ICTAC 2017

VNU Hanoi, Vietnam 25-27 October 2017

Logical Characterisation of Parameterised Bisimulations

Divyanshu Bagga and S. Arun-Kumar

{divyanshu.bagga, sak}@cse.iitd.ac.in
Department of Computer Science and Engineering
I. I. T. Delhi, Hauz Khas, New Delhi 110 016.

October 29, 2017

~

Contents

1	Background	4
2	Parameterised HML	13
3	Contribution	20
4	Distinguishing Formulae	24
5	Characteristic Formulae	28
6	Conclusions and Future Work	39

44	◀

▶

••

ICTAC-2017 GO BACK

CONTENTS	44	•	►	••	ICTAC-2017	Go Back	FULL SCREEN	CLOSE	3 OF 44	QUIT

1. Background

Background

◄

◀ |

►

••

ICTAC-2017 GO BACK

FULL SCREEN

CLOSE

QUIT

4 OF 44

LTS

Definition 1 A Labelled Transition System (LTS) is a structure

$\mathfrak{L}=\langle \mathcal{P},\mathcal{O}, \longrightarrow \rangle$

where

- \mathcal{P} is a set of states or processes,
- *O* is a set of observables,
- $\longrightarrow \subseteq \mathcal{P} \times \mathcal{O} \times \mathcal{P}$ is the transition relation.

CONTENTS	44	•	•	>>	ICTAC-2017	Go Васк	FULL SCREEN	CLOSE	5 OF 44	QUIT

Parameterised Bisimulations

- A small generalisation of the notion of bisimulations on LTSs [1].
- Let \mathfrak{L} be any LTS and $\rho, \sigma \subseteq \mathcal{O} \times \mathcal{O}$. $R \subseteq \mathcal{P} \times \mathcal{P}$ is a (ρ, σ) bisimulation if pRq implies the following conditions for all $a, b \in \mathcal{O}$.

$$p \longrightarrow p \implies \exists b, q [a\rho b \land q \longrightarrow q \land p Rq]$$

$$q \xrightarrow{b} q' \Rightarrow \exists a, p'[a\sigma b \land p \xrightarrow{a} p' \land p'Rq']$$

• The largest (ρ, σ) -bisimulation (under set containment) is called (ρ, σ) -bisimilarity and denoted $\underline{\Box}_{(\rho, \sigma)}$.

CONTENTS	44	•	•	••	ICTAC-2017	Go Васк	FULL SCREEN	CLOSE	6 OF 44	Quit

What does it generalise?

- Strong bisimilarity[8]: $\sim = \Box_{(\equiv,\equiv)}$
- Efficiency Preorder[2]: $\preceq = \Box_{(\preceq, \preceq)}$
- Elaboration Preorder[3]: $\preceq = \square_{(\preceq, \widehat{=})}$
- Weak bisimilarity[8]: $\approx = \Box_{(\widehat{=},\widehat{=})}$

where

$$\begin{split} &\equiv \text{ the identity relation on } Act \text{ or } Act^* \\ &\preceq = \{(\tau^k a \tau^l, \tau^m a \tau^n) \mid k+l \geq m+n, a \in Act\} \\ &\widehat{=} = \{(s,t) \mid \hat{s} = \hat{t}, s, t \in Act^*\} \end{split}$$

44

Other (Pre-)bisimilarities

- Simulation preorder[8]
- Dynamic and static location pre-bisimilarity[4]
- Bisimulation on speed[7]
- Amortised bisimilarity[5]

may be represented as $\Box_{(\rho,\sigma)}$

- 1. for appropriately chosen ρ and σ
- 2. after transforming the LTS obtained from the operational semantics.

CONTENTS	44	۰	•	••	ICTAC-2017	Go Васк	FULL SCREEN	CLOSE	8 OF 44	QUIT

Some Properties

Many of the nice algebraic properties of bisimularities are induced by the relations ρ and σ . In fact we have [1]

- Monotonicity. $(\rho, \sigma) \subseteq (\rho', \sigma') \Rightarrow \Box_{(\rho, \sigma)} \subseteq \Box_{(\rho', \sigma')}$.
- **Reflexivity.** If ρ , σ are reflexive then $\Box_{(\rho,\sigma)}$ is reflexive.
- Symmetry.
 - 1. If ρ is symmetric then $\Box_{(\rho,\rho)}$ is symmetric.
 - 2. For any ρ , $\square_{(\rho,\rho^{-1})}$ is symmetric.
- Transitivity. If ρ , σ are transitive then $\Box_{(\rho,\sigma)}$ is transitive.

Some Properties (Contd.)

- **Preorders.** $\Box_{(\rho,\sigma)}$ is a preorder iff ρ and σ are both preorders.
- Equivalences. $\Box_{(\rho,\sigma)}$ is an equivalence iff $\sigma = \rho^{-1}$ and ρ (equivalently σ) is a preorder.
- Consequently, $\underline{\Box}_{(\rho,\sigma)}$ is an equivalence if ρ is an equivalence and $\sigma = \rho$.

CONTENTS	44	•	•	••	ICTAC-2017	G 0 ВАСК	FULL SCREEN	CLOSE	10 OF 44	Quit

CONTENTS	44	•	•	••	ICTAC-2017	Go Васк	FULL SCREEN	CLOSE	11 OF 44	QUIT

CONTENTS	44	•	►	••	ICTAC-2017	Go Back	FULL SCREEN	CLOSE	12 OF 44	QUIT

2. Parameterised HML

Logical Characterisations

Definition 2 *A logic L characterises*

- **preorder** \sqsubseteq *on processes provided* $\mathcal{L}(p) \subseteq \mathcal{L}(q)$ *iff* $p \sqsubseteq q$
- equivalence \simeq on processes provided $\mathcal{L}(p) = \mathcal{L}(q)$ iff $p \simeq q$

CONTENTS	44	•	•	••	ICTAC-2017	Go Васк	FULL SCREEN	CLOSE

QUIT

13 OF 44

Parameterised HML: Syntax

The language $\mathcal{L}_{(\rho,\sigma)}$ is given by the following BNF

$$\varphi, \psi := \bot |\top| \langle a \rangle_{\rho} \varphi | [a]^{\sigma^{-1}} \varphi | \varphi \wedge \psi | \varphi \vee \psi$$

where $a \in \mathcal{O}$.
Notice that this is a negation-free logic.

CONTENTS	•• •	•	••	ICTAC-2017	Go Bac
----------	------	---	----	------------	--------

FULL SCREEN

Parameterised HML: Semantics Definition 3 $p \vDash \varphi$, *iff* $p \in ||\varphi||^{\mathcal{P}}$ *where*

$$\begin{aligned} \|\top\|^{\mathcal{P}} &= \mathcal{P} \qquad \|\varphi_1 \lor \varphi_2\|^{\mathcal{P}} = \|\varphi_1\|^{\mathcal{P}} \cup \|\varphi_2\|^{\mathcal{P}} \\ \|\bot\|^{\mathcal{P}} &= \emptyset \qquad \|\varphi_1 \land \varphi_2\|^{\mathcal{P}} = \|\varphi_1\|^{\mathcal{P}} \cap \|\varphi_2\|^{\mathcal{P}} \\ \|\langle a \rangle_{\rho} \varphi\|^{\mathcal{P}} &= \{p \mid \exists b, p'[a\rho b \land p \xrightarrow{b} p' \land p' \in \|\varphi\|^{\mathcal{P}}]\} \\ \|[a]^{\sigma^{-1}} \varphi\|^{\mathcal{P}} = \{p \mid \forall b, p'[b\sigma a \land p \xrightarrow{b} p' \Rightarrow p' \in \|\varphi\|^{\mathcal{P}}]\} \end{aligned}$$

Definition 4

$$\begin{split} \bullet \ \mathcal{L}_{(\rho,\sigma)}(p) &= \{ \varphi \in \mathcal{L}_{(\rho,\sigma)} \ | \ p \vDash \varphi \} \textit{ for } p \in \mathcal{P}. \\ \bullet \ p \preceq_{(\rho,\sigma)} q \textit{ iff } \mathcal{L}_{(\rho,\sigma)}(p) \subseteq \mathcal{L}_{(\rho,\sigma)}(q). \end{split}$$

◄

ICTAC-2017 _____ Go Васк

PHML: Characterisation

Proposition 5 If ρ, σ are both transitive, then $p \sqsubseteq_{(\rho,\sigma)} q$ implies $p \preceq_{(\rho,\sigma)} q$.

Proof by induction on the structure of $\varphi \in \mathcal{L}_{(\rho,\sigma)}(p)$

Proposition 6 If ρ, σ are both reflexive then $\preceq_{(\rho,\sigma)}$ is a (ρ, σ) -bisimulation.

Proof by contradiction.

Theorem 7 If ρ , σ are both preorders then $\leq_{(\rho,\sigma)} = \Box_{(\rho,\sigma)}$.

CONTENTS

•

>> /(

ICTAC-2017 _____ Go Васк

FULL SCREEN

16 OF 44

PHML: Equivalences

From the equivalence characterisations we get

Corollary 8 If $\sigma = \rho^{-1}$ and ρ (equivalently σ) is a preorder, then $\preceq_{(\rho,\sigma)}$ is an equivalence.

Corollary 9 *If* $\sigma = \rho$ *and* ρ (equivalently σ) *is symmetric then* $\preceq_{(\rho,\sigma)}$ *is an equivalence.*

CONTENTS	44	•	•	>>	ICTAC-2017	Go Васк	FULL SCREEN	CLOSE	17 OF 44	Quit

PHML: Negation

If

- $\sigma = \rho^{-1}$ and ρ (equivalently σ) is a preorder or
- $\sigma = \rho$ and ρ (equivalently σ) is symmetric

then

- 1. $[a]^{\sigma^{-1}} = [a]^{\rho}$ and we have a modal logic parameterised on ρ (equivalently σ),
- 2. negation may be defined; $\neg \langle a \rangle_{\!\rho} \varphi = [a]^{\rho} \neg \varphi$

|--|

44

CONTENTS	44	•	►	••	ICTAC-2017	Go Васк	FULL SCREEN	CLOSE	19 OF 44	QUIT

3. Contribution

Contribution

CONTENTS	44	•	

>>

►

ICTAC-2017 GO BACK

FULL SCREEN

Contribution of this paper

- 1. PHML is a logical characterisation of all bisimilarities (preorders and equivalences) for processes expressed in the framework of parameterised bisimulations
- 2. Conditions required to ensure that distinguishing formulae are always finite
- 3. Logical characterisation extended with fixed-point operators to derive characteristic formulae

CONTENTS	44	•	•	►►	ICTAC-2017	Go Васк

CONTENTS	44	•	►	••	ICTAC-2017	Go Back	FULL SCREEN	CLOSE	22 OF 44	QUIT

CONTENTS	44	•	►	••	ICTAC-2017	Go Back	FULL SCREEN	CLOSE	23 OF 44	QUIT

4. Distinguishing Formulae

Distinguishing Formulae

CONTENTS	44	•	•	>>	ICTAC-2017	Go Васк	FULL SCREEN	CLOSE	24 OF 44	Quit

Image Finiteness

Definition 10 An LTS $\mathfrak{L} = \langle \mathcal{P}, \mathcal{A}ct, \longrightarrow \rangle$ is (ρ, σ) -image-finite iff for any $p \in \mathcal{P}$ and $a \in \mathcal{A}ct$, the sets, $\{q \mid p \xrightarrow{b} q \land a\rho b\}$ and $\{q \mid p \xrightarrow{b} q \land b\sigma a\}$, are finite. An LTS \mathfrak{L} is image-finite upto (ρ, σ) -bisimilarity if \mathfrak{L}_p^{\dagger} is (ρ, σ) -image-finite for every $p \in \mathcal{P}$.

Definition 11

$$\mathfrak{L}_p^{\dagger} = \langle Reach(p), \mathcal{A}ct, \longrightarrow_p^{\dagger} \rangle$$

where

$$Reach(p) = \{p\} \cup \bigcup_{p' \in TI(p)} Reach(p')$$

where $TI(p) = \bigcup_{a \in \mathcal{A}ct} [(a\rho - \operatorname{Succ}(p))^{\mathfrak{t}} \cup (\sigma a - \operatorname{Succ}(p))^{\mathfrak{i}}]$

44

Distinguishing Formulae

Data: $p, q \in \mathfrak{L} = \langle \mathcal{P}, \mathcal{A}ct, \longrightarrow \rangle$ **Result**: if $p \sqsubseteq_{(\rho,\sigma)} q$ then *ff* else φ s.t. $(p \vDash \varphi)$ and $q \nvDash \varphi$) or $(p \nvDash \varphi)$ and $q \models \varphi$) $\text{DisL}(p,q) = (a,p') : \not\exists (b,q') [a\rho b \land q \xrightarrow{b} q' \land p' \square_{(\rho,\sigma)}^{i-1} q']$ $\operatorname{DisR}(p,q) = (b,q') : \not\exists (a,p') [a\sigma b \land p \xrightarrow{b} p' \land p' \underline{\Box}_{(a,\sigma)}^{i-1} q']$ Dis (p,q) = DisL (p,q) or DisR (p,q)GenForm $(p,q) = \text{if } p \square_{(\rho,\sigma)} q$ then return ffelse switch Dis(p,q) do $\mathbf{case}\;(a,p'):\mathbf{return}\;\langle a\rangle\![\rho] \bigwedge_{\{q'\mid q \xrightarrow{b} q' \land a\rho b\}^{\mathfrak{t}}} \mathtt{GenForm}\;(p',q')$ case (b, q'): return $[b]^{\sigma^{-1}} \bigvee_{\{p' \mid p \xrightarrow{a} p' \land a\sigma b\}^{i}} \text{GenForm}(p', q')$ endsw

CONTENTS

44

- 10

CONTENTS	44	•	►	••	ICTAC-2017	Go Back	FULL SCREEN	CLOSE	27 OF 44	QUIT

5. Characteristic Formulae

Characteristic Formulae

Contents	44	•	•	••	ICTAC-2017	Go Васк	FULL SCREEN	CLOSE	28 OF 44

QUIT

Fixpoint Operators

Definition 12 *The syntax of the logic* $\mathcal{L}^{\mathcal{X}}_{(\rho,\sigma)}$ *is given by the BNF*

 $\varphi, \psi := \top \mid \perp \mid X \mid \langle a \rangle_{\rho} \varphi \mid [a]^{\sigma^{-1}} \varphi \mid \varphi \land \psi \mid \varphi \lor \psi \mid \nu X. \varphi \mid \mu X. \varphi$

where $X \in \mathcal{X}$ ranges over a countable set of variables.

• Since formulae may have free variables we require a *valuation*

$$\mathcal{V}:\mathcal{X}\longrightarrow\mathbb{2}^{\mathcal{P}}$$

- The semantics $\|.\|_{\mathcal{V}}^{\mathcal{P}}$ is defined relative to the valuation \mathcal{V} .
- $cf(\mathcal{L}^{\mathcal{X}}_{(\rho,\sigma)})$ is the set of *closed formulae*.

CONTENTS

44

Semantics of Recursion

$$\begin{split} \|X\|_{\mathcal{V}}^{\mathcal{P}} &= \mathcal{V}(X) \\ \|\varphi_{1} \lor \varphi_{2}\|_{\mathcal{V}}^{\mathcal{P}} &= \|\varphi_{1}\|_{\mathcal{V}}^{\mathcal{P}} \cup \|\varphi_{1}\|_{\mathcal{V}}^{\mathcal{P}} \\ \|\varphi_{1} \land \varphi_{2}\|_{\mathcal{V}}^{\mathcal{P}} &= \|\varphi_{1}\|_{\mathcal{V}}^{\mathcal{P}} \cap \|\varphi_{1}\|_{\mathcal{V}}^{\mathcal{P}} \\ \|\langle a\rangle[\rho]\varphi\|_{\mathcal{V}}^{\mathcal{P}} &= \{p \mid \exists b, p'[a\rho b \land p \xrightarrow{b} p' \land p' \in \|\varphi\|_{\mathcal{V}}^{\mathcal{P}}]\} \\ \|[a]^{\sigma^{-1}}\varphi\|_{\mathcal{V}}^{\mathcal{P}} &= \{p \mid \forall b, p'[b\sigma a \land p \xrightarrow{b} p' \Rightarrow p' \in \|\varphi\|_{\mathcal{V}}^{\mathcal{P}}]\} \\ \|\nu X.\varphi\|_{\mathcal{V}}^{\mathcal{P}} &= \bigcup \{\mathcal{E} \subseteq \mathcal{P} \mid \mathcal{E} \subseteq \|\varphi\|_{\mathcal{V}[\mathcal{E}/X]}^{\mathcal{P}}\} \\ \|\mu X.\varphi\|_{\mathcal{V}}^{\mathcal{P}} &= \bigcap \{\mathcal{E} \subseteq \mathcal{P} \mid \|\varphi\|_{\mathcal{V}[\mathcal{E}/X]}^{\mathcal{P}} \subseteq \mathcal{E}\} \\ \end{split}$$
where $\mathcal{V}[\mathcal{E}/X](Y) = \mathcal{V}(Y) \text{ for all } Y \neq X \text{ and } \mathcal{V}[\mathcal{E}/X](X) = \mathcal{E}. \end{split}$

◄

Valuations and Satisfaction

The semantics of any formula depends upon the valuation supplied. Consequently, the satisfaction relation needs to be redefined.

Definition 13

- $p \vDash_{\mathcal{V}} \varphi$, iff $p \in \|\varphi\|_{\mathcal{V}}^{\mathcal{P}}$
- $p \vDash \varphi$ iff $p \in \|\varphi\|_{\mathcal{V}}^{\mathcal{P}}$ for all valuations \mathcal{V} .

Partial Ordering on Valuations Definition 14

 $\mathcal{V}_1 \leq \mathcal{V}_2 \Leftrightarrow \forall X \in \mathcal{X}[\mathcal{V}_1(X) \subseteq \mathcal{V}_2(X)]$

The \leq ordering yields a complete lattice, $(\mathcal{X} \to \mathbb{2}^{\mathcal{P}}, \leq)$, over valuations.

Lemma 15 (Monotonicity)

• If $\mathcal{V}_1 \leq \mathcal{V}_2$ then $\|\varphi\|_{\mathcal{V}_1}^{\mathcal{P}} \subseteq \|\varphi\|_{\mathcal{V}_2}^{\mathcal{P}}$.

• $\mathcal{O}_{\varphi}(\mathcal{V}) = \mathcal{V}[\|\varphi\|_{\mathcal{V}}^{\mathcal{P}}/X]$, is monotonic over the complete lattice $(\mathcal{X} \to 2^{\mathcal{P}}, \leq).$

Model Checking Finite State Systems

• To compute $\|\nu X.\varphi\|^{\mathcal{P}}$, apply \mathcal{O}_{φ} repeatedly, starting from \mathcal{P} • To compute $\|\mu X.\varphi\|^{\mathcal{P}}$, apply \mathcal{O}_{φ} repeatedly, starting from \emptyset **Theorem 16** Given a finite $\mathfrak{L}_{p}^{\dagger}$, for any $\varphi \in cf(\mathcal{L}_{(\rho,\sigma)}^{\mathcal{X}})$, $p \models \varphi$ is decidable.

CONTENTS	44	•	►	••	ICTAC-2017 Go Васк	FULL SCREEN	CLOSE	33 OF 44	Quit

Recursion: Logical Characterisation

Under a definition of (ρ, σ) -bisimilarity closure it turns out

Theorem 17 Given preorders $\rho, \sigma, cf(\mathcal{L}_{(\rho,\sigma)}^{\mathcal{X}})$ is a logical characterisation of $\underline{\Box}_{(\rho,\sigma)}$ for all (ρ, σ) -image-finite processes, i.e.

$$p \sqsubseteq_{(\rho,\sigma)} q \text{ iff } p \preceq_{cf(\mathcal{L}^{\mathcal{X}}_{(\rho,\sigma)})} q$$

CONTENTS	44	•	•	••	ICTAC-2017	Go Васк	FULL SCREEN	CLOSE	34 OF 44	Quit

Characteristic Formulae

Definition 18 A closed formula $\varphi_p \in \mathcal{L}_{(\rho,\sigma)}^{\mathcal{X}}$ is characteristic of a process p, if for every $q \in \mathcal{P}$, we have $p \sqsubseteq_{(\rho,\sigma)} q$ iff $q \in ||\varphi_p||^{\mathcal{P}}$.

Given a process $p \in \mathcal{P}$, we define an equational system $E^{\mathcal{P}}$ of mutually recursive equations $X_p = \varphi_p$ where $\varphi_p \in \mathcal{L}^{\mathcal{X}}_{(\rho,\sigma)}$ which by standard techniques yields

$$X_p = \left(\bigwedge_{a,p':p \xrightarrow{a} p'} \langle a \rangle_{\rho} X_{p'}\right) \wedge \left(\bigwedge_{b} [b]^{\sigma^{-1}} \left(\bigvee_{a,p':a\sigma b \wedge p \xrightarrow{a} p'} X_{p'}\right)\right)$$

CONTENTS <	CONTENTS	44	•	►	>>	ICTAC-2017	Go Васк	FULL SCREEN	CLOSE	35 of 44	Qu
------------	----------	----	---	---	-----------------	------------	----------------	-------------	-------	----------	----

Characterising Characteristic Formulae

Theorem 19 A process p has a finite characteristic formula in $\mathcal{L}_{(\rho,\sigma)}^{\mathcal{X}}$, if ρ and σ are preorders with finitely many maximal elements and every action being less than some maximal element, and \mathfrak{L}_p^{\dagger} is finite with $p_{\mathfrak{L}_p^{\dagger}} \sqsubseteq_{(\rho,\sigma)} p_{\mathfrak{L}}$.

CONTENTS	44	•	•	••	ICTAC-2017	Go Васк	FULL SCREEN	CLOSE	36 OF 44	QUIT

CONTENTS	44	•	•	>>	ICTAC-2017	Go Васк	FULL SCREEN	CLOSE	37 OF 44	Quit

CONTENTS	44	•	•	••	ICTAC-2017	Go Васк	FULL SCREEN	CLOSE	38 OF 44	Quit

6. Conclusions and Future Work

Conclusions and Future Work

Concluding Remarks

- PHML is *some* logic but not necessarily modal unless $\rho = \sigma^{-1}$.
- It is negation-free and deliberately so to retain certain monotonicity properties.
- The notion of logical characterisation of preorders is in principle what was done in [6] for efficiency preorders, but it is more general.

4

 \blacktriangleright

Future Work

- The notion of abstracted LTS (11) could be useful in various kinds of infinite state systems such as timed systems with durations
- Other kinds of abstractions may be used to get over-approximations or under-approximations of bisimilarities à *la* abstract interpretations in the domain of infinitely branching infinite state systems.

44

10

ICTAC-2017 GO BACK

FULL SCREEN

References

- [1] S. Arun-Kumar. On bisimilarities induced by relations on actions. In *Proceedings 4th IEEE* International Conference on Software Engineering and Formal Methods, Pune, India. IEEE Computer Society Press, 2006.
- [2] S. Arun-Kumar and M. Hennessy. An efficiency preorder for processes. Acta Informatica, 29:737–760, 1992.
- [3] S. Arun-Kumar and V. Natarajan. Conformance: A precongruence close to bisimilarity. In STRICT, Berlin 1995, number 526 in Workshops in Computing Series, pages 55–68. Springer-Verlag, 1995.
- [4] I. Castellani. Process algebras with localities. In J. Bergstra, A. Ponse, and S. Smolka, editors, Handbook of Process Algebra, pages 945–1045. North-Holland, Amsterdam, 2001.
- [5] Astrid Kiehn and S. Arun-Kumar. Amortised bisimulations. In *Formal Techniques for Networked* and Distributed Systems, volume 3731, pages 320–334. Lecture Notes in Computer Science, 2005.

CONTENTS	44	•	•	••	ICTAC-2017	Go Васк	FULL SCREEN	
----------	----	---	---	----	------------	---------	-------------	--

42 OF 44

- [6] Neelesh Korade and S. Arun-Kumar. A logical characterization of efficiency preorders. In International Colloquium on Theoretical Aspects of Computing, volume 3407, pages 99–112. Lecture Notes in Computer Science, 2004.
- [7] G. Lüttgen and W. Vogler. Bisimulation on speed: a unified approach. In *Proceedings of FOS-SACS 2005*, number 3441 in Lecture Notes in Computer Science, pages 79–94. Springer-Verlag, 2005.
- [8] R. Milner. Communication and Concurrency. Prentice-Hall International, 1989.

CONTENTS	44	•	►	••	ICTAC-2017	Go Васк	FULL SCREEN	CLOSE	43 OF 44	QUIT

Thank You! Any Questions?

CONTENTS

ENTS	

▲

◀

►

••

ICTAC-2017 GO BACK