
Decompiling Boolean Expressions from JavaTM Bytecode

Mangala Gowri Nanda
IBM Research, India

mgowri@in.ibm.com

S. Arun-Kumar
Indian Institute of Technology, Delhi

sak@cse.iitd.ernet.in

ABSTRACT
Java bytecode obfuscates the original structure of a Java ex-
pression in the source code. So a simple expression such as
(c1 || c2) or (c1 && c2) may be captured in the bytecode in
4 different ways (as shown in the paper). And correspond-
ingly, when we reconvert the bytecode back into Java source
code, there are four different ways this may happen. Fur-
ther, although gotos are not permitted in the Java source
code, the bytecode is full of gotos. If you were to blindly
convert the bytecode into Java source code, then you would
replace a goto by a labeled break. A labeled break has the
advantage that it only allows you to break out of a block
structure and (unlike a setjump) does not permit you to
jump arbitrarily into a block structure. So while the data
structures used in the regenerated Java source code are still
relatively“clean”arbitrary usage of labeled breaks makes for
unreadable code (as we show in the paper). And this can be
a point of concern, since decompilation is generally related
to debugging code.

Instead of dumping arbitrary labeled breaks, we try to
reconstruct the original expression, in terms of && and ||

clauses as well as ternary operators “?:” (c0 ? c1 : c2); Thus
our goal is quite simply to regenerate, without using goto

or labeled breaks, the expressions as close to the original as
possible (it is not possible to guarantee an exact match). In
this paper we explain what is the state of the art in Java
decompilers for decoding complex expressions. Then we will
present our solution. We have implemented the algorithms
described here in this paper and give you our experience
with it.

CCS Concepts
•Social and professional topics → Software reverse
engineering;

Keywords
decompilation; Java bytecode; boolean expressions

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISEC ’16, February 18-20, 2016, Goa, India
c© 2016 ACM. ISBN 978-1-4503-4018-2/16/02. . . $15.00

DOI: http://dx.doi.org/10.1145/2856636.2856651

1. INTRODUCTION
Our motivation to work on this problem stemmed from

the problem of generating executable code from a slice of
a program. The trouble with working with Java bytecode
is that the bytecode does not preserve the block structure
of the original program. So, for example, it becomes very
hard to figure out where to put the curly braces in the newly
reconstituted program. There are essentially 3 issues related
to regenerating Java code from bytecode:

1. Figuring out where to put the curly braces.

2. Converting goto in the bytecode into appropriate con-
tinue and break statements.

3. Regenerating complex boolean expressions without us-
ing goto statements.

When dealing with sliced code, we have the additional prob-
lem of determining which goto to include in the slice.

Due to lack of space, in this paper, we concentrate only on
the problem of regenerating complex boolean expressions.

Problem Definition. A generic problem related to decom-
piling code from a control flow graph is that it is difficult
to regenerate code when there are one or more OR or AND

clauses in a conditional.

A Brief look at Boolean Expressions. It turns out that
recognizing and generating code for boolean expressions with
OR clauses (c1 || c2) and AND clauses (c1 && c2) is not easy.
To this we add the boolean expressions (c0 ? c1 : c2) and
the boolean expression (c0 ? a1 : a2)==val3 and things are
definitely beginning to get more complex. Furthermore we
note that any of the conditionals, c0, c1 or c2, in the pre-
ceding expressions could be replaced by any of the preceding
expressions. For example, if we were to take the expression
(c0 ? c1 : c2) and replace c0 by an OR clause (x1 || x2),
replace c1 by an AND clause (x3 && x4) and replace c2 by the
boolean expression (x5 ? a1 : a2)==val3, then we would
get the boolean expression

(x1 || x2)?(x3 && x4) : ((x5?a1 : a2) == val3)

Now each of the conditionals can further be replaced by
another set of complex boolean expressions (including the
one that we just generated). And so on, ad infinitum. Thus,
as you can see, expressions can become very complex very
fast.

59

4203
(m % 9==1)

4204
hs.add(new Integer(3));

4205
hs.add(new Integer(m));

return;

4201

4202
(n % 9==0)

4206

(a) The Classic OR

if(n % 9==0) goto 4204
else goto 4203

4203: if(m % 9==1) goto 4204
else goto 4205

4204: hs.add(new Integer(3));
goto 4205

4205: hs.add(new Integer(m));
return;

4203
(m % 9!=1)

4204
hs.add(new Integer(3));

4205
hs.add(new Integer(m));

return;

4201

4202
(n % 9!=0)

4206

(b) The AND equivalent

if(n % 9!=0) {
if(m % 9!=1) {
}
else {

hs.add(new Integer(3));
}

}
hs.add(new Integer(m));
return;

4203
(m % 9!=1)

4204
hs.add(new Integer(3));

4205
hs.add(new Integer(m));

return;

4201

4202
(n % 9==0)

4206

(c) An alternative

if(n % 9==0) goto 4204
else goto 4203

4203: if(m % 9!=1) goto 4205
else goto 4204

4204: hs.add(new Integer(3));
goto 4205

4205: hs.add(new Integer(m));
return;

4203
(m % 9==1)

4204
hs.add(new Integer(3));

4205
hs.add(new Integer(m));

return;

4201

4202
(n % 9!=0)

4206

(d) Another alternative

if(n % 9!=0) goto 4203
else goto 4204

4203: if(m % 9==1) goto 4204
else goto 4205

4204: hs.add(new Integer(3));
goto 4205

4205: hs.add(new Integer(m));
return;

Figure 1: Equivalent CFGs for a simple OR clause along with the corresponding code.

A Very Simple Boolean Expressions. Consider the simple
expression shown in the code below. There are just two
clauses (or sub-expressions) joined with a single ||.

if (n % 9 == 0 || m % 9 == 1) {
hs.add(new Integer(3));

}
hs.add(new Integer(m));

Let us observe what kind of Control Flow Graph (CFG)
may get generated for this code. The classic OR pattern is
shown in Figure 1(a). The classic AND version of the OR

clause is shown in Figure 1(b), where both the conditionals
have been reversed and so have the edges. However, there
are two more equivalent representations of the same condi-
tional shown in Figure 1(c) where only the conditional at
N4202 is reversed (along with the corresponding edges) and
in Figure 1(d) where only the conditional at N4203 is reversed
(along with its corresponding edges).

NOTE: All four CFGs are equivalent. Depending on the
compiler and the bytecode generator, any one of these four
patterns may be generated and we would need to recognize
either the OR pattern or the AND pattern in order to generate
code. As a matter of fact, the Wala [4] bytecode analysis
engine generates edges as shown in Figure 1(d).

This problem is further compounded when there is more
than one OR or AND clause or if there is a combination of OR

and AND clauses.
This issue would have become a non-issue had we been

permitted to use goto statements and we could then have
generated code as shown in the Figures 1(a), (c) and (d).
Figure 1(b) is the only version where we are able to gener-
ate regular code without gotos. We observe that in a CFG if
there are two (or more) true edges, and / or false edges

directed at the same basic-block, then it is not possible

to generate code without using goto statements—unless, we
can reduce the expression to an equivalent expression us-
ing OR and AND clauses. Our code generation algorithm is
explained in Section 3.

Using Labeled breaks.
Meanwhile let us take a sneak peek at what other people

do. First we look at Soot. Soot [15] is the antithesis of all
that we are working towards. Soot generates by converting
the goto into labeled break statements. This makes code
generation much simpler, but makes the code unreadable for
human beings. For the simple example given above, Soot
generates the following code:

label_32: {

if (n % 9 != 0 && m % 9 != 1) {

break label_32;

}

hs.add(new Integer(3));

} //end label_32:

hs.add(new Integer(m));

So while they do use labeled breaks, the code is still read-
able.

However, even some extremely simple code such as one
involving ternary booleans

if (c0 ? c1 : c2) {

sTrue();

}

else {

sFalse();

}

turns into the following incomprehensible 17 lines of code.

60

label_14: {

label_13: {

if (! (z0)) {

if (! (z2)) {

break label_13;

}

}

else {

if (! (z1)) {

break label_13;

}

}

sTrue();

break label_14;

} //end label_13:

sFalse();

} //end label_14:

And instead of the compact 1 line of code they generate 72
lines of (humanly unreadable) code for the following code:

if(X?(W?G:(V?G:R)):(U?(V?G:R):R)){

sTrue();

}

else {

sFalse();

}

In addition, we investigated a new breed of freely avail-
able Java decompilers, including Jode [7], JReversePro
[9], Procyon [14], FernFlower [13] and CFR [2]. While
most of them generate correct compilable code on all of our
sample programs, there was not one of them that could han-
dle ternary expressions “elegantly”. They all get confused
and (like Soot) generate some fairly convoluted (albeit cor-
rect) code when given some complex expressions involving
ternary expressions. (In Section 4 we give you a comparison
of the various tools.) In this paper we tackle the problem
of generating “human readable” code from Java bytecode for
boolean conditional expressions.

Problem statement.
We are now ready to define the problem statement as fol-

lows:
To regenerate Java source code for all boolean expressions

from Java bytecode without using any goto or labeled break
statements.

Contributions.
The contributions of this paper are

• An algorithm to regenerate conditional expressions from
bytecode without using goto or labeled break state-
ments either

• An empirical evaluation of the efficiency and usability
of our algorithms, along with a comparison with other
tools.

2. PRELIMINARIES
In this section we describe the preliminary analysis that

needs to be done before we can start the code generation.

The control-flow graph (CFG) for a method M contains
nodes that represent statements in M and edges that repre-
sent potential flow of control among the statements. It has
a unique Entry node from which all other nodes are reach-
able and a unique Exit node that is reachable from all other
nodes.

2.1 Setting up the Control Flow Graph
The first step in decompiling is to remove all exception

flow edges, except those that arise from an explicit throw

command. Then we need to merge all straight line code into
single basic-blocks. That is, each basic-block either ends
with a conditional (that is, it has two out-going edges, one
marked true and the other marked false) or the succeeding
basic-block has more than one incoming edge.

Definition 1. Dominator: A node Si dominates a node
Sj iff Si 6= Sj and Si is on every path from Entry to Sj.

Definition 2. Backedge: A backedge in the CFG, is an
edge where the destination of the edge dominates the source
of the edge.

We compute the dominators and find the back edges in
the graph. Then we traverse the CFG in depth first order
(ignoring the back edges) to generate the basic-blocks in
topological order [1]. All our operations are conducted on
these two data structures, the CFG and the topological order
listing of the basic-blocks. Both data structures consist of
the same set of basic-blocks.

• The CFG (the original data structure) consists of the
set of basic-blocks with control flow edges. Each
edge has an attribute indicating whether it is a true

edge or a false edge. A conditional-block is the
source of exactly one true edge and exactly one false
edge) and each true edge and false edge originates
only at a conditional-block.

• The topological order1 list consists of an ordered set
of the same basic-blocks, such that (ignoring back

edges) a basic-block in the list precedes any (transi-
tive) successor in the CFG.

When we generate the topological order list, we also
ensure that at a conditional-block, the destination
of a true edge always precedes the destination of a
false edge. More about this in Section 3.1.

In the rest of this paper, we use the terms node and basic-block

interchangeably.

2.2 The Topological order
Since the topological order is such an important concept

in this paper we decided to give you some more details about
it.

There is an exponential number of ways in which we can
write the code of a program.

For example we could write or we could write
if (cond) {

{ ... then statements ...}
}
else {

{ ... else statements ...}
}

if (!cond) {
{ ... else statements ...}

}
else {

{ ... then statements ...}
}

It really does not matter. The topological order of nodes will
1Note that a topological order is not the same as a preorder
or a breadth-first order

61

generate the nodes in any one such sequence. So a traver-
sal in topological order can output the code in the some
prescribed sequential order. The algorithm is given in Algo-
rithm 1.

Algorithm 1 The algorithm for generating the Topological
Order from a CFG.

function getBlksinTopolgclOrdr0()
entry ← getEntryBlock
blks ← new Vector
seen ← new HashSet
dfslist ← new HashSet
getBlksinTopolgclOrdr1(entry, dfslist, seen, blks)
return blks

end function
function getBlksinTopolgclOrdr1(bb, dfslist, seen,
blks)

if seen.contains(bb) then
return

end if
seen.add(bb)
dfslist.add(bb)
for all ss ∈ bb.getSuccessors() do

if !dfslist.contains(ss) then
getBlksinTopolgclOrdr1(ss, dfslist, seen, blks)

end if
end for
dfslist.remove(bb)
blks.insertElementAt(bb, 0)

end function

2.3 Setting up the bytecode
The bytecode for a statement of the form a.b.c = d is

broken down as follows: t1 = a.b, t1.c = d and similarly,
a statement of the form d = a.b.c is broken down as t2

= a.b, d = t2.c. Similarly expressions of the form n =

x+y*z-k would have been broken down into the subexpres-
sions t3 = y * z, t4 = x + t3, n = t4 - k. Also a func-
tion call foo(a.b.c, x+y*z-k) would have been converted
into the call foo(d, n).

All of these statements now need to be reconstituted. This
is to ensure that a statement of the type if (b.f.g ==

foo(a.b.c, x+y*z-k) && c.equals(b)) can be recaptured
correctly.

This is a fairly straight forward algorithm, where we walk
through the code in each basic block doing the following:

• for each statement that has an “=” in it (whether it is a
GetField, Putfield, BinaryOp, UnaryOp, assignment,
Invoke, etc.) we capture the string value of the RHS
and store it with the LHS.

• Then any place the LHS is used, it is replaced by the
RHS string value and the corresponding assignment
statement is deleted.

3. CODE GENERATION
Code generation from a control flow graph may sound like

a trivial problem. However it is not quite so easy when one
is not permitted to use goto statements. This creates prob-
lems even though the source program itself does not permit
arbitrary gotos. While there exist several tools that claim

to decompile Java from bytecode, only some of them worked
correctly on all our sample programs. Yet, although Jode,
Procyon and FernFlower do generate correct code they also
do use labeled break statements in certain cases. Finally,
we did not find any documentation on decompilation and
so we give here an algorithm that decompiles Java without
resorting to the use of goto statements.

3.1 Handling clauses in a conditional
The edges emanating from various nodes of the CFG may

be classified into true edges (green), false edges (red) and
unconditional edges (black). A node which represents a
condition may have exactly one true edge and one false

edge emanating from it.
The problem with decompiling conditionals is that when

we have two or more incoming edges at a given node and at
least one of them is a true edge or a false edge, then it is
not possible to generate code without gotos—unless we can
combine two or more conditionals using some combination of
|| and && clauses in such a way that the true edges / false

edges get absorbed by the process of the combination.
In the rest of this paper, we use the term green edges

and true edges interchangeably, and similarly we use the
term red edges and false edges interchangeably.

Determining an appropriate boolean expression from the
given graph hinges on the following theorem, which we term
the monochromatic theorem:

Theorem 1. For each basic block that participates in a
boolean expression, all the incoming edges must be the same
color. That is, all incoming edges are either true edges

or they are false edges, or in the case of certain ternary
clauses, they may be unconditional edges (black edges).

In order to prove the theorem, it is convenient to restrict
ourselves to a maximal directed-acyclic subgraph (DAsG) of
the CFG which satisfies the following conditions.

1. there is a single entry node (called the root) into the
subgraph such that all incoming edges are uncondi-
tional,

2. every node in the subgraph is an atomic condition,

3. every incoming edge into a non-root node is from some
other node in the same DAsG.

4. every exit from every node of the DAsG is either to
another condition in the DAsG or to one of two other
basic blocks Strue and Sfalse in the CFG

Each such subgraph represents a (possibly complex) con-
dition of a branching or looping statement with control flow-
ing into it through the root-node and out to the nodes Strue
and Sfalse

2. The proof of the theorem then follows easily
from lemma 1.

2Note however that

• There could be unconditional edges into Strue and
Sfalse from outside this subgraph too. Since the sub-
graph consists of nodes which are all conditions each
exit from the subgraph is either a true edge or a false
edge.

• If there are unconditional edges coming into the non-
root nodes of the DAsG then one must consider
the subgraph as representing not a single monolithic
boolean expression but as one representing a nested

62

sTrue();sFalse();

c0

c1

(a) c0 && c1

sTrue(); sFalse();

c0

c1

(b) c0 || c1

c1

sTrue(); sFalse();

c2

c0

(c) c0 ? c1 : c2

t8 = i1;

(t8==val)

t8 = i2;

sTrue(); sFalse();

c0

(d) (c0 ? i1 : i2) ==
val

sTrue(); sFalse();

c00

c10

c01

c11

(e) (c00 || c01)
&& (c10 ||

c11)

c01 c10

sTrue(); sFalse();

c11

c00

(f) (c00 &&
c01) || (c10
&& c11)

c01

c1 c2

c02

sTrue(); sFalse();

c00

(g) (c00 ? c01 :
c02) ? c1 : c2

c01

c10 c20

c02

c11 c12 c21 c22

sTrue(); sFalse();

c00

(h) (c00 ? c01 : c02)
? (c10 ? c11 : c12):
(c20 ? c21 : c22)

c1

sFalse();

c3

c2

c4

sTrue();

c5

c0

(i) (c0 ? c1 :
c2) && (c3 ?

c4 : c5)

c1

sTrue();

c3

c2

c4

sFalse();

c5

c0

(j) (c0 ? c1 :
c2) || (c3 ? c4 :

c5)

c01

t10 = i1; t10 = i2;

c02

(t10==val)

sTrue(); sFalse();

c00

(k) ((c00 ? c01 :
c02) ? i1 : i2)

== val

c01

c1 c2

c02

t14 = i1; t14 = i2; t14 = i3; t14 = i4;

(t14==val)

sTrue(); sFalse();

c00

(l) ((c00 ? c01 :
c02) ? (c1 ? i1 :
i2) : (c2 ? i3 :
i4)) == val

t12 = i1;

(t12==val1)

t12 = i2;

t13 = i3;

(t13==val2)

t13 = i4;

sTrue(); sFalse();

c0

c1

(m) (c0 ? i1 :
i2) == val1 &&
(c1 ? i3 : i4) ==

val2

t12 = i1;

(t12==val1)

t12 = i2;

t13 = i3;

(t13==val2)

t13 = i4;

sTrue();sFalse();

c0

c1

(n) (c0 ? i1 :i2)
== val1 || (c1?
i3 :i4) == val2

Figure 2: Constructing the boolean expressions

Lemma 1. The language of non-negative conditional ex-
pressions is defined by the BNF

c ::= a | c1 && c2 | c1 ‖ c2 | c0?c1 : c2| (c0?i1 : i2) == val

| (c0?o1 : o2).boolfunc()

Here a is a boolean atom, such as true, false, x < y, x > y,
x == y, etc. i1, i2 and val are primitive variables of type
int, float, etc. o1, o2 are object variables and boolfunc is a
function that returns a boolean value such as .equals().

For this language of non-negative conditional expressions,
every CFG generated for the program segment if c then

Strue else Sfalse may be transformed into one that pre-

serves the property that all incoming edges to any node in
the CFG are of the same color.

The proof of the lemma proceeds by induction on the struc-
ture of non-negative conditional expressions and is shown
diagrammatically in the figures shown in Figure 2.

However as shown in figures 1(c) and 1(d), the same color
property may be violated in the presence of negation. The
negation of a condition involves exchanging the colors of
the out-going edges. In the presence of negations in the
expressions we may use the following identities on boolean
expressions to push the negation inwards to the individual
atoms.

!!c′ = c′ , !(c0?c1 : c2) = !c0?!c2 :!c1
!(c1&&c2) = !c1‖!c2 , !(c1‖c2) = !c1&&!c2

The presence of negative literals in a condition is then
solved by noting that boolean atoms in Java bytecode occur
as complementary pairs.

a ::= x == y | x!= y | x < y | x >= y | x > y |x <= y

We use the following identities to generate non-negative
atoms wherever necessary.

!(x == y) = (x!= y) , !(x!= y) = (x == y)
!(x < y) = (x >= y) , !(x >= y) = (x < y)
!(x > y) = (x <= y) , !(x <= y) = (x > y)

Hence for example if some non-root node S1 in the sub-
graph has all green incoming edges and (say) a single red
edge from a condition c in the subgraph, then we may switch
the colors of the outgoing edges of c by negating the condi-
tion (called twist) in algorithm 2.

Since the the number of such nodes in the subgraph is
finite, at worst, this process will end after negating every
atom in the subgraph.

The algorithm. As explained in Section 1, the actual edges
generated by the bytecode analysis engine may not obey this
theorem. Hence, our first task is to “twist” the edges around
such that in the final graph this rule is strictly applicable.
The algorithm is given in Algorithm 2.

After the edges have been sorted out, we need to walk the
graph recursively, detecting the four basic patterns shown
in Figure 2 (a)-(d). Recognizing the patterns in Figure 2(c),

if-then-else statement with unstructured jumps into
it (as may well happen while compiling certain FOR-
TRAN or BASIC programs).

63

708
hs.add(new Integer(9));

709
(n % 9==0)

712
(n % 9==6)

710
(m % 9==1)

715
hs.add(new Integer(3));

716
hs.add(new Integer(m));

return;

717

702
(n % 9==0)

704
(n % 9==2)

703
(m % 9==1)

706
(n % 9==4)

705
(m % 9==3)

707
(m % 9==5)

713
(m % 9==7)

711
(m % 9==2)

714
(m % 9==8)

void andor(Vector hs, int m, int n) {
if ((n % 9 == 0 || m % 9 == 1) &&

(n % 9 == 2 || m % 9 == 3) &&
(n % 9 == 4 || m % 9 == 5)) {

hs.add(new Integer(9));
}
if ((n % 9 == 0 && m % 9 == 1 && m % 9 == 2) ||

(n % 9 == 6 && m % 9 == 7 && m % 9 == 8)) {
hs.add(new Integer(3));

}
hs.add(new Integer(m));

}

Figure 3: Boolean expressions

Algorithm 2 Setting up the green and red edges

for all BasicBlock bb do
edType← EDGEFALSE
tfpred← Set of true/false predecessors of bb
if tfpred.size() > 1 then

for all pred ∈ tfpred do
if marked(pred) then

edType← edgetype(pred, bb)
break

end if
end for
for all pred ∈ tfpred do

edge← edgetype(pred, bb)
if edge 6= edType then

twist(pred, bb)
mark(pred)

end if
end for

end if
end for

(d) and(e) is fairly straightforward. For example for the
pattern in Figure 2(c), all we need to do is to walk the graph,
looking for a node C0 such that C0 has a green successor C1

and C0 has a red successor C2 such that the green successors
of both C1 and C2 are the same node ST and such that the
red successors of both C1 and C2 are also the same node
SF . Then C0, C1 and C2 can be reduced to a single node
with the expression C0?C1 : C2 such that the predecessors
of the reduced node are the same as the predecessors of C0

and the green successor of the reduced node is ST and the
red successor is SF .

Recognizing the patterns in Figure 2(d) is also straight-
forward. However, these are the only two cases where we do
not make a judgement call based merely on the structure of
the graph, but need to inspect the code as well. We need to
locate a node C0 such that C0 has a green successor C1 and
C0 has a red successor C2. Both C1 and C2 have exactly one
black successor each and both the successors are the same
node, say C3. Now we need to check the code in C1 and C2

and check if the same variable var is being assigned in both
the nodes. Finally we need to check if C4 also contains a
boolean expression based on var.

However the patterns in Figure 2(a) and (b) are not so
easy. In order to recognize them, we state (without proof)
the following theorem

Theorem 2. At the root node Nroot of an expression con-
sisting of ||s and &&s only let NG be the destination of the
green edge and let NR be the destination of the red edge.
Either NG is the destination of multiple green edges or NR

is the destination of multiple red edges, but not both.
Let NG be the destination of ng edges. Then starting from

Nroot it is possible to traverse ng red edges to reach NZ .
The red predecessor of NZ that has the highest topological
order number is the anchor NA of the boolean expression
and all nodes from Nroot to NA will be replaced by a single
node whose incoming edges are the same as Nroot and the
outgoing edges are the same as NA and the conditional is
the equivalent of the boolean subgraph.

And symmetrically for NR,

Example 1. Consider the graph shown in Figure 3. Let

64

N702 be the root node Nroot. N704 is NG and N703 is NR.
Here ng is 2 and NZ is N709 and NA is N707, Similarly for
the root at N709, N710 is NG and N712 is NR. Here nr is 3
and NZ is N716 and NA is N714,

Once the scope of the expression has been identified, we
need to walk the nodes in the expression in topological order.
Every time we traverse a green edge we add an && to the
expression and every time we traverse a red edge we add an
|| to the expression. We also output braces in the expression,
where the spacing of the braces is dictated by the edges that
are not traversed.

Example 2. Starting with the root at N709, we walk the
nodes in topological order and generate the expression for

(N709 && N710 && N711) || (N712 && N713 && N714)

Observe that we do not traverse the green edges from N709

to N712 or from N710 to N712 and it is this clustering of
edges that determines where the braces go.

Before closing this section, we would like to walk you
through one more example with mixed boolean and ternary
clauses. Consider the program shown in Figure 4. This
contains almost the same expression we had introduced in
the abstract. The CFG for the program is given in Fig-
ure 4 (a). In the first step we recognize the ternary subex-
pression ((c20?i21 ∗ 2/3 + 4 : i22 ∗ 2/3 + 4) == val). In the
process, we remove the nodes N3204, N3205 and N3206. We
add the subexpression to N3207 and N3207 keeps its outgoing
edges, loses its incoming edges and gets a new green-edge

from N3203 to N3207. The resulting graph is shown in Fig-
ure 4 (b).

Next, we check the expression that starts at N3202. Here
NROOT is N3202, nR is 2, NZ is N3207 and NA is N3203.
NR and NG are N3211 and N3210 respectively. Then start-
ing at NROOT we walk the graph in topological order until
we reach NA, generating the expression (!c01&&!c02). This
expression is inserted into NROOT and the rest of the nodes
that are traversed are deleted. Finally the outgoing edges
from NROOT are deleted and replaced by edges to NR and
to NG. The resulting graph is shown in Figure 4 (c).

In the next step, similarly, the expression rooted at N3208

and anchored at N3209 is reduced to (c11&&c12) (shown in
Figure 4 (d)). Now the base ternary expression is clearly
visible and it is finally reduced to the expression shown in
Figure 4 (e).

Discussion. We always process a ternary expression first,
that is, if it is well-formed and visible. Then we process AND
/ OR chains. This is because a ternary is a “stand alone”
atom that may be a part of an AND / OR chain.

The expression generated is not quite identical to the orig-
inal input expression although it is functionally equivalent.
This is because Wala has reversed the first conditional.
While, in general, it is not possible to guarantee regener-
ation of the original expression, we do guarantee to generate
human readable code that does not contain explicit gotos
and that does not contain labeled break statements either.
The essential structure of the input expression and the gen-
erated code remains the same.

In some rare cases as at node N3204 in Figure 4 (a), the
green edge is rendered to the right of the red edge. This
is because all the programs are generated programmatically

Table 1: Subject programs used in the empirical studies.
Bytecode

Subject Classes Methods instructions

Antlr 507 2582 103797
Xerces 51 341 14585
Dao 3 30 930
App A 29 195 2588
App B 243 2134 36997
App C 94 749 39769

and then rendered using the dot program3 from Graphviz [5].
The dot software sometimes gets confused and reverses the
edges. However, the order of nodes remains true to the
scheme and hence the node at the end of the green edge,
N3205, is numbered before the node at the end of the red

edge, N3206.

4. EXPERIMENTAL RESULTS
In this section we give empirical evaluation of JinxGo4

the tool that incorporates the algorithms presented in this
paper. We developed our tool and ran these experiments
on a MacBook Pro running OS X Yosemite, Version 10.10.4
on an Intel Processor, 2.5 Ghz, Intel Core i7, with 8GB of
RAM.

We ran the tool on several open source and proprietary
software packages, the details of which are given in Table 1.

To evaluate our approach, we conducted empirical stud-
ies using three open-source projects and three commercial
products (referred to as App A, App B, and App C)5. Table 1
lists the subject programs, along with the number of classes,
methods, and bytecode instructions in each subject.

The decompiling boolean expressions algorithm is imple-
mented in our tool JinxGo, using the wala analysis in-
frastructure.6 wala includes a Java bytecode analyzer that
takes Java bytecode and performs interprocedural control-
flow analysis. In general this part of the analysis is per-
formed after the program has been sliced. However, for the
purpose of evaluating the algorithm, we have run the analy-
sis on the whole program. The analysis is run immediately
after the pointer analysis, which in turn runs immediately
after wala completes parsing the input bytecode, generat-
ing the control flow graphs for each method and building
the call graph. The call graph is required to perform the
context and path sensitive pointer analysis, which is a bit
of an overkill for the decompilation process, but since it is
required for the slicing algorithm, we leave it in anyway.

We conducted empirical studies to evaluate: (1) the effi-
ciency, and (2) the efficacy of the analysis.

4.1 Efficiency

Goals and method. To evaluate efficiency, we collected
data about the total analysis time, which consists of the

3i=$i%.dot dot -Tpdf -o pdfs/$i.pdf $i.dot
4As the original motivation for this tool was to detect mem-
ory leaks in Java programs, we call our tool JinxGo which
is a parody on Ginkgo Biloba which is a tree whose leaves
are used in treating Alzheimer’s disease, the human memory
disorder.
5IBM confidential
6http://wala.sourceforge.net

65

The original input program

if ((c01 || c02) ? (c11 && c12) : (c20?i21*2/3+4:i22*2/3+4) == val) {
sTrue();

}
else {
sFalse();

}

����
��������

����
��������

����
��������

����
��������

����
����������������

����
����������������������

����
������������

����
����������������������

����
���������������

����
�������

����

����
��������

(a) The CFG generated by Wala for the given
program.

����
��������

����
��������

����
����������������������������������

����
��������

����
����������������

����
���������������

����
�������

����

����
��������

(b) The CFG after replacing the ternary
expression by a single node.

����
����������������������������������

����
����������������

����
���������������

����
��������

����
��������

����
�������

����

����
��������������

(c) The CFG after replacing the first boolean
expression also by a single node.

����
����������������������������������

����
���������������

����
����������������

����
������������

����

����
��������������

����
�������

(d) The CFG after replacing all the top level boolean
expressions. The second layer ternary expression is now

exposed.

����

����
��

����
���������������

����
����������������

����
�������

(e) The original program regenerated, albeit with some
structural (but equivalent) changes.

Figure 4: Decompiling an expression with Simple and Ternary Boolean Sub-expressions

66

Table 2: Time for analysis in seconds.
Parsing Pointer Decompiling Total

Subject Building Analysis expressions time

Antlr 25 24 1 51
Xerces 8 5 0 14
Dao 2 0 0 2
App A 7 0 0 8
App B 11 2 0 15
App C 6 4 1 11

Table 3: Number of AND and OR clauses.
exactly exactly >3 Total max

Subject 2 3 expressions size

Antlr 255 64 48 367 19
Xerces 98 24 25 147 10
Dao 10 0 6 16 7
App A 12 0 1 13 7
App B 233 50 33 316 13
App C 86 16 8 110 8

time required to perform the preliminary analysis and the
time required to perform the decompilation.

Results and analysis. Table 2 shows the execution time (in
seconds) for preliminary analysis and the time to decompile.

Discussion. The data demonstrates the efficiency of the
analysis: our analysis typically runs in less than a second.
The maximum time taken is by the wala infrastructure to
parse the bytecode and build the call graph, followed by the
pointer analysis.

4.2 Efficacy

Goals and method. To evaluate the efficacy of our algo-
rithms, we gathered numbers for the total number of ex-
pressions found in a package. Of these we counted the num-
ber of expressions that had exactly 2 subexpressions, exactly
3, more than 3 and also determined the size of the largest
expression that contained only AND and OR clauses.

Next we counted the number of expressions that had ex-
actly 1 subexpression, exactly 2, more than 2 and also checked
the size of the largest expression that contained only ternary
subexpressions.

Finally we counted the number of expressions that had
exactly 2 sub-expressions, exactly 3, more than 3 and also
checked the size of the largest expression that contained a
mix of AND and OR clauses as well as ternary sub-expressions.

Results and analysis. Table 2 shows the execution time (in
seconds) for preliminary analysis and the time to decompile.

Discussion. Tables 3 – 5 give the data relevant to this dis-
cussion. As can be seen, all the packages generate several
conditionals with AND and OR clauses and some of them gen-
erate truly very long expressions with as many as 19 clauses.

However, very few packages generate ternary clauses and
none of them generate expressions that have more than one
ternary subexpression. The package Dao may appear to be
an exception, but that is because it is our own package that
we used for testing our algorithms. We were delighted to see
that it handled whatever we threw at it.

Table 4: Number of Ternary clauses.
exactly exactly >2 Total max

Subject 1 2 expressions size

Antlr 14 - - 14 1
Xerces - - - - 1
Dao 23 9 19 51 19
App A 2 - - 2 1
App B 10 - - 10 1
App C 2 - - 2 1

Table 5: Number of mixed AND and OR and ternary

clauses detected ”C” correctly, in a ”Messed”up way /

”I” Incorrectly by each tool.
exactly 2 ≥3 Total

Tool Name C M/I C M/I C M/I

JinxGo 2 0/0 4 0/0 7 0/0
Jode 0 2/0 0 4/0 0 6/0
JReversePro 0 2/0 4 4/0 7 7/0
Procyon 2 0/0 0 4/0 2 4/0
FernFlower 2 0/0 0 4/0 2 4/0
CFR 2 0/0 2 0/2 2 2/2
Soot 0 2/0 0 4/0 0 6/0

None of the packages generated a mix of ternary and
AND/OR expressions. So, in table 5 we give only the re-
sults for our experimental package, Dao, with a compari-
son of all the tools that we have tested. Essentially all the
tools, other than CFR, generate correct code albeit ”messed
up” (where by ”messed up” we mean code that involves
labeled breaks). CFR actually generates correct code for
complex expressions like (m % 9 == 0 && ((n = m % 9) ==

1 ? ((n = m % 8) == 2 ? n + m < 4 : n - m < 4) :

n - m < 3)) but generates incorrect code for similar expres-
sions where AND is replaced by OR. WE do not know whether
it is a bug in the algorithm or just an implementation bug.

5. RELATED WORK
Venkatesh [16] classifies static slicing algorithms as “ex-

ecutable” and “closure” slices. Closure slices contain the
set of statements that are related to the variable of inter-
est through a closure of dependencies and are not neces-
sarily either syntactically correct or executable programs,
i.e., programs which on execution preserve the behavior of
the original program. Weiser[17]’s algorithm produces ex-
ecutable slices. However, his algorithm does not produce
precise slices for programs with procedures since it fails to
account for the calling context of procedures. Horwitz et
al [8] were the first to address the issue of calling contexts
and gave a closure based context-sensitive slicing algorithm
for slicing programs with procedures. Papers on generating
semantically correct slices for sequential programs include [6,
18, 3].

In this paper we have presented an algorithm for gen-
erating code for boolean expressions for “human readable”
executable slices for sequential Java programs.

Although, there are a number of open-source Java de-
compilers, only a few of them provide a formal literature.
Miecznikowski and Hendren [11] were the first to formally
present an algorithm for Decompilers. They present a de-
compiler DAVA (present as an option in Soot [15]) to re-
generate the input program. DAVA follows a six stage de-
compilation process to emit the source code from the input

67

The original input program

if((X?(W||V):(U&&V))?G:R) {
sTrue();

}
else {
sFalse();

}

(a) A CFG with an untwistable
DAG.

(b) Equivalent CFG after duplicating a
node. (c) The simplified CFG.

����
������

����
������

����
������

����
������

����
������

����
������

����
���������������

����
����������������

����
�������

����

����
������

(d) Generated graph equivalent
to the graph in Figure 5(b)

Figure 5: Managing untwistable DAGs

bytecode. Their implementation utilizes three representa-
tions – Grimp, CFG and SET – to facilitate decompilation.

Naeem and Hendren [12] present a user friendly decom-
piler. The authors modify the DAVA decompiler, to gen-
erate programmer-friendly code. The authors present an
algorithm that applies a series of transformations such as
And Aggregation, Or Aggregation, Useless Label Remover,
Loop Strengthening and Condition Simplification, to gener-
ate a simplified code. Yet, as can be seen from the actual
output generated, the code is not really user friendly.

Our decompiler requires only two intermediate represen-
tations: the topological ordering of graphs and the control
flow graph. We present a discussion on the re-generation of
complex expressions.

6. THE UNTWISTABLE DAG
The CFG shown in Figure 5(a) is an example of a CFG

(a basic “untwistable” DAG) which violates theorem 1. On
the other hand such a CFG would never be generated auto-
matically on any expression in the language of conditional
expressions as lemma 1 shows. It is a manually drawn CFG
and the expression has been derived from the graph. We
ran the expression through our software to validate the ex-
pression and generated the plot shown in Figure 5(d) which
is equivalent to the graph in Figure 5(b). A byte-code op-
timizer could, however transform a DAsG of the form Fig-
ure 5(b) into one of the form shown in Figure 5(a).

The way to handle these untwistable DAGs is to duplicate
the node (or nodes) that remain untwistable such that each
copy of the node has exactly one color of incoming edges.
Then the algorithm continues as before. For example, in
Figure 5(b) we have duplicated the node V because it has

both an incoming green edge and an incoming red edge

and it is not possible to twist the conditions so as to make
them both either green or red.

Once the node has been split it is easy to see that W and
V combine to generate W ||V and that U and V combine
to generate U&&V . This exposes a classic ternary expres-
sion (shown in Figure 5(c)) which generates X?(W ||V) :
(U&&V) which in turn exposes yet another classic ternary
expression (not shown) which generates the final expression
(X?(W ||V) : (U&&V))?G : R.

We believe that this kind of DAG may be generated by
some extremely aggressive common sub-expression elimina-
tion algorithm. Which would explain why the common sub-
expression V has been combined into a single node.

7. CONCLUSION
The paper arose out of our attempt at program slicing to

produce executable slices. In general, the problem of ob-
taining executable slices is quite hard. As is usual in any
large programming language, it is necessary to begin this
process from some low-level architecture-independent repre-
sentation of programs. We have chosen Java bytecode as the
starting point, from which we reconstruct a Java program
slice. The resulting program therefore, will not correspond
exactly (at the expression-level in a syntactic sense) to the
original source. However we do believe that the effects on the
classes of interest will help in debugging the original source
code. Debugging is aided considerably if the executable code
produced is free from goto and arbitrary jumps.

However even for structured programs most code genera-
tion techniques use goto in the byte-code, especially when
the evaluation of complex boolean conditions is involved.

68

The resulting byte-code is more often than not unreadable
and hence makes debugging very hard. This paper is the re-
sult of trying to produce human-readable (’goto-less’) source
code from byte-code.

We have a working implementation of the techniques we
have presented here, though it is not ready yet for commer-
cial use. We have tested it on several samples of code.

Our experience in this project has given us some insights
into obfuscation of code. Obfuscation of the byte-code can
make it very hard for a decompiler to generate source code
that is readable or comprehensible. In such cases, the only
way to get around obfuscation may be by running a dead-
code elimination routine on the bytecode before decompiling
it.

The obvious next step in this project is to study tech-
niques for producing executable slices of concurrent Java
threads. It has been well recognized that reasoning about
and debugging concurrent programs is far more difficult and
it would be very useful to have slicing techniques for concur-
rent programs which produce executable code. Hitherto at-
tempts at slicing concurrent programs [10] have not yielded
executable versions.

8. REFERENCES
[1] A. Aho, R. Sethi, and J. Ullman. Compilers:

Principles, Techniques and Tools. Addison-Wesley,
1986.

[2] Benf. Cfr - another java decompiler.
http://www.benf.org/other/cfr/.

[3] D. Binkley, S. Horwitz, and T. Reps. Program
integration for languages with procedure calls. ACM
Transactions on Software Engineering and
Methodology, 4(1):3–35, January 1995.

[4] I. Corporation. Wala: The T. J. Watson Libraries for
Analysis. http://wala.sourceforge.net.

[5] E. R. Gansner and S. C. North. An open graph
visualization system and its applications to software
engineering. SOFTWARE - PRACTICE AND
EXPERIENCE, 30(11):1203–1233, 2000. URL
http://www.graphviz.org.

[6] M. Harman, D. Binkley, and S. Danicic. Amorphous
program slicing. Journal of Systems and Software,
68(1):45–64, 2003.

[7] J. Hoenicke. Jode. http://jode.sourceforge.net/.

[8] S. Horwitz, T. Reps, and D. Binkley. Interprocedural
slicing using dependence graphs. Transactions on
Programming Languages and Systems, 12:26–60, Jan
1990.

[9] K. K. Jreversepro - java decompiler / disassembler.
http://jreversepro.blogspot.in/.

[10] J. Krinke. Context-sensitive slicing of concurrent
programs. In Proceedings of the ACM Symposium on
the Foundations of Software Engineering, 2003.

[11] J. Miecznikowski and L. J. Hendren. Decompiling java
using staged encapsulation. In WCRE, pages 368–374,
2001.

[12] N. A. Naeem and L. J. Hendren. Programmer-friendly
decompiled java. In ICPC, pages 327–336, 2006.

[13] R. Shevchenko. Fernflower java decompiler.
https://github.com/fesh0r/fernflower.

[14] M. Strobel. Procyon / java decompiler.
https://bitbucket.org/mstrobel/procyon/wiki/Java
Decompiler.

[15] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam,
and V. Sundaresan. Soot - a java bytecode
optimization framework. In Proceedings of the 1999
Conference of the Centre for Advanced Studies on
Collaborative Research, CASCON ’99, pages 13–. IBM
Press, 1999.

[16] R. Venkatesh. The semantic approach to program
slicing. In Proceedings of the Conference on
Programming Language Design and Implementation,
1991.

[17] M. Weiser. Program slicing. IEEE Transactions on
Software Engineering, 10:352–357, July 1984.

[18] W. Yang, S. Horwitz, and T. Reps. A program
integration algorithm that accommodates
semantics-preserving transformations. ACM
Transactions on Software Engineering and
Methodology, 1(3):310–354, July 1992.

69

