
Home Page JJ J I II
July 8, 2022

Go Back Full Screen Close 1 of 27 Quit

Extending Process Algebra with an undefined action

http://www.cse.iitd.ac.in/ s̃ak/

S. Arun-Kumar

Department of Computer Science and Engineering

I. I. T. Delhi, Hauz Khas, New Delhi 110 016.

©S. Arun-Kumar

July 8, 2022

http://www.cse.iitd.ac.in/~sak/

Home Page JJ J I II
July 8, 2022

Go Back Full Screen Close 2 of 27 Quit

Outline

� Motivation

� Process Model

� Basic Extended Process Algera

� Prebisimilarity

� Logical Characterisation: PHML

� Conclusion

Home Page JJ J I II
July 8, 2022

Go Back Full Screen Close 3 of 27 Quit

Divergence, Livelock and Deadlock

�≈ [8] and weaker equivalences [4] are insensitive to “τ -cycles”.

� “τ -cycles” (T ⇐ τ.T) are identified with divergence [11] and has the same
solution as X ⇐ X .

� “τ -cycles” could also be due to “livelock” i.e. infinite “internal chatter”.
P ⇐ a.P , Q⇐ a.Q, R = (P |Q)\a ∼ τ.R

� In SCCS [7] the solution of X ⇐ X is identified with deadlock.

Home Page JJ J I II
July 8, 2022

Go Back Full Screen Close 4 of 27 Quit

Our view

Divergence (Ω). The least solution of X ⇐ X (modulo ∼) should be a
totally “undefined” process.

Livelock. The least solution (modulo ∼) of T ⇐ τ.T should be a process
that can only perform “τ -cycles”.

Deadlock (0). A deadlocked process performs no computation unlike a live-
locked process which consumes computational cycles and energy.

Hence any strong behavioural relation on processes should ensure that

� divergence, deadlock and livelock are distinguished from each other.

� Ω is the least defined process (modulo ∼),

� Deadlock (0) and livelock (T ⇐ τ.T) are both well-defined processes and
mutually incomparable.

Home Page JJ J I II
July 8, 2022

Go Back Full Screen Close 5 of 27 Quit

LTS

� L[L] = 〈S, L,−→〉

� s
`−→ = {t ∈ S | s `−→ t} is the set of `-successors of s.

� L(s) = {` ∈ L | ∃t[s `−→ t]} is the set of labels from s.

� Succ(s) =
⋃
`∈L s

`−→ = {t | ∃` ∈ L[s
`−→ t]} is the set of successors

of s

� Targets(−→) = {t ∈ S | ∃s ∈ S[t ∈ Succ(s)]}.
�Der(s) = {s} ∪

⋃
t∈Succ(s)Der(t) is the set of derivatives of s.

A sub-LTS of L[L] at a state s0 ∈ S is the rooted LTS 〈Der(s0), L,−→, s0〉.
By convention s

ε−→ s and for any x = ay ∈ L+, s
x−→ s′ if s

a−→ s′′
y−→ s′

for some s′′ ∈ S.

Home Page JJ J I II
July 8, 2022

Go Back Full Screen Close 6 of 27 Quit

Natural Bisimilarity

Definition 0.1: Natural bisimulation
A symmetric binary relation R ⊆ S × T between (sub-)LTSs
L[L] = 〈S, L,−→〉 and M[L] = 〈T, L,−→〉 such that sRt implies for all

labels ` ∈ L, s
`−→ s′⇒ ∃t′ ∈ T [t

`−→ t′∧s′Rt′]. Notation: R ` s ∼ t).

Fact 0.1
Unions, relational converses and (relational) compositions of natural bisimu-
lations are also natural bisimulations. Natural bisimilarity (∼) is the largest
natural bisimulation and is an equivalence relation.

Home Page JJ J I II
July 8, 2022

Go Back Full Screen Close 7 of 27 Quit

Actions and Traces

Definition 0.2: Actions
A⊥ = A ∪ {⊥} where A is a countable set of (uninterpreted but) well-
defined actions and ⊥ 6∈ A is a special undefined action with ⊥ < a for
each a ∈ A.

� Ω can perform only ⊥.

� Traces are words from A∗⊥∗.
�A∗⊥? := A∗⊥∗/(x⊥⊥ = x⊥) the set of normal forms of traces.

Definition 0.3: Ordering

≤ ⊆ A∗⊥?× A∗⊥? be the smallest relation such that for all x, y ∈ A∗, x ≤ x
and x⊥ ≤ xy⊥ ≤ xy. u < v if u ≤ v 6≤ u for all u, v ∈ A∗⊥?.

Home Page JJ J I II
July 8, 2022

Go Back Full Screen Close 8 of 27 Quit

Process

Definition 0.4: Process
� A (partial) process is a sub-LTS 〈Der(s0), A⊥,−→, s0〉 satisfying

the irrecoverability constraint

∀s ∈ Der(s0)[s
⊥−→ s′⇒ A⊥(s′) = {⊥}] (1)

� The process is total if s 6⊥−→ s′ for all s, s′ ∈ Der(s0).

� If s0
u−→ t for t ∈ Der(s0) and u ∈ A∗⊥?, then s0

u−→ t is a behaviour
of the process.

Fact 0.2: Closed-under-transitions
If 〈S,A⊥,−→, s0〉 is a process then so is 〈Der(s), A⊥,−→, s〉 for any
s ∈ S.

Home Page JJ J I II
July 8, 2022

Go Back Full Screen Close 9 of 27 Quit

BXPA: Basic Extended Process Algebra

Definition 0.5: Basic Extended Process Algebra (BXPA)

P[A⊥] = 〈P[A⊥],Ω,0, {a. | a ∈ A},
∑
〉 where

� Ω
df
= 〈{s0}, A⊥, {s0

⊥−→ s0}, s0〉 the totally undefined process,

� 0
df
= 〈{s0}, A⊥, ∅, s0〉 is the “terminated” or “deadlocked” process.

� a.P
df
= 〈S ∪ {s′0}, A⊥,−→ ∪{s

′
0

a−→ s0}, s′0〉, for any P =
〈S,A⊥,−→, s0〉, a ∈ A, and s′0 6∈ S,

�

∑
i∈I Pi

df
= 〈S,A⊥,−→ s0〉 where Pi = 〈Si, A⊥,−→i, s

i
0〉, i ∈ I and

– s0 6∈
⋃
i∈I S

i and S = Der(s0) = {s0} ∪
⊎
i∈I Targets(−→i),

– s0
a−→ t if for some Pi, i ∈ I , si0

a−→i t ∈ Si,
– s

a−→ t if s
a−→i t for some i ∈ I , s, t ∈ Der(s0).

Home Page JJ J I II
July 8, 2022

Go Back Full Screen Close 10 of 27 Quit

Example: Summation 1

-�
��

���������

����
����
����

?

?

�
�
�

�
�	

XXXXz

�

�

�

�
s’

⊥

b

a

P Ω

⊥
a

P + Ω

s0

s1

s2

t0

Home Page JJ J I II
July 8, 2022

Go Back Full Screen Close 11 of 27 Quit

Example: Summation 2

-�
��

�����
����

����

����
����

����
��������

����
�
�
��

�
�
��

?

���9 ���9

A
A
AAU

#
#

#
##
Z
Z
Z
ZZ..........

..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
........

 B

B
B
B
B

�����������)

H
HHH

HHHj

PPPPPPPPPPPPq

PPPq

�

�

�

�
HHj

�
�
��

A
A
AAU

s’

s2

s1

b
⊥

s0

P Q

a

t0

P ≡ a.b.0

c a
a

ca

u0

R

Qc

tc ta

Qa

Q ≡ c.Qc + a.Qa

P1

s′0

⊥

P1 ≡ Ω + P R ≡ P + Q

a

Home Page JJ J I II
July 8, 2022

Go Back Full Screen Close 12 of 27 Quit

BXPA: Basic Identities

Proposition 0.1

P[A⊥] is an idempotent abelian monoid under + with 0 as identity. Further

1. P
a−→ P ′, a ∈ A implies P ∼ a.P ′ + P .

2. P
⊥−→ P ′ implies P ′ ∼ Ω and hence P ∼ Ω + P .

3. (Canonical form modulo ∼). P ∼ [Ω+]
∑
a∈A,P a−→Pa

a.Pa

where “[Ω+]” indicates that Ω occurs only if P
⊥−→.

Home Page JJ J I II
July 8, 2022

Go Back Full Screen Close 13 of 27 Quit

Composition

Strictness condition (see irrecoverability)

(P
⊥−→ ∨Q ⊥−→) =⇒ ((P ⊗Q ⊥−→ Ω) ∧ (Q⊗ P ⊥−→ Ω)) (2)

guarantees that P[A⊥] is closed under ⊗. Hence expansion laws under the
various composition operators (e.g. ‖|, |, ‖, ×) continue to hold.

Home Page JJ J I II
July 8, 2022

Go Back Full Screen Close 14 of 27 Quit

Lifted Strong Bisimulation (LSB)

Definition 0.6: lifted strong bisimulations (LSB)

A binary relation R on processes is a lifted strong bisimulation
(LSB) if for all states s, t, sRt implies for all a, b ∈ A⊥,ε,

s
a−→ s′⇒ ∃b, t′[a ≤ b ∧ t b−→ t′ ∧ s′Rt′] (3)

t
b−→ t′⇒ ∃a, s′[a ≤ b ∧ s a−→ s′ ∧ s′Rt′] (4)

� s v t (equivalently t w s) if there exists a LSB R such that sRt.
� s vw t if s v t and s w t.

� s @ t if s v t and s 6vw t.

Home Page JJ J I II
July 8, 2022

Go Back Full Screen Close 15 of 27 Quit

Examples

-�
��

�

-�
��

�

-�
��

�����
����

����

����

����
����

����

����
����

����
A
A
AAU

�
�
��

�
�
��

?

A
A
AAU

�
�
��

�
�
��

�

�

�

�

?

HHj ���9 PPq ���9

s’

s2

s1

b

⊥

⊥
b

⊥

⊥

P1 Q2

s′0 s0

P

t′0

t’ t1

t2

a

Q

aa

⊥Q v P

P1 6v Q 6v P1

Q2 v Q 6v Q2

P1 ≡ Ω + P

Q ≡ a.b.Ω

Q2 ≡ Ω + Q

t0

P ≡ a.b.0

a

In addition, if τ is in A and T⇐ τ.T denotes livelock, then we have ⊥ < τ ,
⊥ < ε and hence Ω @ 0 6v Ω, Ω @ T 6v Ω and 0 6v T 6v 0

Home Page JJ J I II
July 8, 2022

Go Back Full Screen Close 16 of 27 Quit

Precongruence

LSB is an instance of the more general (ρ, σ)-bisimulation [1] with ρ = σ = ≤.
By theorem 4.1 part 1 in [1], v is a preorder.

Theorem 0.1: Precongruence.

The operators of P[A⊥] are monotonic under v and the relation v is a
precongruence on P[A⊥].

Home Page JJ J I II
July 8, 2022

Go Back Full Screen Close 17 of 27 Quit

Logical Characterisation

Definition 0.7
�L a logical language and

� |=X⊆ P× L a satisfaction relation

�LX(P) = {φ ∈ L | P |=X φ}
� (L, |=X) characterises a behavioural preorder � over P

P � Q⇔ LX(P) ⊆ LX(Q) (5)

� P ⊆X Q iff LX(P) ⊆ LX(Q).

Home Page JJ J I II
July 8, 2022

Go Back Full Screen Close 18 of 27 Quit

PHML: A Modal logic

Definition 0.8

� Negation-free modal logic L(≤,≤)
a

φ ::= tt | ff | 〈a〉φ | [a]φ |
∧
i∈I

φi |
∨
i∈I

φi (6)

where a ∈ A⊥,ε and I is an indexing set,

�

∧
i∈∅ φi ≡ tt and

∨
i∈∅ φi ≡ ff by convention.

aFor the present, we are assuming that every action in A⊥,ε including the undefined action ⊥ is observable; this may be relaxed.

Home Page JJ J I II
July 8, 2022

Go Back Full Screen Close 19 of 27 Quit

Semantics: Satisfaction

Definition 0.9: Satisfaction

P |=S tt for each P ∈ PIF P |=S ff for no P ∈ PIF
P |=S 〈a〉φ iff P |=S [a]φ iff
∃b ∈ A⊥,ε : b ≥ a, P ′ : ∀b ∈ A⊥,ε : b ≤ a, P ′ :

[P
b−→ P ′ ∧ P ′ |=S φ] [P

b−→ P ′⇒ P ′ |=S φ]

P |=S
∧
i∈I φi iff ∀i ∈ I [P |=S φi] P |=S

∨
i∈I φi iff ∃i ∈ I [P |=S φi]

� P satisfies φ if P |=S φ and

�LS(P) = {φ | P |=S φ}
� P ⊆S Q if LS(P) ⊆ LS(Q) for processes P , Q,

Home Page JJ J I II
July 8, 2022

Go Back Full Screen Close 20 of 27 Quit

PHML characterisation of LSB

Theorem 0.2: Logical characterisation of v
P v Q if and only if LS(P) ⊆ LS(Q) for image-finite processes.

Theorem 0.2 then directly follows from definition 5 and theorem 3 of [3].
But

� it is difficult to explain modalities like 〈⊥〉 and [⊥].

� Also modalities like 〈ε〉 and [ε] do not add much value to the notion of
observation.

Home Page JJ J I II
July 8, 2022

Go Back Full Screen Close 21 of 27 Quit

Redefining old notions

� s may diverge (s↑) if s
⊥−→. Otherwise it converges (s↓). Analogously

for processes.

� A binary relation R on processes is a divergent strong bisimulation
(DSB) if for all s, t ∈ S, sRt implies the following.

∀a ∈ A[s
a−→ s′⇒ ∃t′[t a−→ t′ ∧ s′Rt′] (7)

s↓⇒ (t↓ ∧∀a ∈ A[t
a−→ t′⇒ ∃s′[s a−→ s′ ∧ s′Rt′]]) (8)

� s @∼ t (equivalently t A∼ s) if there exists a DSB R such that sRt (we write

R ` s @∼ t to denote this fact). s @A∼ t if s @∼ t and s A∼ t.

Home Page JJ J I II
July 8, 2022

Go Back Full Screen Close 22 of 27 Quit

Equivalence of LSB and DSB

� {Ω} × P is a DSB and hence Ω @∼ P for all P ∈ P.

� (R completion) R⊥ = R∪ {(s, t′) | sRt, s↑, A(s) = ∅, t↓, t′ ∈ Der(t)}.
Lemma 0.1

1. If R is a DSB then so is R⊥.

2.R is a DSB implies R⊥ is a LSB.

3. If R is a LSB then so is R⊥.

4. Every LSB is also a DSB.

Theorem 0.3
@∼ = v and @A∼ = vw .

Home Page JJ J I II
July 8, 2022

Go Back Full Screen Close 23 of 27 Quit

Affirmation

L−⊥ is L without 〈⊥〉 and [⊥].
Definition 0.10: Affirmation

|=A ⊆ P×L−⊥ is the smallest (infix) relation defined by induction on the
structure of formulae for any process P and any action a ∈ A⊥,ε.

P |=A tt for each P ∈ P P |=A ff for no P ∈ P
P |=A 〈a〉φ iff P |=A [a]φ iff

∃P ′[P a−→ P ′ ∧ P ′ |=A φ] P↓ ∧ ∀P ′[P a−→ P ′⇒ P ′ |=A φ]

P |=A
∧
i∈I

φi iff ∀i ∈ I [P |=A φi] P |=A
∨
i∈I

φi iff ∃i ∈ I [P |=A φi]

P affirms φ if P |=A φ and LA(P) = {φ | P |=A φ}. P ⊆A Q if
LA(P) ⊆ LA(Q) for processes P and Q.

Home Page JJ J I II
July 8, 2022

Go Back Full Screen Close 24 of 27 Quit

Characterisation

Definition 0.11

1. P ⊆−⊥S Q iff L−⊥S (P) ⊆ L−⊥S (Q).

2. P ⊆−⊥A Q iff L−⊥A (P) ⊆ L−⊥A (Q).

Theorem 0.4

⊆−⊥S = v = ⊆−⊥A i.e. L−⊥ characterises the preorder v.

Home Page JJ J I II
July 8, 2022

Go Back Full Screen Close 25 of 27 Quit

Conclusions & Future Work

Conclusions.

� Recursion not explicitly considered (since the model allows processes with
infinite behaviours).

� But easy to see that guarded recursion (made up only of well-defined
actions) will yield unique fixpoints.

� If τ ∈ A then X ⇐ X and X ⇐ τ.X will yield different least solutions.

Future Work.

�@ could be used as a refinement relation that allows the progression from a
totally undefined process to a well-defined process satisfying certain modal
properties.

�P[A⊥] is closed under various composition operations. This allows the
possibility of using more than one parallel composition operator in the
specification of systems.

Home Page JJ J I II
July 8, 2022

Go Back Full Screen Close 26 of 27 Quit

References

[1] S. Arun-Kumar. On bisimilarities induced by relations on actions. In Proceedings 4th IEEE International Conference on Software Engineering and Formal Methods,
Pune, India. IEEE Computer Society Press, 2006.

[2] S. Arun-Kumar and Divyanshu Bagga. Parameterised bisimulations: Some applications. In W. Kahl P. Hofner, P. Jipsen and M. E. Muller, editors, 14th International
Conference on Relational and Algebraic Methods in Computer Science, volume 8428 of Lecture Notes in Computer Science. Springer-Verlag, 2014.

[3] Divyanshu Bagga and S. Arun-Kumar. Logical characterization of parameterised bisimulations. In International Colloquium on Theoretical Aspects of Computing, volume
10580, pages 99–112. Lecture Notes in Computer Science, 2017.

[4] M.C.B. Hennessy. Algebraic Theory of Processes. MIT Press, Boston, 1988.

[5] Neelesh Korade and S. Arun-Kumar. A logical characterization of efficiency preorders. In International Colloquium on Theoretical Aspects of Computing, volume 3407,
pages 99–112. Lecture Notes in Computer Science, 2004.

[6] R. Milner. A modal characterisation of observable machine-behaviour. In CAAP 1981, volume 112 of Lecture Notes in Computer Science, Berlin Heidelberg, 1981.
Springer-Verlag.

[7] R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer Science, 25:267–310, 1983.

[8] R. Milner. Communication and Concurrency. Prentice-Hall International, 1989.

[9] D. S. Scott. Data types as lattices. SIAM Journal on Computing, 5(3):522–587, 1976.

[10] D. S. Scott. Domains for denotational semantics. In ICALP 1982, volume 140 of Lecture Notes in Computer Science, Berlin Heidelberg, 1982. Springer-Verlag.

[11] D.J. Walker. Bisimulation and divergence in CCS. In Third Annual Symposium on Logic in Computer Science, pages 186–192, Edinburgh, Scotland, July 1988. IEEE
Computer Society Press.

Home Page JJ J I II
July 8, 2022

Go Back Full Screen Close 27 of 27 Quit

Home Page JJ J I II
July 8, 2022

Go Back Full Screen Close 28 of 27 Quit

Thank You!

Any Questions?

