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Divergence, Livelock and Deadlock

�≈ [8] and weaker equivalences [4] are insensitive to “τ -cycles”.

� “τ -cycles” (T ⇐ τ.T ) are identified with divergence [11] and has the same
solution as X ⇐ X .

� “τ -cycles” could also be due to “livelock” i.e. infinite “internal chatter”.
P ⇐ a.P , Q⇐ a.Q, R = (P |Q)\a ∼ τ.R

� In SCCS [7] the solution of X ⇐ X is identified with deadlock.
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Our view

Divergence (Ω). The least solution of X ⇐ X (modulo ∼) should be a
totally “undefined” process.

Livelock. The least solution (modulo ∼) of T ⇐ τ.T should be a process
that can only perform “τ -cycles”.

Deadlock (0). A deadlocked process performs no computation unlike a live-
locked process which consumes computational cycles and energy.

Hence any strong behavioural relation on processes should ensure that

� divergence, deadlock and livelock are distinguished from each other.

� Ω is the least defined process (modulo ∼),

� Deadlock (0) and livelock (T ⇐ τ.T ) are both well-defined processes and
mutually incomparable.
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LTS

� L[L] = 〈S, L,−→〉

� s
`−→ = {t ∈ S | s `−→ t} is the set of `-successors of s.

� L(s) = {` ∈ L | ∃t[s `−→ t]} is the set of labels from s.

� Succ(s) =
⋃
`∈L s

`−→ = {t | ∃` ∈ L[s
`−→ t]} is the set of successors

of s

� Targets(−→) = {t ∈ S | ∃s ∈ S[t ∈ Succ(s)]}.
�Der(s) = {s} ∪

⋃
t∈Succ(s)Der(t) is the set of derivatives of s.

A sub-LTS of L[L] at a state s0 ∈ S is the rooted LTS 〈Der(s0), L,−→, s0〉.
By convention s

ε−→ s and for any x = ay ∈ L+, s
x−→ s′ if s

a−→ s′′
y−→ s′

for some s′′ ∈ S.
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Natural Bisimilarity

Definition 0.1: Natural bisimulation
A symmetric binary relation R ⊆ S × T between (sub-)LTSs
L[L] = 〈S, L,−→〉 and M[L] = 〈T, L,−→〉 such that sRt implies for all

labels ` ∈ L, s
`−→ s′⇒ ∃t′ ∈ T [t

`−→ t′∧s′Rt′]. Notation: R ` s ∼ t).

Fact 0.1
Unions, relational converses and (relational) compositions of natural bisimu-
lations are also natural bisimulations. Natural bisimilarity (∼) is the largest
natural bisimulation and is an equivalence relation.
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Actions and Traces

Definition 0.2: Actions
A⊥ = A ∪ {⊥} where A is a countable set of (uninterpreted but) well-
defined actions and ⊥ 6∈ A is a special undefined action with ⊥ < a for
each a ∈ A.

� Ω can perform only ⊥.

� Traces are words from A∗⊥∗.
�A∗⊥? := A∗⊥∗/(x⊥⊥ = x⊥) the set of normal forms of traces.

Definition 0.3: Ordering

≤ ⊆ A∗⊥?× A∗⊥? be the smallest relation such that for all x, y ∈ A∗, x ≤ x
and x⊥ ≤ xy⊥ ≤ xy. u < v if u ≤ v 6≤ u for all u, v ∈ A∗⊥?.
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Process

Definition 0.4: Process
� A (partial) process is a sub-LTS 〈Der(s0), A⊥,−→, s0〉 satisfying

the irrecoverability constraint

∀s ∈ Der(s0)[s
⊥−→ s′⇒ A⊥(s′) = {⊥}] (1)

� The process is total if s 6⊥−→ s′ for all s, s′ ∈ Der(s0).

� If s0
u−→ t for t ∈ Der(s0) and u ∈ A∗⊥?, then s0

u−→ t is a behaviour
of the process.

Fact 0.2: Closed-under-transitions
If 〈S,A⊥,−→, s0〉 is a process then so is 〈Der(s), A⊥,−→, s〉 for any
s ∈ S.



Home Page JJ J I II
July 8, 2022

Go Back Full Screen Close 9 of 27 Quit

BXPA: Basic Extended Process Algebra

Definition 0.5: Basic Extended Process Algebra (BXPA)

P[A⊥] = 〈P[A⊥],Ω,0, {a. | a ∈ A},
∑
〉 where

� Ω
df
= 〈{s0}, A⊥, {s0

⊥−→ s0}, s0〉 the totally undefined process,

� 0
df
= 〈{s0}, A⊥, ∅, s0〉 is the “terminated” or “deadlocked” process.

� a.P
df
= 〈S ∪ {s′0}, A⊥,−→ ∪{s

′
0

a−→ s0}, s′0〉, for any P =
〈S,A⊥,−→, s0〉, a ∈ A, and s′0 6∈ S,

�

∑
i∈I Pi

df
= 〈S,A⊥,−→ s0〉 where Pi = 〈Si, A⊥,−→i, s

i
0〉, i ∈ I and

– s0 6∈
⋃
i∈I S

i and S = Der(s0) = {s0} ∪
⊎
i∈I Targets(−→i),

– s0
a−→ t if for some Pi, i ∈ I , si0

a−→i t ∈ Si,
– s

a−→ t if s
a−→i t for some i ∈ I , s, t ∈ Der(s0).
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Example: Summation 1
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Example: Summation 2
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BXPA: Basic Identities

Proposition 0.1

P[A⊥] is an idempotent abelian monoid under + with 0 as identity. Further

1. P
a−→ P ′, a ∈ A implies P ∼ a.P ′ + P .

2. P
⊥−→ P ′ implies P ′ ∼ Ω and hence P ∼ Ω + P .

3. (Canonical form modulo ∼). P ∼ [Ω+]
∑
a∈A,P a−→Pa

a.Pa

where “[Ω+]” indicates that Ω occurs only if P
⊥−→.
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Composition

Strictness condition (see irrecoverability)

(P
⊥−→ ∨Q ⊥−→ ) =⇒ ((P ⊗Q ⊥−→ Ω) ∧ (Q⊗ P ⊥−→ Ω)) (2)

guarantees that P[A⊥] is closed under ⊗. Hence expansion laws under the
various composition operators (e.g. ‖|, |, ‖, ×) continue to hold.
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Lifted Strong Bisimulation (LSB)

Definition 0.6: lifted strong bisimulations (LSB)

A binary relation R on processes is a lifted strong bisimulation
(LSB) if for all states s, t, sRt implies for all a, b ∈ A⊥,ε,

s
a−→ s′⇒ ∃b, t′[a ≤ b ∧ t b−→ t′ ∧ s′Rt′] (3)

t
b−→ t′⇒ ∃a, s′[a ≤ b ∧ s a−→ s′ ∧ s′Rt′] (4)

� s v t (equivalently t w s) if there exists a LSB R such that sRt.
� s vw t if s v t and s w t.

� s @ t if s v t and s 6vw t.
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Examples
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In addition, if τ is in A and T⇐ τ.T denotes livelock, then we have ⊥ < τ ,
⊥ < ε and hence Ω @ 0 6v Ω, Ω @ T 6v Ω and 0 6v T 6v 0
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Precongruence

LSB is an instance of the more general (ρ, σ)-bisimulation [1] with ρ = σ = ≤.
By theorem 4.1 part 1 in [1], v is a preorder.

Theorem 0.1: Precongruence.

The operators of P[A⊥] are monotonic under v and the relation v is a
precongruence on P[A⊥].
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Logical Characterisation

Definition 0.7
�L a logical language and

� |=X⊆ P× L a satisfaction relation

�LX(P ) = {φ ∈ L | P |=X φ}
� (L, |=X) characterises a behavioural preorder � over P

P � Q⇔ LX(P ) ⊆ LX(Q) (5)

� P ⊆X Q iff LX(P ) ⊆ LX(Q).
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PHML: A Modal logic

Definition 0.8

� Negation-free modal logic L(≤,≤)
a

φ ::= tt | ff | 〈a〉φ | [a]φ |
∧
i∈I

φi |
∨
i∈I

φi (6)

where a ∈ A⊥,ε and I is an indexing set,

�

∧
i∈∅ φi ≡ tt and

∨
i∈∅ φi ≡ ff by convention.

aFor the present, we are assuming that every action in A⊥,ε including the undefined action ⊥ is observable; this may be relaxed.
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Semantics: Satisfaction

Definition 0.9: Satisfaction

P |=S tt for each P ∈ PIF P |=S ff for no P ∈ PIF
P |=S 〈a〉φ iff P |=S [a]φ iff
∃b ∈ A⊥,ε : b ≥ a, P ′ : ∀b ∈ A⊥,ε : b ≤ a, P ′ :

[P
b−→ P ′ ∧ P ′ |=S φ] [P

b−→ P ′⇒ P ′ |=S φ]

P |=S
∧
i∈I φi iff ∀i ∈ I [P |=S φi] P |=S

∨
i∈I φi iff ∃i ∈ I [P |=S φi]

� P satisfies φ if P |=S φ and

�LS(P ) = {φ | P |=S φ}
� P ⊆S Q if LS(P ) ⊆ LS(Q) for processes P , Q,
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PHML characterisation of LSB

Theorem 0.2: Logical characterisation of v
P v Q if and only if LS(P ) ⊆ LS(Q) for image-finite processes.

Theorem 0.2 then directly follows from definition 5 and theorem 3 of [3].
But

� it is difficult to explain modalities like 〈⊥〉 and [⊥].

� Also modalities like 〈ε〉 and [ε] do not add much value to the notion of
observation.



Home Page JJ J I II
July 8, 2022

Go Back Full Screen Close 21 of 27 Quit

Redefining old notions

� s may diverge (s↑) if s
⊥−→. Otherwise it converges (s↓). Analogously

for processes.

� A binary relation R on processes is a divergent strong bisimulation
(DSB) if for all s, t ∈ S, sRt implies the following.

∀a ∈ A[s
a−→ s′⇒ ∃t′[t a−→ t′ ∧ s′Rt′] (7)

s↓⇒ (t↓ ∧∀a ∈ A[t
a−→ t′⇒ ∃s′[s a−→ s′ ∧ s′Rt′]]) (8)

� s @∼ t (equivalently t A∼ s) if there exists a DSB R such that sRt (we write

R ` s @∼ t to denote this fact). s @A∼ t if s @∼ t and s A∼ t.
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Equivalence of LSB and DSB

� {Ω} × P is a DSB and hence Ω @∼ P for all P ∈ P.

� (R completion) R⊥ = R∪ {(s, t′) | sRt, s↑, A(s) = ∅, t↓, t′ ∈ Der(t)}.
Lemma 0.1

1. If R is a DSB then so is R⊥.

2.R is a DSB implies R⊥ is a LSB.

3. If R is a LSB then so is R⊥.

4. Every LSB is also a DSB.

Theorem 0.3
@∼ = v and @A∼ = vw .
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Affirmation

L−⊥ is L without 〈⊥〉 and [⊥].
Definition 0.10: Affirmation

|=A ⊆ P×L−⊥ is the smallest (infix) relation defined by induction on the
structure of formulae for any process P and any action a ∈ A⊥,ε.

P |=A tt for each P ∈ P P |=A ff for no P ∈ P
P |=A 〈a〉φ iff P |=A [a]φ iff

∃P ′[P a−→ P ′ ∧ P ′ |=A φ] P↓ ∧ ∀P ′[P a−→ P ′⇒ P ′ |=A φ]

P |=A
∧
i∈I

φi iff ∀i ∈ I [P |=A φi] P |=A
∨
i∈I

φi iff ∃i ∈ I [P |=A φi]

P affirms φ if P |=A φ and LA(P ) = {φ | P |=A φ}. P ⊆A Q if
LA(P ) ⊆ LA(Q) for processes P and Q.
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Characterisation

Definition 0.11

1. P ⊆−⊥S Q iff L−⊥S (P ) ⊆ L−⊥S (Q).

2. P ⊆−⊥A Q iff L−⊥A (P ) ⊆ L−⊥A (Q).

Theorem 0.4

⊆−⊥S = v = ⊆−⊥A i.e. L−⊥ characterises the preorder v.



Home Page JJ J I II
July 8, 2022

Go Back Full Screen Close 25 of 27 Quit

Conclusions & Future Work

Conclusions.

� Recursion not explicitly considered (since the model allows processes with
infinite behaviours).

� But easy to see that guarded recursion (made up only of well-defined
actions) will yield unique fixpoints.

� If τ ∈ A then X ⇐ X and X ⇐ τ.X will yield different least solutions.

Future Work.

�@ could be used as a refinement relation that allows the progression from a
totally undefined process to a well-defined process satisfying certain modal
properties.

�P[A⊥] is closed under various composition operations. This allows the
possibility of using more than one parallel composition operator in the
specification of systems.
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Thank You!

Any Questions?


