

Layered Clausal Resolution in the Multi-modal Logic of Beliefs and Goals

Jamshid B. Mohasefi and S. Arun-Kumar {jamshid,sak}@cse.iitd.ernet.in
Department of Computer Science and Engineering
I. I. T. Delhi, Hauz Khas, New Delhi 110016.

March 18, 2005

LPAR'04

Home Page

Title Page

- **44** | **>>**
- **←**

Page 2 of 33

Go Back

Full Screen

Close

Quit

Overview

- Motivation: Rational Agents
- The Logic of Beliefs and Goals
- Normal Form Transformation
- Resolution in the Logic

Rational Agents

Thus spake FIPA:

Assume a fixed set $Ag = \{1, 2, \dots, n\}$ of agents.

- Each agent is autonomous and can work independently
- It possesses mental attitudes Beliefs, Intentions
- It also possesses Knowledge and Desires (not of interest in this talk).
- Each agent's beliefs, desires and intentions may change with time as it receives fresh input from the environment.
- Each agent tries to realize its Intentions by its own actions or with the help of other agents in the system.

skip to Revision of Mental State

Communication

Thus continued FIPA:

- Communication is an integral part of agent behaviour.
- Agents communicate with each other to
 - obtain fresh information
 - request other agents to perform some tasks, that they themselves may not be able to perform.
 - influence their beliefs, intentions and desires in various ways.

Agent communications are expressed through performatives in an agent communication language (ACL).

LPAR'04

Home Page

Title Page

Page 5 of 33

Go Back

Full Screen

Close

Quit

Examples of Agent-like behaviour

- Distributed games Diplomacy, Age of Empires
- auction protocols Dutch, English, Vickerey.
- playing the stock market

Revision of Mental State

- Assumption: Each agent starts off life with a certain finite Belief base and a finite Goal base which is internally consistent.
- In the *give-and-take* of life its mental state undergoes changes.
- To maintain its *consistency* it needs to constantly revise its Belief and Goal bases.
- It also needs to reason about its own Beliefs and Goals to determine whether there is any inconsistency.

goto Basic Assumptions

Revision Procedure

```
Function Revise(S, \phi)
                           \#S is a belief or goal base and
   S = S \cup \{\phi\};
                                               \#\phi is a new formula
   return (Contraction(S));
End Revise.
Function Contraction(S)
   S_0 = S; i=0;
   while (S_i \models \mathbf{false}) do
     Find minimal F_i \subseteq S_i s.t. F_i \models \mathbf{false};
     q_i = \gamma(F_i);
                                        \#\gamma is a selection criterion
     S_{i+1} = S_i - \{q_i\};
                                        # remove q_i \in F_i from S_i
     i = i + 1:
   end while;
   return S_i;
End Contraction.
```


LPAR'04

Home Page

Title Page

Page 7 of 33

Go Back

Full Screen

Close

Basic Assumptions

- Belief is a modality satisfying the axioms KD45.
- Goal is a modality stisfying the axioms KD.
- Intention is <u>not</u> a modality by itself (Why not?) but is instead a derived operator

$$I\phi \equiv G\phi \wedge B\neg \phi$$

skip to Logic of Beliefs & Goals

Goals vs. Intentions

- Many authors regard Intention as a modality satisfying KD but there is a "side-effect" problem (Cohen and Levesque). If ϕ is desirable property to achieve but has an undesirable consequence ψ , then does $I\phi$ imply $I\psi$ too?
- ullet FIPA does not define a separate "Goal" attitude. But then it is silent about what an agent should do if it is committed to bring about ϕ even if it believes that ϕ already holds. This problem does not arise with intention as derived from beliefs and goals.

skip KD45 axioms

KD45 and KD

O is a modality.

- **K**: $\vdash O(\phi \Rightarrow \psi) \Rightarrow (O\phi \Rightarrow O\psi)$
- **D**: $\vdash O\phi \Rightarrow \neg O\neg \phi$
- 4: $\vdash O\phi \Rightarrow OO\phi$
- 5: $\vdash \neg O \neg \phi \Rightarrow O \neg O \neg \phi$.

LPAR'04

Home Page

Title Page

Page 10 of 33

Go Back

Full Screen

Close

Resolution: Propositional Logic

- $\mathcal{P} = \mathsf{Set}$ of Atomic propositions, $p \in \mathcal{P}$.
- $\bullet \ \phi = p \mid \phi_1 \lor \phi_2 \mid \phi_1 \land \phi_2 \mid \neg \phi$
- Conjunctive Normal Form, $\phi_1 \wedge \cdots \wedge \phi_n$ where $\phi_i = l_1 \vee \cdots \vee l_{k_i}$.
- Any formula can be transformed into CNF.

LPAR'04

Home Page

Title Page

Page 11 of 33

Go Back

Full Screen

Close

Resolution: Propositional Logic

From sentences

$$l_1 \lor l_2 \lor \cdots \lor l_n$$
 and $\bar{l_1} \lor l_2' \lor \cdots \lor l_m'$ infer $l_2 \lor \cdots \lor l_n \lor l_2' \lor \cdots \lor l_m'$

• From p and $\neg p$ infer false.

LPAR'04

Home Page

Title Page

Page 12 of 33

Go Back

Full Screen

Close

The Logic of Beliefs & Goals

 $Ag = \{1, \ldots, n\}$ is a set of agents. Let $\mathcal{P} = \{p, q, r, \ldots\}$ of atomic propositions, and constants true and false

- any element of \mathcal{P} is in WFF_{BG_n} ;
- true and false are in WFF_{BG_n} ;
- if ϕ and ψ are in WFF_{BG_n} then so are $\neg \phi, \phi \lor \psi, \phi \land \psi, B_i \phi, G_i \phi$ where $i \in Ag$.

Home Page

Title Page

Page 13 of 33

Go Back

Full Screen

Close

Multi-Modal Logic BG_n

- Semantics of BG_n formulas are defined as usual on Kripke structures $M = (S, L, B_1, \dots, B_n, G_1, \dots, G_n)$
- B_i satisfies axioms K, D, 4, 5 and G_i satsifies axioms K, D
- convert formulas of BG_n to a Normal Form (NF_{BG_n}) using the notion of a view.
- View v is a sequence of B_i and G_j modal operators. $O_{1i_1} \dots O_{ki_k}$ where $O_j \in \{B, G\}$ and $i_j \in Ag$.
- Example: $B_1B_2G_1$ is a view.

Home Page

Title Page

Page 14 of 33

Go Back

Full Screen

Close

Normal Form NF_{BG_n}

- New symbol start such that $(M, s_0) \models \mathbf{start}$ for any initial state s_0 .
- ullet Formulas in NF_{BG_n} are of the general form

$$\bigwedge_h v_h : C_h$$

• v_h is a view and C_h is a clause.

Page 15 of 33

Go Back

Full Screen

Close

Normal Form: Clauses

• Clauses are of the following form:

$$\mathbf{start} \Rightarrow \bigvee_{b=1}^{r} l_b$$
 (an initial clause)
 $\mathbf{true} \Rightarrow \bigvee_{a=1}^{r} l_a$ (a literal clause)
 $\mathbf{true} \Rightarrow \bigvee_{a=1}^{r} m_{Bi_a}$ (a B_i clause) $m_{B_i} = B_i l$ or $\neg B_i l$
 $\mathbf{true} \Rightarrow \bigvee_{a=1}^{r} m_{Gi_a}$ (a G_i clause) $m_{G_i} = G_i l$ or $\neg G_i l$

LPAR'04

Home Page

Title Page

Page 16 of 33

Go Back

Full Screen

Close

An Assumption

For a "rational" agent $i \in Ag$,

$$\begin{array}{rcl}
O_i O_i \phi & \equiv & O_i \phi \\
O_i \neg O_i \phi & \equiv & \neg O_i \phi
\end{array}$$

or there cannot be consecutive nestings of the same modality.

Information Store

LPAR'04

Home Page

Title Page

Page 17 of 33

Go Back

Full Screen

Close

 NF_{BG_n} : Transformation au_0

the transformation is done in two steps:

$$\tau_0[F] \longrightarrow (\epsilon : \mathbf{start} \Rightarrow f) \land \tau_1[\epsilon : f \Rightarrow F].$$

where f is a new propositional variable.

LPAR'04

Home Page

Title Page

Page 18 of 33

Go Back

Full Screen

Close

NF_{BG_n} : Transformation au_1

x is a proposition, main operator on the right side \wedge or \neg ,

$$\tau_{1}[v:x\Rightarrow(F\wedge H)]\longrightarrow\tau_{1}[v:x\Rightarrow F]\wedge\tau_{1}[v:x\Rightarrow H]$$

$$\tau_{1}[v:x\Rightarrow\neg(F\wedge H)]\longrightarrow\tau_{1}[v:x\Rightarrow(\neg F\vee\neg H)]$$

$$\tau_{1}[v:x\Rightarrow\neg(F\vee H)]\longrightarrow\tau_{1}[v:x\Rightarrow\neg F]\wedge\tau_{1}[v:x\Rightarrow\neg H]$$

$$\tau_{1}[v:x\Rightarrow\neg\neg F]\longrightarrow\tau_{1}[v:x\Rightarrow F].$$

LPAR'04

Home Page

Title Page

Page 19 of 33

Go Back

Full Screen

Close

Normal Form NF_{BG_n} : Transformation

Complex sub-formulas within the scope of $O_i \in \{B_i, G_i\}$, and F is not a literal.

$$\frac{\tau_{1}[v:x\Rightarrow O_{i}F]}{} \longrightarrow \frac{\tau_{1}[v:x\Rightarrow O_{i}y]} \wedge \frac{\tau_{1}[vO_{i}:y\Rightarrow F]}{}$$

$$\frac{\tau_{1}[v:x\Rightarrow \neg O_{i}F]}{} \longrightarrow \frac{\tau_{1}[v:x\Rightarrow \neg O_{i}\neg y]} \wedge \frac{\tau_{1}[vO_{i}:y\Rightarrow \neg F]}{}$$

where y is a new variable.

LPAR'04

Home Page

Title Page

Page 20 of 33

Go Back

Full Screen

Close

Normal Form NF_{BG_n} : Transformation

right hand side has \vee as the main operator (D is a disjunction of formulas).

Case: D contains a disjunct of the form O'_j or $\neg O'_j$ where $O \neq O'$ or $i \neq j$.

$$\begin{array}{c} {\color{red} {\color{blue} {\color{b {\color{blue} {\color{b} {\color{blue} {\color{$$

where y is a new variable.

LPAR'04

Home Page

Title Page

Page 21 of 33

Go Back

Full Screen

Close

Normal Form NF_{BG_n} : Transformation

Case: F is not a literal and D contains only the modality O_i .

$$\begin{array}{ccc} \mathbf{\tau_1}[v:x\Rightarrow D\vee\neg O_i\neg F] &\longrightarrow \mathbf{\tau_1}[v:x\Rightarrow D\vee\neg O_i\neg y] \wedge \\ \mathbf{\tau_1}[vO_i:y\Rightarrow F], \end{array}$$

where y is a new variable.

LPAR'04

Home Page

Title Page

Page 22 of 33

Go Back

Full Screen

Close

Normal Form NF_{BG_n}

- Each modal clause may contain modal literals involving only one modal operator.
 - Clause $\mathbf{true} \Rightarrow B_1 x \vee y \vee \neg B_1 z$ is allowed, but $\mathbf{true} \Rightarrow B_1 x \vee y \vee B_2 z$ and $\mathbf{true} \Rightarrow B_1 x \vee y \vee G_1 z$ are not allowed
- ullet Finally (D is a disjunction of literals and modal literals only involving one modal operator.)

$$\tau_1[v:x\Rightarrow D]\longrightarrow v:true\Rightarrow \neg x\vee D$$

LPAR'04

Home Page

Title Page

Page 23 of 33

Go Back

Full Screen

Close

Example of transformation

 $F = B_i(p \vee \neg B_j(q \vee \neg t))$ into normal form.

LPAR'04

Home Page

Title Page

Page 24 of 33

Go Back

Full Screen

Close

Initial Resolution rules

 $\epsilon: \mathbf{true} \Rightarrow (F \lor l)$

 $[IRES1] \ \epsilon : \mathbf{start} \Rightarrow (H \lor \neg l)$

 $\epsilon: \mathbf{start} \Rightarrow (F \vee H)$

 $\epsilon : \mathbf{start} \Rightarrow (F \lor l)$

 $[IRES2] \ \epsilon : \mathbf{start} \Rightarrow (H \lor \neg l)$

 $\epsilon: \mathbf{start} \Rightarrow (F \lor H)$

LPAR'04

Home Page

Title Page

Page 25 of 33

Go Back

Full Screen

Close

Modal Resolution rules

 $[MRES2] \quad \begin{array}{c} v : \mathbf{true} \Rightarrow D \lor O_i l \\ v : \mathbf{true} \Rightarrow D' \lor O_i \neg l \\ \hline v : \mathbf{true} \Rightarrow D \lor D' \end{array}$

 $[MRES3] \begin{array}{c} v : \mathbf{true} \Rightarrow D \lor \neg O_i l \\ vO_i : \mathbf{true} \Rightarrow D' \lor l \\ \hline v : \mathbf{true} \Rightarrow D \lor mod_{O_i}(D') \end{array}$

 $[MRES4] \frac{v : \mathbf{true} \Rightarrow D \lor O_i l}{v : \mathbf{true} \Rightarrow D' \lor \neg l}$ $v : \mathbf{true} \Rightarrow D \lor mod_{O_i}(D')$

where $mod_{O_i}(D')$ is defined below.

LPAR'04

Home Page

Title Page

Page 26 of 33

Go Back

Full Screen

Close

mod_{O_i}

$$mod_{O_i}(F \vee G) = mod_{O_i}(F) \vee mod_{O_i}(G)$$
 for $O_i \in \{B_i, I_i\}$.

$$mod_{O_i}(l) = \neg O_i \neg l$$
 for $O_i \in \{B_i, I_i\}$.

$$mod_{B_i}(B_i l) = B_i l$$

$$mod_{B_i}(\neg B_i l) = \neg B_i l$$

Note the difference in treatment between B_i and G_i . In case $O_i = G_i$, D' must be a disjunction of propositional literals in MRES3 and MRES4.

KD45 axioms

LPAR'04

Home Page

Title Page

Page 27 of 33

Go Back

Full Screen

Close

The intuition behind MRES3 for B_i

- 1. $v : \mathbf{true} \Rightarrow D \vee \neg B_i l \in view(v)$
- 2. $vB_i : \mathbf{true} \Rightarrow D' \lor l = m_1 \lor ... \lor m_k \lor l \in view(vB_i)$ Intuitively 2 is the same as

$$v: B_i(\neg D' \Rightarrow l)$$

i.e $v: B_i \neg D' \Rightarrow B_i l$. Further $B_i \neg D' \Leftrightarrow B_i \neg m_1 \dots B_i \neg m_k$. By the transformation each m_i is a modal literal involving only B_i . So finally 2. is equivalent to

$$v: \mathbf{true} \Rightarrow \neg B_i \neg m_1 \lor \ldots \lor \neg B_i \neg m_k \lor B_i l$$

which may be resolved against 1 to yield

$$v: \mathbf{true} \Rightarrow D \vee \neg B_i \neg m_1 \vee \ldots \vee B_i \neg m_k$$

From the axioms of **KD45**, $\neg B_i \neg B_i \neg F \Leftrightarrow B_i \neg F$, which means the prefix " $\neg B_i \neg$ " may be deleted from those that have such nestings.

LPAR'04

Home Page

Title Page

Page 28 of 33

Go Back

Full Screen

Close

Example of Resolution

Suppose agent i has the **belief base:** $B_i(\neg p \lor B_j q)$, $B_iB_j\neg q$. The question is, whether $B_i\neg p$ is implied by the belief base. We add $\neg B_i\neg p$ to the belief base and check if the resolution process results in the clause ϵ : $\operatorname{start} \Rightarrow \operatorname{false}$.

Clauses:

$$\begin{array}{lll} B_i(\neg p \vee B_j q) & B_i B_j \neg q & \neg B_i \neg p \\ \hline 1. \ \epsilon : \mathbf{start} \Rightarrow f & \hline 4. \ \epsilon : \mathbf{start} \Rightarrow f & \hline 7. \ \epsilon : \mathbf{start} \Rightarrow f \\ \hline 2. \ \epsilon : \mathbf{true} \Rightarrow \neg f \vee B_i x_1 & 5. \ \epsilon : \mathbf{true} \Rightarrow \neg f \vee B_i y_1 & 8. \ \epsilon : \mathbf{true} \Rightarrow \neg f \vee \neg B_i \neg p \\ \hline 3. \ B_i : \mathbf{true} \Rightarrow \neg x_1 \vee \neg p \vee B_j q & 6. \ B_i : \mathbf{true} \Rightarrow \neg y_1 \vee B_j \neg q \\ \hline \end{array}$$

Resolution:

$$3 \longrightarrow 8 \longrightarrow 9. \ B_i : \mathbf{true} \Rightarrow \neg x_1 \vee \neg p \vee \neg y_1 \xrightarrow{MRES3} 10. \ \epsilon : \mathbf{true} \Rightarrow \neg f \vee \neg B_i x_1 \vee \neg B_i y_1$$

$$2 \longrightarrow 10 \xrightarrow{MRES1} 11. \ \epsilon : \mathbf{true} \Rightarrow \neg f \vee \neg B_i y_1 \xrightarrow{MRES1} 12. \ \epsilon : \mathbf{true} \Rightarrow \neg f \xrightarrow{IRES1} \epsilon : \mathbf{start} \Rightarrow \mathbf{false}$$

LPAR'04

Home Page

Title Page

Page 29 of 33

Go Back

Full Screen

Close

Soundness & Completeness

Soundness and Completeness of method is proved in three parts:

- Transformation preserves the satisfiability
- Set of Resolution rules are sound
- If a set of formulas is unsatisfiable, then there is a refutation using resolution rules.
- The rules are sound and complete modulo the assumption. The proof though standard, is extremely long and complicated.

Conclusions

- This is an extension of the method of Dixon, Fisher and Bolotov (Al vol 139 pp 47-89, 2002) for the unimodal case of a KD45 modality.
- The method satisfies a "locality" or "layering" property viz. that resolution is performed only within the same or adjacent levels of nesting. This allows for a simple representation of the Information store as in Benerecetti's work.
- Many tableau and resolution-based proof systems exist in the literature (too numerous to mention here). So this work is not really an advancement in proof techniques, but is perhaps more useful in
 - determining whether an agent's information store is inconsistent, and hence
 - in belief and goal revision.

LPAR'04

Home Page

Title Page

Page 31 of 33

Go Back

Full Screen

Close

Information Store

LPAR'04

Home Page

Title Page

44 | 55

→

Page 32 of 33

Go Back

Full Screen

Close

LPAR'04

Home Page

Title Page

Page 33 of 33

Go Back

Full Screen

Close

Quit

Thank you