s$) if there exists a LSB \mathcal{R} such that $s \mathcal{R} t$.
- $s \sqsubseteq t$ if $s \sqsubseteq t$ and $s \sqsupseteq t$.
- $s \sqsubset t$ if $s \sqsubseteq t$ and $s \square t$.

Examples

In addition, if τ is in A and $\mathbf{T} \Leftarrow \tau$. \mathbf{T} denotes livelock, then we have $\perp<\tau$,
$\perp<\epsilon$ and hence $\Omega \sqsubset \mathbf{0} \nsubseteq \Omega, \Omega \sqsubset \mathbf{T} \nsubseteq \Omega$ and $\mathbf{0} \nsubseteq \mathbf{T} \nsubseteq \mathbf{0}$

Precongruence

LSB is an instance of the more general (ρ, σ)-bisimulation [1] with $\rho=\sigma=\leq$. By theorem 4.1 part 1 in [1], \sqsubseteq is a preorder.
Theorem 0.1: Precongruence.
The operators of $\mathrm{P}\left[A_{\perp}\right]$ are monotonic under \sqsubseteq and the relation \sqsubseteq is a precongruence on $\mathbf{P}\left[A_{\perp}\right]$.

Logical Characterisation

Definition 0.7

- \mathcal{L} a logical language and
- $\models^{X} \subseteq \mathbb{P} \times \mathcal{L}$ a satisfaction relation
- $\mathcal{L}_{X}(P)=\left\{\phi \in \mathcal{L} \mid P \models^{X} \phi\right\}$
- $\left(\mathcal{L}, \models^{X}\right)$ characterises a behavioural preorder \preceq over \mathbb{P}

$$
\begin{equation*}
P \preceq Q \Leftrightarrow \mathcal{L}_{X}(P) \subseteq \mathcal{L}_{X}(Q) \tag{5}
\end{equation*}
$$

- $P \subseteq_{X} Q$ iff $\mathcal{L}_{X}(P) \subseteq \mathcal{L}_{X}(Q)$.

PHML: A Modal logic

Definition 0.8

- Negation-free modal logic $\mathcal{L}_{(\leq, \leq)}{ }^{a}$

$$
\begin{equation*}
\phi::=\mathrm{tt}|\mathrm{ff}|\langle a\rangle \phi|[a] \phi| \bigwedge_{i \in I} \phi_{i} \mid \bigvee_{i \in I} \phi_{i} \tag{6}
\end{equation*}
$$

where $a \in A_{\perp, \epsilon}$ and I is an indexing set,

- $\bigwedge_{i \in \emptyset} \phi_{i} \equiv \mathrm{tt}$ and $\bigvee_{i \in \emptyset} \phi_{i} \equiv \mathrm{ff}$ by convention.
${ }^{a}$ For the present, we are assuming that every action in $A_{\perp, \epsilon}$ including the undefined action \perp is observable; this may be relaxed.

Semantics: Satisfaction

Definition 0.9: Satisfaction

$P \models^{S}$ tt for each $P \in \mathbb{P}_{I F}$
$P \models^{S}\langle a\rangle \phi$ iff $\exists b \in A_{\perp, \epsilon}: b \geq a, P^{\prime}:$ $\left[P \xrightarrow{b} P^{\prime} \wedge P^{\prime} \models^{S} \phi\right]$

$$
P \models^{S} \bigvee_{i \in I} \phi_{i} \text { iff } \exists i \in I\left[P \models^{S} \phi_{i}\right]
$$

$P \models^{S} \bigwedge_{i \in I} \phi_{i}$ iff $\forall i \in I\left[P \models^{S} \phi_{i}\right] \quad P \models^{S} \bigvee_{i \in I} \phi_{i}$ iff $\exists i \in I\left[P \models^{S} \phi_{i}\right]$

- P satisfies ϕ if $P \models^{S} \phi$ and
- $\mathcal{L}_{S}(P)=\left\{\phi \mid P \models^{S} \phi\right\}$
- $P \subseteq_{S} Q$ if $\mathcal{L}_{S}(P) \subseteq \mathcal{L}_{S}(Q)$ for processes P, Q,
$P \models^{S}$ ff for no $P \in \mathbb{P}_{I F}$
$P \models^{S}[a] \phi$ iff $\forall b \in A_{\perp, \epsilon}: b \leq a, P^{\prime}:$

$$
\left[P \xrightarrow[C]{b} P^{\prime} \Rightarrow P^{\prime} \models^{S} \phi\right]
$$

$\left[P \xrightarrow{b} P^{\prime} \Rightarrow P^{\prime} \models^{S} \phi\right]$

PHML characterisation of LSB

Theorem 0.2: Logical characterisation of \sqsubseteq

$P \sqsubseteq Q$ if and only if $\mathcal{L}_{S}(P) \subseteq \mathcal{L}_{S}(Q)$ for image-finite processes.
Theorem 0.2 then directly follows from definition 5 and theorem 3 of [3]. But

- it is difficult to explain modalities like $\langle\perp\rangle$ and $[\perp]$.
- Also modalities like $\langle\epsilon\rangle$ and $[\epsilon]$ do not add much value to the notion of observation.

Redefining old notions

- s may diverge $(s \uparrow)$ if $s \xrightarrow{\perp}$. Otherwise it converges $(s \downarrow)$. Analogously for processes.
- A binary relation \mathcal{R} on processes is a divergent strong bisimulation (DSB) if for all $s, t \in S, s \mathcal{R} t$ implies the following.

$$
\begin{array}{r}
\forall a \in A\left[s \xrightarrow{a} s^{\prime} \Rightarrow \exists t^{\prime}\left[t \xrightarrow{a} t^{\prime} \wedge s^{\prime} \mathcal{R} t^{\prime}\right]\right. \\
s \downarrow \Rightarrow\left(t \downarrow \wedge \forall a \in A\left[t \xrightarrow{a} t^{\prime} \Rightarrow \exists s^{\prime}\left[s \xrightarrow{a} s^{\prime} \wedge s^{\prime} \mathcal{R} t^{\prime}\right]\right]\right) \tag{8}
\end{array}
$$

- $s \sqsubseteq t$ (equivalently $t \gtrsim s$) if there exists a DSB \mathcal{R} such that $s \mathcal{R} t$ (we write $\mathcal{R} \vdash s \sqsubseteq t$ to denote this fact). $s \square t$ if $s \sqsubseteq t$ and $s \gtrsim t$.

Equivalence of LSB and DSB

- $\{\Omega\} \times \mathbb{P}$ is a DSB and hence $\Omega \sqsubseteq P$ for all $P \in \mathbb{P}$.
- $\left(\mathcal{R}\right.$ completion) $\mathcal{R}^{\perp}=\mathcal{R} \cup\left\{\left(s, t^{\prime}\right) \mid s \mathcal{R} t, s \uparrow, A(s)=\emptyset, t \downarrow, t^{\prime} \in \operatorname{Der}(t)\right\}$.

Lemma 0.1

1. If \mathcal{R} is a DSB then so is \mathcal{R}^{\perp}.
2. \mathcal{R} is a DSB implies \mathcal{R}^{\perp} is a LSB.
3. If \mathcal{R} is a LSB then so is \mathcal{R}^{\perp}.
4. Every LSB is also a DSB.

Theorem 0.3
$\sqsubseteq=\sqsubseteq$ and $\square=\square$.

Affirmation
$\mathcal{L}^{-\perp}$ is \mathcal{L} without $\langle\perp\rangle$ and $[\perp]$.

Definition 0.10: Affirmation

$\models^{A} \subseteq \mathbb{P} \times \mathcal{L}^{-\perp}$ is the smallest (infix) relation defined by induction on the structure of formulae for any process P and any action $a \in A_{\perp, \epsilon}$.
$P \models^{A}$ tt for each $P \in \mathbb{P}$
$P \models^{A}$ ff for no $P \in \mathbb{P}$
$P \models^{A}\langle a\rangle \phi$ iff
$\exists P^{\prime}\left[P \xrightarrow{a} P^{\prime} \wedge P^{\prime} \models^{A} \phi\right] \quad P \downarrow \wedge \forall P^{\prime}\left[P \xrightarrow{a} P^{\prime} \Rightarrow P^{\prime} \models^{A} \phi\right]$
$P \models^{A} \bigwedge_{i \in I} \phi_{i}$ iff $\forall i \in I\left[P \models^{A} \phi_{i}\right] \quad P \models^{A} \bigvee_{i \in I} \phi_{i}$ iff $\exists i \in I\left[P \models^{A} \phi_{i}\right]$
P affirms ϕ if $P \models^{A} \phi$ and $\mathcal{L}_{A}(P)=\left\{\phi \mid P \models^{A} \phi\right\} . P \subseteq_{A} Q$ if $\mathcal{L}_{A}(P) \subseteq \mathcal{L}_{A}(Q)$ for processes P and Q.

Home Page	$4 \boldsymbol{4}$

4
\downarrow
\rightarrow
Go BACK
Full Screen
Close

Characterisation

Definition 0.11

1. $P \subseteq{ }_{S}^{-\perp} Q$ iff $\mathcal{L}_{S}^{-\perp}(P) \subseteq \mathcal{L}_{S}^{-\perp}(Q)$.
2. $P \subseteq_{A}^{-\perp} Q$ iff $\mathcal{L}_{A}^{-\perp}(P) \subseteq \mathcal{L}_{A}^{-\perp}(Q)$.

Theorem 0.4
$\subseteq_{S}^{-\perp}=\sqsubseteq=\subseteq_{A}^{-\perp}$ i.e. $\mathcal{L}^{-\perp}$ characterises the preorder \sqsubseteq.

Conclusions.

- Recursion not explicitly considered (since the model allows processes with infinite behaviours).
- But easy to see that guarded recursion (made up only of well-defined actions) will yield unique fixpoints.
- If $\tau \in A$ then $X \Leftarrow X$ and $X \Leftarrow \tau$. X will yield different least solutions.

Future Work.

- \sqsubset could be used as a refinement relation that allows the progression from a totally undefined process to a well-defined process satisfying certain modal properties.
$\bullet \mathbb{P}\left[A_{\perp}\right]$ is closed under various composition operations. This allows the possibility of using more than one parallel composition operator in the specification of systems. specification ot systems.

References
[1] S. Arun-Kumar. On bisimilarities induced by relations on actions. In Proceedings 4th IEEE International Conference on Software Engineering and Formal Methods, Pune, India. IEEE Computer Society Press, 2006.
[2] S. Arun-Kumar and Divyanshu Bagga. Parameterised bisimulations: Some applications. In W. Kahl P. Hofner, P. Jipsen and M. E. Muller, editors, 14th International Conference on Relational and Algebraic Methods in Computer Science, volume 8428 of Lecture Notes in Computer Science. Springer-Verlag, 2014.
[3] Divyanshu Bagga and S. Arun-Kumar. Logical characterization of parameterised bisimulations. In International Colloquium on Theoretical Aspects of Computing, volume 10580, pages 99-112. Lecture Notes in Computer Science, 2017.
[4] M.C.B. Hennessy. Algebraic Theory of Processes. MIT Press, Boston, 1988
[5] Neelesh Korade and S. Arun-Kumar. A logical characterization of efficiency preorders. In International Colloquium on Theoretical Aspects of Computing, volume 3407, pages 99-112. Lecture Notes in Computer Science, 2004.
[6] R. Milner. A modal characterisation of observable machine-behaviour. In CAAP 1981, volume 112 of Lecture Notes in Computer Science, Berlin Heidelberg, 1981. Springer-Verlag.
[7] R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer Science, 25:267-310, 1983.
[8] R. Milner. Communication and Concurrency. Prentice-Hall International, 1989.
[9] D. S. Scott. Data types as lattices. SIAM Journal on Computing, 5(3):522-587, 1976.
[10] D. S. Scott. Domains for denotational semantics. In ICALP 1982, volume 140 of Lecture Notes in Computer Science, Berlin Heidelberg, 1982. Springer-Verlag.
[11] D.J. Walker. Bisimulation and divergence in CCS. In Third Annual Symposium on Logic in Computer Science, pages 186-192, Edinburgh, Scotland, July 1988. IEEE Computer Society Press.

Home Page
\rightarrow \square Go BACK Full Screen

Thank You!
Any Questions?

