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The problem we solve

Given a timed automaton (TA), is it possible to
minimize the number of clocks of a timed automaton
while preserving timed bisimulation?

Mentioned and left open in (LLW1 ’95)

Contribution
We give a procedure to construct a TA with the minimum
possible number of clocks while preserving timed bisimulation.
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Importance

Verification and model checking of timed automata uses

region graph or zone graph,

that has a size exponential in the number of the clocks.

• smaller number of clocks implies smaller region graph or
zone graph and thus easier verification
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A Timed Automaton

L0

L1

L2

x ≤ 4 a

x > 5 ∧ y > 7 b

{x}

./ ∈ {<,≤,=, >,≥}
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Semantics: Timed Labeled Transition System
(TLTS)

• Infinite transition graph structure

• Nodes are timed automaton states; tuple (`, v )

• Two types of transitions

Discrete transitions : a ∈ Act : (`, v) a−→ (`′, v ′) if there is
an edge (`

g,a,r−→ `′) ∈ E and v |= g, v ′ = v [r ]

Delay transitions : d ∈ R≥0 : (`, v) d−→ (`, v + d).
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Timed Bisimulation

p and q are two timed states.

a a

Rt

Rt

p q

p’ q’

a ∈ Act, d ≥ 0

d d
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Related Work: Clock Reduction

Preserve timed language

• No algorithm can decide the minimality of the number of
clocks and

for the non-minimal case find a timed language equivalent
automaton with fewer clocks. (Tripakis ’04)

• Existence of a language equivalent timed automaton with
smaller number of clocks is also undecidable (Finkel ’06)
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Related Work: Clock Reduction

Preserve timed bisimulation

• An algorithm to reduce the number of clocks is provided in
(DY ’96)

It works on a syntactical structure of the timed automaton
and does not provide the minimum number of clocks

• Checking the existence of a (C,M) automaton timed
bisimilar to a given TA is decidable (LLW ’95).

C : number of clocks and M : maximum constant used in
the automaton

The problem of the current paper was ”left as an open (and
interesting) problem”. conclusion of (LLW ’95)
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Our Approach
• Use a semantic representation of the timed automata

Remove constraints and clocks more effectively.

• Method uses the following operations.
1. Remove constraints that are never enabled (Stage 1)

2. Splitting locations may reduce the number of clocks (Stage
2)

3. Remove constraints that are implied by other constraints
(Stage 2)

4. Multiple outgoing transitions from a location when
considered collectively can remove some constraints
(Stage 3)

5. An efficient renaming of clocks across all the locations of
the timed automata (Stage 4)

• Input TA A : Through four stages we get A4 which
preserves timed bisimulation and A4 has the least possible
number of clocks.
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Stage 1: Construct Zone Graph

• Nodes : (l ,Z ), l : location, Z : zone.

• zone: A zone z = {v ∈ R|C|≥0 | v |= γ}, where γ is of the
form γ ::= x ^ c | x − y ^ c | g ∧ g, where c ∈ Z, x , y ∈ C
and ^ ∈ {≤, <,=, >,≥}.

• A zone is a convex set of valuations
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Prestabilizing Zones

L0

L1

L2

x ≤ 4 a

x > 5 ∧ y > 7 b

{x}

y

x

L1 4
Z1,2,3
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4

(L0, 〈x <= 4, y = x〉)

(L0, 〈x > 4, y = x〉)

4

2

(L0, 〈x < 2, y = x〉)

(L0, 〈2 < x <= 4, y = x〉)

(L0, 〈x > 4, y = x〉)

(L0, 〈x = 2, y = x〉)
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Pre-stability

An important property
Pre-stability ensures that if
• the zone Z in any node (l ,Z ) in the zone graph is bounded

above,

• then it is bounded fully from above by a hyperplane x = h,
where x ∈ C and h ∈ N.
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Stage 1: Construct Zone Graph

l0

l1

l2

x ≤ 4{x}

x > 5
∧ y > 7

a

b

x

y

x = 5

y = 7

Z1

Z3
Z2

Z5

0
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4

Z4

Z6

l0
x < 2
y = x

x = 2
y = x

2 < x ≤ 4
y = x

x > 4
y = x

l1 l1 l1

ε ε ε

a a a

0≤y−x<2
x ≤ 5

x > 5
y ≤ 7

ε

ε
ε

ε ε

y−x=2
x ≤ 5

2<y−x≤4
y ≤ 7

2<y−x≤4
x ≤ 5
y > 7

x > 5
y > 7

0≤y−x≤4

l2b
x > 5
y > 7

(Z1) (Z2) (Z3)

l0 l0 l0

l1 l1

l1

0≤y−x<2

0≤y−x≤4

(Z4)

(Z5)

(Z6)

Consider an edge l
g,a,R−−−→ l ′ If for all nodes (l ,Z ), Z ∩ [[g]] = ∅,

then remove the edge.
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Splitting locations: Stage 2

Base zones: Zones without delay predecessors

l0

l1

l2

x ≤ 4{x}

x > 5
∧ y > 7

a

b

x

y

x = 5

y = 7

Z1
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Z2

Z5
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4

Z4
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l11

l2

x < 2

{x}

x > 5y > 7

a

b

l0

l13

{x}
2 < x ≤ 4

b

l11

l2

c0 < 2

c0 > 5c0 > 7

a

b

l0

l13

{c0}
2 < c0 ≤ 4

b

(a) (b)

a a

l12

x = 2

a{x}

b
x > 5

l12

c0 = 2
a

b
c0 > 5

{c0}

Some constraints removed from the newly created locations
and clocks can be reused
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Number of newly created locations bounded by the number of
zones: hence exponential in the number of clocks

No change in underlying semantics; zones distributed to
different locations, hence A2 timed bisimilar to A.
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Remove constraints by considering multiple
outgoing edges: Stage 3

l0

x ≤ 3
a

x > 3
a

l1

l2

l0

a

a

l1

l2

Multiple outgoing edges from the same location

Consider zones with the same set of actions enabled.

Check if removing some hyperplanes and hence some
constraints from the zone graph preserves timed bisimilarity.
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Remove constraints by considering multiple
outgoing edges: Stage 3

l0

x ≤ 3
a

x > 3
a

l1

l2

l0

a

a

l1

l2

l0 l0

l1 l2

a a

ε

x ≤ 3 x > 3

x > 3x ≥ 0

l0
x ≥ 0

l1 l2

x ≥ 0 x ≥ 0

a a

Check if removing hyperplanes and thus merging some zones
preserves timed bisimilarity.

Timed bisimilarity can be checked using the zone graph. (LZ
’97, GKNA ’13)
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Remove constraints by considering multiple
outgoing edges: Stage 3

l0

x ≤ 3
a

x > 3
a

l1

l2

l0

a

a

l1

l2

l0 l0

l1 l2

a a

ε

x ≤ 3 x > 3

x > 3x ≥ 0

l0
x ≥ 0

l1 l2

x ≥ 0 x ≥ 0

a a

Removing constraints can lead to a reduction in the number of
clocks.

Since every constraint removal checks timed bisimulation
explicitly, A3 is timed bisimilar to A.
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Clock renaming: Stage 4

Finding active clocks
Active clocks (act(l)) : clocks whose valuations are relevant for
defining the behaviour of the timed automaton from location l .

l11

l2

x < 2

{x}

x > 5y > 7

a

b

l0

l13

{x}
2 < x ≤ 4

b

a

l12

x = 2

a{x}

b
x > 5

act(l0) = {x0, y0}, act(l11) = {y11}, act(l12) = {x12}, act(l13) =
{x13}, act(l2) = ∅.
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Clock renaming: Stage 4
Partitioning active clocks
Active clocks: Partition act(l) at a location l into equivalence
classes.

∀x , y ∈ act(l), x ≡ y iff ∃c ∈ N. x − y = c.

E.g. x0 − y0 = 0.

l11

l2

x < 2

{x}

x > 5y > 7

a

b

l0

l13

{x}
2 < x ≤ 4

b

(a)
(c)

a

l12

x = 2

a{x}

b
x > 5

x0y0

y11
x12 x13

x0y0y11

x12
x13

(b)

Every equivalence class makes a vertex.

Add edge between equivalence classes of the same location.

y0 and y11 are merged since same same value flows.

Vertex colouring of the clock graph
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Clock renaming: Stage 4

Vertex colouring of the clock graph

l11

l2

x < 2

{x}

x > 5y > 7

a

b

l0

l13

{x}
2 < x ≤ 4

b

(a)
(c)

a

l12

x = 2

a{x}

b
x > 5

x0y0

y11
x12 x13

x0y0y11

x12
x13

(b)

This graph can be coloured using one color.
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Complexity: Stage 4

• Number of vertices in clock graph:

• Bounded by the number of locations × number of clocks,

• Hence, exponential in the number of clocks

• Graph colouring: EXPTIME in the number of vertices

• Thus, 2− EXPTIME in the number of the clocks.
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Minimality of clocks

Semantically every hyperplane in the zone graph of A4
indicates a change in the behaviour and is
essential for preserving bisimulation.
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Minimality of clocks

Minimal bisimilar TA
For a given timed automaton D, a minimal bisimilar TA is one
that is
• timed bisimilar to D and

• has the minimum number of clocks possible.

Fact
For every TA D, there exists a minimal bisimilar TA.

The timed automaton A4 has the same number of clocks as a
minimal bisimilar TA for A.
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Our Result

Theorem
Given a timed automaton A,

• there exists an algorithm to construct a TA A4

that is timed bisimilar to A such that

- among all the timed automata that are timed bisimilar to A

- A4 has the minimum number of clocks.

• Further the algorithm runs in time that is doubly
exponential in the number of clocks of A.
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Questions
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