
INFORMATION AND COMPUTATION 79, 21&256 (1988)

Compositional Semantics for
Real-Time Distributed Computing*

R. KOYMANS+,‘.”

Departmenr of Mathematics and Computing Science, Eindhoven University of Technology,
Den Dolech 2, P.O. Bou 513, 5600 MB Eindhoven, The Netherlands

R. K. SHYAMASUNDAR”

NCSDCT, Tata lnstiture.for Fundamental Research,
Homi Bhaba Road, Bombay400 005, India

W. P. DE ROEVER~ AND R. GERTH~

Deparrmetu of Mathematics and Computing Science, Eindhoven University of Technology,
Den Dolech 2, P.O. Box 513. 5600 MB Eindhoven, The Netherlands

AND

S. ARUN-KUMAR

NCSDCT, Tata Insrirute for Fundamental Research,
Homi Bhaba Road. Bombay-400 005. India

We give a compositional denotational semantics for a real-time distributed
language, based on the linear history semantics for CSP of France2 ef al.
Concurrent execution is not modelled by interleaving but by an extension of the
maximal parallelism model of Salwicki and Miildner, that allows for the modelling
of transmission time for communications. The importance of constructing a
semantics (and, in general, a proof theory) for real-time is stressed by such diNerent
sources as the problem of formalizing the real-time aspects of Ada and the
elimination of errors in the real-time flight control software of the NASA space
shuttle (Comm. ACM 27 (1984)). ,?I 1988 Academic Press. Inc.

* This paper is an extension of a preliminary version presented at the 1985 Logics of
Programs Conference, Brooklyn, June 17-19, 1985. This research was done as an activity in
the Dutch National Project Concurrency (Dutch acronym LPC).

+ Supported by the Foundation for Computer Science Research in the Netherlands (SION)
with financial aid from the Netherlands Organization for Scientific Research (NWO).

: The author is currently working in and partially supported by ESPRIT project 937:
Debugging and Specitication of Ada Real-Time Embedded Systems (DESCARTES).

9 Electronic mail address: mcvax!eutrc3!wsinronk,UUCP or WSDCRONK@HEITUES.
BITNET.

// Supported by a visitors grant from the Netherlands Organization for Scientitic Research
(NWO).

210
0890-5401/88 $3.00
Copyright cl 1988 by Academic Press, Inc.
All rights of reproduction in any form reserved.

COMPOSITIONAL SEMANTICS 211

1. INTRODUCTION

Although concurrency in programming has been seriously investigated
for more than 25 years (Dijkstra, 1959), the specific problems of real-time
have been the object of little theoretical reflection. Currently used real-time
languages represent almost no evolution with respect to assembly language
(Camerini, 1982). Consequently, no serious analysis of complexity, no
design methodology, no standard for implementation, and no concept of
portability exist for real-time languages.

The response to this has been the development of new real-time
languages such as (1) Ada-developed for the military; (2) CHILL-within
the context of telecommunication industries; and (3) Occam-which is
even chip-implemented-for those interested in experimenting with struc-
ture. All of these are claimed to have been rigorously defined (Ada, 1983;
Bjorner and Oest, 1980; Branquart, Louis, and Wodon, 1982; Occam,
1984). Yet their official standards lack any acceptable characterization of
concurrency (with the exception of Occam), let alone of real-time (which is
also lacking for Occam).

All these arguments emphasize the need to develop formal models for
real-time concurrency, and, what is more important, to discover structuring
methods which lead to hierarchical and modular development of real-time
concurrent systems. Obviously, models based on interleaving, such as
(Bernstein and Harter, 1981) can be immediately discarded as being
unrealistic, since such models allow unbounded delay to be incurred
between any two actions in a concurrent component.

A model such as SCCS (Milner, 1983) although an improvement by
allowing truly concurrent activity, remains unsatisfactory because it either
enforces complete synchronicity in executions (so that any communication
must be performed immediately to circumvent deadlock) or it does not
exclude interleaving (by using delay-operations). Petri-net theory remains a
viable direction for discovering structuring methods, yet is still unsatisfac-
tory because it does not incorporate (1) satisfactory verification methods
for liveness properties, such as temporal logic has, or (2) (machine
checkable) formalisms for representing (concurrently implemented) data
structures. And certainly none of these models apply to real-time features of
realistic programming languages such as Ada.

The present paper aims at providing a model of real-time concurrency
which

- is realistic in the sense that concurrent actions can and will
overlap in time unless prohibited by synchronization constraints, no
unrealistic waiting of processors is modelled, and yet the many parameters
involved in real-time behaviour are reflected by a corresponding

212 KOYMANS ET AL.

parametrization of our models (see Sections 9 and 10); it is based on
Salwicki’s notion of maximal concurrency (Salwicki and Miildner, 1981),
discussed in Section 3;

- applies to programming languages for distributed computing such
as Ada and Occam which are based on synchronized communication (for
asynchronized communication as in CHILL, see Koymans, Vytopil, and de
Roever (1983));

- implies a sound and relatively complete method for verification
since it is compositional; we base ourselves in this respect on the method
developed by Misra and Chandy (1981) and Zwiers (1985, 1988), and joint
research together with Pnueli leading to the incorporation of maximal
parallelism within the temporal framework of Barringer, Kuiper, and
Pnueli (1984);

- meets the standard of rigour as provided by denotational
semantics.

Some of these aspects are also covered by work of Zijlstra (1984) and
G. Jones (1982).

We have developed a real-time variant of CSP (Hoare, 1978) called
CSP-R, which allows the modelling of the essential Ada (1983) real-time
features (see Appendix A). Our study of real-time distributed computing is
carried by a subset of this language, Mini CSP-R (see Section 2). Extending
our techniques to CSP-R introduces some notational complications, but is
straightforward and is briefly discussed in Appendix A. In this paper we
develop a denotational semantics for Mini CSP-R (in Section 7) stressing
compositionality, based on the linear history semantics for CSP of Francez,
Lehmann, and Pnueli (1984):

- the basic domain consists of non-empty prefix-closed sets of pairs
of states and (finite) histories of communication assumptions leading to
that state;

- the ordering on this domain is simply set-inclusion;

- the denotation for the parallel execution of two processes yields a
denotation in the same domain for a new combined process replacing the
original two (this makes the approach applicable to nested parallelism);

- the histories contain enough information to detect deadlock,
eliminating the expectation states of Francez, Lehmann, and Pnueli (1984).

The basic domain and its interpretation is given in Section 6.
Histories are modelled as sequences of bags of communication

assumption records as we allow truly concurrent actions: There is a clear
operational difference between one process offering a particular com-
munication capability and two (or more) processes, executing in parallel,

COMPOSITIONAL SEMANTICS 213

each offering the same capability. It is to model this distinction that we
have to use bags instead of sets (see also Example 3 in Section 8).

The general notations and technical preliminaries for these concepts are
defined in Section 5 which serves as a general reference point.

Real-time is modelled in the histories by relating the ith element of a
history with the ith tick of a conceptual global clock (see Section 4).

There are two kinds of records for expressing communication
assumptions in the histories:

- communication claims (i, j, u), modelling the execution of an
I/O command: (i, j, v) claims that the value u is passed from process i (the
sender) to process j (the receiver).

- no-match claims (i, j), modelling the absence of a possibility for
the execution of an I/O command CI (this means that there is no matching
I/O command Cr such that a and Cr can be executed simultaneously): (i, j)
claims that no value could be passed from process i (the sender) to process
j (the receiver).

The combination of the communication assumption records (i, j, v) and
(i, j) can be used to describe all possibe behaviours when executing an
I/O command concerning communication from i to j: (i, j, v) claims that
communication from i to j (transferring value u) is possible and (i, j)
claims that a communication from i to j is impossible.

Note that a no-match claim (i, j) implies the waiting for a possibility to
communicate from i toj. The constraint of no unrealistic waiting that the
maximal parallelism model imposes on parallel execution, can now be
formulated as: two processes may not make the same no-match claim, i.e.,
waiting at both sides for the same communication between each other is
prohibited.

The communication claim record is the same as the communication
record of Francez, Lehmann, and Pnueli (1984). Internal moves within a
process (the b-record of ibid.) are modelled by empty bags. The no-match
claim record is new and allows

- the checking of the maximal parallelism constraints, i.e., no
unnecessary waiting (see above);

- the detection of (established) deadlock (i.e., waiting for a com-
munication that will never come), rendering expectation states as in ibid.
unnecessary.

Finally, Section 11 contains conclusions and outlines some of the research
going on.

214 KOYMANS ET AL.

2. MINI CSP-R

In this section we describe our language Mini CSP-R. Mini CSP-R
consists of the programming constructs of our interest in their basic form
without syntactic sugar. In Appendix A we show how Mini CSP-R can
easily be extended to a language CSP-R that can simulate the basic Ada
real-time and communication primitives.

Mini CSP-R essentially is CSP (see Hoare, 1978) with the addition
of the real-time construct wait d This construct can be used both as
instruction and as guard in a selection or loop. As guard it functions as a
time-out, revoking the willingness of a process to communicate (through
one of the I/O guards).

In the syntax we use the conventions:

- a process identzjkation is an element of {P, , P,, . . . 1,

- a duration is an integer-valued expression.

We assume that expressions e and boolean expressions b have some
unspecified syntax.

The primitive language elements are the instructions, notation Instr:

1. x:=e - assignment

2. wait d ~ wait instruction (d is a duration)

3.1 Pi! e -output (send) to process i the value of the
expression e

3.2 Pi? x ~ input (receive) from process i a value and assign
this value to the variable x.

Instructions of form 3 are called I/O commands: P,! e is an output
command and P,? x an input command.

The important notion of syntactic matching of two I/O commands in two
processes is defined as follows: two pairs (Pi, GI) and (P,, 8) (CI, B I/O
commands) match syntactically iff (z stands for syntactical equality):
(cr~Pj!eandfl~P,?x)or(cc~P,?.uand~-Pi!e).

Communication between processes i and j takes place when (i, cc)
semantically matches (j, /J):

- (Pi, cz) and <P,, /I) match syntactically,

- control in Pi and P, is in front of a, respectively /I.

The result of a semantic match is the simultaneous execution of the I/O
commands as indicated by 3.1 and 3.2. Its effect is the assignment of the
value of the expression of the sending process to the variable of the
receiving process.

COMPOSITIONAL SEMANTICS 215

A guard is of one of the forms:

1. b - pure boolean guard

2.1. c(- pure I/O guard

2.2. b; c1 - boolean I/O guard

3.1. wait d - pure wait guard

3.2. b; wait d - boolean wait guard.

In these clauses, b is a boolean expression (e.g., x > 0), c1 is an I/O com-
mand, and d is a duration. For a guard g, its boolean part g is defined as:
h = b, Cc = true, b; CI = b, wait= true, 6; wait d = b. A guard g is called open
if g evaluates to true.

To complete the definition of Mini CSP-R, we define commands,
notation Comm, together with parallel commands, notation ParComm, and
the set of visible subprocesses of a command, notation vsp, inductively as
fol1ows:

1. every instruction is a command; vsp(T) = 121 for every TE Instr;

2. if T, , T, E Comm, then T, ; T, is a (sequential composition) com-
mand with

vsp(T, ; T,) = vsp(T,) u vsp(T,);

3. if T,, T,~Comm and g,, g, are guards (n 3 l), then
[q r= 1 g, + Tj] is an (alternative) command and * [q ;= , g, + T,] is a
(repetitive) command with

4.1. if TE Comm and i > 0, then Pi : : T is a (named) parallel com-
mand;

4.2. if T,, Tz E ParComm and the following two restrictions are
satisfied:

(rl) the variables occurring in T, are different from those occur-
ring in T2,

(r2) the visible subprocesses of T, are different from those of T2,

then (T, (1 T,) is a (composite) parallel command;

5. a parallel command is also a command with

vsp(Pi :: T)= {i} and vs~((T,IIT,))=vs~(T,)uvsp(T,).

216 KOYMANS ET AL.

Note that in a composite parallel command (T, (1 T,) all non-composite
commands are of the form Pi :: T. We further adopt the naming conven-
tions of (Hoare, 1978; Francez, Lehmann, and Pnueli, 1984): an I/O
command within a (named) command Pi :: T may address only one of P,‘s
sibling processes or one of its ancestor’s sibling processes. Note that such a
naming convention may result in a match with a subprocess of the named
sibling (see Example 5 in Section 8).

We can interpret Mini CSP-R informally as follows (this interpretation
applies also to CSP-R):

1.1. An assignment has its usual interpretation: the value of the
expression e is assigned to the variable X.

1.2. The wait instruction suspends execution of the process in which
it occurs for the value of d (but at least one) time units.

1.3. The interpretation of I/O commands was already indicated
above: an I/O command c(in process i waits for a semantic match with an
I/O command /I in a process j.

2. The interpretation of sequential composition is as usual: the
execution of T, is followed by the execution of T,.

3.1. The interpretation of an alternative command is as follows: First
check if none of the guards is open. If this is the case, execution aborts.
Otherwise, check whether there is at least one open pure boolean guard. If
this is the case select non-deterministically one of these guards. In the case
that at least one of the guards is open but there are no open pure boolean
guards, execution of an alternative command proceeds as follows. The
waitvalue is defined to be infinite if there are no open wait guards and,
otherwise, the maximum of 1 and the minimum of the values of the
durations of the open wait guards. For waitvalue time units wait for a
semantic match with one of the open I/O guards. As soon as a semantic
match occurs within this time period, take it (if more semantic matches
occur at the same moment, non-deterministically choose one of them). If
no semantic match occurs within waitvalue time units, after this time
period one of the open wait guards with a minimal duration is selected. A
selection of a guard g, in all these cases is followed by the execution of the
corresponding command T,.

Observe that in this interpretation of an alternative command a choice
has been made; viz., commands guarded by open boolean guards have
priority over commands guarded by open I/O guards for which an
immediate semantic match is available. This choice is motivated by our aim
to model Ada’s real-time features (see Appendix A2).

3.2. The interpretation of a repetitive command is the repeated
execution of the alternative command contained in it. Now, however,

COMPOSITIONAL SEMANTICS 217

execution terminates normally whenever in this repetition none of the
guards is open.

4.1. The interpretation of a named parallel command is as follows:
Pi :: T executes its body T. Furthermore, for a semantic match of any I/O
command c(in T with an I/O command outside T, CI is considered to be
part of process i and process i only. Hence if c(occurs in the body of some
visible subprocess of T, c(is not addressable by the name of that visible
subprocess from outside T anymore. Even more, the visible subprocesses of
T are no longer visible outside Pi :: T.

4.2. The interpretation of a composite parallel command involves the
parallel execution of the parts T, and T,. The underlying parallel execution
semantics is not interleaving semantics, but a semantics based on the
maximal parallelism model (see Sections 3 and 9). For Mini CSP-R this
means that whenever there is a choice between different semantic matches
for some I/O command in a process, always one of the semantic matches
that occurred earliest in time is non-deterministically chosen.

3. THE MAXIMAL PARALLELISM MODEL

Under maximal parallelism, the number of instructions in concurrently
executing processes that can be executed simultaneously without violating
synchronization requirements, is maximalized (see Salwicki and Miildner,
1981, for a formal definition). So, for the program [x := 1 IIx := 3 11 y := 23
in some shared variable language either the first and third component or
the second and third component will execute their first move
simultaneously, but not the first and second component; all this, under the
assumption that multiple accesses to a single (shared) variable are mutually
exclusive.

Implementing maximal parallelism requires separate processors for the
various processes. The connection with real-time behaviour is, that when
execution speed is a critical factor, separate processors should be available
to all processes. For distributed computing, we take maximal parallelism
to mean “first-come first-served” (fcfs) in some global time scale (see
Section 4).

Consider the Mini CSP-R program (PI :: (P,, :: Pz! 011 (P,, ::
PI, ! 1 II zJ 13 :: P,,? x; Pz ! x)) I/P, :: P, ? y; PI ?y). According to interleaving
semantics two scenarios are possible:

(1) PI, communicates with Pz while P,, communicates with P13;
after that P,, communicates with P,;

(2) P,, first communicates with P,,; after that P,, communicates
with P,; finally, P,, communicates with PZ,

218 KOYMANSETAL.

According to maximal parallelism semantics, only (1) is possible since P,,
and P2 can immediately become engaged in a rendezvous and hence do not
wait for PI2 and P,, to communicate earlier.

The model is, however, not intended to maximize the amount of ongoing
activity in a global way. What a process does is decided locally, partially
based on the process’ knowledge of communications that are being offered
to it but otherwise independent of what goes on elsewhere. What the model
does guarantee is that whenever a process wants to communicate it will do
so at the earliest opportunity and that local noncommunicating actions are
executed without any delay.

As we shall reason in Section 9, the maximal parallelism model has some
unrealistic aspects for distributed systems in general. We shall develop a
whole family of real-time models that range from interleaving to maximal
parallelism semantics and that incorporate the transmission time for
messages in a system.

4. OUR VIEW OF TIME

To express real-time properties such as “the system responds to a certain
request within a fixed number of seconds” there must be some measure of
time to relate these properties to. When we talk about abstract, i.e.,
implementation independent, properties of a system as a whole, this
measure must be relative to some global time scale. For distributed systems
this means that all events in the various processes are related to each other
by means of one conceptual global clock, introduced at a metalevel of
reasoning.

Clearly, no physical realization of such a global clock is possible;
processors always drift from one time mutual synchronization as exem-
plified by the existence of clock synchronization algorithms. In our model,
drifting can always be modelled by allowing (small) unpredictable
variations in the execution time of basic actions.

5. NOTATIONS AND TECHNICAL PRELIMINARIES

This section is intended as a reference to our notation.

5.1. Numbers, Sets, Cartesian Product and Finite Sequences

N={O,1,2,...) is the set of natural numbers ordered by
0<1<2<...
N” = N u (cc), inherits the ordering on N and is additionally
ordered by n < co for all n E N.

COMPOSITIONAL SEMANTICS 219

The empty set is denoted by 0.
The powerset of a base set E, i.e., the set of all subsets of E, is denoted
by P(E).
If E , 3 E, are sets, then X;= 1 Ei denotes their Cartesian product.
If all E,‘s are equal (to E), we write E” for X;=, Ei.
nj, for 1 d id n, denote the associated projection functions for
elements of X;= 1 Ei: ni((el, e,)) = ei.
A finite sequence over a base set E is an element of S(E) 2’ IJ,, N E”,
denoted by (e, , e,) or (e,);=,, where eiEE, 1 di6n.
If all eis are equal (to e), we write (e)” for (e,);=,.
A special case is n = 0: it is called the empty sequence, notation A.
The length of a sequence s = (e,, e,), notation IsI, is n.
For a sequence s = (e, , e,) and 1 < k < n we define the kth element
of s, notation s(k), as ek.
For e E E and s E S(E), we say that e is an element of S, notation e f s,
if there exists a k, 1 <k< IsI, such that s(k)=e.
Given sl, s2 E S(E), we can concatenate them, notation sI h s2: if
sI = (e,, e, > and s2 = (e;, e&), then s1 A s2 = (e,, e,,
e; , eh). Note that A is closed, associative, and has identity
element 1:

For s, s’ E S(E) we say that s’ is a prefix of s, notation s’ 6 s, if there
exists a s” E S(E) such that s = s’ A s”.

5.2. Functions and Partial Functions

The set of all functions from X (the domain) to Y (the range) is denoted
by Y*. The domain and range of a function fare denoted by dam(f) (resp.
ran(f)). A partial function from X to Y is an element of Yx’, where
X’ E P(X), i.e., a function from a subset of X to Y.

For f a partial function from X to Y, x E X and y E Y, f[~/x] is the
partial function with dom(f[y/x]) = dam(f) u {x} and ran(f[y/x]) = Y
defined by

if x’ = x,
if x’ E dam(f)\ {x 1,.

5.3. Bags.

A bag (or multiset) over a base set E is an element of B(E) gf NE, i.e., a
function from E to N. For e E E and BE B(E) we say that e is an element of
B, notation e E B, if B(e) > 0.

220 KOYMANS ET AL.

For finite bags we often use the notation [e?, ei], where n E N, i, k 1,
ek E E, all ek different (1 < k < n) which corresponds to the bag B E B(E)
defined by

if e=e,, 1 <k<n,

otherwise.

’ If ik = 1, we just write ek instead of ek. A special case is n = 0, the empty
bag, notation [1.

6. THE SEMANTIC DOMAIN AND ITS INTERPRETATION

6.1. The Semantic Domain

Because our basic domain consists of state-history pairs, we first explain
what states and histories are:

Let Id be a (fixed) set of identifiers (i.e., a set of strings over some
alphabet). Since we gave no syntax for expressions in Mini CSP-R, we
assume furthermore the existence of a set V of expression values.

S, the set of proper states, is defined to be the set of partial functions
from id to V. So a proper state s E S maps certain identifiers to their value.

Z, the total set of states, can now be defined as S u { 1, a}, where I
denotes an incomplete computation and l denotes failure (both explained
later).

Let CAR = (N x N) u (N x N x V) be the set of communication

assumption records (for the intuition, see the last part of the Introduction).

H, the set of histories, is, as was motivated in the Introduction,
S(B(CAR)). It would in fact suffice to take H=S(P(N x N) x
B(N x N x V)), as bags are only needed to collect communication claims.
Obviously, for claiming the absence of a communication possibility
between processes i and j, it suffices to do this only once. However, we
prefer the first notationally simpler definition. The technical reason for
using bags instead of sets is illustrated in Example 3 of Section 8. Our cen-
tral domain is that of non-empty prefix-closed sets of state-history pairs,
notation CH:

DEFINITION. A set XE P(Z x H) is prefix-closed iff for all ((T, h) E X, if
h’,<h, then (l,h’)EX. Define ZH= {XEP(ZXH)IX#@ and X is
prefix-closed}. The prefix-closure of X, PFC(X), is defined as

COMPOSITIONAL SEMANTICS 221

Note that PFC(X) EZH, for all XE P(C x H). ZH can be turned into a
complete lattice:

- the partial ordering is G, set-inclusion;
- the least upper bound is obtained by v, set-union.

Its least element is {(I, 1,)).

The technical motivation for the introduction of I lies in the simplicity
of the ordering of CH: several proofs, in particular those for continuity of
operators, become very simple.

The introduction of a separate failure state l is needed for the detection
of non-deterministic failure (see below, in Section 6.2).

We want the elements of .ZH to be non-empty, because otherwise the
least element of CH would be @. Since 0 contains no history at all, and
sequential composition is essentially modelled by concatenation of
histories, this choice of least element would imply that the denotation of
*[true -+ P,! 51 would be empty. Although consistent with the view that a
command is a transformation of initial states to final states when charac-
terizing sequential constructs relationally, this does not capture our
intuition that an unbounded set of communication possibilities may have
been offered by * [true -+ P,! 51 (cf. Example 1 in Section 8).

Remark. As E.-R. Olderog observed in the context of the linear history
semantics for CSP (see Francez, Lehmann, and Pnueli, 1984), here too, we
do not need to order our domain. This is a consequence of the fact that our
recursions are always guarded (see loops) and that histories, once they
have been generated, can not “shrink,” i.e., they remain the same or are
extended to a longer history. For details, see the Appendix of ibid.

6.2. Interpretation of CH

We can interpret XECH as the set of all possible computations of a
program P (cf. Francez, Lehmann, and Pnueli, 1984):

- (s, h) E X with SE S, models a computation of P producing
history h that terminates in s;

- (l , h) E X models a failure of P after producing history h;

- (I, h) E X models an incomplete computation of P which is
either an approximation of a computation (0, h’) with r~ # I and h d h’ or
an element in a chain of approximations (I, h,), (I, h, h h,), . . . (all
hi # A) which models an infinite computation of P with history ho h h, h . . .
(this interpretation can be justified by an appeal to Kiinig’s lemma, based
on an intuitive operational semantics).

If only deterministic failures can occur, there is no need for a separate

222 KOYMANSETAL.

failure state l because I can be used for that purpose: deterministic failure
of P after history h is then modelled by (I, h) E X such that there exists
neither (s, h’) E X with s E S, h <A’ nor (I, h’) E X with h < h’, h #h’.
However, we have to include the possibility of non-deterministic failure
as demonstrated by the following Mini CSP-R program fragment:
[true --f [false -+ .x := 0] q true + .K := 11.

Using the above interpretation of CH, we can informally define a notion
of observable behaviour. The observable entities are: a communication
history, termination, failure, and infinite computation. The observable
behaviour of a communication history has already been given in the
Introduction. The other observable entities are given in the above inter-
pretation of CH:

- termination: indicated by a proper state s E S,

- failure: indicated by l ,

- infinite computation: indicated by an infinite chain of
approximations.

Both divergence and established deadlock are viewed as infinite com-
putations: divergence is making internal steps while time passes, established
deadlock is waiting for a communication that will not come, while time
passes. This means that divergence and established internalized deadlock
are observed in the same way, and hence cannot be distinguished. In our
view this is a perfectly reasonable standpoint: the only observation that can
be made from the outside is the ticking of the global clock while no com-
munication with the environment can occur. In other words: there is no
context that can distinguish a diverging process from such a deadlocked
one (cf. Example 2 in Section 8).

7. MAXIMAL PARALLELISM SEMANTICS FOR MINI CSP-R

7.1. Introduction

The meaning of Mini CSP-R commands is defined denotationally by
giving for all commands T, an equation which relates the meaning of T,
notation M[YJ, to the meaning of T’s constituents in a compositional way.
In Section 7.2 we show that it suffices to define M[7’J as a function from S
to CH.

To define the alternative command [II;= 1 gj + Tj] compositionally, we
use an auxiliary semantic function G[g, ,4J from S to CH which gives the
meaning of guard g in the context of a set A of alternative guards (the
other guards in the alternative command). We use the context A in a com-
positional way, i.e., A depends only on the alternative command in which g

COMPOSITIONAL SEMANTICS 223

occurs. G is furthermore used in defining the meaning of guards that occur
as instructions (these are the pure waitguards and pure I/O guards). The
meaning of such an instruction is simply the meaning of the guard in an
empty context.

Since we gave no syntax for (boolean) expressions in Mini CSP-R, we
assume the existence of semantic functions V and W, such that V[ea for e
an expression is a function from S to I’, and W[ba for b a boolean
expression is a predicate on S, i.e., for s E S, W [bJ s is either true or false.

To define the meaning of constructs like P , :: P,! 5 compositionally, we
have to give a meaning for P,! 5 separately, i.e., in a context where it is not
known that this construct belongs to the process with identification 1. In
order to do so, we introduce as semantic entity the “unknown process,”
with process identification 0, and use this, e.g., to generate records
(0, 2, 5) in the meaning for P, ! 5 and later, in the meaning for P, : : P, ! 5,
replace 0 by 1. Therefore, we identify process identifications with natural
numbers.

Just as for the syntax we need a notion of visible subprocesses of a
command T, VS(T). The difference with the definition in Section 2 is the
use of (0) instead of 0:

VS(T) = { 0} for T an instruction,

WT,; T,)=VS((T,IIT,))=VS(T,)uVS(T,),

VS(P, :: T)= {i}.

In the third line, the zero is needed to account for I/O guards as, e.g., in
P,:: [P,!O+P,::x:=O].

To keep the semantics simple, we assume that the evaluation of
expressions takes no time. However, this restriction can easily be relaxed
by introducing time-parameters that represent evaluation times of
expressions. Furthermore, we make the realistic assumption that the
execution of commands takes at least one unit of time unless failure occurs
(this can only occur if an alternative command which has no open guard is
executed). The idea behind this decision is that we want to exclude the
unrealistic possibility of an infinite loop taking zero time. Such a loop is
possible in Ada, as shown in Appendix A2, and obviously this possibility
must be excluded. Appendix A2 contains a discussion how to do so.

7.2. Extending the Meaning Function

M[7’j, the meaning of a construct T, only depends on a proper state
s E S: M[a s E ZH represents all possible state changes and computational

643/7913-3

224 KOYMANSETAL.

histories produced by T starting from s. It therefore seems sufficient to let
M[ZJ be a function from S to CH. However, to define sequential com-
position we have to extend the meaning function to a function from ZH to
CH (this situation is analogous to that for a purely sequential non-deter-
ministic language where the meaning function is generalized to sets of
states). This extension shall be defined uniformly for all functions from S to
ZH, so we can still use M[7’J as a function from S to ZH keeping in mind
that this extension must be used when composing meaning functions. We
first extend a function 4 from S to CH to a function 4’ from Z to ZH and
next to a function #* from CH to ZH.

DEFINITION. Let 4 be a function from S to ZH. Then 4’ is the function
from C to 2H defined by

d+(a)= {22(,(0, /I>)),
if CE S,
otherwise.

Furthermore, d* is the function from CH to ZH defined by

4* extends 4 in a canonical way: for XE CH it takes ((T, h) E X and
extends h with an additional history h’ formed by applying 4’ to o; 4’
behaves like 4 on S but takes care that histories of pairs (c, h) E X with
o $ S are not extended; the new state c’ is the state after applying 4’ to cr.

The histories h represent communication assumptions that have been
made and can only be supplemented with additional communication
assumptions. In other words: the extension of histories is independent of
their contents. The meaning function should certainly have this property. A
property of d* is that it is always strict and continuous, as proved below.
This means that we do not have to worry about the continuity of operators
in our semantics!

PROPOSITION. For ail q5 from S to CH, d* is a strict and continuous
function from ZH to ZH.

Prod 4*({(LJ>}) = I< a’,~^h’)I(a’,h’)E~+(I)} = #+(I) =
(CL A>) and

=j~,{(~‘,h*k’)l(a,h)EX,A (a’vh’)E#+(~)l

= ,v, 4*txib I

COMPOSITIONAL SEMANTICS 225

7.3. Definition of G

In the definition of G we use the following two auxiliary notions for
guards:

DEFINITION 1. For a set of guards G and s E S, define RTA(G, s) E
B(CAR), the bag of real-time assumptions concerning the open I/O guards
of G in state s as follows:

RTA(G, s)(r)

i

1 if rE{(0,i)13gEG(grPi!ev (g=b;P,!er\ W[b]s))}
= u ((i,0)j3gEG(grPj?x v (grb; P,?x A W[b]s))},

0 otherwise.

Remark. If, e.g., P2 ! 4 and P, ! 6 occur in G one might expect a mul-
tiplicity 2 (instead of 1) for the record (0,2) in the above definition. This
is unnecessary (see the discussion of bags versus sets in Section 6.1).

DEFINITION 2. For a guard g and SE S, define waitvalue(g, s) E No0 as
follows:

waitvalue(g, s)

if gzb A Wl[b]s,
if gzwaitdv (g=b;waitdA W[b]s),
otherwise.

Furthermore, for a set of guards G and SE S, define minwait(G, s) E N” as
min{ waitvalue(g, s) 1 g E G} (where by convention min 0 = co).

Note that the guard true has waitvalue 0 while the guards wait 0 and
wait 1 have waitvalue 1. The decision to let wait 0 have waitvalue 1 is
explained in Appendix A2.

The equations for G are (see Section 7.1 for its use and motivation):

G[b, A]s= PW((s, WI if W[b] s,

NLW otherwise.

A boolean acts as a filter: s is maintained only if b evaluates to true in s.

Gfwait d, A] s = PFC({ (s, (RTA(A, s))‘) I max{V[d s, l>

= minwait(d u (wait d}, s) Ef T}).

A pure wait guard in the context A can be selected after its waitvalue
time units elapsed provided this value equals the minimal waitvalue T

226 KOYMANS ET AL.

(note that TE N) and no semantic match for an open I/O guard in A
occurred in this period. If there is at least one open boolean guard in A,
then T= 0 and no wait guard can be selected.

G[Pj!e, Ajs=PFC({(s, (RTA(GRDS,s))l”

where GRDS=Au{P,!e}.
A pure I/O guard in the context A can be selected (indicated by the last

triple of the history above) within the minimum waitvalue of A (the bound
on t above) under the condition that no semantic match for any open I/O
guard in GRDS occurred earlier (indicated by the first t elements of the
history above). If there is at least one open boolean guard in A, then
minwait(A, s) = 0 and no output guard (in fact, no I/O guard) can be selec-
ted. The possibility that no guard at all is selected can only occur if there
are no open boolean guards and no open wait guards (hence
minwait(A, s) = co) and furthermore no semantic match for an open
I/O guard ever occurs. This case is represented by the subset
{(I, (RTA(GRDS,s))‘)ltEN} of G[rPj!e,A]s (remember, this is a
prefix-closed set).

G[P,? x, AIs = PFC({ (s[u/x], (RTA(GRDS, s))‘^

([~,O,u)]>>~u~~,OO~tminwait(A,s)}),

where GRDS = A u { P,?x}.
The same remarks as for G[P,! e, A]s apply here. In comparison with

G[rP,! e, An s we see that in the last triple of the history sender and receiver
are reversed. Furthermore, for an input command Pj? x we have to “guess”
the value u that will be assigned to x. When binding the inputting process
with the outputting process we check that the values correspond (see the
last three examples in Section 8). This “guessing” models Bekid and
Milner’s concept of renewal (see Milner, 1973).

G[b; g, A]s=G[g, AD* (G[b, AIs), where g-Pj!eorg=Pj?x
or g E wait d.

The meaning of a sequential composition of guards is the functional
composition (using the extension operator “*“) of the meaning of the
separate guards.

COMPOSITIONAL SEMANTICS 227

7.4. Definition of M

7.4.1. M[[YJ for TE Comm\ParComm. In this subsection we give the
meaning of the non-parallel commands of Mini CSP-R.

MBx:=eDs=PFC(((slIV~eTIs/xl, (I: I>>))-

To keep the semantics simple, an assignment takes exactly one time unit
(indicated by the empty bag).

Mllgls=Gk /aTIs, for g=waitdorg=Pj!eorgrPj?x.

This use of G was already discussed in Section 7.1.

MIT,; T,lls = MCTJ * MT,IIs).

M [[,G, gj’ ‘j-j]’

6 MITjII* (Gtgj, {gkll <k<n, kzj}ns) if \i wfgjns,
= j=i j=l

PFCW, 1))) otherwise,

The meaning of the alternative command depends on the presence of an
open guard: if no such guard is present this means failure, otherwise one
guard is selected where each guard is considered in the context of the
remaining guards (gj is the boolean part of gj, see Section 2).

Let C abbreviate [El;= 1 g, + T,].

MII* CUs= u diCs),
isN

where the di (in N) are functions from S to CH defined inductively by

40(s)= w 2)) for all s E S,

4?(MECI 3) if \i w[rgjjs,
di+,(s)=

J=I

PW{(s> CC I>>)) otherwise.

The 4;s represent as usual the ith iteration step of the loopbody. If at some
point of iteration there are no open guards anymore, the loop terminates
(this last iteration is indicated by the empty bag because the execution of
commands takes at least one time unit).

For an illustration of the loop equation see the first two examples in

228 KOYMANSET AL.

Section 8 (these give also a demonstration why ((I, A)} and not 0
should be the least element of CH). The loop equation can alternatively be
written as a fixed-point equation over the complete partial order of
functions from S to EH with the usual ordering on function domains:

M[* C] = p(&Us. if e W[g,]s then q5*(M[CJs)
,= I

else PW { (s, (C I> > > 1 fib

where ZJ is the least fixed-point operator.

7.4.2. The meaning of Pi :: T. The effect caused by Pi :: T is the
renaming of the visible subprocesses of T by i. To this end, we need a
definition for substitution of a certain process, in this case i, in place of a
collection of processes Z, in this case VS(T), both for bags over CAR as for
elements of ZH. Although the substitution for bags over CAR is intuitively
clear, the technical definition is rather awkward and is therefore given in
Appendix B. So, assuming we have defined B[Z+ i] E B(CAR) for
BE B(CAR), ZE P(N) and in N, we can extend this componentwise to
elements of EH:

A-[I-i]={(a, (h(k)[Z-+i])~‘L,)l(a,h)EX}.

LEMMA. X[Z-+ i] EzHfor all XE.ICH, ZE P(N) and in N.

Proof: X[Z- i] non-empty: XE CH implies (I, 2) E X and hence
(I, 2) EX[Z-+ i].

X[Z- i] prefix-closed: Let (0, h) EX and h’d (h(k)[Z-+ i])rLi. Then
lh’j < IhI, so there exists a h”< h with jh”l = jh’l. Because XE CH it follows
that (I, h”) E X and hence (I, h’) = (I, (h(k)[Z -+ i])i’l 1) =
(I,(h(k)[Z+i])~!‘~!)=(I,(h”(k)[Z+i])~~,)~X[Z-+i]. 1

Now we can define

M[Pi:: TJi=(Mi[TJ.s)[VS(T)+i].

7.4.3. The meaning of (T, ((T,).

7.4.3.1. Intuition for parallel composition. It remains to define the
meaning of the most important construct, the parallel composition.
Intuitively, when binding two processes, the information of the states is
combined, the histories are checked for consistency, and then they are
merged. Actually this consistency check can be split into two independent
parts to be applied at each instant of time:

COMPOSITIONAL SEMANTICS 229

(cl) Check that histories have matching communication claims,
i.e., that histories agree on the communications that occur
between the two processes (their internal communications).

(~2) Check that there is no unnecessary waiting, i.e., that histories
do not indicate a situation where both processes are waiting
for a communication that the other process can provide (in
other words: two processes do not wait if there is a semantic
match between them).

Check (cl) is the communication consistency check for CSP as in (France&
Lehmann, and Pnueli, 1984). We call (~2) the real-time consistency check
because it enforces maximal parallelism (see the end of Section 1). Since the
equation for M[(T, II r,)J s is rather complex, we give the intuition behind
its steps below, and postpone its formal definition till Section 7.4.3.6.

To combine the meanings of MITIas and M[T,ljs to M[(T, 11 T,)as,
first the states of M[T,js and M[TJs should be combined. Although
trivial at first sight, this raises problems since we can not always assume
that such states have disjoint domains, as illustrated by the program x := 0;
(P, :: x := 1 11 P, : : y := 2). This is solved in Section 7.4.3.2.

Next consistency checks (cl) and (~2) must be applied to the com-
munication assumption records in M[T,Js and M[T,Js. Note that for (cl)
it is desired to have a common communication claim record in both
histories while, on the contrary, (~2) checks that there is no common no-
match claim record in both histories. Moreover, our semantics is such that
in the records in the generated histories of a command always at least one
of the processes involved is a visible subprocess of that command (see the
History Property in Section 7.5). Consequently, for (~2) it is sufficient to
check for the absence of identical no-match claims. For (cl), however, one
first must establish the visible subprocesses of T, and T, prior to checking
whether a communication claim record in one history should be com-
plemented by an identical record in the other history (since a visible sub-
process of T, may address a process outside of T,). Therefore, it would be
nice if we could first merge the histories that are consistent according
to (~2) and after that check (cl). Unfortunately this is unfeasible,
as is illustrated by the programs (P,::P,!OI/P,::P,?x) and
(P,::(P 11 : : P, ! 0 11 P 12 : : P, ! 0) II P, : : x := 0). When following the above
approach, the semantics of both these programs would contain the history
([(1,2, O)‘]). Now, this history should represent both a successful com-
munication (the first program) and deadlock (the second program): an
impossibility. We solve this problem through first subtracting equal com-
munication claim records from each other, and after that check whether
any internal communication claims are left. Together with the definition

230 KOYMANS ET AL.

of the real-time consistency check (c2), this is worked out in detail in
Section 7.4.3.3.

Third, not all histories should be compared when merging. When com-
bining state-history pairs with I as state component(s), representing
incomplete computation, special care should be taken to guarantee that
indeed all the events occuring at a particular time are collected in the
resulting history. E.g., (I, ,I) E M[P , : : P, ! 51 s should not be merged with
(s[O/x], ([]))~M[P~::x:=01]s, because the result (I, ([I)) will
not represent the attempt of P, to communicate with P, at time 1. This is
treated in Section 7.4.3.4.

As the last step, when giving the meaning of (T, /I TJ in terms of its com-
ponents, the real-time assumptions (represented by the no-match claim
records) concerning the visible subprocesses of T, and T, should be
checked and removed. This is illustrated by the program
(P, : : P, ! 5 11 P2 : : Pi ! 5). Some histories of P, contain the no-match claim
(1, 2), and some of P, the no-match claim (2, 1). After binding P, and
P,, the real-time assumptions concerning the collection of processes { 1, I!}
should be checked; in this case, exactly (1, 2) and (2, 1). After this check
they are not needed anymore and can be removed, since it has been
established that no communication will occur.

These four steps correspond with those of the definition of
M[(T, 11 T?)] s, in that order.

7.4.3.2. Combining states. For M[(T, II T2)]s, the states of M[T,js
and M[TJs should be combined. Because of the syntactic restriction that
the variables of T, and T2 are disjoint (see Section 2, definition of
commands), it seems that one can simply form the disjoint union of such
states. This is, however, not the case: the state s of the computation up till
now can cause problems. For example, in the program x :=O;
(P ,::x:=lIIP 2 :: y := 2), x is defined both in P, and Pz. Fortunately, this
is only the case for variables that were defined earlier in the program, or in
other words: variables that belong to the domain of s. Variables outside the
domain of s belong either to P, or P2 (because of the above-mentioned
syntactic restriction). The union of states of MITln s and MET,] s can now
be defined relative to s E S:

Let for 1 d i< 2, SUE S belong to M[TJ s (then dam(s) E dom(si)).
Define the union of s, and s2 relative to s, notation s, u, s2, as follows:

dom(s, u, s2) = dom(s,) u dom(s,)

and

(sl u, sz)(x) ‘% si(x) if x E dom(si)\dom(s) or x E dam(s), s(x) = s3-Jx).

COMPOSITIONAL SEMANTICS 231

As remarked above, if x~dom(s,)\dom(s) then x$dom(~,-~). In that
case, x is a new variable of Ti and the value of that variable in the com-
bined state is si(x). For example, for t :=O; (P, :: y := 1 (1 P, :: z := 2),
dam(s) = (t>, dom(s,) = (t, JJ), and dom(s,)= (t, z}.

On the other hand, if x E dam(s), then at most one of T, and T, can use
x, hence si(x) = s(x) for i = 1 or i= 2. In this case, the value of x in the
combined state is sjPi(x). For example, for t := 0; (P, :: t := 1 (1 P, :: z = 2),
dam(s) = {t>, dom(s,) = {t}, dom(s,) = {t, z}, and the value of t after this
program is 1. Note that U, (for all s E S) is commutative and associative.

It remains to extend US for si that belong to MIT,] s but with S, or s2 (or
both) not in S. The idea is that whenever one of the s, represents an incom-
plete computation the combination represents the same; otherwise, when
one of the states represents failure, the combination represents failure:

Iu,a=au,l=.L for all sES, aEC

and
l vSa=avs*=* for all sES, aEC\{I}.

Note that this extension maintains commutativity and associativity.

1.4.3.3. The consistency check. There is a direct correspondence
between the two parts of the consistency check and the two types of
communication assumption records:

(cl) concerns triples (i,j, v) such that i and j are internal
processes, i.e., processes that belong to the collection of
processes represented by the two histories whose consistency
is checked; check (cl) corresponds to: each such triple in one
history should also occur in the other history at the same time
and vice versa

(~2) concerns pairs (i, j); it corresponds to: no pair (i, j) in one
history may occur at the same time in the other history.

Note that for (cl) we need to know the set of internal processes while this
is not necessary for (~2). The reason for this is that in all records in the
histories generated by our semantics one of the processes i and j refers to
the process that generated this record (this history property is proved in
Section 7.5). Because (~2) checks that two histories representing different
processes do not contain at the same time a common record (i, j), this
means that i and j must be internal processes anyway.

The real-time consistency check (~2) is formulated by

h,ItRTh2 gf 13i,j,kEN (1 <k<min{lh,l, jh2/}

A (i, I-> E h,(k) A (6 j> E h,(k)).

232 KOYMANSETAL.

Of course, the consistency check as a whole (and similarly for its part
(cl)) could be applied pairwise to histories with the set of internal
processes, say Z, as parameter: h, e, h,. However, we prefer to pair histories
without such a parameter. Ideally, we would like to combine state-history
pairs (states are united, histories merged) for which the histories are real-
time consistent and uffer that apply the check (cl). This approach is
unfeasible, as is shown by the programs

and

(PI ::P,!OIIP,::P,?x)

(P, :: (P,, :: P1! O/(P,, :: P,! O)(j P, ::x :=O).

If we would follow the strategy above, the meanings of these programs
would both contain the history ([(1, 2,0)*]). The problem is, that we
somehow must remove this history from the meaning of the second
program (it deadlocks), but reduce the same history to ([]) in the mean-
ing of the first one (showing a successful internal communication); this is
clearly an impossibility.

There is, however, an easy trick to circumvent this problem. The above
example suggests that we should subtract equal communication claim
records from each other while merging: for the first program this would
result in no (1,2,0)-records at ail, while for the second program the two
(1,2,0)-records would still be maintained. Check (cl) can then be com-
pleted by testing whether after this special merging there are any “internal
communications” left, i.e., communication claims (i, j, u) with i and j
internal. Formally, for XE CH and ZE P(N) we define

g~C(X)=X\{(a,h))3B f h3i,i~Z3u~V(i,j,u)EB).

LEMMA. $:C(X)~EHfor all XECH and ZEP(N).

Proof: $ic(X) non-empty: XE CH implies (I, A.) E X and because there
does not exist a B 6 A it follows that (I, A) E $:C(X).

@(X) prefix-closed: $ic(X) deletes pairs from X for which the history
has a certain property. Immediately from the definition it follows that all
extensions of a history with this property also have this property. Reversing
this we get: if a history does not have this property, then none of its
prefixes can have this property. This is used in the last step of the chain of
implications (0, h) E e:“(X) * (o,h)EX* (L,h’)EX- (I,h’)E
eic(X) for all h’bh. 1

The above mentioned special merge is denoted by # and does the
following. Up to the length of the shortest history, # substracts equal

COMF’OSITIONAL SEMANTICS 233

records (of course taking the absolute value). It is unnecessary to check
especially for communication claim records because histories with equal
(i, j)-pairs were previously removed in the real-time consistency check.
After the length of the shortest history, the longer history is just copied.

Formally: Let h,, h,EH. Then h, # h,= (B:‘,h2)~~~‘Ihll,Ih~I}, where
Bcls h2 E B(CAR) are defined as follows:

for 1 dk<min{Ih,l, lhzl}, B:‘-‘Yr) = P,(k)(r) - h#)(r)l,

for min(lh,I, lh,l) <kGmax(lh,l, lh21},

@I&(~) = ;l;;;;;; if lhll > lb
2 if lh21 > lh,l.

In general # is commutative but not associative. However, in the con-
text of ((T, 11 TJ 1) T3) and (T, 1) (T2)I T3)) we may assume because of the
syntactic restriction that the visible subprocesses must be disjoint in a
parallel composition (in that case vsp and VS coincide): VS(T,) n
VS(Tj)=@ for l<i<j<3. In that case, for SES, (o,,h,)EM[TJs
(1 <i<3), it always holds that (h, # h2) # h, =h, # (h2 # h3) (see the
Corollary in Section 7.5). This is used to prove the important property that
MII((T, II Tt) II TdJ equals WI(T, II (T2 II T3))B, see the theorem in
Section 7.5.

7.4.3.4. An additional condition for combining state-history pairs.
When combining state-history pairs (aj, hi), 1 G id 2, in the parallel
composition of two processes, we should take care that the condition
crj = I + lhjj 2 I h, _ il, 1 < i < 2, is satisfied, i.e., that neither history that can
be extended (oi= I) is shorter than the other one. Here is why:

Consider the program fragment (P, : : P,! 5 11 P2 : : x := 0). For s E S,
(l,n)~M[rP~ :: P,! 51s and ($0/x], ([]))EM[P~::x:=OJS. If we
combine these two state-history pairs without the extra condition above,
we get the combined pair (I, ([I)). However, this pair should not
belong to the parallel composition of processes P, and P,, because only the
internal step (the assignment) of P2 is represented and not the attempt of
P, to communicate with P, that occurs at the same time.

7.4.3.5. The removal of real-time assumptions. When giving the
meaning of (T, /I T2) the real-time assumptions (represented by the
no-match claim records) concerning the visible subprocesses of T, and T,
should be checked. It is our policy to do this as soon as possible, that is, in
the first context in which the processes i and j of a no-match claim (i, j)
can be identified. The following program fragment illustrates this:
(PI :: Pz! 5 (I P, :: P, ! 5). In this case some histories of process P, contain
the no-match claim (1, 2) and some of process P,, (2, 1). After binding

234 KOYMANSETAL.

processes PI and P,, the real-time assumptions concerning the collection of
processes { 1,2} should be checked; in this case, exactly (1,2) and (2, 1).
After this check they are not needed anymore and will be removed.

In general, for BE B(CAR) and a collection of processes ZE P(N), we can
define RTA,(B)EB(CAR) which removes from B the no-match claims
concerning I:

RTA,(B)(r) = ’
if r=(i,j)withi,jEZ,

B(r) otherwise.

We have to extend this operator to elements of .ZCH in the same way as we
extended B[I+ i] to X[I- i] (see Section 7.4.2):

RTA,V) = { (0, (RTA,(WD~‘t , > I (0, A) E X}.

LEMMA. RTA,(X) E L’H for ail X E CH and I E P(N).

Proof: The same as for the lemma in Section 7.4.2. 1

7.4.3.6. Putting it all together: the meaning of (T, 11 T,).

MII(T, II Tdls= RTA,,,(e:,C,(((aI u, a2, AI # h2) I (a,, hi) ~MU,lls

A h, LRTh2 A ai= l. * IA,13 Ih,-il, l<i62})),

where tvs = VS((T,)I T2)) = VS(T,) u VS(T,), the total visible subprocesses.

LEMMA. {(a, U, 02, h, # h,)) (a,, hi) E M[T,IJ 3 A hl eRT h2 A ai =
I*lhil>lh3_;l, lii<2}dH.

Proof: Abbreviate the above set to X. X non-empty: M[TJ SE ZH
implies (I,;~)EM[TJs (1 <‘i<2). ReRTJ. and /J.(a(1(are satisfied,
hence (lu,l,;l # ~)=(I,~)EX.

X prefix-closed: Let (a1 u, az, h, # h,)EXand h’dh, # h2. The proof
splits into two cases, dependent on the length of h’:

Case 1. [/I’[< min{ Ih,J, Jh,l). Take h: <hi, l/z;/ = Ih’l (1 < i 6 2). Then
(I,hi)EM[TJs and h’,$ RTh; and lI~,‘l>l/z~~l (l<i<2) and
hi #hh;=h’, hence (lu,I,h; #h;)=(l,h’)~X.

Case 2. I/z’1 >min(Ih,(, lhzl}. From h’,<h, # h, it follows that
I4 G W, # hl =max(lh,l, Ih,l>.

Taking these two conditions on (h’(together we see that (II,/ # I&l.
Without loss of generality we can suppose lh,l > Ih,l. Take hi <h, with
lh;l= Ih’l. Then (1,h;)~M[T,Jjs and (a2,h2)EM[T2]s and h;gRTh2
and Jh;J>Jh,J (and a,#1 because]h,l>jha]) and hi # h2=h’, hence
(l.u,a,,h; # h2)=(I,h’)EX. 1

COMPOSITIONAL SEMANTICS 235

PROPOSITION. For all s E S, M[(T, 11 T2)] s E ZH.

Proof Immediate by the lemma and the fact that both $fc and RTA,
map elements of ZH to elements of .XH (see the lemma in Section 7.4.3.3,
respectively 7.4.3.5). 1

7.5. Properties of the Semantics

In this section we derive some general properties of the semantics and
use them to prove commutativity and associativity of parallel composition.

We start with a property concerning the records in the histories
generated by our semantics: in the records in the histories of the semantics
of a command at least one of the processes involved is a visible subprocess
of that command.

HISTORY PROPERTY. For all commands T, s E S, (0, h) E M[TJ s the
following holds:

VB f h Vr E B(xl(r) E VS(T) v 7c2(r) E VS(T)).

Proof From the definition of M[TJ, by an easy structural induction
onT. 1

The following lemma and its corollary concern properties in the context
of the parallel composition of T,, T2, and T3 (cf. the end of Section 7.4.3.3).
The lemma states that under certain conditions (which are met in the case
of a parallel composition) three histories cannot contain a common com-
munication assumption record. The corollary then says that under the
same conditions the special merge # of Section 7.4.3.3 is associative.

MAIN LEMMA. Let SE S, (ur, hi) E M[T,]s (1 d i,< 3) and suppose
VS(T,) n VS(T.) = @ for all i, j, 1 < i < j d 3. Then for all r E CAR, all k
such that 1<k<min{lhil11<i<3} there exists an i, l<i<3, with
hi(k)(r) = 0.

Proof: From the History Property and the condition VS(T,) n
VS(Tj) = 0 (1 d i < j< 3) it easily follows that there cannot exist r E CAR
and k, 16kdmin{lhilIl<i<3}, such that rEhi(k) for all i, ldi<3. 1

COROLLARY. Let SE& (cri,hi)EM[Tj]s (161’63) and suppose
VS(T,)nVS(T,)=Qr for all i, j, l<i<j63. Then (h, # h,)#h,=h, #
(h, # U

Proof From the Main Lemma observing that I Ik - m(- nl =
Ik-lm-nil forallk,m,nEN suchthatk=Oorm=Oorn=O. 1

The preceding properties enable us to prove that pairwise binding of

236 KOYMANSETAL.

processes is independent of the order in which the processes are bound.
E.g., for three processes M[((T, 1) T,) 11 T3)] equals M[(T, /I (T, 11 T,))]. This
associativity property together with commutativity M[(T, I/ T,)Jj =
M[(T,)I T,)] justifies the writing of M[(T, 1) T, /I T3)] for any order of
binding T,, T,, and T,. This immediately generalizes to M[(T, /I ... I/ T,)]
for any order of binding T,, T,, (n 3 2).

THEOREM. MI[(T, II TAD = MC(Tz II T,)ll and MI((T, /I Tz) II TX)] =
MI(T, II (Tz II TJ)Ii.

Proof Commutativity: immediately from the commutativity of U,, #
and eRT.

Associativity: We shall give a meaning to “M[(T, /I T, II T3)] s” and show
that MII((T, II T2) II TdiI s and M[(T, (I (T2 II T,))] s both are equal to it.

Note that in the context of the parallel composition of T,, T,, and T, (in
both orders above), we may assume (see the end of Section 7.4.3.3)

(a) VS(Ti)nVS(Tj)=@ (1 <i<j<3).

HenceforsES, (o,,hi)~M[Ti]s(l<i~3)wecanapplyboththeMain
Lemma and the Corollary. Because of associativity of U, and the Corollary
we can define

MIl(T, II T2 II T,)Ds

=RTA”;=, “SCT,,(& “S(T,) (1 (c.I “* 02 u* 03, h, # 4 # h3)l

(ai,hi)EM[Ti]S (lbi<3)

A hi$RThj (1 <i<j63) A aj=l*lhjl> IhiJ (1 <i,j<3)})).

Now, for all s E S,

W((T, II T,) II T3)llS
= RTA u;=,vs(r,) (~~=,vs,., WUs~3, h # h3)l

(cJ,~)ERTA UT=, VS(T!) fq=, WT,) (({a, “3 027 h, # h,)l

<a,,h,)EMCT,Ds A (oz,hz)EMirTJls A h, eRTh,

A (‘I= 1 =a lh,l 2 iA21 A 02 = I=+ I& 2 lh,l}))

A (03,h3)EM~T3nsAh~RThjAd=IjIhl~lh31

A ‘J3 = I* IhI 2 IhI}))

COMPOSITIONAL SEMANTICS 237

9 RTA,;=, vs(r,)(@=, vs(r,) ({ ((al us 02) us ~39 (h, # hd # h3)l

(o,,h,)~MW,ls~ (oz,h2)~METJls~ (~,,h,)~MlIT,lls

A h, e RT hz A (h, # h2) gRT h, A o, = I- IhI a IhA

A 01 us ~2= J- - lh, # h2l Z Ih,l A c3 = I =a lh,) 2 Ih, # hJ}))

‘~=“~(r~~,II~,II~,,~~~~~M~~~,lI~T,II~,))Ds,

where the three crucial steps are explained by

(*)

(**)

c***j

We can leave out the operators RTA,;=, vs(r,) and

cj= I vs(r,) because they only concern records with
~,(r)~U~=r VS(T,) and 7r,(r)~(J:=r VS(TJ. Because of
the History Property and (a) it follows that such records r
cannot occur in h,. This implies that such records do not
interfere with records of h,, e.g., such records are main-
tained in the merge h # h,. The effect of the two above
operators is then contained in the effect of RTA,;=, vs(T,j

and g’u”i=, VS(T,)’ since U:= 1 VS(Ti) E lJf= I VS(ri).

This holds because of

(1) associativity of IJ, and the Corollary;

(2) (h, # h2)eRT h, o (h, gRT h, A h, eRT h,):

-+ Easy because rE (h, # h,)(k) implies that rE hi(k)
for i= 1 or i=2.

+ According to the Main Lemma, r E h,(k) and r E hi(k)
(1~ i < 2) implies that k > Ih3 _ iI or that h, _ i(k)(r) = 0; in
both cases r E (h, # h,)(k);

(3) (0~u,cr~)=10(0~=I v oz=I) and Ih, # h2J=

maxi I& IT lh2l>.

The previous equations hold as well when cri and hi
(16 i < 3) are interchanged. 1

7.6. Concluding Remarks

The proposition in Section 7.2 shows that we do not have to worry
about continuity of the meaning function.

After all these technicalities the next section gives some examples which
illustrate the basic ideas and what is observable.

238 KOYMANSETAL.

8. EXAMPLES

In the examples below E, abbreviates the program (fragment) of
example n and s is an arbitrary element of S.

EXAMPLE 1. E, = P, :: *[true -+ P,!5]. First we compute

M[[true-+ P,!5]js= U M[P,!5]* (G[true, 01s)
j= I

=MBP,!511* (PFC({ (s, A))))

(2’ M[P, ! 51 s = G[P, ! 5,0j s

=PFC({(s, CL-<W)l)“’ (CC& ‘L5)l)) I t WI.

(*I In general, by writing out the definitions of Section 7.2, we
see that d*(PFC({ (s, A) >)) = d(s).

Then

where

M[*[true-+ Pz!5]js= U ~Js),
reN

h(s)= ((1, A>>, di+1(~)=4i*(M[[true + P2!5]4s).

By induction we can prove for all n E N,

Hence

Remark. This example shows why elements of CH should be non-empty.
Otherwise 0 would be the least element of CH and for the #i above we
would then get d,Js) = 0 for all n E N and hence M[E,]s = 0. This is
caused by the fact that we should have a starting point for the histories and
0 contains no histories at all.

EXAMPLE 2. E, z P, :: (PII :: *[PI!5 + wait 1 0 wait 1 + wait l])I
P ,,::waitl; *[P,!5+wait 1 Cl wait l+wait 11).

We should have M[rE,] =M[EJJ! E, and E, have indeed the same
observable behaviour: they both continuously try to output value 5 to

COMPOSITIONAL SEMANTICS 239

process 2. Let C abbreviate [P1 ! 5 + wait 1 0 wait 1 --t wait l] (then
E, - P, :: (P,, :: 4 11 PI2 :: wait 1; 4)).

We first compute

M[Cjs=M[wait la* (G[P,!5, {wait l}JJs)

uM[wait lj* (G[wait 1, {P,!5}]s)

=M[rwait lj* (PFC({(s, ([(0,2)])‘^

([(0,2,5)]))1O~rtl}))

UMbwait III* (PW{(.C <CWVl)‘)}))

=PW{(s, <C(O, 2,5)1, C I>>>,

uPFC(W, ([(0,2)1, C I>>),.
Then

M[I*clls= u d;(s), where h(s)= {(Lo>), di+I(S)=$i*(MITCUS).
iEN

By induction we can prove for all n E k4,

h@)=PW{(L (Cr,l, C I> * ... A<Cr,13 C I>> I
Vi, 1 <ibn, ri= (0,2, 5) v ri= (0,2)}).

HenceMITP1l::*cas=PFC({(I,(Cr,l,C1>A ... A<[r,l,[l>>l

n~~,Vi,l~i~n,r;=(11,2,5) vrj=(11,2)})and

MlP ,2 : : wait 1; *CJ s

= (M[*Cq * (M[wait 11 s))[(0) -+ 121

=PW{(L CC l>A<Cr,ly [I> ̂ ... A([r,l, C I>> I
n~~,Vi,1~idn,ri=(12,2,5)vri=(12,2)}).

Next we compute the parallel composition of PII :: *C and
P 12 :: wait 1; 4:

M[I(P 1, :: *c 11 P ,* :: wait 1; *c)ns
=RTA(II,12)(e~l,12)(((0, “5023 h, # h2) I

(a,, ~,)EM[[P,, :: *CJs A (02, ~,)EM[P,, :: wait 1; *Cjs

~h~~~~h~A~~=Ijlh~l~Ih~-~l,l~i~22)))

={(I, ([ri])l=1) lneN,Vi, l<iGn,

odd(i)*(ri= (11, 2, 5) v ri= (11, 2))

A even(i)=(ri= (12,2,5) v ri= (12,2 >)

M3’79/3-4

1.

240 KOYMANSETAL.

Hence M[EJ.r={(I, ([ri])~=,) I~EN, Vi, l<i<n, ri=(l,2,5) v
ri= (1, 2)).

That M[E,IJ = M[E,l holds, can be easily seen by an analogy with
formal language theory: Prefixes((b*a)*) = (a u b)*.

Remark. These two examples illustrate that established deadlock is just
a special case of an infinite computation (and is not distinguishable from
other infinite computations such as divergence; see the end of Section 6.2):
E, deadlocks when process P, from some point on does not ask for a value
to be input from process P,, . in the same context E2 behaves more or less
as “busy waiting,” which is another form of infinite computation.

EXAMPLE 3. E, = (P, :: (P,, :: P,!3 11 P,, :: P,!7) 11 P, :: P,?x). We
should get an infinite computation; in this case an established deadlock of
either P,, or P,, after the successful communication of the other with P2.
First compute

MIlP,, ::P,!3Ds=pFC(((s, ([:(ll,2)l)‘A([(11,2,3)])) / HEN}),

M[IP,,::P,!711s=PFC({(s, ([(12,2)])‘A([(12,2,7)])) I HEN}),

and

MBP,::P,?xlis=PFC({(sCulxl, (C(~,~)I)‘^(C(~,~,U)I)) I UEK
tdd)).

Next

W(P 11 :: ~,!3 11 P,, :: p,!7)js

=RTAi,,,,,)(~iC,,,,)(((o, ~,~2,h, # h) I
(a,, h,)eM[P,, :: P,!3]s A ((r2, ~,)EM[P,, :: P,!lf]s

Ah,~R=h2h~i=I~Ihi(~lh3-,r(,1~i~2}))

=PW{(s, (C(lL2), (12,2)1)"^(C(11,2,3), (12,2)1)^

(c(12,2)1)‘*~(c(12,2,7)1)) I t,,ww

~(6, (~(11,2),(12,2)1)'~~~(11,2,3),(12,2,7)1))1t~~()

w (<ST <C(lL 2), <12,2)1)“^ (E<ll, 2), <12,2,7)1) h

~C~~~,~~l~'2n~c~~~~~~3~l>>I~*,~2~~}~.

COMPOSITIONAL SEMANTICS 241

Hence

M[P, :: (P 11 :: P,!3 11 P,, :: P,!7)]s

=PFW<s, (C(1,2)21)"A(C(1,2,3), (1,2)1)^
~c<~~~~1)‘2A~c~~,~,7~l~~ I r,,wq

uW, ([:(1,2)21)‘~([(1,2,3), w,7m) I EN)

40, (c(1,2)21)11~(c(1,2), w,7)1)~

(ccl, 2w*~ w,2,3m I t,, t2dw.

Note that here the use of bags instead of sets is essential, especially if we
replace 3 and 7 both by the same value. Then

M[E,ns=RTA(,,,)($~,,)(((cr, usc72,h, # h2) I

(o,,h,)cM[P, :: (P,, :: P,!3 11 P,, :: P,!7)4s

A (02,h2)~M[P2::Pl?x]s/\h,gfRTh2

~a,=I~lh~l~Ih~-;l,l~i~2}))

=RTAI,,,#‘W{(L (E(1~2)1)A(C(1,2)l)‘2) I tz~~}))

= w7 cc I)‘) I tw.

EXAMPLE 4. E4 = (P, :: (P,, :: P,!3 II P,, :: P,!7) II P, :: P,?x; P,?x).
In this example one of the processes P,, and P12 first communicates with
P, and then the other. The total program terminates in two time units. For
M[P, :: (P ,* :: P,!3 11 P ,2 : : P, ! 7)] S, see Example 3. Furthermore,

M[P,::P,?x;P,?x]s

W-Us= RTAt,,zj(PFCWC7/xl, ([Cl, 2)1, C I))}

u {(sC3/xl, <C(L2)1, c I))),,

=PWi<sCv/xJ <C I)‘> I VE (3,7))).

EXAMPLE 5. ES = (PI :: (P,, :: P,!3 II P,, :: P,!7)11 P, :: (PzI :: P,?xj)
P 22 : : P, ?y)). In this example processes P,, and P,, communicate
simultaneously with processes P2, and P,,. The total program terminates in

242 KOYMANSETAL.

one time unit. For MIPl :: (P,, :: P,!3)I P,? :: P, !7)]s, see Example 3.
Similarly we can compute

M[P, :: (P *I : : P, ?x 11 P?Z : : P, ?y)] s

=PFC(((sC~,lxlC~,/~l, ([(1,2)*l)“^(C(1,2,~,), (L2)1)̂

(C(L 2)l)‘2A (C(L 2, o*>l>> 101, U2E K [I, f24

” M-~,lxlb2/Yl~ (c(1,2)21)‘A

~C~~~~~~,~~~~,~,~~*~l~~l~l,~*~~,~~~}

“{(~[~,/xlc~2/ul, (c(1,2)*1)“^([(1,2), (l,2,u,)])A

(C(1~2)1)‘2h(C(1~2,u,)l)) IW’2~K~lJ2~~}).

Then

W&Is= RTAI,,,I(PFC(((~C~,l.~lC~2/~1, CC I>> I (r,=3~ az=7)

V (II,=7 A U2=3)}))

= PW { (~C~~lxl C~,hI, CC I>> I to,= 3 * 02 = 7)

v (u,=7 A 02=3)}).

9. REAL-TIME MODELS

9.1. Introduction

The maximal parallelism model as used here, is flawed by some concep-
tual problems. We illustrate these problems with an example. Consider a
network with distributed control, and two processes A and B in different
nodes that want to communicate with a process C in a third node. If A
wants to communicate at an earlier time than B, relative to some global
time scale, then according to the fcfs-principle, indeed, A should com-
municate first. Whether A’s message arriues in C before B’s message or not,

depends on the topology of the network. So, imposing a fcfs-principle upon
the order of communications induces non-trivial requirements upon an

COMPOSITIONAL SEMANTICS 243

underlying communication layer; requirements that we would not like to
make. Similar problems occur if processors communicate, e.g., via a com-
mon bus where assumptions about bus-arbitration have to be taken into
account.

The lesson that should be drawn from this example is, that whereas our
current model applies the fcfs-principle to the order of initiations of
requests, the principle should rather be applied to the order in which a
process becomes aware of requests. In doing so, we create the freedom to
relax the stringent impositions of the original model on the behaviour of a
communication layer. Specifically, in this way it becomes possible to vary
the time gap (0 in the original model) between the initiation and receipt
of a communication request, which reflects the uncertainties about the
communication layer.

This variation of the time gap is the essential feature of the MAX,(G, E)
model of distributed concurrency. The parameters 6 and E function as lower
and upper bound on the above time gaps which are allowed to take on any
value inbetween these bounds. As a consequence, communications that are
initiated too close in time (relative to a global clock) cannot be temporally
ordered anymore. These time bounds may be interpreted as an abstraction
of the propagation delays within some communication layer. The third
parameter, y, of the model is used to extend communications in time and
denotes the number of time units it takes.

9.2. MAX,(G, E) Model of Concurrency

The model is based on the Salwicki-Miildner maximal parallelism model:
there is no unnecessary waiting between the execution of actions. Com-

Y I
1 communication rxn 1

munication between processes is served on a first-come first-served basis.
Additionally, the following model pertains to process-communication:

- processes communicate via a medium;
- it takes between 6 and E time units (E not included) for the medium

to become aware of a process expressing its willingness to communicate or
withdrawing its willingness (time-out);

244 KOYMANSETAL.

- communication between two processes only occurs after the
medium has become aware of both processes’ willingness;

- a communication takes an additional y time units during which
period the processes remain synchronized;

- a communication that is in progress at a time when the medium
receives a time-out from one of the participating processes, will be
completed; a communication that might be started at such a time, will not
be executed.

Remarks. - Communication always takes at least 6 f y time units.
- MAX,(O, 2) k {true)(P, :: P,?x; P*?y 11 P, :: (P,, :: P,! 1 11

Pzz :: wait 1; P1!2)){x= l}, and MAXJO, 1) b {true}(P, :: P,?x; P,?y 1)
P,::(P 21 :: P,!l I(P,, wait 1; P, !2)){x= i}. In other words, there is an
uncertainty interval of E - 6: if requests for communications are initiated
E-S or more time units apart, the first request will indeed be served first;
if, on the other hand, these requests are initiated within this interval, the
order in which these requests are served is undefined.

- MAXJO, 1) gives rise to pure maximal parallelism; MAXJO, co)
to pure interleaving semantics (with respect to the communication actions).
It is to have the latter correspondence that the medium has to become
aware of requests within E time units, Otherwise, MAX,(O, co) would allow
infinite delays.

10. REAL-TIME SEMANTICS FOR MINI CSP-R

The MAX,(G, E) model only influences the semantics of communication
actions. So, the definition of the auxiliary function G has to change, but no
additional changes are needed in the definition of M. The intention of these
changes is to have G “generate” any history that is consistent with the
parameters of the model. As these (additional) consistency requirements
are a purely local affair, the parallel composition of processes requires no
additional effort.

Consider an I/O command. The changes in the sets of generated histories
that MAX.,(G, E) induces are three-fold:

1. Histories must be generated in which the first waiting-action (i.e.,
the first no-match claim record) ocurs r time units later than the time at
which communication was requested; and this for any r such that 6 d T < E.

2. In no history can communication or waiting start within 6 time
units of the request.

3. Communication takes y time units; this is modelled by having the

COMPOSITIONAL SEMANTICS 245

associated communication claim record mark the time, in a history, at
which communication starts and by appending empty bags to trace out y
time units.

The changes to G are complicated by the necessity of applying the above
considerations to every I/O command in the environment (i.e., in the selec-
tion or repetition).

Hence, to take care of the first point above, the basic idea is to associate
with an environment {gr, g,} a set of times {t,, t,,} such that
6 < ti < E. These times represent the delays of the first waiting action for the
corresponding guards, i.e., the delays until the medium becomes aware of
the corresponding requests. One such choice corresponds to one possible
history. To generate the corresponding sequences of bags of no-match
claim records, we introduce two auxiliary functions:

DEFINITION. For sets of guards G and times (i.e., natural numbers) T,
time t, and state s E S, define

- A(G, T, t)= {gicG 1 tic?, 1 Gidn}, where {gl ,..., g,}sGare the
I/O guards in G and T= (tl, t,),

- Ext(G, T, I, s)= (RTA(A(G, T, k), s));,~.

EN@,, a,}, {t,, t,}, t, s) yields a sequence of bags of no-match
claim records for the I/O commands a,, CI,,. The time ti represents the
delay of the first waiting action (i.e., no-match claim record) for ai; f is the
time at which communication or a time-out occurs. The function A is
auxiliary to Ext.

Now, we are ready to define G (terminology as in Section 7):

G[b, A] s =
I

PW{(s, A>)) if W [b] s,

w w otherwise.

G[waitd,.4]s=PFC({(s,Ext(A, T,t+t,s)) I max{V[as, 1)

= minwait(d u {wait d}, s) ‘% t,

Tff {t ,,..., t,), 6~r,<~(l~idn),66r<~}).

where n is the number of I/O guards in A.

G~P,!e,A~s=PFC(((s,Ext(GRDS,T,t,s)A([(O,j,V[[e~s)~)*([1)‘)

6 < 2 < minwait(A, s) + .s - 1,

Tef {t , ,..., ?,},6<t,<c(l<i<n)}),

where GRDS = A u {P, ! e> and n is the number of I/O guards in GRDS.

246 KOYMANS ET AL.

The upperbound on t takes the delay of the arrival of the time-out
message in the medium into account. The “- 1” factor corresponds to the
fact that the medium becomes aware of requests before & time units have
elapsed.

G[rP,?~,~~s=PFC({(s[u/x],Ext(GRDS,T,t,s)~([(j,0,o)])~([])~)

u E V, 6 d t < minwait(A, s) f E - 1,

Ti? {t I,..., tnj,6dti<E(1<iin)}),

where GRDS = A u { P,?x} and n is the number of I/O guards in GRDS.

where g is either a pure I/O guard or a pure wait guard.
We illustrate these equations by the example in the second remark of

Section 9.2. Let

P-(P , :: P,?x; P,?y 11 P, :: (Pzl :: P,!l 11 Pzz :: wait 1; P,!2)).

We claim that MAX,(O, 2) p {true} P {x= l} but MAX,(O, 1) k
(true} P {x = 1). In other words, we claim that MAX,(O, 2) allows com-
putations in which Pz2 communicates first, that are disallowed by
MAX,(O, 1). So, assume y = 0, 6 = 0, E = 2.

M[P1!2]s=G[P,!2, /zlljs

=PFC({(.dW{W2), {t~},t,W(KO, L2)l)) I

tEN,O<tl<l)).

Now, Ext({P,!2}, {0}, t,s)= (RTA({P,!2},s))‘= ([(O, l)]): teN,
Ext({P,!2}, {l},O,s)=J, and

Ext((P,!2}, {l}, t,.s)=(RTA(Q5,s))“(RTA((P1!2},s))’-’

= (C I> A (C(O, l>l>‘-‘9 t>o.
Hence

M[P,!2Js=PFC({<s, (C l>‘A(C<O, l>l>“’

([(O, 42)l)) IOa<LtE~)).

Analogously, we obtain the semantics of P, ! 1 and of the input com-
mands of P,. Moreover, MEwait 11 s = PFC({ (s, ([1)‘) I 1 d r < 2)),
hence

COMPOSITIONAL SEMANTICS 247

Mllf’ ,,::waitl;P,!2~s=PFC({(s,([])722A([(22,1)])f22h

<II(22,1,2)1)) I 1 QQ2<3, b4q)

M[P, :: P,?x; P,?&s=PFC({ (s[o,/x][u,/y], ([1)“’ rl

(C<2, 1>1>‘“A<c(2, l,v,>l>”

cc l>‘“A(c(2, 1>1>“2A<c(2, l,h>l>> I

0<7,,, r,,d 1, fl,, t,,E N 01, hf V)).

Consider the histories for P,, and P,, in which z2i = r2* = t,, = 1, t,, = 0. In
particular consider PzI's history ([1, [(21, l)], [(21, 1, l)]) and P,,'s
history ([1, [(22, 1, 2)]). These compatible histories yield the following
history for P2: ([1, [(2, l), (2, 1, 2)], [(2, 1, l)]). This is compatible
with P,'s history ([1, [(2, 1,2)], [(2, 1, 1)]), obtained by taking

1, = 1, zi2 = r,, = t,, =O, vi =2, v2 = 1. From these two histories we can
iompute the following element in the denotation for P: (s[2/x][l/y],
([])3). To show that this computation cannot be generated by the
MAX,(O, 1)-model (i.e., the maximal parallelism model, as used in
Section 7) is straightforward: now, choosing rl, = 7?, = 1 is illegal (cf.
Example 4 in Section 8).

11. CONCLUSIONS

We have given a denotational semantics for real-time distributed com-
puting stressing:

(1) compositionality, thus supplying a basis for compositional
specification and verification techniques,

(2) a model of concurrency that is realistic, in contrast with
interleaving, in the context of real-time: the maximal parallelism model,

(3) simplicity by basing our techniques upon the linear history
semantics for CSP of Francez et al. (1984).

We feel that our way of dealing with real-time is particularly simple. Tim-
ing aspects of programs relate to the length of the histories. Maximal
parallelism constraints are made explicit by recording not only the
occurrence of communications but also the act of waiting for one. When
binding two processes, these constraints imply that at no instant of time
both processes are waiting for a mutual communication.

Exact clocking of instructions is unrealistic because then all actions can
be exactly determined in time. In a shared variables context, this would

248 KOYMANS ET AL.

imply that mutual exclusion, for example, could be programmed without
any additional means such as semaphores. This is resolved in Milner’s
SCCS by introducing the nondeterministic but bounded wait syn-
chronization primitive 6 which may violate the maximal parallelism con-
straints. In our setup, however, shared variables are excluded, so the
mutual exclusion anomaly above does not occur. Additionally, by
extending the maximal parallelism model by introducing non-deterministic
intervals modelling synchronization delays, again this anomaly disappears.
Halpern et al. (1985) arrived independently at the same extended model, in
their case to achieve coordinated actions in a real-time distributed system.
This extension furthermore shows that our techniques can easily
accomodate more detailed real-time features. Another example of this is
modelling the drifting of local clocks. Since only initial and final states and
histories are observable, we hope that exact clocking of instructions
together with the extension of the maximal parallelism model result in a
realistic simplification of the phenomena inherent in the description of real-
time distributed computing.

We based our research on CSP-R, a language that captures the essential
real-time features of Ada, as supported by the simulation of Ada by CSP-R
in Appendix A2. In fact, we had to solve three problems: First, how to
model maximal concurrency in a compositional way. Second, how to deal
with CSPs particular form of naming communication partners, i.e., of
process-naming. The latter is a non-trivial problem and its solution
definitely complicates our semantics: the use of bags instead of sets in our
histories and many of the complications in parallel composition are a direct
consequence of it. Third, the rather peculiar semantics of Ada’s delay
guards, as occurring in, e.g., selective waits with delay statement delay 0.
Our ideas about modelling maximal parallelism are independent of this
and, we claim, are of general applicability. This is illustrated by (Gerth,
1985; Huizing et al., 1987) in which a formal semantics for (recursive)
Occam is given, that is surprisingly simple because of the much cleaner
communication mechanism of Occam, using communication channels
between pairs of processes.

There is a clear correspondence between the readiness semantics of CSP
(see Hehner and Hoare, 1983) and ours: our sets of no-match claim
records-like the ready sets-record the disposition to participate in
certain communications. There is also a clear difference, since unlike ready
sets, a no-match claim record witnesses such a disposition at only one time
instant and does not imply anything about future behaviour. Since
dispositions change over time this means that we have to record such
dispositions at every time instant. There is also a difference in use since,
apart from detecting deadlock, no-match claim records are also used to
enforce maximal parallelism.

COMPOSITIONAL SEMANTICS 249

Certain aspects which cause the readiness model to be not fully abstract,
thus leading to the failure set model (see Brookes et al., 1984), are also
present in our model: Our semantics differentiates the two program
fragments

[true -+ P,!O; wait1 0 true -+ P,!O; wait 11

and

[true -+ P, ! 0; wait 1 Cl true + Pz !O; wait 1 Cl

true+ [P,!O+wait 1 0 P,!O+wait l]],

although their observable behaviour is the same.
In (Huizing et al., 1987) the authors develop a fully abstract version of

our semantics for an Occam-like language and give a proof of full
abstractness. Like for the ready set semantics, full abstraction is attained by
an “upward closure” operation on the no-match claim records. In Gerth
and Boucher (1987) the resulting model is considerably simplified and
developed as an extension of the failure set model. In fact, independently
from us, Andy Boucher (1986) developed quite similar techniques to give
denotational semantics to Occam.

Having discovered on a semantic level how to reason compositionally
about maximal parallelism we now have a firm basis for developing
compositional specification and verification methods, In fact, the present
paper laid the foundation for our participation in ESPRIT project 937:
Debugging and Specification of Ada Real-Time Embedded Systems
(DESCARTES). In the context of this project we have applied similar
techniques to obtain a fully abstract model for statecharts (Harel, 1987), a
language akin to ESTEREL (Berry and Cosserat, 1985). Furthermore,
we used our compositional semantics to get a compositional proof theory
for a subset of CSP-R (Hooman, 1987, 1988) generalizing the work of
Zwiers et al. (1985, 1988) to real-time.

APPENDIX A: CSP-R AND THE SIMULATIONOF ADA

Al. CSP-R
The only difference between Mini CSP-R (see Section 2) and CSP-R lies

in the definition of I/O commands. CSP-R extends Mini CSP-R in the
following ways:

- Communication takes place via (a form of) channels,

- The expressions in output commands and the variables in input
commands are vectors,

250 KOYMANS ET AL.

- Process identifiers can be communicated and can be used in sub-
sequent communications to determine the target process,

- Communication with an arbitrary process can be requested instead
of only addressing a particular process.

The syntax of Mini CSP-R is changed in the following way: Replace
forms 3.1 and 3.2 of the instructions by

3.1.1. P,.c!e -output to process i via channel c the values of the
expressions in the list e, together with the iden-
tification of the sending process

3.1.2. id.c ! e -as 3.1.1, but now the target process is determined
by the value of the identification variable id.

3.1.3. .c!e[#id] - output via channel c to any process the values of
the expressions in the list e, together with the iden-
tification of the sender; record the identity of the
receiving process in the identification variable id
(the brackets [and] indicate that the iden-
tification variable is optional, i.e., .c !e is allowed,
too)

3.2.1. P,.c?x -the analogon of 3.1.1, but now values are received
and are assigned to the variables in the list x

3.2.2. id.c?x -the analogon of 3.1.2
3.2.3. .c?x[#id]-the anaiogon of 3.1.3.

An identification variable is a variable ranging over {P,, P,, . ..I-. It can
only be assigned to using an instruction of the form 3.1.3 or 3.2.3.

The notions of syntactic and semantic matching of I/O commands have
to be reformulated. (Pi, u) and (Pi, p) match syntactically iff:

1. CI and /I specify the same channel,

2. the vectors have equal length,
3. if a is an input command, then fi is an output command and vice

versa, and
4. if a(/?) is of the form 3.1.1 or 3.2.1 then the specified target process

should be P,(P,).

(i, a> and (j, B> match semantically iff:

1. (P,, a) and (P,, fi) match syntactically,

2. control in Pi and Pj is in front of both a and /I, and
3. if a(p) is of the form 3.1.2 or 3.2.2, then the identification variable

must have the value Pj (P,).

COMPOSITIONAL SEMANTICS 251

The result of two semantically matching I/O commands is the
simultaneous execution of those commands as indicated by 3.1.1-3.2.3
above. Its effect is the assignment of the expression values to the variables
and, possibly, the assignment to identification variables. Because of form
3.1.3 and 3.2.3 it is possible that (i, LY) has more than one semantic match
(j, fl). In that case, one of these /I’s is non-deterministically chosen and
executed simultaneously with CL

The remaining syntax and interpretation of CSP-R is the same as for
Mini CSP-R.

As for the extension of our denotational semantics to CSP-R, like the
assumptions we have to record about values in the denotations for input
commands, we now additionally record assumptions about the com-
munication target in the denotations for I/O commands of the forms 3.1.3
and 3.2.3.

Of course, the communication assumption records have to change. The
communication claim records now have to record the communication
channel and the communicated vector of values (instead of a single value).
The no-match claim records now record the communication channel and
the length of the communicated vector of values. Additionally, because of
the I/O commands of the forms 3.1.3 and 3.2.3, no-match claim records
have to indicate with which set of processes a match is impossible (a single
process for the forms 3.1.1, 3.1.2, 3.2.1, and 3.2.2, and all processes for the
forms 3.1.3 and 3.2.3).

The denotations and techniques such as the consistency check have to be
adapted corresponding to the above changes. These adaptations are
straightforward except for a slight complication in the meaning of P, :: T:
Because any communication target is assumed in the denotations for I/O
commands of the forms 3.1.3 and 3.2.3, now constructs like Pi :: .c!e
generate communication claim records in which process i communicates
with itself. This is clearly impossible and such records should be removed
by an additional operator. (Notice that this problem did not occur for
Mini CSP-R, because constructs like Pi : : P,!e were prohibited syntac-
tically by the naming conventions, see Section 2.) The resulting semantics
can be found in (Koymans, 1984).

A2. Simulating Ada

To illustrate the power of CSP-R we translate the basic Ada com-
munication primitives into CSP-R. This translation is denoted by z. The
Ada rendezvous is assumed to be understood.

1. The timed entry call (Ada, 1983, Section 9.7.3).

select T,.a(e, x); S, or delay t; Sz end select;

252 KOYMANS ET AL.

The semantics of this statement prescribes that if a rendezvous can
be started within the specified duration t (or immediately), then it is
performed and S, is executed afterwards. Otherwise, when the duration has
expired, SZ is executed.

We offer as translation

[T,.a!(e, x) -+ T,.a?x; z(S,) IJ wait t + $&)I.

2. The selective wait (without terminate alternative)(Ada, 1983,
Section 9.7.1).

select or(i= l..n) when bj*Sj or (j= l..m)
when @J’J delay Ej; 4 end select;

where Si E accept a,(~, # vi) do Si, end; S, (i = 1 ..n).

The semantics is, that first the minimum value MIN, of those Ej whose
guard, ti’, is open is evaluated. If a rendezvous with one of the ajls whose
guard, b,, is open, can be started either immediately or within duration
MIN, then it is performed and S, is executed afterwards. Otherwise, when
MIN time units have elapsed, one of the delay alternatives 4 for which
Ej = MIN (and whose associated guard is open) is executed.

Our translation:

b bi; .a,?(u,, vi) # id + t(S,,); id. a,!v,; z(Si2) q fi tt’; wait Ej--+ z(S)) .
i= 1 j=l 1

We quote (Ada, 1983, Section 9.7.1) for the semantics of a delay alternative
in a selective wait: “an open delay alternative will be selected if no accept
alternative can be selected before the specified delay has elapsed
(immediately, for a negative or zero delay in the absence of queued entry
calls).” This means that a delay alternative delay 0 is selected immediately,
although it should be checked whether there are no queued entry calls.
Not only is this unrealistic, it also gives rise to the following anomaly:
Consider a call of the recursive procedure P declared by

procedure P = begin select accept A; or delay 0; P; end select end;

in a context where entry A is not called immediately. According to (Ada,
1983) there need not pass any time between the calling of P and any inner
call of P, i.e., an infinite execution sequence takes no execution time!

COMPOSITIONAL SEMANTICS 253

Note that we could incorporate recursion easily into CSP-R on account
of the structure of our semantic domain. Anyway, even in CSP-R without
recursion, we can expand the calling of P arbitrarily deep. Keeping the
same semantics as in (Ada, 1983) would then mean that an arbitrarily long
execution sequence would take no execution time.

We removed this anomaly in our semantics by making wait 0 equivalent
to wait 1 (that is, a wait guard has a waitvalue of at least 1, see Sections 2
and 7), thus reflecting the fact that it takes time to check whether
immediate communication is possible or not. Now we get the desired
semantics by simply translating Ada’s delay t into CSP-R’s wait t.

It is interesting to note that our techniques are in fact not capable of
modelling the anomaly above: In our semantics the assumptions on the
impossibility of communication are incorporated within the history, in fact
within the mechanism that describes the passage of time. If we would have
formulated these assumptions as independent conditions on the history
(which would then contain only communication claim records), the
modelling of the above anomaly would have been possible. E.g., when
calling procedure P above, an empty communication history is produced
under the condition that entry A is not called immediately. Such indepen-
dent conditions, however, would disturb the simple structure of our
semantic domain and for such an unrealistic possibility in the Ada
semantics this is certainly not worth the trouble.

APPENDIX B: DEFINITION OF B[Z -+ i]

DEFINITION 1. For Z, .ZEP(N) define R(Z, J)EP(CAR) as R(Z, J)=
(r’eCAR I n,(r’)EZ A q(r’)EJ}. R(Z, J) restricts the first and second
component of pairs and triples in CAR.

DEFINITION 2. For r E CAR define ETC(r) E P(CAR) as

ETC(r) = {r’ E CAR I lr’l = Irl A It-1 = 3 * 7t3(r’) = x,(r)}.

Equal Third, Component of r selects pairs r’ if r is a pair (and hence con-
tains no third component) and otherwise triples r’ with the same third
component as r.

DEFINITION 3. For BE B(CAR), ZE P(N) and i E N we define
B[Z + i] E B(CAR) as

254 KOYMANS ET AL.

0, if 7c,(r)15Z\(i) v rc,(r)EZ\{i}

B(r) + c B(r’ 1,
r’~ETC(r)nR(l\(iJ.(n*(r)})

if 7r1(r)=i A n2(r)$Zu {i}

B[Z+ i](r) = {
B(r) + c B(r’),

r’~ETC(r)nR((n,(r)).l\(i))

if n,(r)$Zu (i> A n,(r)=i

B(r) + c B(f),
r’~ETC(r)n(R({i),l\(i})vR(l\(i}.ji])uR(~\(i}.l\{i}))

if 7cl(r)=7-c,(r)=i

B(r), otherwise.

When substituting i for the elements of Z in B, the components in the
records that get changed are the elements of Z\{i>: these components are
replaced by i. With this in mind, the second line is concerned with records
before the substitution of the form (j, k) or (j, k, u), the third line with
(k, j) or (k, j, u), and the fourth line with (i, j) or (i, j, u) or (j, i) or
(j, i, u> or (j, m> or <j3 m, v), where j, meZ\(i} and k$Zu {i}.

When r, the record after substitution, has a third component only
records r’ before the substitution should be considered above that have a
third component with the same value. This is taken care of in the equation
by ETC.

ACKNOWLEDGMENTS

We are indebted to the second author, who, during a four-month visit to the universities of
Nijmegen and Utrecht in the fall of 1983, started this research by writing (Shyamasundar and
de Roever, 1983). Our thanks goes to Amir Pnueli, who assisted at several occasions in
correcting and improving previous versions of this paper, and to the two referees for their
comments and improvements. The Netherlands Organization for the Advancement of Pure
Research (ZWO) is thanked for support of three of the authors. Finally, we thank Mijem
Tosendjojo and Edme van Thiel-Niekoop for their assistance with the typing of this paper.

RECEIVED October 4, 1985; ACCEPTED December 12, 1987

REFERENCES

ADA (1983), “The Programming Language Ada Reference Manual,” Lecture Notes in
Comput. Sci. Vol. 155, Springer-Verlag, New York/Berlin.

BERRY, G., AND COSSERAT, L. (1985), The ESTEREL synchronous programming language
and its mathematical semantics, in “Seminar on Concurrency, July 1984, Carnegie-Mellon

COMPOSITIONAL SEMANTICS 255

University,” Lecture Notes in Comput. Sci. Vol. 197, pp. 389448, Springer-Verlag.
New York/Berlin.

BERNSTEIN, A., AND HARTER, P. K., JR. (1981) Proving real-time properties of programs with
temporal logic, in “8th ACM Symp. on Operating Systems Principles,” pp. l-11.

BROOKES, S. D., HOARE, C. A. R., AND ROSCOE, A. W. (1984), A theory of communicating
sequential processes, J. Assoc. Comput. Mach. 31, 56G599.

BARRINGER, H., KUIPER, R., AND PNUELI, A. (1984) Now you may compose temporal logic
specifications, in “16th ACM Symp. Theory of Comput.,” pp. 51-63.

BRANQUART, P., LOUIS, G., AND WODON, P. (1982). An analytical description of CHILL, the
CCITT high level language VI, Lecture Notes in Comput. Sci. Vol. 128, Springer-Verlag,
New York/Berlin.

BIBRNER, D., AND OEST, 0. N. (Eds.) (1980) “Towards a Formal Description of Ada,”
Lecture Notes in Comput. Sci. Vol. 98, Springer-Verlag, New York/Berlin.

BOUCHER, A. (1986) D. Phil. thesis, Department of Computer Scierme, University of Oxford.
CACM (1984), A case study: The space shuttle software system, Comm. ACM 27, No. 9.
CAMERINI, J. (1982), “Semantique Mathtmatique de Primitives Temps Reel,” These de 3itme

cycle, IMA, Universite de Nice.
DIJKSTRA, E. W. (l959), ‘Communication with an Automatic Computer.” Ph.D. thesis,

Mathematical Centre, Amsterdam.
FRANCEZ, N., LEHMANN, D.. AND PNUELI, A. (1984). A linear-history semantics for languages

for distributed programming, Theoref. Comput. Sci. 32, 25-46.
GERTH, R., AND BOUCHER, A. (1987). A timed failures model for extended communicating

processes, in “14th Int. Colloq. Automata. Lang. Programming,” Lecture Notes in Comput.
Sci. Vol. 267, pp. 95-114. Springer-Verlag. New York/Berlin.

GERTH. R. (1985). A maximal parallelism semantics for Occam, notes.
HAREL, D. (1987), Statecharts: A visual formalism for complex systems, Sci. Comput.

Programming 8, 231-274.
HUIZING, C., GERTH, R., AND DE ROEVER, W. P. (1987). Full abstraction of a real-time

denotational semantics for an OCCAM-like language, in “14th ACM Principles of
Programming Lang.” pp. 223-237.

HEHNER, E. C. R., AND HOARE, C. A. R., (1983), A more complete model of communicating
processes, Theoret. Comput. 5%. 26, 105-120.

HALPERN, J. Y., MEGIDDO, N., AND MUNSHI, A. A. (1985), “Optimal Precision in the
Presence of Uncertainty,” IBM Research Lab., San Jose.

HOARE, C. A. R. (1978), Communicating sequential processes, Comm. ACM 21, No. 8.
HOOMAN, J. (1987), A compositional proof theory for real-time distributed message passing, in

“Proceedings of PARLE, Vol. II.” Lecture Notes in Comput. Sci. Vol. 259, pp. 315-332,
Springer-Verlag, New York/Berlin.

HOOMAN, J. (1988), A compositional proof-system for an OCCAM-like real-time language,
Computing Science Notes 87/14, Department of Mathematics and Computing Science,
Eindhoven University of Technology.

JONES, G. (1982) D.Phil. thesis, Oxford, unpublished.
KOYMANS, R. (1984), Denotational semantics for real-time programming constructs in

concurrent languages, notes.
KOYMANS, R., VYTOPIL, J., AND DE ROEVER, W. P. (1983), Real-time programming and

asynchronous message passing, in “2nd ACM Principles of Distrib. Comput.,” pp. 187-197.
MISRA, J., AND CHANDY, K. M. (1981), Proofs of networks of processes, IEEE Trans.

Software Engrg. SE-7, No. 4, 417426.
MILNER, R. (1973), An approach to the semantics of parallel programs, in “Proceedings,

Convegno di Informatica Teorica, Pisa.”
MILNER, R. (1983), Calculi for synchrony and asynchrony, Theoret. Comput. Sci. 25, 267-310.

256 KOYMANS ET AL.

OCCAM (1984), “The Occam Language Reference Manual,” Prentice-Hall, Englewood
Cliffs, NJ.

SALWICKI, A., AND M~~LDNER, T. (1981). On the algorithmic properties of concurrent
programs, Lecture Notes in Comput. Sci. Vol. 125, pp. 169-197, Springer-Verlag,
New York/Berlin.

SHYAMASUNDAR, R. K., AND DE ROEVER, W. P. (1983), Semantics of real-time Ada, notes.
ZWIERS, J., DE ROEVER, W. P., AND VAN EMDE BOAS, P. (1985). Compositionality and con-

current networks: Soundness and completeness of a proofsystem, in “12th Int. Colloq.
Automata. Lang. Programming,” Lecture Notes in Comput. Sci.. Vol. 194, pp. 509-519,
Springer-Verlag, New York/Berlin.

ZWIERS, J. (1988) “Compositionality, Concurrency and Partial Correctness: Proof Theories
for Networks of Processes, and Their Connection,” Ph.D. thesis, Eindhoven University of
Technology.

ZIJLSTRA, E. (1984), “Real-Time Semantics,” Master thesis, University of Amsterdam.

