
An Introdution to Operational Semantis

Sanjiva Prasad S. Arun-Kumar

February 4, 2002

Abstrat

The objetive of this hapter is to introdue to ompiler developers

the rudimentary onepts of operational semantis used in speifying

the operational behavior of programs and systems, and for reason-

ing about them. There are already various exellent omprehensive

introdutions to syntax-direted approahes to operational semantis,

most notably the seminal papers by Plotkin [Plo81℄ and Kahn [Kah87℄.

Some of that material has already been inorporated in standard text

books on the semantis of programming languages and onurreny,

suh as those by Winskel [Win93℄, Gunter [Gun92℄, Watt [Wat90℄ and

Hennessy [Hen88℄. Yet, though the onepts and tehniques employed

are mathematially simple and aessible, many ompiler developers

have not been exposed to them.

The material presented here is largely based on the seminal work

mentioned above, and is aimed at presenting the ideas in an inte-

grated form. It is tutorial in nature, oriented towards those interested

in relating language spei�ation to ompiler design. There are also

several exellent surveys and referenes on researh aspets in opera-

tional semantis, partiularly in the ontext of semantis of omputa-

tion [Ong99℄ and of proess algebra [AFV00℄, intended for those who

are already familiar with semantis issues in programming languages

and onurreny.

1

Contents

1 Introdution 2

2 Preliminaries 10

2.1 Transition Systems . 10

2.2 Strutural Operational Semantis for Expressions 13

2.3 Private de�nitions . 25

3 Imperative Languages 28

3.1 Non-determinism . 34

3.2 Bloks and Variable Delarations 36

3.3 Proedures and parameter passing 38

3.4 Run-time Alloation and Dealloation 40

4 Funtions and higher-order forms 44

4.1 �-alulus . 44

4.2 Relationship with funtional languages. 47

4.3 Closures and Environment mahines 50

4.4 Implementation issues related to environments 54

4.5 Control operators . 56

5 LTSs and Interative Programs 58

5.1 CSP . 61

5.2 Extensions . 66

6 Conlusion 68

1 Introdution

Operational Semantis involves giving a preise desription of the behavior

of a program or a system, namely, how it may exeute or operate. As in any

semanti enterprise, the intention in developing operational semantis is to

give behavioral desriptions in rigorous mathematial terms, in a form that

supports understanding and reasoning about the behavior of the systems un-

der onsideration. A mathematial model serves as the basis for analysis and

veri�ation. In fat, the very at of formalization an help remove mison-

eptions and fous attention on subtleties that may be glossed over in an

informal desription.

2

A lear operational semantis is an invaluable referene while develop-

ing language implementations, as was reognized over a quarter of a en-

tury ago by MCarthy [MC63℄, Landin [Lan64, Lan65b℄, Hoare and Lauer

[HL74℄, Milner, Plotkin and various other researhers. Early examples of

real-world languages being provided formal operational semantis inlude

Algol 60 [Lau68℄ and PL/I [PL/86℄.

Formalism, per se, is not the only goal; de�ning the meaning of a pro-

gramming language as the behavior indued by a partiular implementation

is a formal treatment. However, suh an approah is not partiularly sat-

isfatory sine the intention is to provide behavioral desriptions at a high

level, divored from implementation details to as great an extent as possi-

ble. Moreover, the high-level formalism should be readily aessible. Indeed,

the attration of using operational semanti approahes to programming lan-

guages is the relative simpliity of the formal mathematis and the assoiated

tehniques.

The past twenty or so years has seen, following seminal ontributions

by Plotkin [Plo81℄, Milner [Mil73, Mil76℄, Kahn [Kah87℄, Hoare [Hoa85℄ and

others, the development of syntax-direted \strutural" frameworks that pro-

vide, to quote Plotkin, a \simple and diret method for speifying the se-

mantis of programming languages", whih require very little mathematial

bakground, that yet provide \onise, omprehensible semanti de�nitions".

The de�nition of the mostly funtional language Standard ML in a wholly

operational semanti framework [MTHM97℄ is an exellent example of the

power and versatility as well as the relative aessibility of these operational

tehniques. Other languages whih have omplete operational desriptions

are Esterel [BC84, Gon88, BG92℄ and Ada ([ANB

+

86℄ ontains an early def-

inition that employs the main ideas disussed here in a rigorous algebrai

framework).

While formalization is learly important for researh in programming lan-

guage semantis, the aim of this hapter is to make modern approahes to

operational semantis aessible to those involved in ompiler design and

development. It is therefore worthwhile to reiterate here why formal op-

erational desriptions are important in the ontext of ompiler design and

implementation. As mentioned above, suh desriptions provide an unam-

biguous de�nition of a language, whih an serve as a referene for imple-

mentations. A strutural operational semantis (SOS) style seems to be an

inreasingly favored style of providing a omprehensive and omprehensible

formal de�nitions of programming languages. Apart from the examples of

3

Standard ML and Esterel ited above, SOS semantis have been provided

for several languages inluding Java [CKRW99℄ and logi programming lan-

guages based on Prolog [HJP92℄. Seondly, these formal desriptions allow

us to develop theories suh as program equivalene or orderings, whih serve

as a semantially sound basis for assessing proposed program optimizations

and stati analysis tehniques. While it may be naive to expet the algebrai

laws of equivalene (or ordering) to suggest optimizations, it is nevertheless

expeted that any optimization preserves the operational behavior of a pro-

gram (or at least the important behavioral properties needed in the ontext

of a partiular omputation). Thirdly, the operational desriptions give us a

framework in whih ompiler veri�ation an be formulated and arried out

[dS92℄. Finally, operational frameworks allow us to explore novel, alternative

implementation tehniques | by studying di�erent abstrat implementations

that realize the same spei�ations. A noteworthy approah in this respet

is that of Hannan and his ollaborators [Han94℄.

Strutural operational tehniques have been suessfully employed with

great suess for studying the orretness of ompiler tehniques and hard-

ware implementations [Tin01, WBB92, WO92℄, for ompiler veri�ation [dS92,

HP92℄, for establishing type soundness following the work of Wright and

Felleisen [WF94℄, for stati program analysis [MS96℄ and deriving proof rules

for funtional languages [San97℄.

We also should mention that there are areas of ruial importane to

ompiler developers where operational tehniques have not been seriously

applied. An example is oating-point omputation, where to our knowledge,

the intriaies of the numerial models proposed and used have not been

adequately addressed in an operational framework.

Operational desriptions at di�erent levels of abstration. Formal

operational desriptions of program exeution an be presented in several dif-

ferent ways. In fat, having di�erent desriptions may serve a useful purpose,

espeially sine they are usually presented at varying levels of abstration.

In the following paragraphs, we give a brief overview of three broad levels of

operational desription, whih have historially tended (roughly) to go from

\low-level" to \high-level" desriptions for the same language, though there

have been notable exeptions where implementations have been guided by

higher-level spei�ations.

The very �rst step in providing a desription of a language independent

4

of any partiular implementation is to onentrate on the abstrat syntati

struture of programs in the language rather than on the onrete syntax.

This also has the advantage of being able to abstrat over di�erent onrete

renderings of a onept in di�erent languages, e.g., the syntax used for as-

signment in Pasal versus that used in C. A relatively higher level semanti

desription than a partiular implementation is ahieved by translation of

the abstrat syntax into instrutions of a simple mahine, the desription of

whih is given in abstrat terms, typially as a �nite olletion of rules. Suh

an idealized mahine is alled an abstrat mahine.

Reasoning about programs using abstrat mahine desriptions onsists

of reasoning about the proess of translation, and then reasoning about ex-

eution sequenes of the abstrat mahine. A signi�ant observation that

greatly simpli�ed the �rst aspet was the following: The abstrat syntax of

most languages is indutively haraterized, and the translation to the ma-

hine instrutions tends to be a mapping that preserves the abstrat syntati

struture, often a homomorphi funtion.

A good early example of this kind of operational desription is Landin's

use of the so-alled SECD mahine to speify the operational semantis of

a quintessential (all-by-value) funtional language ISWIM [Lan65a℄. Also

well known is the Warren Abstrat Mahine (WAM) [War83℄, used to speify

the exeution mahinery for Prolog. Abstrat mahines are a popular (and

often the �rst) method for speifying the exeution semantis of a proposed

language as well as for outlining an implementation. For instane, abstrat

mahines were used in presenting the �rst formal operational desriptions of

various extensions to the funtional paradigm suh as integrations of fun-

tional programming with onurrent programming models based on ideas

from proess algebra [Car86a, Car86b, GMP89℄.

Although abstrat mahines provide higher-level, implementation inde-

pendent spei�ations of program exeution, it is not always lear how ef-

fetive suh tehniques are in proving program properties, notions of pro-

gram equivalene and developing a semantially-justi�ed algebra of programs.

Moreover, proofs about program exeution are (often tedious and umber-

some) indution arguments on exeution sequenes, using ase analyses on

whih rule is employed at eah step, with little referene to the original soure

programs and their struture.

A seond and novel step was the development of strutural operational se-

mantis, or \SOS", where program behavior was expressed diretly in terms

of the soure programs (and perhaps a few anillary data strutures) without

5

any intervening translation to an abstrat mahine. The strutural approah

onsists of providing an indutive de�nition of a relation desribing program

exeution, whih follows the indutive struture of the abstrat syntax. Thus,

in the operational setting, the approah adheres to a ompositionality prini-

ple assoiated with Frege that \the meaning of a phrase an be obtained from

the meaning of its omponents in a well-de�ned way", a feature of the Sott{

Strahey style of denotational semantis. The standard presentation of the

indutively de�ned relation is by using inferene rules. The onsequent of a

rule de�nes a transition from a ompound expression, whih depends on the

transitions for one or more of its omponents spei�ed in the rule anteedent.

This indutive approah based on abstrat syntati struture is also appro-

priate for formulating stati semantis. An added bonus of using relations

is that features suh as non-termination and partiality, non-determinism, er-

ror on�gurations and various others an easily be aommodated into the

framework without having to resort to more diÆult mathematial onepts.

The assoiated proof tehniques are based on indution on the proof trees

built using the inferene rules, or equivalently | sine the inferene rules are

presented in a syntax-direted manner | on the struture of the soure

program. Notions of program equivalene or ordering are stated diretly in

terms of the soure programs rather than via any other mahinery, and thus

the development of an algebra of programs gets failitated. It is this aspet

of strutural indution that justi�es the moniker \strutural", sine the other

tehniques also ultimately depend on program struture.

The pioneering works where the strutural approah is artiulated are

those of Plotkin [Plo81, Plo83℄, Milner [Mil80℄ and Kahn [Kah87℄, although

instanes of the strutural approahes predate these publiations | most

notably, the operational semantis of various �-aluli [Bar84℄. Strutural

semantis omes in a variety of avors, and we broadly lassify them as:

(i) \big-step", often alled \natural" due to its onnetions with normal-

ization in Natural Dedution proof systems [Kah87, BH87℄, and sometimes

relational [MTHM97℄ or proof-theoreti [MH90℄; and (ii) \small-step", whih

is often alled \redution" following the terminology used in the �-alulus

[Plo81℄. Big-step semantis justify a omplete exeution sequene using a

tree-strutured proof whereas small-step semantis provide tree-strutured

justi�ations for eah step of the sequene. There are, however, situations

where a \mixed-step" formulation is onvenient. In ontrast, abstrat ma-

hine semantis onsists of a sequene of steps, eah justi�ed as being an

instane of a onditional rewrite rule.

6

Yet another dimension in the varieties of strutural operational semantis

is the use of labelled relations that allow the spei�ation of the interation

between a program and its environment during exeution. Most examples of

labelled relations are in a small-step style, and abstrat mahines rarely use

labelled relations at all.

One of the aims of this hapter is to onvey to the reader the rudiments of

these three kinds of operational semantis and their inter-relationships and

important syntati properties, suh as onuene and standardization. We

endeavor to present these notions in frameworks that are as simple and fa-

miliar as possible, and assuming minimal onepts. Various aspets of these

onnetions have been studied in great detail elsewhere, assuming varying de-

grees of familiarity with the onepts. Plotkin [Plo81℄ overs a large variety of

onstruts in the redution semantis framework. Some subtle issues arising

in relating the big-step and small-step formulations are explored in [Ast91℄.

Winskel's book [Win93℄ studies the relation between big-step and denota-

tional semantis for simple imperative and funtional languages. Hannan

and Miller [MH90℄ present a framework for onstruting abstrat mahines

from big-step semantis for funtional languages via a series of orretness

preserving transformations. Hannan further explores onrete realizations

of the mahines [Han91℄. Plotkin [Plo75℄ studies the onnetion between

the redution semantis of the all-by-value �-alulus and its abstrat ma-

hine (and respetively for all-by-name), as well as how the aluli relate to

one another by ontinuation-passing style (CPS) translations. An exellent

referene overing muh of this material in detail is [AC98℄.

Dislaimers. This hapter does not attempt to survey the variety of oper-

ational semantis frameworks used in the spei�ation and implementation

of programming languages. In partiular, two major approahes have been

negleted | those of Ation Semantis [Mos92℄ and Evolving Algebras or

Abstrat State Mahines [Gur93℄. Ation Semantis is based on ideas from

universal algebra, and seeks to ombine the salient strong features of denota-

tional and operational approahes, without their weaknesses. The semanti

spei�ation is given round the basi ations in a system, and the approah

addresses the important issues of readability and modularity of semantis

frameworks. In the sequel, we will see that even small language extensions

neessitate major hanges in the semanti rules. Ation semantis has been

suessfully used in diverse appliations, a very signi�ant one in the area of

7

ompilation being the work of Palsberg on provably orret ompiler gener-

ation [Pal92℄.

Evolving algebras, or abstrat state mahines as they are alled now, are

based on the idea of interpreting the dynami semanti ations of a system as

operators of an algebra that evolves during exeution. The approah is very

general and permits spei�ation of a system at di�erent levels of abstration.

The operational framework is losely related to onditional rewriting systems,

and the theory also addresses the mathematial issue of algebrai models for

rules. Furthermore, abstrat state mahine desriptions admit parallelism

(onurreny) in an extremely natural way. They have been used extensively

for desribing a variety of systems and languages, suh as Prolog [BS90℄

and Modula-2 [Mor88℄, apart from being used as a vehile for understanding

various onurreny features of Ada and other suh intriaies.

We have also onentrated on only three paradigms | imperative, fun-

tional and onurrent | and not addressed issues in logi programming and

objet-oriented programming. Nor have we examined seriously the issues

that arise when di�erent suh paradigms are integrated in a single language.

Relationship with other kinds of semantis. An alternative to oper-

ational tehniques for speifying the semantis of programming languages is

providing mathematial models, i.e., denotational semantis (well known text

books on denotational semantis are [Sto77, Sh86℄). Denotational frame-

works are also spei�ed indutively on abstrat syntax. The attration of

denotational methods is that they provide rih mathematial theory for rea-

soning about programs. Moreover, when the denoted objets are readily

onstrutible in a omputational framework, the semantis an be viewed as

providing an immediate implementation of the language.

However, two questions immediately arise when providing a language with

a denotational model: First, whether suh a model is in (omplete) agree-

ment with operational intuition. Milner was the �rst to propose a riterion,

alled full abstration, whih formalizes this notion of \omplete agreement"

between the two forms of semantis. He onviningly argues that it is the

operational semantis that should be the referene (the \touhstone") for

assessing mathematial models, rather than the onverse, sine operational

models are (usually) set up with minimal preoneptions. The seond ques-

tion is whether there is indeed a unique mathematial model. Milner points

out that any mathematial model an apture only some aspets of the opera-

8

tional behavior, whereas there may be diverse aspets that an be of interest

| espeially in non-deterministi omputations. Operational frameworks,

being relational, an easily aommodate aspets suh as non-determinism,

partiality, erroneous omputations, et., with minimal reworking of de�ni-

tions, whereas these may neessitate signi�ant hanges to the mathematial

models used in a denotational desription.

Another alternative to the operational approah is the so-alled axiomati

semantis [Hoa69℄ in whih the meaning of a programming onstrut is given

using proof rules within a program logi. The orientation of the approah is

towards proving program orretness with respet to logial spei�ations.

Again, one ould argue for the primay of operational tehniques to interpret

and justify the soundness of the logial rules. Moreover, the formulation of

operational semantis using inferene rules in the SOS approahes together

with the indued algebrai notions of equivalene or ordering on programs

inorporate many aspets of the axiomati approah into operational ones

| ompositionality, syntax-orientation and proof theory in partiular.

It must be noted, however, that the three approahes are not mutually

exlusive or oniting. Eah �nds use when reasoning about programs, and

often while employing a partiular kind of approah, one may resort to an-

other. For instane, while reasoning about the operational semantis (proving

meta-theorems) it may be onvenient to use results from the denotational se-

mantis sine this enables one to abstrat away irrelevant operational details

and to use abstrat mathematial onepts.

Struture of this hapter. The rest of the hapter is strutured as

follows. In x2, we introdue various important rudimentary onepts used

in desribing the operational behavior of systems. We start with the notion

of transition systems, and then proeed to providing meaning to abstrat

syntax trees. We use a simple language of expressions to illustrate three

di�erent levels of operational desription. We enrih the language with vari-

ables and then soped loal de�nitions. x3 presents the operational semantis

for a simple imperative language. A variety of extensions of this language to

inorporate non-determinism and parallel exeution, blok struture, simple

proedures and storage alloation are disussed. In x4, we disuss desrip-

tions of higher-order funtions, referring to the �-alulus and two evaluation

strategies | all-by-name and all-by-value, together with environment ma-

hines for implementing these aluli. Then, in x5, we mention features of

9

languages involving onurreny and interation that are naturally modeled

using labelled transitions, before onluding in x6.

2 Preliminaries

2.1 Transition Systems

The primary task involved in providing an operational desription of a sys-

tem is to speify the on�gurations of the system and the possible transitions

between on�gurations. A transition system onsists of a olletion (usually

a set) S of on�gurations and a binary relation on on�gurations �!� S�S

alled the transition relation. We use the metavariable s to range over on�g-

urations. In most appliations, a subset I � S, alled initial or starting on-

�gurations, is distinguished. Terminal on�gurations are those from whih

a transition is not possible | fs 2 S j 6 9s

0

: s �! s

0

g. We denote the

transitive losure of the transition relation by �!

+

and its reexive transi-

tive losure by �!

�

. Termination arguments often require showing that the

transition relation is well-founded.

A losely related notion is that of a labelled transition system (LTS).

Let L be a set of labels, with l a typial label. An LTS onsists of a set

of on�gurations S, the label set L, and a relation

�

�! � S � L � S

alled the labelled transition relation. We write s

l

�! s

0

to mean that

hs; l; s

0

i 2

�

�! . Often a LTS is presented as a olletion of TSs sharing

the same on�gurations S, but with one transition relation for eah label.

Example 2.1 (Lexial Analysis) Lexial analysis an be ast as a transi-

tion system. Let M = hQ; q

0

2 Q; Æ � Q � � � Q;F � Qi be a �nite state

automaton reognizing a language over alphabet �, and let & 2 �

�

be any

string over that alphabet. Let � denote the empty string, and let a& denote

the string starting with letter a followed by the suÆx string &.

Let S = Q��

�

and let �! be de�ned as hq; a &i �! hq

0

; &i if and only

if (q; a; q

0

) 2 Æ. I = fhq

0

; &i j & 2 �

�

g is the set of initial on�gurations.

Terminal on�gurations are of two kinds: those in F � f�g are \aepting"

whereas those in (Q � F � f�g)

S

fhq; b &i j :9q

0

: (q; b; q

0

) 2 Æg are \non-

aepting".

Example 2.2 (An automaton is an LTS) Finite State (and indeed other)

Automata are examples of labelled transition systems, with the on�gurations

10

S being the states, labels being � and Æ being the labelled transition relation.

The example of automata also motivates a bunh of onepts important

in operational semantis. We usually assoiate a notion of observation with

a transition system (e.g., onsumption of a string and terminating in an a-

epting state in a �nite state automaton), with respet to whih transition

systems are asribed observable behaviors (e.g., strings aepted by the au-

tomaton). There an be di�erent notions of what is observable for even the

same transition system. Any given notion of observability yields a orre-

sponding notion of equivalene or ordering between two transition systems

based on their observable behaviors.

De�nition 2.3 (observational equivalene and ordering) TS

1

is said

to be observably simulatable by TS

2

, written TS

1

� TS

2

, if every observable

behavior possible of TS

1

is also possible of TS

2

. TS

1

and TS

2

are onsidered

equivalent, denoted TS

1

� TS

2

, if both have the same observable behaviors.

Equivalene of two systems does not neessarily imply that one an be

replaed by the other in any ontext, sine some notions of equivalene may

not be preserved under eah and every onstrution possible in a lass of

transition systems.

The automata example also give an idea of how a LTS an relate to a TS.

The automaton LTS desribes the ontrol aspet of the transition system in

abstration from the data (the string &) on whih it is run. The dihotomy

between ontrol and data is not the entral issue, and is indeed relevant to

this and some other examples. Rather, labels are used to indiate interation

between a omponent of a larger system with its ontext. This interation

an be of a variety of kinds, and hene there are diverse uses of labelled

transition systems. For example, a proess reeiving signals and performing

some omputation in response an be spei�ed separately from the proesses

sending it signals. The use of labelled transitions permits the desription of

a omponent's behavior separately from that of its ontext, with the labels

speifying the interation apabilities. Very rudely, a labelled transition

system an be turned into a orresponding unlabelled one by by providing

within the system \enough ontext" | thus \losing up" a desription of an

open system. Conversely, ontexts an be used to label transitions. The main

issue is to haraterize interesting deompositions of systems into program

fragment and ontext. This is still very muh the subjet of ative researh,

with some reent promising results in this diretion [Lei01, Sew98℄.

11

Example 2.4 (Parsing) We also enounter a transition system in parsing.

String generation an be thought of as a transition system as follows. Let

G = hN;T;P; S 2 Ni be a ontext-free grammar. Let the on�gurations S =

(N

S

T)

�

and let the transition relation �! be de�ned as s �! s

0

if and only

if there exists a prodution r 2 P suh that r � X ! w for some X 2 N

and w 2 (N

S

T)

�

, s = s

1

Xs

2

and s

0

= s

1

ws

2

. S is the unique starting

on�guration, and those terminal on�gurations that are in T

�

and reahable

from S are the \generated" strings.

This transition system an be \reversed" to yield a transition system for

parsing. The prodution rules are used in the reverse diretion; I = T

�

is the

set of initial on�gurations, there is a single \aepting" �nal on�guration

S, and possibly many other terminal on�gurations that are \non-aepting".

Remark 2.5 Plotkin's seminal paper [Plo81, hapter 1℄ lists several di�erent

examples of transition systems or labelled transition systems that one enoun-

ters in omputer siene | �nite state automata, transduers, grammars of

di�erent types, k-ounter mahines, stak mahines, Petri Nets, Turing Ma-

hines, Semi-Thue systems, Post systems, L-systems, Conway's Game of

Life, push down automata, tree automata, ellular automata, neural nets. In

addition, many dynami systems we enounter in daily life may be modeled

as transition systems. Games are good examples of transition systems.

Properties. Transition systems provide a framework on whih we an

drape various formal veri�ation exerises. Many of these involve establishing

that a partiular transition system satis�es various kinds of properties. One

suh important property is totality. A transition system is total if it has

no terminal on�gurations, i.e., for every s 2 S there exists s

0

2 S suh

that s �! s

0

. Another ommon property is determinism: for every s 2 S,

jfs

0

j s �! s

0

gj � 1. These notions an also extend to labelled transitions,

either \per-label" or \aross labels".

A ruial property in the above examples for lexial and grammatial

analysis is reahability from designated initial on�gurations. Reahability is

also used in proving safety properties of systems | no \bad" on�guration

is reahable from spei�ed initial on�gurations.

Another property is what we all properly terminating, where all terminal

on�gurations are \good". This is an example of a liveness property | that

\something good an eventually happen".

12

Another important meta-property is onuene: for any s; s

1

; s

2

2 S,

whenever s �!

�

s

1

and s �!

�

s

2

, then there exists s

3

2 S suh that

s

1

�!

�

s

3

and s

2

�!

�

s

3

. Stronger onuene properties are the so-alled

\diamond" properties. A transition system exhibits the \strong diamond"

property if for any s; s

1

; s

2

2 S, whenever s �! s

1

and s �! s

2

and s

1

6= s

2

,

then there exists s

3

2 S suh that s

1

�! s

3

and s

2

�! s

3

. The transition

system has a \weak diamond" property if whenever s �! s

1

and s �! s

2

and s

1

6= s

2

, then s

3

is reahable from s

1

and s

2

via the reexive transitive

losure of the transition relation, that is, s

1

�!

�

s

3

and s

2

�!

�

s

3

.

Various properties follow from ertain �niteness onstraints on transition

systems. A TS (or LTS) is alled

� �nitely branhing if for every s 2 S, the set fs

0

j s �! s

0

g is �nite.

� �nite if it is �nitely branhing and �! is a well-ordering.

� regular if it is �nitely branhing and for eah s 2 S, the set fs

0

j s �!

�

s

0

g is �nite, where �!

�

is the reexive transitive losure of �!.

In general, transition systems whose transition relation an be harater-

ized in a onise but abstrat manner (usually as a set of rules) are of inter-

est, sine they usually admit e�etive tehniques for establishing properties

of those systems. Finite or indutively haraterized transition systems are

extremely ommon, with indution and ase analysis on (linear) sequenes of

transitions being the most widely wielded proof methods for reasoning about

exeution sequenes or, at a higher level, observable behavior.

2.2 Strutural Operational Semantis for Expressions

Abstrat syntax. It is the abstrat rather than the onrete syntax of a

language that is of interest while speifying the meaning of programs. Op-

erational semantis desriptions manipulate these abstrat syntati objets

and work wholly within syntax. For onveniene, however, it may be nees-

sary to augment the syntax with \extra-syntati" data strutures, but these

entities an be shown to orrespond in some obvious way to purely syntati

entities. The abstrat syntax of programs an be indutively haraterized,

e.g., as trees. We will use abstrat grammars as a handy notational devie

for desribing abstrat syntati ategories.

13

We present three di�erent kinds of operational desription for an ex-

tremely simple language Exp; the presentation an be adapted to any lan-

guage of �rst-order expressions.

Example 2.6 (Simple arithmeti expressions) Let Num denote the de-

numerable set of numerals (in some radix), and let X be a denumerable set

of variables, with x; y; z typial meta-variables ranging over X . Exp an

be presented using the following abstrat grammar, where e; e

1

; e

2

are meta-

variables ranging over Exp, and n ranges over Num.

e 2 Exp ::= x j n j (e

1

+ e

2

)

Expression evaluation onsists of simplifying a given expression to a form

that annot be further simpli�ed, hopefully to an element in a set of \good"

anonial forms that we loosely all \values" (there are a variety of notions of

\value" depending on the language). The �rst task in presenting operational

semantis for expressions is to identify the set V of values. In the next few

examples the set V will be the set of numerals Num. The meta-variable v

ranges over V.

For expressions ontaining variables, we need to know what the variables

stand for in order to simplify them to values. Aordingly, we present the

operational semantis with respet to a �nite domain funtion alled an envi-

ronment : X !

�n

V, that maps variables to values. Let Env denote the set

of suh �nite domain funtions from variables to values

1

. Environments are

an example of \extra-syntati" onstrutions we employ in our operational

desription. We write dom() to mean the set fx 2 X j (x) de�nedg. We

work with �nite domain funtions sine it is inappropriate to frame essen-

tially syntati ideas in terms of in�nite strutures. If

1

and

2

are �nite

domain funtions, we denote by

1

[

2

℄ the �nite domain funtion with domain

dom(

1

)

S

dom(

2

) de�ned as

1

[

2

℄(x) =

8

>

<

>

:

2

(x) if x 2 dom(

2

)

1

(x) if x 2 dom(

1

)� dom(

2

)

unde�ned otherwise

1

It is also possible to work with environments whih are �nite domain funtions from

variables to variable-free expressions rather than to values. The nature of the rules and

results does not hange, exept perhaps in some minor details.

14

(var)

 ` x =)

e

(x)

where x 2 dom()

(num)

 ` n =)

e

n

(add)

 ` e

1

=)

e

n

1

 ` e

2

=)

e

n

2

 ` (e

1

+ e

2

) =)

e

n

3

where n

3

= ADD(n

1

; n

2

)

Table 1: \Big-step" semantis for evaluating simple expressions

Big-step or Natural Semantis We �rst present a \big-step strutural

operational semantis" or \natural semantis" for Exp.

The \big-step" transition relation =)

e

� Env � Exp � V(= Num) is

de�ned indutively as the smallest relation losed under the inferene rules

given in Table 1. We read the relation ` e =)

e

n as \given environment

, expression e an evaluate to value n". When the environment is not

needed, and so an be arbitrary, we sometimes omit writing \ `".

This relation an be viewed as a transition system with on�gurations

S = (Env �Exp). A transition ` e =)

e

v is understood as a transition

h; ei ! h; vi, highlighting the fat that transitions leave unhanged.

The way these rules are used is that if we have an expression that mathes

the left side of the onsequent (\denominator") of a rule via a substitution

� for the shemati variables, and if using the same substitution �, all the

anteedents (statements in the \numerator") an be indutively established

while also respeting any side-onditions, then the expression an evaluate to

an expression of the form given on the right side of the onsequent instaned

using �. Used in this manner, the rules an be seen as forming tree-strutured

justi�ations or proof trees of why an expression e an evaluate to a value

n | the goal judgment (e =)

e

n in this ase) is at the root, the leaves

are axiom instanes, and internal nodes orrespond to rule instanes with a

branh for eah anteedent.

The use of proof rules to speify transition systems is itself an area of

researh. [AFV00℄ ontains an exellent summary of rule spei�ations, the

meanings of the transition systems they speify and of various formats and

the formal properties they guarantee (see also [Mi94℄).

Observe that the rules are syntax-direted, in that there is a rule for eah

15

syntati ase. Further, in rules with anteedents, the onsequent of the rule

desribes the evaluation of a ompound expression; this evaluation depends

on the evaluation of the omponent subexpressions, desribed in the rule's

anteedents. The base ases of the relation =)

e

are the axioms (num) and

var, whih state(respetively) that any numeral evaluates to itself, sine it is

in anonial form, and that a variable evaluates to the value assoiated with

it in the environment. Note, however, that instanes of the rule var apply

only when the side ondition or proviso x 2 dom() holds. The indution

ase is the rule (add). The rule may be read as \given , expression (e

1

+ e

2

)

an evaluate to numeral n

3

if expression e

1

an evaluate to a numeral n

1

with

respet to , and e

2

to n

2

also with respet to gamma, and where adding

numerals n

1

and n

2

yields numeral n

3

. We assume there is a syntati routine

ADD for adding numerals.

Note that the big-step relation is reexive on values. The relation is not

total on environments and Exp, beause the var rule does not speify how to

evaluate a variable y 62 dom().

Typial exerises involve studying various properties of this relation. For

instane, assuming that the proedure ADD is funtional and total, we an

show that the relation =)

e

is indeed a partial funtion:

jfn j ` e =)

e

ngj � 1 for all 2 Env and e 2 Exp:

If vars(e) is the set of variables in e, we an show:

Proposition 2.7 For any e 2 Exp, 2 Env, if vars(e) � dom(), there

exists n 2 Num suh that ` e =)

e

n.

Proof of this proposition is by indution on the struture of the proof tree of

 ` e =)

e

n, whih amounts to indution on the struture of e, sine the

relation is syntax-direted.

Further, we an show that the big-step operational semantis agrees with

any \standard" denotational semantis if the proedure ADD behaves in

aordane with the orresponding mathematial operation. Let � be an

assignment of values to variables, let [[n℄℄ denote the number represented by

numeral n, and let [jej℄� be the denotation of e with respet to �.

Proposition 2.8 For any e 2 Exp, ; � suh that vars(e) � dom() and for

all x 2 dom(), �(x) = [[(x)℄℄: ` e =)

e

n if and only if [jej℄� = [[n℄℄.

This result too is proven by indution on the struture of e.

16

Small-step or Redution Semantis. The big-step relation spei�es

what normal forms an expression may have. It is a high-level spei�ation,

possibly non-deterministi, and does not detail how the omputation may be

performed. It is inherently parallel; for example, in simplifying (e

1

+ e

2

), no

indiation is given as to whether to simplify e

1

before e

2

or otherwise. Nor

is any hint given on how to implement the relation with �nite resoures.

In ontrast, a small-step or redution relation is used to speify not merely

what an evaluation may return, but also a strategy to ahieve it. This ap-

proah is essentially the step-wise rewriting approah followed, for example,

in junior shool when teahing hildren to simplify arithmeti expressions,

with the strategy speifying whih subexpressions may be simpli�ed at any

stage.

Again, on�gurations are simple arithmeti expressions: S = Env � Exp

and V = Num. The small-step relation �!

e

1

� Env � Exp � Exp, is between

two expressions, given an environment. The important di�erene with big-

step semantis us that expressions do not simplify \in one go" to a value, but

rather simplify one step at a time to other expressions, and perhaps �nally

to values. The redution relation is also de�ned indutively, using inferene

rules, whih are syntax-direted, but in a sense slightly di�erent from that in

the big-step semantis. There may be several rules for the same syntati

onstrut, and some onstruts may have no assoiated rules. Moreover, the

ase analysis is not stritly on syntati struture but rather on an analysis

of where in an expression simpli�ation an take plae. Small-step redution

relations are seldom transitive and are usually irreexive.

Table 2 displays a redution relation for evaluating simple arithmeti

expressions. The rule (vbl) says that variables are simpli�ed to the value

spei�ed in the given environment. As expeted, the rule has a proviso

requiring that the variable be in the environment's domain. Note there is no

rule for numerals! The rule (add

0

) an be understood as saying \(n

1

+ n

2

)

simpli�es to the result of ADD(n

1

; n

2

)". The rules (add

l

) and (add

r

) are

symmetri; the former says that if e

1

an simplify to e

0

1

, then (e

1

+ e

2

) an

simplify to (e

0

1

+ e

2

) in a single step (similarly for simplifying e

2

�rst). Note

that the relation is non-deterministi, and involves loalized rewriting.

Observe that it is possible for an expression, suh as ((7 + 21) + y) where

y 62 dom() for a given environment , to be redued a few steps before it

gets \stuk". This is in ontrast to the big-step situation where no transition

is possible for that expression with respet to suh an environment .

An expression of the form (n

1

+ n

2

), an instane of the left side in an

17

(vbl)

 ` x �!

e

1

(x)

provided x 2 dom().

(add

0

)

 ` (n

1

+ n

2

) �!

e

1

n

3

where n

3

= ADD(n

1

; n

2

)

(add

l

)

 ` e

1

�!

e

1

e

0

1

 ` (e

1

+ e

2

) �!

e

1

(e

0

1

+ e

2

)

(add

r

)

 ` e

2

�!

e

1

e

0

2

 ` (e

1

+ e

2

) �!

e

1

(e

1

+ e

0

2

)

Table 2: \Small-step" semantis for arithmeti expressions

axiom, is alled a redex. Any reduible expression an be shown to ontain

a redex. Di�erent small-step relations may be proposed that di�er in whih

redex should be seleted �rst for redution.

Typial results about small-step semantis usually pertain to the reexive

transitive losure of the redution relation. For instane, we an show the

agreement with the big-step semantis:

Proposition 2.9 For all e 2 Exp, 2 Env and n 2 Num: ` e (�!

e

1

)

�

n

if and only if ` e =)

e

n.

This and similar results are proven by indution on the number of redution

steps involved in ` e (�!

e

1

)

�

n, and within eah redution step, by an

indution on the depth of the proof tree justifying the single redution step.

A orollary to the proposition above is that the \redution-down-to-

values" relation is a (partial) funtion, though suh results an be shown

from �rst priniples without referene to the big-step semantis.

A more interesting result to show about the relation �!

e

1

is whether it

satis�es a strong diamond property. The proof of this property is by strutural

indution on the original expression, and analysis on how it ould redue to

di�erent expressions using indution on these justi�ations. This onuene

result provides a diret proof that while redution is non-deterministi, the

input-output relation it indues is a funtion. (Totality is often shown by

proving that a redution relation is well-ordered.)

18

A onuene result an greatly simplify reasoning about program exeu-

tion, sine it essentially says that we need not onsider eah possible sequene

but merely any one sequene to a point of onuene. Conuene properties

an play an important role in ompilation, sine onuent systems admit

simpli�ations in any order, inluding strategies that involve simpli�ation

of subexpressions in parallel or even in non-deterministi fashion; these may

make sense in ertain arhitetures suh as those involving pipelining or mul-

tiple omputational units. Non-onuene should alert a ompiler developer

that a proposed optimization may in fat be unsound if it alters redution

order, and ought therefore be avoided.

The small-step framework admits various restrited versions of redution

orresponding to speialized strategies, typially those that are deterministi

or easier to implement. For instane, we ould replae the (add

r

) rule by

more restritive versions, e.g.,

(add

lseq

r

)

 ` e

2

�!

e

1

e

0

2

 ` (n + e

2

) �!

e

1

(n + e

0

2

)

whih allow simpli�ation of the seond summand only when the �rst is

already a numeral. With these more restritive rules, the redution relation

beomes deterministi; for any expression at most one redution rule applies.

The modi�ed relation spei�es a sequential left-to-right evaluation strategy.

It is then important to prove that this strategy an simulate the original

relation orretly in the sense that both relations have the same reexive

transitive losures when onsidering redutions down to values. This result

is an example of standardization: if an expression an be redued to a value

by any strategy, it an be redued by a standard sequene using a partiular

strategy

2

.

Standardization is useful in reasoning about program exeution, sine it

allows one to transform any sequene of redutions to another one about

whih it is somehow easier to reason. Standardization results are often em-

ployed, for instane, in showing that ertain redution sequenes are not

possible. They an be important to a ompiler writer, sine they permit

the use of possibly more eÆient implementation strategies without having

to sari�e any generality. It must be emphasized that standardization is

a very important syntati meta-theorem of transition systems that applies

only in systems whose extensional behavior (input-output) is deterministi.

2

Riher languages may require more ompliated standardization results.

19

Example 2.10 Phenomena suh as non-termination sharpen the di�erenes be-

tween various evaluation strategies. Consider a simple language of possibly non-

terminating boolean expressions given by the abstrat grammar:

b := tv j
 j (b

1

_

b

2

) tv 2 ftrue; falseg

We de�ne three di�erent small-step relations (omitting the \ `" in the rules):

�!

omp

1

whih evaluates all parts of a disjuntive boolean expression,

 �!

omp

1

(tv

1

_

tv

2

) �!

omp

1

tv

3

tv

3

= OR(tv

1

; tv

2

)

b

1

�!

omp

1

b

0

1

(b

1

_

b

2

) �!

omp

1

(b

0

1

_

b

2

)

b

2

�!

omp

1

b

0

2

(tv

_

b

2

) �!

omp

1

(tv

_

b

0

2

)

�!

ls

1

whih is a left sequential evaluation,

 �!

ls

1

b

1

�!

ls

1

b

0

1

(b

1

_

b

2

) �!

ls

1

(b

0

1

_

b

2

)

(true

_

b) �!

ls

1

true (false

_

b

2

) �!

ls

1

b

2

and �!

par

1

whih is parallel evaluation

 �!

par

1

b

1

�!

par

1

b

0

1

(b

1

_

b

2

) �!

par

1

(b

0

1

_

b

2

)

b

2

�!

par

1

b

0

2

(b

1

_

b

2

) �!

par

1

(b

1

_

b

0

2

)

(b

1

_

false) �!

par

1

b

1

(false

_

b

2

) �!

par

1

b

2

(b

1

_

true) �!

par

1

true (true

_

b

2

) �!

par

1

true

If a boolean expression b reahes normal form via �!

omp

1

then it reahes the

same normal form via �!

ls

1

, in whih ase it reahes the same normal form via

�!

par

1

. However, the onverse is not true:

(true

W

) �!

par

1

true and (

W

true) �!

par

1

true, but

(true

W

) �!

ls

1

true whereas (

W

true) �!

ls

1

(

W

true). However,

both (true

W

) �!

omp

1

(true

W

) and (

W

true) �!

omp

1

(

W

true).

20

Environment-free formulations. We pause briey to remark that the

formulation of the above relations using environments an be transformed to

transition systems that operates wholly within syntax. For this we need the

notion of substitution.

De�nition 2.11 (substitution) A substitution � is a �nite domain fun-

tion from X to Exp. Equivalently, it an be viewed as a total funtion that is

almost everywhere identity. We write e� to denote applying � to e yielding

an expression obtained by simultaneously replaing in e every ourrene of

variable x by the expression �(x) for eah x 2 vars(e).

An environment is a spei� instane of a substitution. It an easily be

shown that if ` e (�!

e

1

)

�

n then ` e (�!

e

1

)

�

n (the variable free ase)

and likewise for =)

e

.

This observation may ause you to wonder why we introdued environ-

ments in the �rst plae. The reason is that substitution is usually an ex-

pensive operation, whereas the environment data struture allows the om-

putation to \look up" the expression to be substituted for a variable as and

when it is needed. Moreover, the later setions will show that environments

arise naturally when we try to implement languages with blok struture

and funtions. The environment-less formulation eases the presentation of

the following notion of equality.

Operational notions of equality. Given a small-step relation suh as

�!

e

1

, it is often natural to de�ne a notion of equality =

e

on expressions

as the symmetri reexive transitive losure of the redution relation. This

is preisely the idea taught in junior shool to show that two arithmeti

expressions are equal.

De�nition 2.12 (Equality) e =

e

e

0

if there is a sequene of expressions

e

1

; : : : ; e

n

suh that e � e

1

, e

0

� e

n

and for eah i : 1 � i � n � 1, either

e

i

�!

e

1

e

i+1

or e

i+1

�!

e

1

e

i

.

If the �!

e

1

relation is weakly onuent, e and e

0

an be redued to a ommon

form.

Abstrat mahines. A more ommon approah to speifying arithmeti

expression evaluation, familiar to most omputer sientists after an introdu-

tory data strutures ourse, is by using a stak mahine. This semantis is at

21

a lower level than either the big-step or small-step semantis, sine it departs

from providing a spei�ation of evaluation diretly in terms of the soure

syntax, and also sine it employs additional data strutures.

The op-odes of the mahine are instrutions for loading numerial on-

stants, for adding numerals and for looking up bindings of variables. To avoid

introduing new symbols, we employ the same symbols for the op-odes of

the mahine. Let OpCodes be de�ned as sequenes (strings) over the sym-

bol +, numerals, variables in X , with the idea that a variable is a look-up

operation

3

.

OpCodes = (Num

[

X

[

f+g)

�

Consider now a post-order traversal of the abstrat syntax tree of an expres-

sion in Exp. This is de�ned as a reursive funtion ompile : Exp ! OpCodes.

To enhane readability, we have used ^ to indiate string atenation.

ompile(n) = n

ompile(x) = x

ompile((e

1

+ e

2

)) = ompile(e

1

)̂ ompile(e

2

)̂ +

Con�gurations of the abstrat mahine are triples onsisting of an envi-

ronment, a \stak" of numerals, and a sequene of op-odes. Table 3 details

the initialization and transitions (the relation ��.) of the abstrat mahine.

Observe that we have presented a (�nite) set of possibly onditional rewrite

rules in a two-dimensional syntax. The rules are operated by taking any on-

�guration that mathes via a substitution for the shemati variables, e.g.,

; ; S; n; : : :, the pattern indiated in the left side of a rule, and replaing

it with the on�guration obtained by applying the same substitution to the

right side of a rule. In this example the rewrite rules involved are determinis-

ti and \regular", in that at most one rule applies and that no on�guration

an be rewritten to more than one on�guration.

The mahine is initialized with a given environment with respet to

whih expression e is to be evaluated, an empty stak, and a sequene of

op-odes orresponding to ompile(e). (For readability we have used the ML-

like notation :: for sequene onatenation, writing e.g., + :: C

0

to speify

a sequene beginning with + followed by sequene C

0

.) Observe that there

are no inferene rules | merely rewrite rules, whih are applied repeatedly

3

In implementations, we an have a single op-ode that is parametrized by a variable

(or equivalently an address or index orresponding to the variable), and similarly a single

op-ode for loading onstants.

22

load(; e) = h;

j k

; ompile(e)i

variables h; S; x :: Ci ��. h;

$

(x)

S

%

; Ci

onstants h; S; n :: Ci ��. h;

$

n

S

%

; Ci

add h;

6

6

6

6

4

n

2

n

1

S

7

7

7

7

5

; + :: Ci ��. h;

$

n

3

S

%

; Ci where n

3

= ADD(n

1

; n

2

)

unload (h;

j

n

k

; �i) = n

Table 3: Evaluating expressions using an abstrat stak mahine

until no rule applies. The moves depend primarily on the �rst op-ode in

the sequene. The \good" terminal states are those with a single value on

the stak, from whih the results are \unloaded", and an empty sequene of

op-odes.

The operational semantis indued by the abstrat mahine is exatly

the same as the big-step =)

e

(and thus also the losure of the small-step

relation).

Proposition 2.13 For all e 2 Exp, 2 Env and n 2 Num: ` e =)

e

n

if and only if there exists a on�guration s suh that load(; e) (��.)

�

s and

unload(s) = n

The proof involves indution on e and on the number of ��. steps in

reahing the terminal on�guration. In fat, several non-trivial lemmas need

to be shown, whih essentially state that the evaluation of an expression does

not examine or disturb the part of the stak below its initial top, and that

any expression results in a single value on the stak.

A typial result that has to be shown is along the lines of \for any stak

S and ode list C

0

, if

h;

j

S

k

; ompile(e)̂ C

0

i (��.)

�

h;

j

S

0

k

; C

0

i

23

then

j

S

0

k

=

$

n

S

%

for some n 2 Num." The proof is by indution on the

length of the op-ode sequene, but observe that we need to expliitly involve

all \ontexts" in whih an expression may be evaluated | the universal

quanti�ation on all staks S and \ontinuation" ode C

0

| in the statement

of this property.

The above abstrat mahine an be seen as an implementation of a left-to-

right redution. In general, standardization results help mediate the relation-

ship between the abstrat mahine semantis and the redution semantis.

Tuples, reords and onditionals. We make a quik foray into giving

rules for strutured expressions. We onsider pairs (the idea extends easily

to tuples and reords) and a simple onditional (whih generalizes to ase

statements. We only point out that in the rules for onditionals, the test

e

1

is �rst evaluated to a truth value before one of the branhes e

2

or e

3

is

seleted.

We assume that our values v ::= n j tv j hv

1

; v

2

i. The big-step rules for

pairs and onditionals are:

(pair)

 ` e

1

=)

e

v

1

 ` e

2

=)

e

v

2

 ` he

1

; e

2

i =)

e

hv

1

; v

2

i

(if

t

)

 ` e

1

=)

e

true ` e

2

=)

e

v

2

 ` if e

1

then e

2

else e

3

=)

e

v

2

(if

f

)

 ` e

1

=)

e

false ` e

3

=)

e

v

3

 ` if e

1

then e

2

else e

3

=)

e

v

3

24

One possible set of small step rules are:

(pair

l

)

 ` e

1

�!

e

1

e

0

1

 ` he

1

; e

2

i �!

e

1

he

0

1

; e

2

i

(pair

r

)

 ` e

2

�!

e

1

e

0

2

 ` he

1

; e

2

i �!

e

1

he

1

; e

0

2

i

(if

0

)

 ` e

1

�!

e

1

e

0

1

 ` if e

1

then e

2

else e

3

�!

e

1

if e

0

1

then e

2

else e

3

(if

l

)

 ` if true then e

2

else e

3

�!

e

1

e

2

(if

r

)

 ` if false then e

2

else e

3

�!

e

1

e

3

We do not present the abstrat mahine rules but observe that new op-

odes need to be introdued, and the ompile funtion extended. The rule

for a n-tuple-formation op-ode takes n values o� the stak forms an n-tuple

whih is then pushed onto the stak. A reord formation operation will

require a little more jugglery, for example, by sorting the �elds aording a

partiular order (lexiographi, say) at the ompilation stage, and traversing

the abstrat syntax tree aordingly. The op-ode for onditional hoie

piks one of two ontinuations based on the value on the top of the stak.

At an abstrat level, it is possible to talk of ompound op-odes IF (

1

;

2

),

whih are realized on atual mahines by jumps. Another trik, used by

Plotkin [Plo81, page 18℄ as a motivating illustration for advoating more

struture in operational desriptions, is to take the syntax apart and stash the

ontinuations or markers, seleting the orret one based on the evaluation

of e

1

.

2.3 Private de�nitions

Tennent's priniple of quali�ation [Ten81℄ suggests that Exp an be extended

to inlude expressions that employ loally soped de�nitions.

e ::= : : : j let x

def

= e

1

in e

2

In let x

def

= e

1

in e

2

, the sope of the de�nition of x to e

1

is limited to e

2

. The

ourrenes of variables in an expression are now of two kinds: those whih

25

are bound and those whih are free. De�ne fv : Exp ! X as:

fv(x) = x fv(f(e

1

; :::; e

k

)) =

S

k

i=i

fv(e

i

)

fv() = ; fv(let x

def

= e

1

in e

2

) = fv(e

1

)

S

(fv(e

2

)� fxg)

The big-step rules are extended with:

 ` e

1

=)

e

n

1

[x 7! n

1

℄ ` e

2

=)

e

n

2

 ` let x

def

= e

1

in e

2

=)

e

n

2

The small-step rules are:

 ` e

1

�!

e

1

e

0

1

 ` let x

def

= e

1

in e

2

�!

e

1

let x

def

= e

0

1

in e

2

[x 7! n

1

℄ ` e

2

�!

e

1

e

0

2

 ` let x

def

= n

1

in e

2

�!

e

1

let x

def

= n

1

in e

0

2

 ` let x

def

= n

1

in n

2

�!

e

1

n

2

We postpone the presentation of an abstrat mahine that an orretly

deal with soping issues to our disussion of funtions in x4, sine the ma-

hinery needed there subsumes that needed here. Tennent's priniple of

orrespondene relates de�nition mehanisms to parameter-passing and thus

de�nition mehanisms get addressed in the operational semantis for fun-

tion de�nition and all. It suÆes to mention at this stage that the mahines

will now additionally have to stak environments (or strutures ontaining

them) to implement the lexial soping of blok strutured languages.

Instead we will disuss ompound de�nitions. Consider the syntati

ategory Defs with meta-variable d:

d ::= x

def

= e j d

1

;d

2

j d

1

kd

2

with dv : Defs ! X returning the de�ned variables, and fv extended to Defs

dv(x

def

= e) = fxg dv(d

1

;d

2

) = dv(d

1

)

[

dv(d

2

) dv(d

1

kd

2

) = dv(d

1

) ℄ dv(d

2

)

fv(x

def

= e) = fv(e) fv(d

1

;d

2

) = fv(d

1

)

S

(fv(d

2

)� dv(d

1

))

fv(d

1

kd

2

) = fv(d

1

)

S

fv(d

2

)

26

Here ℄ stands for disjoint union, de�ned only when the sets are atually

disjoint.

The big-step semantis uses two mutually reursive (but nevertheless in-

dutive de�nitions): =)

e

as before and =)

d

� Env�Defs�Env . Observe

here that the \values" (anonial forms) for the =)

d

transition system are

environments, whih are \extra-syntati"! The rules for =)

d

are:

 ` e =)

e

n

 ` x

def

= e =)

d

[x 7! n℄

 ` d

1

=)

d

1

[

1

℄ ` d

2

=)

d

2

 ` d

1

;d

2

=)

d

1

[

2

℄

 ` d

1

=)

d

1

 ` d

2

=)

d

2

 ` d

1

kd

2

=)

d

1

[

2

To orretly implement soping, =)

d

returns the inremental hange to the

environment obtained by proessing a de�nition. In sequential de�nitions

we �rst proess d

1

with respet to , whih we augment with the resulting

environment to proess d

2

, whereas with simultaneous de�nitions, the same

environment is used for elaborating the parallel de�nitions. In the last rule,

sine we assumed that dv(d

1

)

T

dv(d

2

) = ;, the union of environments is

well-de�ned.

Finally, sine the priniple of quali�ation may be applied to Defs, we

obtain de�nitions that ontain auxiliary loal de�nitions

d ::= : : : j loal d

1

in d

2

dv(loal d

1

in d

2

) = dv(d

2

) fv(loal d

1

in d

2

) = fv(d

1

)

[

(fv(d

2

)�dv(d

1

))

The big-step semantis of this onstrut is:

 ` d

1

=)

d

1

[

1

℄ ` d

2

=)

d

2

 ` loal d

1

in d

2

=)

d

2

The redution semantis for Defs is somewhat more triky (see [Plo81,

pages 80-81℄). The problem an perhaps be understood in trying to redue

let d in e when d is irreduible. Here, the bindings of d must somehow be

augmented to the outer environment before e an be evaluated. Plotkin

27

employs the expedient of treating environments as a anonial form of de�-

nitions, larifying that they are not in the abstrat syntax but merely in the

ontrol omponent in on�gurations.

[

1

℄ ` e �!

e

1

e

0

 ` let

1

in e �!

e

1

let

1

in e

0

Indeed, this mixing of extra-syntati data strutures (environments) with

abstrat syntax is a somewhat weak point about pure redution semantis.

While the big-step formulations also use extra-syntati onstrutions, their

use is far more disiplined (indeed Astesiano points out that various semanti

de�nitions an be given in the same indutive framework of big-step seman-

tis) [Ast91℄.

Relation to types. We �nish this setion with an important issue of

how the operational semantis relates to type-heking. Indeed, our presen-

tation has avoided typing issues altogether, although they are a signi�ant

part of any strutural semanti presentation. The relationship between typ-

ing and exeution is partiularly signi�ant in strongly-typed languages with

ompile-time type-heking: Programs that type-hek orretly at ompile

time should not raise type errors at run-time. This property an be guaran-

teed if expressions do not hange type during exeution. Suh a theorem is

alled subjet redution. A typial subjet redution (stated for small-step

semantis, but an analogous statement holds for big-step semantis) is:

Let � be a set of assumptions of types of variables under whih

expression e has type � (written � ` e : �). If is an environ-

ment that onforms to �, i.e., it binds variables to values having

type aording to �, and if ` e �!

e

1

e

0

, then � ` e

0

: � .

3 Imperative Languages

We now move on to providing a simple imperative language While with

operational semantis. While has nested within it a language of expressions

(boolean expressions in partiular) and the operational semantis provides

a good illustration of how semantis developed for one syntati ategory

an be employed in the indutive de�nition of another | transitions for

expressions are employed in those for imperative ommands.

28

Syntax. The syntax of ommandsComm inWhile with typial metavari-

able is given by the following abstrat grammar, where metavariable e

ranges over Exp, whih we assume inludes a sublanguage of boolean expres-

sions.

 ::= skip

j x:=e

j

1

;

2

j if e then

1

else

2

j while e do

Big-step semantis. The big-step semantis ofWhile, as noted earlier,

is a relational spei�ation of ommand exeution. The imperative model of

omputation is based on the idea of making a series of small hanges to a

memory state. Commands an be thought of as state transformers | the

basi ation being that of assigning a value to a program variable. More

omplex ations are built up from the elementary ones using onstruts for

sequening, onditional exeution and iteration. For onveniene, we inlude

an identity transformation, namely the ommand skip.

Let State onsist of �nite domain funtions from X to V. For simpli-

ity, we will assume that expression evaluation involves no \side-e�ets" that

hange the state of memory. State is, at least as a �rst approximation,

the same as Env. This valuable abstration will get taken apart in mod-

eling other features. The set of on�gurations in the transition system is

(State � Comm)

S

State. The big-step transition relation =)� (State �

Comm) � State is de�ned as the smallest relation losed under the rules

given in Table 4.

skip leaves the state unhanged. If an expression e evaluates to a value v

in a state � (given in terms of the big-step relation for expressions), the e�et

of an assignment x:=e results in a state that is idential to �, exept that its

value at variable x is now v. If

1

transforms � to �

1

and

2

transforms �

1

to

�

2

, then their sequential omposition ahieves the omposite transformation

of � to �

2

. The rules for the onditional say that if e then

1

else

2

transforms � as would ommand

1

(respetively

2

) depending on whether

e evaluates to true or false in state �. The while rules for the inde�nite

iterator are also intuitive { if the boolean ondition e evaluates to false in

state �, the loop is not entered; if e evaluates to true then if the body of

the loop is exeuted to reah state �

1

and if exeuting the loop while e do

29

skip

h�; skipi =) �

assign

� ` e =)

e

v

h�; x:=ei =) �[x 7! v℄

seq

h�;

1

i =) �

1

h�

1

;

2

i =) �

2

h�;

1

;

2

i =) �

2

if

true

� ` e =)

e

true h�;

1

i =) �

1

h�; if e then

1

else

2

i =) �

1

if

false

� ` e =)

e

false h�;

2

i =) �

2

h�; if e then

1

else

2

i =) �

2

while

false

� ` e =)

e

false

h�; while e do i =) �

while

true

� ` e =)

e

true h�; i =) �

1

h�

1

; while e do i =) �

2

h�; while e do i =) �

2

Table 4: \Big-step" semantis for a simple imperative language

30

starting from �

1

yields state �

2

, then �

2

is the resulting state from exeuting

the loop. Observe that this relational spei�ation orresponds to partial

orretness

4

.

The =) relation is deterministi:

Proposition 3.1 If h�; i =) �

1

and h�; i =) �

2

then �

1

= �

2

.

There are some subtle tehnial issues about these rules that arise, e.g., in

formal ompiler veri�ation exerises. As noted in [Ast91℄, the rules for the

while e do yield an indutive de�nition, but one whih is not strutural.

The two while rules an be oalesed into a single equivalent rule, whih too

is not strutural:

h�; if e then ;while e do else skipi =) �

0

h�; while e do i =) �

0

Both these formulations involve a reursive de�nition, whih while being

onise and intuitive do not allow the use of strutural indution. Fortu-

nately, there is an equivalent formulation for the while e do rule whih is

strutural; this formulation employs an auxiliary indutively de�ned relation

F � State � State.

h�; �

0

i 2 F

h�; while e do i =) �

0

where F is de�ned indutively by:

� ` e =)

e

false

h�; �i 2 F

� ` e =)

e

true h�; i =) �

00

h�

00

; �

0

i 2 F

h�; �

0

i 2 F

We an now propose operational notions of equivalene and ordering be-

tween While programs:

De�nition 3.2 (Operational equivalene)

1

�

2

whenever for all �: h�;

1

i =) �

1

� h�;

2

i =) �

1

1

�

2

whenever for all �: h�;

1

i =) �

1

if and only if h�;

2

i =) �

1

.

4

In fat, it is possible to read the Hoare style axiomati semantis for While as being

a \bakwards" operational semantis on a non-standard kind of state.

31

These notions are instanes of the onepts of De�nition 2.3 | the observable

behavior of a ommand is how it transforms a given state to yield a resulting

state.

Example 3.3 Here are some equivalenes and ordering relations that an be

seen as ode improvements.

1. skip � while false do for all ommands .

2. while true do �

0

for all ;

0

sine the former is non-terminating.

3. Let W � while e do . Then W � if e then ;W else skip.

4. ;skip � � skip; for all .

5. if true then

1

else

2

�

1

and if false then

1

else

2

�

2

.

Redution semantis. We now move on to the redution semantis for

While as a possibly more detailed desription on how to realize an imple-

mentation. The main di�erene now is the relation �!

1

� (State�Comm)�

((State�Comm)

S

State). The anonial (normal) forms for this relation are,

naturally, those in State. Table 5 presents the redution semantis.

The �!

1

relation is easy to understand. Rule skip

0

says skip does noth-

ing. Exeuting an assignment �rst involves simplifying the expression e (re-

peatedly using rule assign

0

1

) down to a value v, whih is then assoiated with

x (rule assign

0

2

). Exeuting a sequential omposition

1

;

2

involves exeuting

the �rst ommand

1

until it is exhausted (repeatedly using rule seq

0

1

), at

whih stage we start the exeution of

2

from the resulting state �

1

(rule

seq

0

2

). In evaluating a onditional, we �rst evaluate the expression e to a

boolean value (repeatedly using rule if

0

1

). If that value is true, then

1

is

exeuted (rule if

0

true

) and if it is false,

2

is exeuted (rule if

0

false

). The

while

0

rule is, again, somewhat harder to formalize onisely, and relies on

the fat that skip is a \no op".

Proposition 3.4 The big-step and redution semantis de�ne the same no-

tion of program exeution, that is, for all and �: h�; i =) �

0

if and only

if h�; i (�!

1

)

�

�

0

.

32

skip

0

h�; skipi �!

1

�

assign

0

1

� ` e �!

e

1

e

0

h�; x:=ei �!

1

h�; x:=e

0

i

assign

0

2

h�; x:=vi �!

1

�[x 7! v℄

seq

0

1

h�;

1

i �!

1

h�

1

;

0

1

i

h�;

1

;

2

i �!

1

h�

1

;

0

1

;

2

i

seq

0

2

h�;

1

i �!

1

�

1

h�;

1

;

2

i �!

1

h�

1

;

2

i

if

0

1

� ` e �!

e

1

e

0

h�; if e then

1

else

2

i �!

1

h�; if e

0

then

1

else

2

i

if

0

true

h�; if true then

1

else

2

i �!

1

h�;

1

i

if

0

false

h�; if false then

1

else

2

i �!

1

h�;

2

i

while

0

h�; if e then ;while e do else skipi �!

1

h�

0

;

0

i

h�; while e do i �!

1

h�

0

;

0

i

Table 5: Redution semantis for a simple imperative language

33

Remark 3.5 In fat, in [Plo81℄, Plotkin uses what Astesiano alls a \mixed

step" semantis for branhing and iteration. For example, the rules for while

he gives are:

� ` e (�!

e

1

)

�

true

h�; while e do i �!

1

h�; ;while e do i

� ` e (�!

e

1

)

�

false

h�; while e do i �!

1

�

His small step rules for the while ommand involve the transitive losure of

the small step redution of expressions, equivalent to a big step expression

evaluation.

Reall that a small-step semantis an be thought of as moving \irrevoa-

bly forward" albeit non-deterministially, whereas big-step semantis an eas-

ily inorporate temporary undo-able hanges in desribing sub-omputations.

Construts whih have a relatively simple big-step semantis but have diÆ-

ult small-step semantis usually neessitate additional data strutures suh

as staks for e�eting the temporary hanges involved in sub-omputations in

the abstrat mahine.

Abstrat mahine. The abstrat mahine forWhile is a so-alled SMC

mahine, with a Stak for evaluating expressions, a Memory or State om-

ponent and a Code list. As illustrated by Plotkin [Plo81, pages 17-19℄, the

transition semantis is somewhat messy: the transition relation is not di-

retly in terms of syntati struture, and the linearization of this abstrat

syntax via a post-order traversal that worked well for expressions requires

\adjustments" for onstruts involving branhing and iteration, wherein on-

trol points need to be staked for further use or disposal. The reason is that

exeution of a program is no longer isomorphi to traversal of the abstrat

syntax tree, sine a transition sequene an involve exeuting onstruts in

whih an entire subtree may be ignored (branhing and iteration), or may be

revisited repeatedly (iteration).

3.1 Non-determinism

Dijkstra's so-alled guarded hoie language is a quintessential imperative

language involving non-determinism.

 ::= : : : j if

n

i=1

e

i

.

i

� j do

n

i=1

e

i

.

i

od

Given below are the big-step and mixed step semantis for the new onstruts.

We use the mixed step approah of Plotkin (or Astesiano) for redution, sine

34

it yields a ompat presentation (a pure small-step presentation is replete

with the problems mentioned above). The big-step rules are:

� ` e

j

=)

e

true h�;

j

i =) �

0

h�; if

n

i=1

e

i

.

i

�i =) �

0

(j 2 f1; : : : ; ng

� ` e

j

=)

e

true h�;

j

;do

n

i=1

e

i

.

i

odi =) �

0

h�; do

n

i=1

e

i

.

i

odi =) �

0

(j 2 f1; : : : ; ng

n

^

i=1

� ` e

i

=)

e

false

h�; do

n

i=1

e

i

.

i

odi =) �

and in the mixed-step formulation:

� ` e

j

(�!

e

1

)

�

true

h�; if

n

i=1

e

i

.

i

�i �!

1

h�;

j

i

(j 2 f1; : : : ; ng

� ` e

j

(�!

e

1

)

�

true

h�; do

n

i=1

e

i

.

i

odi �!

1

h�;

j

;do

n

i=1

e

i

.

i

odi

(j 2 f1; : : : ; ng

n

^

i=1

� ` e

i

(�!

e

1

)

�

false

h�; do

n

i=1

e

i

.

i

odi �!

1

�

In eah set, the �rst two rules are really families of rules (one for eah

hoie of j). The rule for guarded hoie says that if any e

i

evaluates to true in

�, then the orresponding

i

may be exeuted from �. The rules for guarded

iteration say that if any e

i

evaluates to true in �, then the orresponding

i

followed by the loop again may be exeuted from �, whereas if all e

i

evaluate

to false, ontrol exits the iteration onstrut.

An implementation (or abstrat mahine) will have to use some meh-

anism for evaluating the guard expressions down to values hoosing some

order. In order to ahieve some degree of fairness, a sheduler may be used

to selet the order in whih guard expressions will be tried.

Parallel exeution. Many onurrent imperative languages allow parallel

exeution of threads, for instane in a obegin-oend onstrut.

 ::= : : : j

1

k

2

35

Consider the following big-step semantis:

h�;

1

i =) �

1

h�;

2

i =) �

2

h�;

1

k

2

i =) �

1

[

�

2

provided W (

1

)

T

W (

2

) = ;.

where W (

i

) denotes the set of variables hanged in

i

. The proviso ensures

that the union is well-de�ned. Unfortunately, this semantis does not or-

respond to our usual intuition of parallel omputation. It is intuitive and

simple only when neither thread uses the ontents of variables modi�ed by

the other (Bernstein's onditions); otherwise it is diÆult to implement.

The small-step semantis is simpler to implement (and less fussy to spe-

ify!).

h�;

i

i �!

1

h�

0

;

0

i

i

h�;

1

k

2

i �!

1

h�

0

;

0

1

k

0

2

i

i 2 f1; 2g.

h�;

i

i �!

1

�

0

h�;

1

k

2

i �!

1

h�

0

;

3�i

i

i 2 f1; 2g.

What this suggests is that the granularity of abstration that the big-step se-

mantis seeks to impose in desribing the operational behavior is inappropri-

ate for onurrent omputation. Also, using big-step semantis makes it dif-

�ult to desribe visible side-e�ets of a omputation during non-terminating

runs. Consequently, it is ommon to �nd most frameworks for onurreny,

e.g., [Mil80℄, using (generally labelled) redution semantis.

3.2 Bloks and Variable Delarations

Imperative languages are blok-strutured, and employ soped delarations

of \variables", whih are (often) initialized before any ommand is exeuted.

Moreover, we have not studied any onstruts where imperative \variables"

(whih are really named storage ells) an have any struture. A more general

treatment of imperative variables is to fator the notion of State into two

maps, the �rst an environment 2 Env = X !

�n

Lo and the seond

� 2 Store = Lo !

�n

V, where Lo is a set of storage addresses or loations

and V is the set of (storable) values. Environments an also be used to model

onstant delarations by inluding V in the o-domain of Env. The ommon

pratie is to have di�erent environment omponents for onstants, variables,

proedures, types, lasses, modules | whatever distint nameable onepts

36

appear in the language. In what follows, we will assume that the appropriate

environment omponent is being looked up.

We will ignore the issue of the types of the delared variables, sine they

are (usually) irrelevant for speifying the dynami behavior. Consequently,

variable delarations merely beome lists of variables.

 ::= : : : j var vd begin end vd ::= x j vd;vd

The big-step relations now are =)

e

� ((Env � Store) � Exp) � V for

expressions, =)

� Env � (Store � Comm) � Store for ommands, =)

d

�

(Env�Store�Del)�(Env�Store) for delarations (this is a little more gen-

eral than we need but will allow variable initializations during delarations,

and will be invaluable in the spei�ation of proedures).

The previous rules for expressions will now be relative to a pair ; �, and

other than the variable lookup all other rules are otherwise unhanged. All

the previous rules given for ommands will now be relative to an environment

, and =) will be subsripted =)

. We now give the new and hanged rules

for variable lookup variable delarations, assignments and bloks (only for

the big-step ase | we enounter the same issues in bloks as we did in loal

delarations when attempting a small-step formalization)

; � ` x =)

e

v

where v = �((x)), if de�ned

; � ` e =)

e

v

 ` h�; x:=ei =)

�[(x) 7! v℄

provided x 2 dom().

h; �; xi =)

d

h[x 7! l℄; �[l 7! ?℄i

where l 62 odom()

S

dom(�)

h; �; vd

1

i =)

d

h

1

; �

1

i h[

1

℄; �

1

; vd

2

i =)

d

h

2

; �

2

i

h; �; vd

1

;vd

2

i =)

d

h

1

[

2

℄; �

2

i

h; �; vdi =)

d

h

1

; �

1

i [

1

℄ ` h�

1

; i =)

�

0

 ` h�; var vd begin endi =)

�

0

o dom(�)

In assignments, we now use to determine the loation orresponding

to x, whih is updated in the store. In variable delarations, fresh loations

are generated, and added to the store (initialized to an \unde�ned value"

?), and then bound to the variables in the environment. Observe that we

have (somewhat idiosynratially) the environments returned be inrements

37

(and hene undo-able), whereas the hanges to the store be umulative (i.e.,

persistent). This approah is appropriate for small or mixed step seman-

tis, and also for any extensions to proedures. At the abstrat mahine

level, this hints that environments must neessarily to be implemented using

staks (whereas stores an be global, with areful ontrol on aessibility of

loations).

Note also that the returned state in the exeution of a blok purges all

omponents of the store that were reated during exeution of the blok. This

is to avoid the ourrene of loations inaessible from the environment (i.e.,

garbage). Likewise, we have been areful to avoid the possibility of dangling

referenes, namely loations aessible from the environment but not present

in the domain of the store | whih an our if we have a ommand free(x).

3.3 Proedures and parameter passing

We now introdue the possibility of delaring and alling proedures in the

language While. We onsider only non-reursive proedures, with a single

variable. The extension to several variables and indeed to several variables

with several di�erent parameter-passing mehanisms is at least intuitively

straightforward (though rather tedious to write as rules). The extension to

reursive proedures, however, is not quite trivial (it involves the omputation

of �xed points by an iterative proess akin to the ase of thewhile ommand).

Indeed, we have met some of the soping issues during our treatment

of bloks (via Tennent's priniple of orrespondene, where any parameter

passing mehanism orresponds to a de�nition mehanism and onversely).

The issues of managing ontrol during all and return are better treated in

a more general setting of �rst-lass abstrations in x4.

Parameterless proedures. We �rst extend the language with failities

for delaring and alling proedures without parameters. It is then easy to

extend this further to various parameter-passing onventions suh as all-by-

value and all-by-referene.

d ::= : : : j sub P =

 ::= : : : j all P

As in most programming languages, we assume that the body of the

proedure sub may refer to and modify non-loal (free) variables that are

visible by the usual rules of stati sope.

38

Semantially a (parameter-less) proedure is merely a state transformer

with a name. Hene it is neessary to inlude state transformers in the

o-domain of semanti environments:

Pro

0

= Store !

p

Store

Env = X !

�n

(Lo + Pro

0

+ : : :)

Operationally, however, a proedure identi�er merely represents suÆient

information required to be able to exeute the ode of the proedure. Lexial

soping requires that variables in the body of the proedure take their bind-

ings in the environment that the proedure was delared, rather than from

the alling ontext. Hene a proedure delaration modi�es the environment

by assoiating with the proedure name, the environment in whih the dela-

ration ours and the body of the proedure. Suh a data struture is alled

a proedural losure. We will revisit losures in x4 while disussing funtion

all in lexially soped funtional languages. As in the ase of bloks and

delarations, we assume that the state has two omponents, an environment

, and a store �.

Sub

0

h; �; sub P = i =)

d

h[P 7! pro0h; i℄; �i

Call

0

h

1

; �; i =)

�

0

h; �; all P i =)

�

0

(P) = pro0h;

1

i

Proedures with parameters. Extending the treatment to proedures

with parameters, we onsider, for simpliity, only proedures with a single

parameter. We also onsider only the all-by-value and all-by referene

mehanisms. The extended language syntax is:

d ::= : : : j sub P (val x) = j sub P (var x) =

 ::= : : : j all P (e)

We require that the expression e an only be a variable symbol when the

proedure P uses a var parameter. The mathematial domains for proe-

dures of these kinds are:

Pro

v

= (Store � V)!

p

Store

Pro

r

= (Store � Lo)!

p

Store

Pro = Pro

0

+ Pro

v

+ Pro

r

Env = X !

�n

(Lo + Pro)

39

The orresponding losures used in the operational world now arry the

formal parameters (marked with the name of the parameter-passing meha-

nism) in addition to the body of the proedure and its de�nition environment.

The operational rules for the new onstruts are given below. In the rule

Call

v

,

1

is the environment of the delaration of the proedure P . It is

neessary to alloate a new loation l for the formal parameter x in whih

the value of the atual parameter obtained by evaluating e in the state h; �i

is stored. Finally, of ourse, the loation l needs to be made inaessible on

exit from the proedure. Hene the onlusion of the rule has the restrition

of �

0

to the domain of �. The presene of the binding for P in

2

is a simple

expedient to deal with reursion.

Sub

v

h; �; sub P (val x) = i =)

d

h[P 7! prohval x; ; i℄; �i

Call

v

; � ` e =)

e

v h

2

; �[l 7! v℄; i =)

�

0

h

;

�; all P (e)i =)

�

0

o dom(�)

where

2

=

1

[P 7! (P)℄[x 7! l℄

l 62 odom() [dom(�)

and (P) = prohval x; ;

1

i:

In a similar vein we also de�ne the semantis of proedures that use a

referene parameter. Note that the formal parameter x is now assoiated with

the loation of the atual parameter y in invoation all P (y). There are no

new loations reated, hene dom(�) = dom(�

0

). The e�et of updating the

formal parameter x within the proedure body, is diretly reeted in the

ontents of the loation of the atual parameter.

Sub

r

h; �; sub P (var x) = i =)

d

h[P 7! prohvar x; ; i℄; �i

Call

r

h

2

; �; i =)

�

0

h

;

�; all P (y)i =)

�

0

where

2

=

1

[P 7! (P)℄[x 7! (y)℄

3.4 Run-time Alloation and Dealloation

One of the most nettlesome features of most programming languages is the

use of pointers { their reation, aess and disposal. Pointers are a major

40

soure of problems for users, implementors and language designers alike. It

is therefore neessary to preisely de�ne the semantis of dynami memory

alloation and dealloation. This is also a feature easier to treat operationally

rather than denotationally.

Briey, one of the problems with pointers is aliasing. The problem of

aliasing is not an exeptional irumstane, sine it is often the ase that

distint dereferening expressions refer to the same loation on the heap.

Hene an assignment to one of the referenes might alter the value of some

other seemingly unrelated expression. The seond major problem is that

it is fairly ommon to work with several logially distint data strutures

in heap, where there is sharing of omponents. Thirdly, while disussing

memory alloation and dealloation, it is important to treat de�nedness (a

major soure of run-time errors).

Reently, [CIO00℄ have built on some previous work of Morris [Mor82℄ and

Bornat [Bor00℄ to speify the semantis of aliasing, memory alloation and

disposal. For simpliity, the store is assumed to onsist of two omponents {

a stak, whih holds the values of loal variables, and a heap whih ontains

data that is dynamially reated and destroyed. Naturally any aess to the

heap is from the stak. Any struture that is inaessible from the stak

is treated as garbage. The stak an be extended by delarations of loal

variables and variable values an be modi�ed by assignments. The heap

on the other hand, is assumed to onsist of only one kind of data struture,

namely, reords, where eah reord has a �xed number of omponents indexed

by tags.

We extend the language of expressions to inlude reord omponent aess

and update. The meta-variables a; b; : : : range over tags (reord omponents).

An expression an also be a null pointer or aess to a reord omponent.

e ::= : : : j e:a

Correspondingly, the domain of denotable values for expressions is ex-

tended to inlude loations and a speial value null. The hanges that are

needed in the various domain de�nitions are listed below:

Tag = fa; b; : : :g

V = : : :+ Lo + fnullg

Stak = X !

�n

V

Heap = Lo!

�n

(Tags ! V)

Store = Stak � Heap

41

A store � is a pair (st; hp), ontaining a stak st and a heap hp. Both the

stak st and the heap hp are partial funtions. Their domains are denoted

dom(st) and dom(hp) respetively. dom(st) inludes only the variables in

the urrent sope and dom(hp) inludes only the loations alloated so far

and is �nite.

Two distint variables x and y ould point to the same reord on the heap

i.e. x:a and y:a ould be aliases. However, two distint variables annot be

aliases sine variables are on stak and not on the heap. Moreover the \l-

values" of variables annot be modi�ed. For any variable x whih may be a

pointer to a reord on the heap, x:a represents aess to a omponent a.

Example 3.6 We restrit ourselves to the two onstrutors for linked lists

| hd and tl respetively. For any list variable x (on stak) x:hd will denote

the \value" of the �rst element in the list (if the list is nonempty), whereas

x:tl will denote a loation from whih the rest of the list is aessible. Hene

x:tl:hd will be the value of the seond element of the list (if one does exist).

We also allow for a speial value null to be stored in x (to denote the empty

list). Hene if the list (ML-style) [1, 2, 3℄ is the value of the variable x on

stak, then we require x 2 dom(st) and three loations fl

1

; l

2

; l

3

g � dom(hp)

suh that

st(x) = l

1

hp(l

1

)(hd) = 1 ; hp(l

1

)(tl) = l

2

hp(l

2

)(hd) = 2 ; hp(l

2

)(tl) = l

3

hp(l

3

)(hd) = 3 ; hp(l

3

)(tl) = null

Clearly it follows that x:tl:tl:hd = 3 where \:" is left assoiative.

The operational rule for the new expression is given below. The rules

for other expressions are as given in Table 4. We use the meta-variable l to

range over Lo + fnullg, and v will range over \atual values" that are not

loations.

ref

lo

(st; hp) ` e =)

e

l l 2 dom(hp)

(st; hp) ` e:a =)

e

hp(l)(a)

Sine it is now possible for assignment ommands to allow the assignments

of pointer expressions, we require two rules for the assignment ommand.

The �rst rule de�nes the assignment of values to variables on the stak.

42

Depending upon the type of the variable, it may either be an integer value

or a loation

5

. We use the meta-variable vl to denote that it may be drawn

from either values or Lo + fnullg.

We use h[l:a 7! v℄ to abbreviate h[l 7! (h(l)[a 7! v℄℄. The rules for

assignment are shown below.

assign

var

(st; hp) ` e =)

e

vl

h(st; hp); x := e i =)

(st[x 7! vl℄; hp)

assign

ref

(st; hp) ` e

1

=)

e

l (st; hp) ` e

2

=)

e

vl l 2 dom(hp)

h(st; hp); e

1

:a := e

2

i =)

(st; hp[l:a 7! vl℄)

Having de�ned the semantis of referenes, we are now ready to augment

the language with ommands for alloation and dealloation of memory. We

then extend the language of ommands to inlude the two Pasal-like om-

mands.

 ::= : : : j new(x) j free(e)

new(x) will non-deterministially selet a loation not urrently in dom(hp)

and initialize the reord with the value \?". We use hp[l:� 7!? �℄ to denote

that all omponents of the reord hp(l) are initialized to ?. Similarly, free(e)

simply removes the loation denoted by e from dom(h). The rules are given

below.

new

l 62 dom(hp)

h(st; hp); new(x)i =) (st[x 7! l℄; hp[l:� 7!? �℄)

free

(st; hp) ` e =)

e

l l 2 dom(hp)

h(st; hp); free(e)i =) (st; hp� l)

In the rule for free(e), h � l denotes the fat that the heap is no longer

de�ned for l (as opposed to being �lled with value \?").

The above rules give us a avor of how operational rules may be used to

speify implementation intuition to a large extent. In [CIO00℄, the authors

also show how these rules may be used to justify axiomati rules for reasoning

loally about aliasing and dynami memory alloation and dealloation.

5

The issue of types is something that needs to be addressed by a stati semantis, as

pointed out elsewhere. It is not properly the domain of a dynami semantis. So we will

ontinue to believe that all the onstruts we use are type-safe.

43

4 Funtions and higher-order forms

Applying the priniple of abstration [Ten81℄ to expressions or ommands

allows us to form abstrats that may be invoked, usually with di�erent pa-

rameters. These abstrat forms are alled funtions and proedures respe-

tively. Abstrat expressions (with a single parameter) are written as �x:e.

� binds the variable x within the sope of the \body" e. An abstrat a an

be invoked by \applying" it to an argument e, written as (a e); suh alls

belong to the syntati ategory over whih the abstrat is formed.

The situation beomes more interesting in \higher-order languages" whih

admit suh abstrats as �rst-lass values { abstrats an themselves be bound

to variables, passed as arguments and returned as results of other funtions.

The various issues related to funtions and proedures, in partiular the or-

ret formulation of lexial soping and of reursive funtion de�nitions, an

be explored in a higher-order funtional language with only single parame-

ter funtions (the generalizations to proedures and multiple parameters is a

matter of detailing, but does not need very muh by way of new onepts).

Indeed, these two issues are of vital importane | early implementations of

Lisp implemented \dynami soping" beause of a rather simplisti imple-

mentation of reursion.

Exp is now extended to

e ::= : : : �x:e j (e

1

e

2

)

We look at an extremely simple quintessential funtional language, alled

the �-alulus. Indeed, Landin expliated the blok strutured features of

Algol by relating them to the �-alulus. The operational semantis for the

�-alulus is given in a purely syntati manner (involving no extra-syntati

onstruts suh as environments). From these, various environment-based

formulations an be onstruted to realize the semantis in an eÆient man-

ner.

4.1 �-alulus

The syntax of the \pure" �-alulus is:

e ::= x j �x:e

1

j (e

1

e

2

)

Expressions (or terms) are variables, abstrations on expressions, or appli-

ations of one expression (putatively a funtion) to another (an argument).

44

Other kinds of values and expressions suh as those we have examined so

far an be added together with their omputation rules to obtain an applied

�-alulus. While applied �-aluli raise interesting issues and problems, the

pure alulus itself exhibits several important onepts. Plotkin's seminal

papers [Plo75, Plo77℄ are good examples of detailed studies of many of the

fundamental issues.

De�nition 4.1 (free and bound variables) An ourrene of a variable

x in a term e is bound if it appears in a sub-term �x:e

0

. All ourrenes of

variables that are not bound or binding are free. The funtion fv returns the

set of free variables in a term.

fv(x) = fxg fv(�x:e) = fv(e)� fxg fv((e

1

e

2

)) = fv(e

1

)

[

fv(e

2

)

Bound variables may be systematially renamed without altering the intended

meaning of an expression. By systemati, we mean that two hitherto di�erent

variables are not suddenly identi�ed, in partiular that no previous free vari-

able is suddenly \aptured" and bound. We identify expressions that di�er

only in the hoie of names of bound variables, a notion alled �-equivalene.

Expressions with no free variables are alled losed.

The major meta-operation for syntati manipulation in any �-alulus

is substitution.

De�nition 4.2 (substitution) We write e[e

0

=x℄ to denote the term ob-

tained by substituting e

0

for all free ourrenes of variable x in term e.

Substitution is de�ned using a ase analysis on e

6

:

x[e

0

=x℄ = e

0

y[e

0

=x℄ = y y 6� x

(e

1

e

2

)[e

0

=x℄ = (e

1

[e

0

=x℄ e

2

[e

0

=x℄)

�y:e

1

[e

0

=x℄ = �z:(e

1

[z=y℄[e

0

=x℄) z 62 fv(e

1

)

S

fv(e

0

)

6

This version of the de�nition \fators in" �-equivalene whereas most treatments do

not.

45

(�)

(�x:e

1

e

2

) �!

1

e

1

[e

2

=x℄

(�)

e �!

1

e

0

�x:e �!

1

�x:e

0

(op)

e

1

�!

1

e

0

1

(e

1

e

2

) �!

1

(e

0

1

e

2

)

(arg)

e

2

�!

1

e

0

2

(e

1

e

2

) �!

1

(e

1

e

0

2

)

Table 6: �-redution in the �-alulus

Sine substitution avoids apture of free names, it perfore avoids the possi-

bility of aidental dynami binding.

It is often onvenient to use the notion of ontexts in examining the stru-

ture of a term.

De�nition 4.3 (ontext) A ontext is a �-term with a \hole" given by the

following abstrat grammar:

C ::= [℄ j (C C) j �x:C j e

One-hole ontexts are haraterized as

C

1

::= [℄ j (C

1

e) j (e C

1

) j �x:C

1

De�nition 4.4 (redution) A redex is any term of the form (�x:e

1

e

2

).

Any term ontaining a redex as a sub-term is alled reduible. The �-

redution rule is

C

1

[((�x:e

1

) e

2

)℄ �!

1

C

1

[e

1

[e

2

=x℄℄

where C

1

[℄ is any one-hole ontext.

An alternative formulation of �-redution is given in Table 6.

Some important results about �-redution are:

46

Lemma 4.5 (Substitution and �-redution) If e �!

1

e

0

then

e

1

[e=x℄ (�!

1

)

�

e

1

[e

0

=x℄ and e[e

1

=x℄ �!

1

e

0

[e

1

=x℄.

Proposition 4.6 (Loal onuene) �-redution satis�es the weak dia-

mond property.

Theorem 4.7 (Churh-Rosser) �-redution is onuent.

Theorem 4.8 (Standardization) If e(�!

1

)

�

e

0

then e(�!

standard

1

)

�

e

0

by al-

ways reduing the leftmost outermost redex at eah stage.

Proposition 4.9 (�xed points) There exists a losed �-alulus term Y ,

alled a �xed point ombinator, suh that (Y e) �!

�

1

(e (Y e)), for any e.

4.2 Relationship with funtional languages.

Almost all funtional languages disallow redution \below" a � | redexes

appearing in terms of the form �x:e are not onsidered. In other words,

suh \weak redution" does not have the �-rule. Hene, not all results (on-

uene!) shown for the �-alulus automatially transfer to funtional lan-

guages based on them. Moreover, ertain results do not hold for typed frame-

works. For instane, �xed point ombinators do not exist in simply typed

lambda aluli

7

. Finally, we should mention that programming languages

are onerned with losed terms only.

Two ommonly used strategies for reduing terms are (weak) all-by-value

(or eager) and (weak) all-by-name (or lazy)

8

. In what follows, we present

di�erent formulations of these two strategies and how they are realized.

Call-by-value. The basi notion in all-by-value (bv) is that arguments

to a funtion are evaluated before evaluation of the funtion body ommenes.

The notion of value is ruial | they are merely all abstrations: v 2 Val ::=

�x:e. Values are irreduible, but not onversely.

We �rst present the big-step formulation for all-by-value redution:

v =)

v

v

e

1

=)

v

�x:e

0

1

e

2

=)

v

v

2

e

0

1

[v

2

=x℄ =)

v

v

(e

1

e

2

) =)

v

v

In the small-step framework, this is formulated as shown in Table 7.

7

though they an in languages with reexive types or reursive types

8

Various researhers atually distinguish between all-by-value and eager (or all-by-

name and lazy) whih we gloss over here.

47

(�

v

)

(�x:e

1

v) �!

v

1

e

1

[v=x℄

(op)

e

1

�!

v

1

e

0

1

(e

1

e

2

) �!

v

1

(e

0

1

e

2

)

(arg

v

)

e

2

�!

v

1

e

0

2

(v e

2

) �!

v

1

(v e

0

2

)

Table 7: Call-by-value �-redution

Alternatively, the bv strategy an be explained by using the �

v

redution

rule in the following bv evaluation ontexts:

E

1

v

::= [℄ j (E

1

v

e) j (v E

1

v

)

Call-by-name. Call-by-name (bn), in ontrast, does not simplify argu-

ments before funtion all. The big-step bn rules are:

v =)

n

v

e

1

=)

n

�x:e

0

1

e

0

1

[e

2

=x℄ =)

n

v

(e

1

e

2

) =)

n

v

Note that arguments are not evaluated before substituting them for the for-

mal parameter in the funtion body. This may result in more than one opy

of the same argument, whih may be evaluated multiple times. The advan-

tage of bn over bv is that arguments that are not needed are not evaluated.

An important stati analysis tehnique is stritness analysis, in whih bv

evaluation an safely be used instead of bn. An alternative formulation of

the bn rules is given in Table 8.

Alternatively, the bn strategy an be explained by using the � rule in

the following bn evaluation ontexts:

E

1

n

::= [℄ j (E

1

n

e)

Context mahines. The notion of evaluation ontext permits a simple

transformation, due to Felleisen and Wright [WF94℄ of redution semantis

into an abstrat mahine. We illustrate the idea for bv redution. A similar

mahine an be onstruted for bn redution.

48

(�)

(�x:e

1

e

2

) �!

n

1

e

1

[e

2

=x℄

(op)

e

1

�!

n

1

e

0

1

(e

1

e

2

) �!

n

1

(e

0

1

e

2

)

Table 8: Call-by-name �-redution

We �rst haraterize basi evaluation ontexts F

v

:

F

v

::= ([℄ e) j (�x:e [℄)

Using the fat that any non-trivial bv evaluation ontext an be expressed

as the omposition of basi evaluation ontexts F

v

1

[F

v

2

[:::F

v

k

[℄:::℄℄, (the trivial

ontext [℄ an be onsidered as orresponding to the ase where k = 0), we

de�ne a \ontext stak mahine" as follows. The mahine has two ompo-

nents | a stak of basi evaluation ontexts FS, and the urrent expression

e. Transitions are de�ned by ases depending on the struture of e and then

of FS:

h

$

([℄ e)

FS

%

; vi ��. h

$

(v [℄)

FS

%

; ei

h

$

((�x:e) [℄)

FS

%

; vi ��. h

j

FS

k

; e[v=x℄i

h

j

FS

k

; (e

1

e

2

)i ��. h

$

([℄ e

2

)

FS

%

; e

1

i

The mahine is started in on�guration h

j k

; ei for any losed e and ter-

minates with ontext stak empty and value v.

Now if we de�ne funtion runh as:

runhh

j k

; ei = e

runhh

$

F

v

n

FS

%

; ei = runhh

j

FS

k

; F

v

n

[e℄i

49

it is easy to show that

h

j

FS

k

; ei ��.

�

h

j k

; vi if and only if runhh

j

FS

k

; ei =)

v

v

4.3 Closures and Environment mahines

As mentioned earlier in passing, substitution is an expensive operation, sine

it involves traversing the term in whih the substitution is being performed

(as well as �-onversion to prevent name apture). Environments are a on-

venient anillary struture used to reord the bindings for variables in sub-

stitutions.

Closures. Suppose environments were, as before, represented by �nite

domain funtions from variables to \values". Suppose we onsidered an en-

vironment in whih f was bound to �x:e and proposed a rule for funtion

all:

 ` e

1

=)

e

v

1

[x 7! v

1

℄ ` e =)

e

v

 ` f(e

1

) =)

e

v

The problem with this rule is that if e ontains free variables other than x,

lexial soping may be violated if the binding for f was made in an environ-

ment other than , sine in the all, they will take their value (if they an)

from . While the problem is more aute in higher-order languages, it never-

theless exists in simple blok strutured proedures as well, whih is why we

disallowed nested proedures in x3.3. It is therefore neessary to \pakage"

in when making the binding for f the prevalent environment. Suh a pair is

alled a losure. We de�ne

Clos � Exp � Env Env = X !

�n

Clos

In an applied alulus, there an be other kinds of values apart from losures.

Closures permit a orret treatment of lexial sope, and thus remedy

the launa in our treatment of proedures. They an also orretly handle

reursive funtions (and other reursive data strutures that are possible in

a lazy language). Let vl range over losures of the form � �x:e; �. We

give a big-step desription for bn and bv simpli�ations of losures, whih

are basially restatements of the rules for =)

n

and =)

v

. Very roughly, the

judgments used for losure evaluation under strategy X � e; � =)

X

l

vl

50

orrespond to judgments ` e =)

X

v for expression evaluation, and where

value losure vl \unravels" to value v.

(x) =)

n

l

vl

� x; � =)

n

l

vl

� e

1

; � =)

n

l

� �x:e

0

;

0

� � e

0

;

0

[x 7!� e

2

; �℄� =)

n

vl

l

� (e

1

e

2

); � =)

n

l

vl

For bv the rules are:

(x) =)

v

l

vl

� x; � =)

v

l

vl

� e

1

; � =)

v

l

� �x:e

0

;

0

� � e

2

; � =)

v

l

vl

2

� e

0

;

0

[x 7! vl

2

℄� =)

n

l

vl

� (e

1

e

2

); � =)

n

l

vl

It is also possible to formulate a alulus of losures [Cur91℄ and study

properties suh as onuene of its redution relation, whih is \weak" in

the sense that redution does not our below abstrations.

Abstrat mahines. The big-step semantis suggests using a stak of

losures that are yet to be simpli�ed, or whih are awaiting their arguments.

Using this insight, environment mahines an be developed, manipulating

losures.

An environment mahine for bn due to Krivine is:

h� x; �;

j

S

k

i ��. h(x);

j

S

k

i

h� (e

1

e

2

); �; Si ��. h� e

1

; �;

$

� e

2

; �

S

%

i

h� �x:e; �;

$

l

S

%

i ��. h� e; [x 7! l ℄�;

j

S

k

i

The mahine on�gurations onsist of a urrent losure to be simpli�ed and

a stak of losures whih are (yet-to-be evaluated) arguments to the urrent

term. The �rst rule is a look-up. The seond rule staks the losure onsisting

51

of argument N together with the urrent environment (in whih it should

be evaluated) onto the stak of yet-to-be-evaluated losures. The third rule

starts the evaluation of the body in a losure after extending the environment

with a binding of formal x to the argument losure, whih is atop the stak.

The orresponding environment mahine for bv is:

h� x; �;

j

S

k

i ��. h(x);

j

S

k

i

h� (e

1

e

2

); �;

j

S

k

i ��. h� e

1

; �;

6

6

6

6

4

&

� e

2

; �

S

7

7

7

7

5

i

hvl ;

6

6

6

6

4

&

� e; �

S

7

7

7

7

5

i ��. h� e; �;

6

6

6

6

4

.

vl

S

7

7

7

7

5

i

hvl ;

6

6

6

6

4

.

� �x:e; �

S

7

7

7

7

5

i ��. h� e; [x 7! vl ℄�; Si

The bvmahine is not muh di�erent, exept that both operator and operand

are to be evaluated before appliation. For this, two markers & and . are

used to indiate that the losure below it on the stak is the argument and

operator respetively of an appliation. The third rule swaps the evaluated

operand and unevaluated operators between the urrent-losure and the top-

of-stak positions.

Both mahines are loaded with a losure onsisting of a losed term and

empty environment, with an empty stak. The unload funtion involves

unfolding the resulting losure, using the pakaged environment to obtain

the terms bound to variables (reursively unfolding losures).

SECD Mahine. The prototypial mahine used for bv evaluation of a

funtional language was the SECD mahine [Lan65a℄. This mahine works

with two staks | S for already evaluated expressions and \dump" D for

managing ontrol during funtion all and return | an environment E and a

list of opodes C. Stak S is used in muh the same way as the stak is used

for expression evaluation | the losures to whih expressions evaluate are

pushed onto it. DumpD is used as a repository for storing the alling ontext

52

(the urrent environment, the sub-expressions already evaluated prior to the

all, and the ode to be evaluated after the all) when a funtion all is made;

this ontext an then be restored from the top of the dump on ompletion of

a funtion all. To avoid introduing new symbols, we use (following [Plo75℄)

the �-terms themselves as op-odes, with one additional op-ode for funtion

appliation app.

h

$

l

S

%

; ; �;

$

hS

0

;

0

;

0

i

D

%

i ��. h

$

l

S

0

%

;

0

;

0

; Di

h

j

S

k

; ; x :: ;

j

D

k

i ��. h

$

(x)

S

%

; ; ;

j

D

k

i

h

j

S

k

; ; �x:e :: ;

j

D

k

i ��. h

$

� �x:e; �

S

%

; ; ;

j

D

k

i

h

j

S

k

; ; (e

1

e

2

) :: ;

j

D

k

i ��. h

j

S

k

; ; e

1

:: e

2

:: app :: ;

j

D

k

i

h

6

6

6

6

4

l

� �x:e;

0

�

S

7

7

7

7

5

; ; app :: ;

j

D

k

i ��. hb;

0

[x 7! l ℄; e;

$

hS; ; i

D

%

i

The �rst rule desribes funtion return; it says that if the urrent all has no

remaining instrutions, the alling ontext is restored from the dump | the

returned value plaed atop the aller's stak, and the environment and ode

list of the aller are restored. The seond rule is a variable look up. The

third rule forms and plaes a losure atop the value stak. The fourth rule is

really a \ompilation rule" whih evaluates operator and operand expressions

of an appliation (it is possible to separate the exeution and ompilation

phases). The �fth rule is the atual funtion all rule. It assumes that the

operand (argument) losure l sits above the operator (funtion) losure atop

the stak. l is bound to the formal argument x in the operator losure's

environment, the operator losure's ode is now made the ode list, and the

alling ontext is plaed atop the dump. As indiated above, the alling

ontext onsists of the stak below the operator and operand losures, the

alling environment and the remaining ode list.

The SECD mahine has been used as a template for a variety of blok-

strutured languages, as we will disuss below. Plotkin [Plo75℄ has related the

53

abstrat mahine semantis with the big-step and redution semantis of an

applied bv �-alulus using standardization to establish the orrespondene.

Other abstrat mahines. There are various other abstrat mahine

implementations that we annot desribe here. One suh lass of mahines is

based on a translation of the �-alulus into ombinatory logi and an imple-

mentation of these ombinators [Tur79℄. A speial lass of implementations

are based on graph redution (see [Jon87℄ and various referenes therein for

an aessible treatment of suh implementations). The main operations of

these mahines involve performing rearrangements of a syntax tree (or graph)

aording to ertain ombinators or diretors [KS88℄. Also signi�ant is the

Categorial Abstrat Mahine [CCM85℄ whih is based on operative features

of ategorial models of �-aluli, and the losely related mahine derived by

Hannan and Miller [MH90℄.

4.4 Implementation issues related to environments

The abstrat mahines seem rather proigate in the strutures they employ.

Fortunately, there are rather eÆient implementations of environments, and

losures using staks, pointers and alloation on stak and heap. The ob-

servation that the alled funtion never looks at the aller's stak in the

SECD mahine suggests that the value stak does not need storing, only the

(re)storing of the stak pointer. Likewise, entire ode lists and environments

need not be stowed away on the dump, pointers to them will suÆe.

EÆient environment implementation and management is ruial. First,

the environment is maintained as a stak of referenes to loal frames. Then,

variables are replaed by a fast indexing sheme relative to a frame pointer

(.f. de Bruijn indies in the �-alulus).

Reursion. Speial mention must be made about reursive funtions. As

mentioned above, simply typed languages annot have a Y ombinator, so

a speial mehanism is needed to build losures for reursive funtions and

reursive data strutures. A simple idea is to build a irular referene into

the environment omponent of the losure for a reursive funtion. This

is ahieved using two op-odes introduing a level of indiretion in environ-

ments

9

. The �rst op ode plaes a referene to a dummy losure. The losure

9

whih is already there in most pointer-based implementations of environments

54

for the reursive funtion is reated using this augmented environment, and

a seond op-ode overwrites the referene to the dummy referene with a

pointer to the new losure, thus building the yle (see [Hen80, Car84℄ for a

simple implementation).

Loal de�nitions. Loal de�nitions may be implemented in orrespon-

dene to the parameter-passing mehanism, employing the equivalene

(�x:e

2

e

1

) � let x

def

= e

1

in e

2

or its generalization to more strutured de�nitions. However suh a rude

approah is rarely followed, sine it is ineÆient. Exploiting the fat that

the environment used for e

2

is an extension of that used for e

1

, muh simpler

and diret methods are possible, in partiular, by employing �ner grain op-

odes that failitate stak manipulation and making de�nitions and reursive

de�nitions.

Extensions. The SECD framework is fairly robust, and an easily be

extended to deal with a variety of language extensions, inluding side e�ets.

Adding a store omponent and related op-odes [Car86a℄ allows support for

imperative features. Similarly, input and output streams an be aom-

modated, as also an ommuniation and onurreny primitives (a general

hoie operator is diÆult to inorporate) [GMP89℄.

Proedures in imperative languages. By the priniple of abstra-

tion, the notion of losures arries over to ommand abstrats. Of ourse,

there are some aspets that are simpler (languages with higher-order pro-

edures are rare beasts), whereas issues pertaining to stores are somewhat

more involved. In partiular, showing that the alloation and dealloation of

loations is done orretly is an important part of proving that the language

and implementation are free of storage inseurities.

The typial all-stak management in traditional imperative languages

an be seen as an implementation where three di�erent stak strutures { S

for temporary omputation, E for the environment and D for the dump |

are \multiplexed" onto one physial stak.

55

4.5 Control operators

We briey disuss here the operational semantis for an extension of the

�-alulus with ontrol operators that an pass or throw away the urrent

evaluation ontext. Control operators allow funtional programs to handle

features like onurrent threads, exeptions, all/ et. They support a

tehnique used in modern ompilers, namely that of passing ontinuations

[App92℄. Moreover, the environment mahines given earlier have simple ex-

tensions to deal with these new ontrol operators.

The syntax is extended with two new unary operations, whih are also

redexes:

e ::= : : : j Ce j Ae

whose redution rules, stated in ontextual form, are:

(C)

E[Ce℄ �!

e

1

(e (�x:AE[x℄))

x 62 fv(e)

(A)

E[Ae℄ �!

e

1

e

In the rule (A), the \abort" operator throws away the urrent evaluation

ontext, whereas in the rule (C), the \ontrol" operator passes an abstrated

form of the urrent evaluation as an argument to the expression e.

Another well-known ontrol operator is all/, \all with urrent ontin-

uation", with the following operational rule:

(all=)

E[all=(�k:e)℄ �!

e

1

((�k:(k e)) (�x:AE[x℄))

x 62 fv(e)

an equivalent of whih an be expressed in terms of (C) and (A).

Environment mahines for ontrol operations. Reall that the stak

omponent S of an environment mahine represents the ontext E of the

urrent expression being evaluated. The ontrol operators manipulate this

evaluation ontext. Therefore, operations to enapsulate and manipulate the

stak are introdued: A new kind of losure retr (S) is added that orresponds

roughly to �x:AE[x℄.

56

The new rules for the Krivine mahine are:

h� Ce; �;

j

S

k

i ��. h� e; �;

j

retr(S)

k

i

h� Ae; �;

j

S

k

i ��. h� e; �;

j k

i

hretr(S);

$

l

S

0

%

i ��. hl ;

j

S

k

i

The manipulations of the ontext are fairly lear: in the �rst rule, the urrent

stak is enapsulated and presented as an argument to the losure orrespond-

ing to e. The \abort" operator throws away the urrent stak. In the third

rule, the enapsulated stak is restored, in plae of the existing stak S

0

.

The bv environment mahine uses the same rules as before with three

additional rules for manipulating the stak. Of these, the seond rule (for

abort) is the same as the rule in the extension of the Krivine mahine.

h� Ce; �;

j

S

k

i ��. h� e; �;

$

&

retr(S)

%

i

h� Ae; �;

j

S

k

i ��. h� e; �;

j k

i

hvl ;

6

6

6

6

4

.

retr(S)

S

0

7

7

7

7

5

i ��. hvl ;

j

S

k

i

If retr(S) orresponds to �x:AE[x℄, and S

0

orresponds to ontext E

0

[℄, then

the last rule an be seen as implementing the redution sequene

E

0

[(�x:AE[x℄ v)℄ �!

v

1

E

0

[AE[v℄℄ �!

v

1

E[v℄:

Translating the ontrol operators away. An important result [Plo75,

FFKD87, Gri90℄ is that these ontrol operators an be translated away by so-

alled \CPS transformations" into purely funtional languages. We introdue

the idea here only to indiate how operational tehniques are used in language

translations, sine a proper treatment of CPS is well beyond the sope of this

hapter. We present one suh translation, whih lets us interpret all-by-value

57

redution as all-by-name redution [Plo75℄.

x = �k:(k x) (e

1

e

2

) = �k:(e

1

(�m:(e

2

(�n:((m n) k)))))

a = �k:(k a) Ce = �k:(e (�m:((m (�n:�d:(k n))) (�x:x))))

�x:e = �k:(k (�x:e)) Ae = �k:(e (�x:x))

Various interesting theorems an be shown about this CPS translation.

For example:

Theorem 4.10 For any pure �-expression e: (e (�x:x)) =)

n

v if and only

if (e (�x:x)) =)

v

v

Theorem 4.11 For any �-expression e without ontrol operators, and of

base type (not of a funtion type)

10

: e (�!

1

)

�

v if and only if (e (�x:x)) (�!

1

)

�

v.

5 LTSs and Interative Programs

The formulations we have presented so far have used transition systems with-

out labels. We have till now onentrated on programs in isolation from their

operating environment. However, programs interat with their exeution en-

vironment, at the very least for input and output of data. Even in an isolated

omputer, there are various interations with peripheral devies suh as disks,

printers, �le systems and libraries. There are also interations with forked

proesses, interrupt handlers et.

The piture we have so far presented an be sustained when interation

with the environment an be learly separated from omputation. However,

programming nowadays is inreasingly interative, and all programming lan-

guages provide failities for interation with the environment. In addition,

several languages provide features for onurrent and distributed exeution.

Interations an take the form of remote proedure alls, or ommuniation

in a network / luster / distributed omputing environment, interspersed in

10

suh expressions an be onsidered \omplete programs" in a typed �-alulus. The

result depends on strong normalization of the typed lambda alulus.

58

the omputation. In other words, interation beomes an integral part of

omputation.

Central to this kind of interative omputing are the onepts of proess

and ommuniation (the texts [Hoa85, Hen88, Mil89℄ provide exellent in-

trodutions to the area). A program and its environment an be onsidered

two proesses that ommuniate with eah other. These two proesses may

themselves onsist of olletions of interating proesses.

When integrating interation into omputation, ertain issues arise in pro-

viding strutured operational desriptions. Firstly, the Fregean priniple of

ompositionality should still be appliable. Seondly, the fat that proesses

interat while exeuting onurrently brings in its own omplexity sine in-

terations may alter the state of a program non-deterministially. Thirdly,

the fat that a program operates orretly only under irumstanes where

the environment ful�lls ertain obligations implies that both the program

and its environment (regarded as a proess) ooperate in ahieving ertain

goals. Spei�ations must learly de�ne interfaes of interation that on-

strain the kinds of inputs a proess an reeive, the outputs it an produe

and how it synhronizes with other omponents in a system. Lastly, one

annot plae unreasonable restritions on the environment. For example, it

would be unreasonable to expet that a remote server operate at the same

speed as one or several of its lients. Hene onurrent exeution in general,

implies that di�erent proesses exeute at di�erent speeds and interations

are the only means of ahieving ertain synhronizations.

Labels and behavior. Labels are a onvenient devie to indiate in-

teration between a program and its environment during exeution. They

arry information about ommuniation apabilities of proesses and are of-

ten ruial to the hanges in state that proesses inur. They are also used to

determine and resolve non-deterministi hoies in the exeution of a proess

when it has the possibility of interating with several other proesses at the

same time.

We saw in TSs that onuene, determinay and termination were impor-

tant properties and that two sequential systems are onsidered equal if they

ompute the same funtion between input and output states. Conurrent

systems on the other hand, are generally non-deterministi (mostly non-

onuent), and often in�nite-state, non-terminating systems; neither may

they be omputing a partiular relation or funtion. So what are the orre-

59

sponding notions of behavioral properties in LTSs? The ruial properties of

suh systems onern their interation apabilities. Any equality relation on

suh systems will naturally relate to the ommuniation apabilities of the

individual proesses that make up the system.

Various notions of behavior an be assoiated with an LTS, based on the

idea that the observable behavior of a proess depends on the sequenes of

labelled transitions it an perform. However, there is little onsensus yet on

what is the right notion of behavior. A simple, language-theoreti notion

of program behavior is the set of sequenes (�nite or in�nite) of labels or

traes. A proess p has trae & = l

1

l

2

: : : 2 L

!

= L

�

S

L

inf

if it an perform

a sequene of labelled transitions p

l

1

�! p

1

l

2

�! p

2

: : :. Two proesses are

onsidered trae-equivalent if they have the same traes.

Other notions of behavior take into aount the ommuniation apabil-

ities (and inapabilities) at eah intermediate state, thus being sensitive to

the possibility of deadlok { inability to perform a transition with a partiu-

lar label { in some sequenes of transitions (see examples 5.2 and 5.3 below).

We present only one suh �ner notion, alled bisimulation [Par81℄.

The intuition is that this notion of equivalene identi�es a pair of pro-

esses, if starting from equivalent states they have the same interation pos-

sibilities, the suess of eah of whih puts them again in states that may be

onsidered equivalent.

De�nition 5.1 � A binary relation R on proess on�gurations is a sim-

ulation if whenever s

1

Rs

2

, for any l 2 L, if s

1

l

�! s

0

1

, then there exists

a on�guration s

0

2

suh that s

2

l

�! s

0

2

and s

0

1

Rs

0

2

,

� R is a bisimulation if R and R

�1

(the symmetri inverse of R) are

both simulations.

� The olletion of bisimulation relations is losed under inverse, ompo-

sition and arbitrary union. The largest bisimulation alled bisimilarity

is denoted � and is an equivalene relation.

Proving two labelled transitions systems are bisimilar involves proposing and

proving a partiular relation is a bisimulation. Bisimulation equivalene or

bisimilarity is a �ner notion of equivalene than trae equivalene, sine it

distinguishes more programs than trae equivalene does. In partiular, it

is sensitive to the potential for deadlok behavior | two proesses with the

60

same traes are distinguished if on some trae, one of them an reah a

state where some partiular ations are possible whereas the other annot

reah suh a orresponding state on that same trae. In fat, bisimilarity

is the �nest deadlok-sensitive equivalene relation on proesses obtained

from examining their observable behavior. In pratie, there are a variety

of notions that an be onsidered bisimulations, either for di�erent notions

of labelled transition, or whih di�er in the preise haraterization of the

labelled ations, what exatly is observable, et. There also may be di�erent

haraterizations for a single notion of bisimulation, with alternative hara-

terizations supporting di�erent styles of reasoning. There are also a variety

of di�erent notions of equivalene that lie between trae equivalene and

bisimulation, some of whih are fairly natural notions of equivalene to work

with. A full exploration of these issues is beyond the sope of this hapter;

a quik introdution is provided in [AFV00℄.

5.1 CSP

We illustrate the use of LTSs in semanti spei�ation through a language

based on CSP (Communiating Sequential Proesses) due to Hoare [Hoa78,

Hoa85℄. The language extends the language of guarded hoie (whih already

inludes non-determinism) with new onstruts for ommuniation and on-

urrent exeution. The semantis we give here is a simpli�ation of a pre-

sentation due to Plotkin [Plo83℄.

We must mention here that it is often diÆult to present purely big-step

or purely small-step semantis for interative programming languages, whih

inorporate internal evaluation of expressions. This is beause ommuni-

ating onurrent systems are best desribed using small-step desriptions,

sine they an aount for interleavings and interations from intermediate

states (partiularly important in notions of behavior sensitive to deadlok),

whereas expressions are evaluated in entirety (and an easily be spei�ed in

a big-step).

The syntax for CSP is as follows:

io ::= P ?in j Q!out

g ::= e j e; io

 ::= x := e j P ?in j Q!out j ;

j if

n

i=1

g

i

.

i

� j do

n

i=1

g

i

.

i

od

S ::= [k

n

i=1

P

i

::

i

℄

61

io stands for input/output ommuniation statements, g for \guards", whih

are boolean expressions, optionally followed by a ommuniation. Commands

are ommuniation statements, assignments, and the guarded hoie and it-

eration onstruts. A program S onsists of a olletion of named proesses.

For simpliity we assume that onurrent exeution takes plae only at the

topmost level, i.e., proesses annot have subproesses that themselves ex-

eute onurrently. Every proess has a name that is known to other pro-

esses. Communiation between proesses is by synhronized handshaking or

rendezvous, wherein two named proesses that need to exhange values wait

at mathing input and output ommands respetively before onsummating

the ommuniation. The ommand P ?in denotes that the urrent proess

will wait to input a value from the proess named P , and Q!out represents a

desire to output a value out to the proess named Q; the sending proess is

willing to wait till Q is ready to input the value.

Example 5.2 Assume there is a printer shared by two proesses P

1

and P

2

.

Both proesses and the printer are modeled as CSP proesses, whih together

form a \losed" system.

[P

1

:: do :done

1

. loal

1;1

;PR!e od;PR!eot; loal

1;2

k P

2

:: do :done

2

. loal

2;1

;PR!e;odPR!eot; loal

2;2

k PR :: do

2

i=1

true;P

i

?v . do v 6= eot . print(v);P

i

?v; od od

℄

The printer proess PR waits till one of the two proesses P

1

, P

2

, is ready to

begin transmission, with the �rst value. In ase both proesses want to output

to the printer, PR has to make a hoie. Having hosen to ommuniate

with one of them, the printer does not serve the other proess till the hosen

one sends an end-of-transmission (eot) signal. The printer proess never

terminates sine it keeps waiting inde�nitely for P

1

or P

2

to ommuniate

with it

11

. It is possible for one proess to monopolize the printer and prevent

the other proess from ever gaining aess.

11

This interpretation is at variane with the so-alled distributed termination onven-

tion that Hoare originally proposed in the language. However we �nd our interpretation

more suitable for server proesses. It also illustrates that we are now in an arena where

we deal with systems that do not neessarily always terminate. Indeed in onurrent

systems, guaranteeing properties suh as deadlok-freedom, non-termination and freedom

from starvation may be more important.

62

Eah proess has its own state and the states of the di�erent proesses are

disjoint. All hanges in state �

i

of a proess P

i

are due to loal assignments

or reeipt of input from another proess. The set of global states de�ned as

State =

n

O

i=1

State

i

is the Cartesian produt of the sets of the states of individual proesses.

where State

i

is the set of states of the proess P

i

. The metavariable �� denotes

the global state and eah �

i

stands for the state of proess P

i

. The labels we

use for our LTS onsist of the set of possible ommuniations, de�ned as

Inputs = fP ?v j P is a proess name and v 2 Vg

Outputs = fP !v j P is a proess name and v 2 Vg

L = Inputs [Outputs [f"g

The label " signi�es loal omputation that involves no interation with other

proesses. � is a meta-variable that ranges over L.

The semantis of the ommands in a proess P

i

are given in Table 9. We

will assume below that j 6= i. The Input rule says that proess P

i

attempting

to reeive a value from proess P

j

an, on reeipt of any value v from P

j

, bind

v to a variable x in its loal state. Expression e is evaluated to a value v before

the proess attempts to send it to P

j

, the statement terminating if and when

P

j

aepts this ommuniation. Assignment is onsidered an internal ation

that does not a�et other proesses, and the transition is labeled with ". In

the rules Seq and Int we abstrat from the internal omputations of a proess

by oalesing loal hanges of state (labelled with ") into a single labelled

transition. The last rule abstrats from loal omputations and highlights

an interation, whenever there is one. Observe that the Int rules are not

syntax-direted.

We now deal with the parallel omposition of proesses. The transitions

of proesses (as opposed to ommands) are also labelled (e.g.,

�

�!

p

) and have

a subsript p to distinguish them from the transition relation �! (used in

Table 9) for ommand transitions.

For readability, we follow the following notational onvenienes in Table

10.

� For any global state ��, �

k

will denote the k-th omponent of the n-tuple

(1 � k � n).

� For eah k, 1 � k � n, p

k

� P

k

::

k

and p

0

k

� P

k

::

0

k

.

63

Input

h�

i

; P

j

?xi

P

j

?v

�! �

i

[x 7! v℄

Output

�

i

` e =)

e

v

h�

i

; P

j

!ei

P

j

!v

�! �

i

Assign

�

i

` e =)

e

v

h�

i

; x := ei

"

�! �

i

[x 7! v℄

Seq

h�

i

;

1

i

"

�! �

0

i

h�

0

i

;

2

i

"

�! �

00

i

h�

i

;

1

;

2

i

"

�! �

0

i

Int

1

h�

i

; i (

"

�!)

�

�

�! (

"

�!)

�

h�

0

i

;

0

i

h�

i

; i

�

�! h�

0

i

;

0

i

� 6= "

Int

2

h�

i

; i (

"

�!)

�

�

�! (

"

�!)

�

�

0

i

h�

i

; i

�

�! �

0

i

� 6= "

Table 9: Mixed-step semantis for CSP ommands

� In rules Par

interleave

and Par

syn

,

S � [k

n

k=1

p

k

℄ ; S

0

� [k

n

k=1

p

0

k

℄

� In rule Par

interleave

,

�

0

k

=

(

�

0

i

if k = i

�

k

otherwise

;

0

k

�

(

0

i

if k = i

k

otherwise

� In rule Par

syn

�

0

k

=

8

>

<

>

:

�

0

i

if k = i 6= j

�

0

j

if k = j 6= i

�

k

otherwise

;

0

k

�

8

>

<

>

:

0

i

if k = i 6= j

0

j

if k = j 6= i

k

otherwise

64

Proess

i

h�

i

;

i

i

�

�! h�

0

i

;

0

i

i

h�

i

; p

i

i

�

�!

p

h�

0

i

; p

0

i

i

Par

interleave

h�

i

; p

i

i

"

�!

p

h�

0

i

; p

0

i

i

h��; Si

"

�!

p

h

�

�

0

; S

0

i

Par

syn

h�

i

; p

i

i

P

j

!v

�!

p

h�

0

i

; p

0

i

i h�

j

; p

j

i

P

i

?v

�!

p

h�

0

j

; p

0

j

i

h��; Si

"

�!

p

h

�

�

0

; S

0

i

Table 10: Big-step semantis for CSP ommands

In Table 10:

� The rule Par

syn

treats a \losed" system of proesses. Hene all om-

muniations between omponents of the system are internal to the sys-

tem.

� The system of proesses terminates only if every proess in the system

terminates. In other words, on�gurations of the form h��; [k

n

k=1

P

k

::

Æ ℄i (where \Æ" denotes an empty ontinuation) are the only terminal

on�gurations.

� If the system reahes a stuk on�guration, then it is said to be dead-

loked. In other words, a on�guration h�; Si, whih is not terminal

and suh that h��; Si 6

"

�!

p

is deadloked.

Table 11 ontains the rules for guards using yet another labelled transition

system, whih is then used in giving the semantis of the onditional and

iterations onstruts. (Table 12).

The following example illustrates some of the distintions that an arise

due to non-determinism.

Example 5.3 Compare the proess PR in Example 5.2 with the following

alternative version.

PR

0

:: do

2

i=1

true . P

i

?v;do v 6= eot . print(v);P

i

?v; od od

The major di�erene between PR and PR

0

is in their deadlok behavior.

Whereas PR may wait till one of the proesses is ready to ommuniate with

65

� ` e

j

=)

e

true

h�; e

j

.

j

i

"

�!

g

�

� ` e

j

=)

e

true h�; io

j

i

�

�! �

0

h�; e

j

; io

j

i

�

�!

g

�

0

Table 11: Mixed step semantis for guards

it, PR

0

is fored to make a ommitment to wait on one of the two proesses

say P

1

, regardless of whether P

1

wants to ommuniate with it. PR

0

learly

exaerbates the possibilities of deadlok in the system. Therefore, PR and

PR

0

annot be onsidered equivalent as proesses.

5.2 Extensions

We onlude this disussion with some language features that an easily be

modeled in the framework of LTSs.

Input and output. Commands are extended with input and output

primitives:

 ::= : : : j read(x) j write(e)

Input and output are really speial ases of ommuniation, but instead of

interating with a named proess, values are taken from and added to stream

data strutures. The ommand level rules are (following the onvention men-

tioned above):

Read

h�

i

; read(x)i

?v

�! �

i

[x 7! v℄

Write

�

i

` e =)

e

v

h�

i

; write(e)i

!v

�! �

i

Two new kinds of labels are added, for reading and writing:

l 2 L ::= : : : j !v j ?v

66

h�; g

j

i

�

�!

g

�

0

h�; IFi

�

�! h�

0

;

j

i

(j 2 f1; : : : ; ng)

h�; g

j

i

�

�!

g

�

0

h�; DOi

�

�! h�

0

;

j

; DOi

(j 2 f1; : : : ; ng)

n

^

i=1

� ` e

i

=)

e

false

h�; DOi

"

�! �

Let IF � if

n

i=1

g

i

.

i

�

and DO � do

n

i=1

g

i

.

i

od

Table 12: Semantis of if � � and do� od

At the global on�guration level, (global) input and output streams are

added. The labels generated at the ommand level are \disharged" at the

top level, with the orresponding manipulations of the I/O streams &

i

; &

o

Rd

h�

i

;

i

i

?v

�! h�

0

i

;

0

i

i

h�

i

; p

i

; v&

i

; &

o

i

"

�!

p

h�

0

i

; p

0

i

; &

i

; &

o

i

Wrt

h�

i

;

i

i

!v

�! h�

0

i

;

0

i

i

h�

i

; p

i

; &

i

; &

o

i

"

�!

p

h�

0

i

; p

0

i

; &

i

; &

o

vi

Dynami Proess Creation. Consider a ommand fork(P;), whih

dynamially reates a new proess named P exeuting the ommand . At

the ommand level, the e�et of this ommand returns the state unhanged,

but generates a new kind of label �(h�

i

; P :: i). The state �

i

is loned and

pakaged into the label.

h�

i

; fork(P;)i

�(h�

i

; P ::i)

�! �

i

where P is a new proess name

67

At the global on�guration level, the label �(h�

i

; P :: i) is \disharged",

by reating a new proess with its own loal state.

h�

i

; p

i

i

�(P ::)

�!

p

h�

0

i

; p

0

i

i

h��; Si

"

�!

p

h

�

�

00

; S

00

i

S

00

= [(k

n

k=1

p

0

k

) j P :: ℄ and

�

�

00

=

�

�

0

 �

i

, where we ontinue with the

notational onvention mentioned above. That is, the vetor of proess ode

has a n+1

th

omponent P :: the loal state of whih has a fresh opy of �

i

as its initial loal state. The rule applies only under the assumption that P

is a globally fresh proess name.

6 Conlusion

We have seen the use of strutural operational semantis both as a onise

formalism and as a method of preisely de�ning the dynami semantis of

programming language onstruts. The oniseness of the formalism makes

it far easier to study and omprehend the potential bottleneks that an im-

plementor is likely to fae. Sine the semantis is syntax-driven and the rules

are essentially syntati, it is also possible in many ases, to generate pro-

totypial implementations of new and so far untried onstruts quikly with

the help of sanning and parsing tools. One suh tool for onurrent systems

is the Proess Algebra ompiler of North Carolina [CMS95℄.

In the ase of both imperative and funtional languages, we have hosen

the semantis of a small ore and built up new onstruts and features and

given them meaning. However, in general, an existing programming language

annot be extended by adding new features to it, without �rst onsidering

how the existing features of the language interat with the new ones.

In many ases, the implementation strategies beome learer through

suh a rule-based exposition of the semantis. In ertain ases, of ourse,

we have hosen to de�ne rules that are onsistent with and model urrent

implementation strategies.

We have not treated the semantis of strutured data in general. We have

also not treated the semantis of types or stati semanti analysis. While this

is a major omission and is important for ompiling, it would have taken us too

far a�eld. Another signi�ant omission is the semantis of modules, lasses

and objets muh of whih is still an area of ative researh. The bibliography

68

ontains several referenes whih the reader may onsult to learn more about

the work in the area.

Referenes

[AC98℄ R. M. Amadio and P.-L. Curien. Domains and lambda-aluli.

Cambridge University Press, 1998.

[AFV00℄ L. Aeto, W. Fokkink, and C. Verhoef. Strutural operational

semantis. In J.A. Bergstra, A. Ponse, and S.A. Smolka, editors,

Handbook of Proess Algebra. Elsevier, Amsterdam, 2000.

[ANB

+

86℄ E. Astesiano, C. Bendix Nielsen, N. Botta, A. Fantehi,

A. Giovini, P. Inverardi, E. Karlsen, F. Mazzanti, G. Reggio,

and E. Zua. The Trial De�nition of Ada, Deliverable 7 of the

CEC MAP projet: The Draft Formal De�nition of ANSI/MIL-

STD 1815 Ada. CEC MAP, 1986.

[App92℄ Andrew W. Appel. Compiling with Continuations. Cambridge

University Press, 1992.

[Ast91℄ E. Astesiano. Indutive and Operational Semantis, pages 53{

134. Formal Desription of Programming Conepts. Springer-

Verlag, 1991.

[Bar84℄ H.P. Barendregt. The Lambda Calulus, Its Syntax and Seman-

tis, volume 103 of Studies in Logi and the Foundation of Math-

ematis. North Holland, Amsterdam, 1984.

[BC84℄ G. Berry and L. Cosserat. The Esterel synhronous program-

ming language and its mathematial semantis. In S.D. Brookes,

A.W. Rosoe, and G. Winskel, editors, Seminar on Conurreny,

volume 197 of Leture Notes in Computer Siene, pages 389{

448. Springer-Verlag, 1984.

[BG92℄ G. Berry and G. Gonthier. The Esterel synhronous program-

ming language: design, semantis, implementation. Siene of

Computer Programming, 19(2):87{152, 1992.

69

[BH87℄ R. Burstall and F. Honsell. A natural dedution treatment of op-

erational semantis. In Proeedings of FST and TCS 8, Founda-

tions of Software Tehnology and Theoretial Computer Siene,

Pune India, volume 287 of Leture Notes in Computer Siene.

Springer-Verlag, 1987.

[Bor00℄ Rihard Bornat. Proving pointer programs in Hoare Logi. In

Mathematis of Program Constrution, pages 102{126, 2000.

[BS90℄ Egon Borger and Peter H. Shmitt. A formal operational se-

mantis for languages of type prolog III. In CSL, pages 67{79,

1990.

[Car84℄ L. Cardelli. Compiling a funtional language. In Proeedings

of 1984 Symposium on LISP and Funtional Programmin, pages

208{217, 1984.

[Car86a℄ L. Cardelli. Amber. In G. Cousineau, P-L. Curien, and B. Robi-

net, editors, Combinators and Funtional Programming Lan-

guage, volume 242 of LNCS. Springer, 1986.

[Car86b℄ L. Cardelli. The amber mahine. In G. Cousineau, P-L. Curien,

and B. Robinet, editors, Combinators and Funtional Program-

ming Languages, volume 242 of LNCS. Springer, 1986.

[CCM85℄ G. Cousineau, P. Curien, and M. Mauny. The Categorial Ab-

strat Mahine. In J.-P. Jouannaud, editor, Funtional Pro-

gramming Languages and Computer Arhiteture, volume 201 of

Leture Notes in Computer Siene, pages 50{64, Berlin, 1985.

Springer-Verlag.

[CIO00℄ Cristiano Calagno, Samin Ishtiaq, and Peter W. O'Hearn. Se-

manti analysis of pointer aliasing, alloation and disposal in

Hoare logi. In Maurizio Gabbrielli and Frank Pfenning, editors,

Pro. 2nd International Conferene on Priniples and Pratie

of Delarative Programming, Montreal, Canada. ACM, 2000.

[CKRW99℄ Pietro Ceniarelli, Alexander Knapp, Bernhard Reus, and Mar-

tin Wirsing. An Event-Based Strutural Operational Semantis

of Multi-Threaded Java. In Formal Syntax and Semantis of

Java, pages 157{200, 1999.

70

[CMS95℄ R. Cleaveland, E. Madelaine, and S. Sims. A front-end genera-

tor for veri�ation tools. In E. Brinksma, R. Cleaveland, K.G.

Larsen, and B. Ste�en, editors, Tools and Algorithms for the

Constrution and Analysis of Systems, volume 1019 of LNCS,

pages 153{173. Springer Verlag, 1995.

[Cur91℄ Pierre-Louis Curien. An abstrat framework for environment

mahines. Theoretial Computer Siene, 82(2):389{402, 1991.

[dS92℄ Fabio Q. B. da Silva. Corretness Proofs of Compilers and De-

buggers: an Approah Based on Strutural Operational Seman-

tis. PhD thesis, Laboratory for Foundations of Computer Si-

ene, Computer Siene Department, Edinburgh University, Ed-

inburgh, EH9 3JZ, Sotland, September 1992. Available as LFCS

Report Series ECS-LFCS-92-241 or CST-95-92.

[FFKD87℄ M. Felleisen, D. Friedman, E. Kohlbeker, and B. Duba. A syn-

tati theory of sequential ontrol. Theoretial Computer Si-

ene, 52(3):205{237, 1987.

[GMP89℄ A. Giaalone, P. Mishra, and S. Prasad. Faile: A symmetri

integration of onurrent and funtional programming. Interna-

tional Journal of Parallel Programming, 18(2):121{160, 1989.

[Gon88℄ G. Gonthier. S�emantiques et Mod�eles d'Ex�eution des Lan-

gages R�eatifs Synhrone; Appliation �a Esterel. Th�ese

d'informatique, Universit�e d'Orsay, 1988.

[Gri90℄ Timothy G. GriÆn. The formulae-as-types notion of ontrol.

In Conf. Reord 17th Annual ACM Symp. on Priniples of Pro-

gramming Languages, POPL'90, San Franiso, CA, USA, 17{

19 Jan 1990, pages 47{57. ACM Press, New York, 1990.

[Gun92℄ Carl A. Gunter. Semantis of Programming Languages: Stru-

tures and Tehniques. Foundations of Computing. MIT Press,

1992.

[Gur93℄ Yuri Gurevih. Evolving algebras: An attempt to disover se-

mantis. In G. Rozenberg and A. Salomaa, editors, Current

Trends in Theoretial Computer Siene, pages 266{292. World

Sienti�, 1993.

71

[Han91℄ John Hannan. Making abstrat mahines less abstrat. In

J. Hughes, editor, Funtional Programming Languages and Com-

puter Arhiteture, 5th ACM Conferene, volume 523, pages

618{635. Springer-Verlag, Berlin, Heidelberg, and New York,

1991.

[Han94℄ J. Hannan. Operational semantis-direted ompilers and ma-

hine arhitetures. ACM Transations on Programming Lan-

guages and Systems, 16(4):1215{1247, 1994.

[Hen80℄ P. Henderson. Funtional Programming: Appliation and Imple-

mentation. Prentie Hall International, 1980.

[Hen88℄ M. Hennessy. Algebrai Theory of Proesses. MIT Press, Cam-

bridge, Massahusetts, 1988.

[HJP92℄ Seif Haridi, Sverker Janson, and Catusia Palamidessi. Stru-

tural operational semantis of AKL. Future Generation Com-

puter Systems, 1992.

[HL74℄ C.A.R. Hoare and P.E. Lauer. Consistent and omplementary

formal theories of the semantis of programming languages. Ata

Informatia, 3:135{153, 1974.

[Hoa69℄ C.A.R. Hoare. An axiomati basis for omputer programming.

Communiations of the ACM, 12(10), 1969.

[Hoa78℄ C.A.R. Hoare. Communiating sequential proesses. Communi-

ations of the ACM, 21(8):666{677, 1978.

[Hoa85℄ C.A.R. Hoare. Communiating Sequential Proesses. Prentie

Hall International, Englewood Cli�s, 1985.

[HP92℄ J. Hannan and F. Pfenning. Compiler veri�ation in lf. In Sev-

enth Annual IEEE Symposium on Logi in Computer Siene,

pages 407{418. IEEE, 1992.

[Jon87℄ Simon L. Peyton Jones. The Implementation of Funtional Pro-

gramming Languages. Prentie Hall International, London, 1987.

72

[Kah87℄ G. Kahn. Natural semantis. In F.J. Brandenburg, G. Vidal-

Naquet, and M. Wirsing, editors, Proeedings of STACS'87, vol-

ume 247 of Leture Notes in Computer Siene, pages 22{39.

Springer-Verlag, 1987.

[KS88℄ Rihard Kennaway and Ronan Sleep. Diretor strings as om-

binators. ACM Transations on Programming Languages and

Systems, 10(4):602{626, 1988.

[Lan64℄ P.J. Landin. The Mehanial Evaluation of Expressions. Com-

puter Journal, 6(5):308{320, 1964.

[Lan65a℄ P. J. Landin. An abstrat mahine for designers of omputing

languages. In Pro. IFIP Congress, pages 438{439, 1965.

[Lan65b℄ P.J. Landin. A orrespondene between ALGOL 60 and Churh's

lambda-notation: Part I. Communiations of the ACM, 8(2):89{

101, 1965.

[Lau68℄ L.P. Lauer. Formal de�nition of Algol 60. Tehnial Report

TR.25.088, IBM Lab. Vienna, 1968.

[Lei01℄ J. J. Leifer. Operational Congruenes for Reative Systems. PhD

thesis, University of Cambridge Computer Laboratory, 2001.

[MC63℄ J. MCarthy. Towards a mathematial siene of omputation.

In C.M. Popplewell, editor, Information Proessing 1962, pages

21{28, 1963.

[MH90℄ D. Miller and J. Hannan. From operational semantis to abstrat

mahines: Preliminary results. In Proeedings of the 1990 ACM

Conferene on Lisp and Funtional Programming. ACM, 1990.

[Mi94℄ Marino Miulan. The expressive power of strutural operational

semantis with expliit assumptions. In Henk Barendregt and

Tobias Nipkow, editors, Types for Proofs and Programs, pages

263{290. Springer-Verlag LNCS 806, 1994.

[Mil73℄ R. Milner. Proesses: A mathematial model of omputing

agents. In H.E. Rose and J.C. Shepherdson, editors, Proeed-

ings Logi Colloquium 1973, Bristol, UK, pages 158{173. North-

Holland, 1973.

73

[Mil76℄ R. Milner. Program semantis and mehanized proof. In K. R.

Apt and J. W. de Bakker, editors, Foundations of Computer

Siene II, pages 3{44. Mathematial Centre, Amsterdam, 1976.

[Mil80℄ R. Milner. A Calulus of Communiating Systems, volume 92 of

Leture Notes in Computer Siene. Springer Verlag, 1980.

[Mil89℄ R. Milner. Communiation and Conurreny. Prentie-Hall In-

ternational, Englewood Cli�s, 1989.

[Mor82℄ J. Morris. A general axiom of assignment and linked data stru-

ture. In M. Broy and G. Shmidt, editors, Theoretial Founda-

tions of Programming Methodology, pages 25{41. ??, 1982.

[Mor88℄ James Morris. Algebrai operational semantis for Modula 2.

PhD thesis, University of Mihigan, 1988.

[Mos92℄ P. D. Mosses. Ation Semantis, volume 26 of Cambridge Trats

in Theoretial Computer Siene. Cambridge University Press,

1992.

[MS96℄ D. Le Metayer and D. Shmidt. Strutural operational semantis

as a basis for stati program analysis. ACM Computing Surveys,

28:340{343, 1996.

[MTHM97℄ Robin Milner, Mads Tofte, Robert Harper, and David Ma-

Queen. The De�nition of Standard ML (Revised). MIT Press,

1997.

[Ong99℄ C.-H. L. Ong. Correspondene between Operational and Deno-

tational Semantis: The Full Abstration problem for PCF. In

S. Abramsky, editor, Handbook of Theoretial Computer Siene,

volume 3. Oxford University Press, 1999.

[Pal92℄ Jens Palsberg. A provably orret ompiler generator. In Bernd

Krieg-Brukner, editor, ESOP '92, 4th European Symposium on

Programming, Rennes, Frane, February 1992, Proeedings, vol-

ume 582, pages 418{434. Springer-Verlag, New York, NY, 1992.

74

[Par81℄ D. Park. Conurreny and automata on in�nite sequenes. In

P. Deussen, editor, 5th GI Conferene, Karlsruhe, Germany, vol-

ume 104 of Leture Notes in Computer Siene, pages 167{183.

Springer-Verlag, 1981.

[PL/86℄ PL/I De�nition Group. Formal de�nition of PL/I version 1.

Report TR25.071, Amerian Nat. Standards Institute, 1986.

[Plo75℄ G.D. Plotkin. Call-by-name, all-by-value and the lambda-

alulus. Theoretial Computer Siene, 1:125{159, 1975.

[Plo77℄ G.D. Plotkin. LCF onsidered as a programming language. The-

oretial Computer Siene, 5:223{256, 1977.

[Plo81℄ G.D. Plotkin. A strutural approah to operational semantis.

Report DAIMI FN-19, Computer Siene Department, Aarhus

University, 1981.

[Plo83℄ G.D. Plotkin. An operational semantis for CSP. In D. Bj�rner,

editor, Proeedings IFIP TC2 Working Conferene on For-

mal Desription of Programming Conepts { II, Garmish-

Partenkirhen, pages 199{225. North-Holland, 1983.

[San97℄ David Sands. From SOS rules to proof priniples: An opera-

tional metatheory for funtional languages. In Conferene Reord

24th ACM Symposium on Priniples of Programming Languages,

pages 428{441, Paris, Frane, 1997.

[Sh86℄ D. A. Shmidt. Denotational Semantis: A Methodology for Lan-

guage Development. Allyn and Baon, 1986.

[Sew98℄ P. Sewell. From rewrite rules to bisimulation ongruenes. In

Proeedings of CONCUR'98, volume 1466 of LNCS, pages 269{

284. Springer Verlag, 1998.

[Sto77℄ J. Stoy. Denotational Semantis: the Sott-Strahey approah to

Programming Language Theory. MIT press, 1977.

[Ten81℄ R. D. Tennent. Priniples of Programming Languages. Prentie-

Hall International, 1981.

75

[Tin01℄ Simone Tini. An axiomati semantis for Esterel. Theoretial

Computer Siene, 269, 2001.

[Tur79℄ D. A. Turner. A new implementation tehnique for appliative

languages. Software Pratie and Experiene, 9(1):31{49, 1979.

[War83℄ D. H. D. Warren. An abstrat Prolog instrution set. Tehnial

Note 309, SRI International, Menlo Park, California, 1983.

[Wat90℄ D.A. Watt. Programming Conepts and Paradigms. Prentie

Hall, 1990.

[WBB92℄ S. Weber, B. Bloom, and G. Brown. Compiling Joy to silion:

A veri�ed silion ompilation sheme. In Proeedings of the Ad-

vaned Researh in VLSI and VLSI and Parallel Systems Con-

ferene, Providene, RI, 1992.

[WF94℄ Andrew Wright and Matthias Felleisen. A syntati approah

to type soundness. Information and Computation, 115(1):38{94,

1994.

[Win93℄ G. Winskel. The Formal Semantis of Programming Languages:

An introdution. Foundations of Computing Siene. MIT Press,

1993.

[WO92℄ Mithell Wand and Dino P. Oliva. Proving the orretness of

storage representations. In Proeedings of the 1992 ACM Con-

ferene on LISP and Funtional Programming, pages 151{160,

New York, 1992.

76

