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Bisimulations: Vanilla flavoured
Let P be the set of processes defined on a set Act of actions.

Definition 1 A binary relation R C P x P is a
if pRq implies the following conditions for all

a € Act.
p—p =3¢ :q— ¢ NPRq (1)
and
a / /. a / / /
¢—¢=3p:p—p ANpRq (2)
The largest bisimulation is and is an equivalence,
(denoted ).
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Bisimulations and Bisimilarity

e Simple and intuitively appealing theory
e Very nice algebraic properties

e Bisimilarity is the smallest equivalence relation which re-
spects branching behaviour

e Park’s induction principle
e Very efficient algorithms for proving bisimilarity of systems
e Has a nice game theoretic interpretation

e Algorithms for verification of other equivalences of con-
current systems use bisimulation

a.
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Properties of Bisimulations

e The identity relation on processes is a bisimulation
e Arbitrary unions of bisimulations are bisimulations.
e The converse of each bisimulation is also a bisimulation

e The relational composition of bisimulations is a bisimula-
tion.

e Let Z be a function on binary relations on P s.t. (p,q) €
AB(R) if p and ¢ satisfy the conditions of definition 1.
Then

— A is monotonic i.,e. R C S = #A(R) C A(S).

— R is a strong bisimulation iff R C Z(R).

— If R is a strong bisimulation then so is Z(R).

— ~ = |J{R|R C #A(R)} is the largest fixpoint of Z.

e ~ is the largest bisimulation and an equivalence relation
on processes
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Example: Browser

Web Server

Browser

Browser
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Example: Browser

Web Server
. (SeFmos
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Example: Proxy Server

Web Server

Proxy
Browser Server

w:p@ti
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Example: Proxy Server

Web Server

Browser

req w:p

Proxy
Server
w:p@ti
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Example: Proxy Server

Web Server

-

req @w:p

Browser

req w:p

Proxy
Server
w:p@ti
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Example: Proxy Server

Web Server
-
t2
req @w:p
req w:p Proxy
Browser Server
w:p@ti
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Example: Proxy Server

Web Server
-
t1=t2
t2
req @w:p
req w:p - Proxy
Browser Server
= wip@ti w:p@ti
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Example: Proxy Server

Web Server
-
t1<>12
t2
req @w:p
req w-p Proxy
Browser Server
w:p@ti
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Example: Proxy Server

Web Server
‘ [
t1<>12
t2
req @w:p
w:p@t3
Y
req w-p Proxy
Browser Server
w:p@ti
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Example: Proxy Server

Web Server

‘ [

t1<>12
t2
req @w:p
w:p@t3
Y
req w-p Proxy
Browser Server
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Example: Proxy Server

Web Server
‘ [
t1<>12
t2
req @w:p
w:p@t3
Y
req w:p - Proxy
Browser Server
- wp@13 w:p@t3
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Modelling in CCS: Actions

The action set.

op(

d?“p

irp(
isp(
drh
dsh

gp()

(
dsp(

)
)
h,a)

)
h,a)

()
()

get page

output page a on screen
direct request for page
directly serve page
indirect request for page
indirectly serve page
direct request for header
directly serve header
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Modelling in CCS

A typical client DCLIENT, which accesses the web-server di- SEFMos
rectly, has the following definition.

DCLIENT 2 gp().drp().dsp(h,a).op(a).DCLIENT S
With the introduction of a proxy server, the clients commu- «lw
nicate only with the proxy. > ]
The actions involving communications of the clients with < | |
proxy server are irp and isp.

Page 23 of 47
ICLIENT 2 gp().irp().isp(h,a).op(a). ICLIENT .
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Modelling in CCS: Proxy

e Assume it serves only one request at a time
e Initial undefined content (L, 1) in cache (Eempos
e On the first request it obtains the full page from the web-

server. M

e For each subsequent request it merely sends a request Title Page

with the header h, as parameter and waits in the state

PRWAIT(hy, ag), where (hg, ag) is the current content in ] » |

its cache. <] |
PrROXYO(L, L) 2 irp().REQPAGE(L, 1) L |
PrROXY(hg,ag) 2 irp().CLWAIT(hy, ao) o Back
REQPAGE(hQ, CLQ) é dTp().REQSENT(h(),Cl())
CLWAIT(ho, ag) 2 drh(hy).PRWAIT(hg, ao) s |
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Modelling in CCS: Proxy

e \Web-server may respond by sending back the same header
hy (indicating no change in page content), or

e Send an updated page content (hy,ap), with hy # hy.
The proxy caches this new content.

e |ts cache has the latest content on demand.

PRWAIT(hg, ag) 2 dsh(hy).CACHED(hy, ag)+

dsp(hy, ay). CACHED (hy, ay)
2 dsp(hy,ay).CACHED(h], af)
2 isp(h,a).PrOXY(h, a)

REQSENT(hg, ag)
CACHED(h, a)

The client-proxy system in the local area network is defined
as follows:

CPSys 2 (ICLIENT|PROXYO(L, 1))
\{arp(, ), sp(5, )}

_ denote wildcard values.
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Example: Proxy Server: Analysis

Web Server o)
' (EeFmos

1 <>t2 /
2 | Home Page

req @w:p |

| wp@t3 Title Page

req w:p Proxy
Browser . Server ﬁ g
wp@3 w:p@t3
] ]

e CPSYs and DCLIENT not weakly bisimilar, since Page 26 of 47
CPSYs may perform actions such as dsh() ¢

Sort(DCLIENT).
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Labelled Transition Systems

Definition 2 A is a 3-tuple
(P, Act,—, 1) where

o P /s a set of process states

e Act is a set of actions and —C P x Act x P is the
transition relation.

o I C P is a set of initial states

A LTS (P, Act,—,I) may equally well be viewed as a struc-
ture (P, Act”, — I). The usual theory of bisimulations does
not distinguish between the two.
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LTSs and Processes

Definition 3 A (P, Act,—,po) is a LTS .
(P, Act,—,{po}) with a single initial state py. (EeFmos
e p — ¢ denotes (p,a,q) €— Home Page
e a-Successors of p: p —= {q | p — ¢} Title Page
e Successors of p: p —= U p— « | » |
ac€Act
|
e Derivatives of p: p —*= {p} U U qg—"
qEp— Page 29 of 47
e ¢ is reachable from p: ¢ € p —* Go Back
° p: (sub-)LTS rooted at state p and consisting of o

all the states and transitions reachable from p.
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(p, o)-Bisimulations
e Definition 4

— P: the set of states

p and o: binary relations on Act

—RCPxP
R is a or simply a
if pRq implies the following conditions.
Va € Actlp —— p' = 3b,q' : apb A g AN A p'Rq'|(3)
Vb € Actlq g = 3a,p acbAp = A p'Rq'|(4)
e The largest (p, o)-bisimulation (under set containment) is
called and denoted

e A (=, =)-bisimulation will be called a
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(p, o )-Bisimulations: Smooth
Generalization

e Arbitrary unions of (p,o)-bisimulations are (p,o)-
bisimulations.

o Let %, be a function on binary relations on P s.t.
(p,q) € PB(,0)(R) iff p and ¢ satisfy the conditions of
4. Then:

— P ,.0) is monotonic i.e.
RC S = Bo(R) C BpoS)

— R is a (p, 0)-bisimulation iff R C %, ,(R).
—If R is (p, o)-bisimulation then so is %, ) (R).
— 0, U{R | R C B, (R)} is the largest fixpoint

0'

f%’
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Park's Induction Principle

Theorem 0.1 (Park’s Induction Principle). Let R be
a binary relation on processes satisfying the following condi-
tions for all pRq and a,b € Act:

vp'lp —= p' = 3b,¢lapb A g — ¢ Ap(RUL,,,)d]

V'l — ¢ = Ja,placb Ap = p' AP (RUD,,,))q]
Then R C Q o)

e To prove plJ,,q it suffices to find a (p, o)-bisimulation
containing <p, q>

e R :p0,, qto denote that R is a (p,o)-bisimulation
contalmng the pair (p, q).
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Monotonicity

Extending C and C pointwise to of relations

o (p,0)C(p',0') = every (p,o)-bisimulation is also a
(p', 0’)-bisimulation

e And

(p7 U)g<pl7 OJ) = Q(p,o*) C Q(p’,a’)

L But Page 34 of 47
(pv 0) - (10/7 OJ) 7é> Q(p,a) - Q(p/,a’)
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Reflexivity and Transitivity

e If both p and o are reflexive then so is [, ).

e The identity relation Z is a (p, o)-bisimulation iff both p
and o are reflexive

e If both p and o are transitive then so is [, , )

e For any (p, o)-bisimulations R and S,
RoS'is a (p, o)-bisimulation iff p and o are both transitive
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Preorders and Partial Orders

e |f both p and o are preorders then [, ) is a preorder.

O'

e If both p and o are partial orders then U, may not be
a partial order (but is guaranteed to be a preorder)

* D(p o)
and o.

inherits/preserves the preordering properties of p
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Symmetry

e If both p and o are symmetric then the converse of a
(p, o)-bisimulation is a (o, p)-bisimulation.

e [],, Is symmetric if p is symmetric

e For any p, if
R is a (p, p)-bisimulation implies R~ is also (p, p)-
bisimulation
then p must be symmetric.

e [],, is an equivalence iff p is an equivalence.

(SeFmos
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Whenp:Uorazp_1

Theorem 0.2 . For any binary relation p on Act,
[]

=—(p:p)

[l

—(p.p)
If p is a preorder then U, .1, is an equivalence.

is a preorder iff p is a preorder.

is an equivalence iff p is an equivalence relation.

A strong bisimulation is simply a (=, =)-bisimulation.

Ok LN~

A weak bisimulation is simply a ( = , = )-bisimulation,
where = s the equivalence on strings of Act* defined by
ignoring all occurrences of the silent action T.
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The Proxy Revisited

Let p relate “similar” actions. Let =, be the smallest equiva-
lence such that

e drh() =, drp() and
e dsh(h) =, dsp(h,a), for any (h,a)
o =, 7T

We can show that CPSYs Q(:m:p) DCLIENT.

Proxy server
Actions
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The Proxy Revisited Again

Using the relative costs of different actions.

e The internal actions and getting header information cost
almost nothing.

e The costliest action is receiving the entire page from the
web-server.

Let < be the smallest preorder on actions, satisfying

o drh(h) < drp() and drp() < drh(h), for any header
h

e dsh(h) < dsp(h,a), for any (h,a)
oc < 7,and 7 < &.
Then CPSYS Q(s,s) DCLIENT

Proxy server
Actions
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An On-the-fly Algorithm

e An adaptation of Fernandez and Mounier’s on-the-fly al-
gorithm for vanilla bisimulation

e Uses the technique of a Partial depth-first search and runs
in O(n?|Act|) time to reduce backtracking.

e The adaptation uses bit arrays to store information ob-
tained at each point about their relationship, assuming
initially that they are related unless proven otherwise in
the future. But requires twice the amount of information
to be stored for p and o.

e Assuming that both p and o are available as table lookups
and take no time to compute, our algorithm runs in

O(n*| Act|?) time and has a space requirement of O(n +
| Act|?).
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Conclusions

e A smooth theory is obtained by parametrizing bisimula-
tions on actions.

e Bisimulations inherit their relational algebraic properties
from properties of the underlying relation on actions.

e Name equality does not necessarily capture “functional
similarity” .

e There is a need to look at more generalized notions of
equivalence based on functional similarities in behaviour.

e For open systems and for being able to prove properties
locally, more general notions may be required.

e While adaptation of the on-the-fly algorithm was easy, the
same cannot be said of the partitioning algorithm of Paige
and Tarjan, which requires an equivalence relation on ac-
tions.
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