
Reducing Clocks in Timed Automata while
Preserving Bisimulation

Shibashis Guha Chinmay Narayan S. Arun-Kumar

Indian Institute of Technology Delhi

July 8, 2014

The problem we solve

Given a timed automaton (TA), is it possible to
minimize the number of clocks of a timed automaton
while preserving timed bisimulation?

Mentioned and left open in (LLW1 ’95)

Contribution
We give a procedure to construct a TA with the minimum
possible number of clocks while preserving timed bisimulation.

CONCUR 2014 2

The problem we solve

Given a timed automaton (TA), is it possible to
minimize the number of clocks of a timed automaton
while preserving timed bisimulation?

Mentioned and left open in (LLW1 ’95)

Contribution
We give a procedure to construct a TA with the minimum
possible number of clocks while preserving timed bisimulation.

CONCUR 2014 3

Importance

Verification and model checking of timed automata uses

region graph or zone graph,

that has a size exponential in the number of the clocks.

• smaller number of clocks implies smaller region graph or
zone graph and thus easier verification

CONCUR 2014 4

Importance

Verification and model checking of timed automata uses

region graph or zone graph,

that has a size exponential in the number of the clocks.
• smaller number of clocks implies smaller region graph or

zone graph and thus easier verification

CONCUR 2014 5

A Timed Automaton

L0

L1

L2

x ≤ 4 a

x > 5 ∧ y > 7 b

{x}

./ ∈ {<,≤,=, >,≥}

CONCUR 2014 6

Semantics: Timed Labeled Transition System
(TLTS)

• Infinite transition graph structure

• Nodes are timed automaton states; tuple (`, v)

• Two types of transitions

Discrete transitions : a ∈ Act : (`, v) a−→ (`′, v ′) if there is
an edge (`

g,a,r−→ `′) ∈ E and v |= g, v ′ = v [r]

Delay transitions : d ∈ R≥0 : (`, v) d−→ (`, v + d).

CONCUR 2014 7

Timed Bisimulation

p and q are two timed states.

a a

Rt

Rt

p q

p’ q’

a ∈ Act, d ≥ 0

d d

CONCUR 2014 8

Related Work: Clock Reduction

Preserve timed language

• No algorithm can decide the minimality of the number of
clocks and

for the non-minimal case find a timed language equivalent
automaton with fewer clocks. (Tripakis ’04)

• Existence of a language equivalent timed automaton with
smaller number of clocks is also undecidable (Finkel ’06)

CONCUR 2014 9

Related Work: Clock Reduction

Preserve timed language

• No algorithm can decide the minimality of the number of
clocks and

for the non-minimal case find a timed language equivalent
automaton with fewer clocks. (Tripakis ’04)

• Existence of a language equivalent timed automaton with
smaller number of clocks is also undecidable (Finkel ’06)

CONCUR 2014 10

Related Work: Clock Reduction

Preserve timed bisimulation

• An algorithm to reduce the number of clocks is provided in
(DY ’96)

It works on a syntactical structure of the timed automaton
and does not provide the minimum number of clocks

• Checking the existence of a (C,M) automaton timed
bisimilar to a given TA is decidable (LLW ’95).

C : number of clocks and M : maximum constant used in
the automaton

The problem of the current paper was ”left as an open (and
interesting) problem”. conclusion of (LLW ’95)

CONCUR 2014 11

Related Work: Clock Reduction

Preserve timed bisimulation

• An algorithm to reduce the number of clocks is provided in
(DY ’96)

It works on a syntactical structure of the timed automaton
and does not provide the minimum number of clocks

• Checking the existence of a (C,M) automaton timed
bisimilar to a given TA is decidable (LLW ’95).

C : number of clocks and M : maximum constant used in
the automaton

The problem of the current paper was ”left as an open (and
interesting) problem”. conclusion of (LLW ’95)

CONCUR 2014 12

Our Approach
• Use a semantic representation of the timed automata

Remove constraints and clocks more effectively.

• Method uses the following operations.
1. Remove constraints that are never enabled (Stage 1)

2. Splitting locations may reduce the number of clocks (Stage
2)

3. Remove constraints that are implied by other constraints
(Stage 2)

4. Multiple outgoing transitions from a location when
considered collectively can remove some constraints
(Stage 3)

5. An efficient renaming of clocks across all the locations of
the timed automata (Stage 4)

• Input TA A : Through four stages we get A4 which
preserves timed bisimulation and A4 has the least possible
number of clocks.

CONCUR 2014 13

Our Approach
• Use a semantic representation of the timed automata

Remove constraints and clocks more effectively.

• Method uses the following operations.
1. Remove constraints that are never enabled (Stage 1)
2. Splitting locations may reduce the number of clocks (Stage

2)

3. Remove constraints that are implied by other constraints
(Stage 2)

4. Multiple outgoing transitions from a location when
considered collectively can remove some constraints
(Stage 3)

5. An efficient renaming of clocks across all the locations of
the timed automata (Stage 4)

• Input TA A : Through four stages we get A4 which
preserves timed bisimulation and A4 has the least possible
number of clocks.

CONCUR 2014 14

Our Approach
• Use a semantic representation of the timed automata

Remove constraints and clocks more effectively.

• Method uses the following operations.
1. Remove constraints that are never enabled (Stage 1)
2. Splitting locations may reduce the number of clocks (Stage

2)
3. Remove constraints that are implied by other constraints

(Stage 2)

4. Multiple outgoing transitions from a location when
considered collectively can remove some constraints
(Stage 3)

5. An efficient renaming of clocks across all the locations of
the timed automata (Stage 4)

• Input TA A : Through four stages we get A4 which
preserves timed bisimulation and A4 has the least possible
number of clocks.

CONCUR 2014 15

Our Approach
• Use a semantic representation of the timed automata

Remove constraints and clocks more effectively.

• Method uses the following operations.
1. Remove constraints that are never enabled (Stage 1)
2. Splitting locations may reduce the number of clocks (Stage

2)
3. Remove constraints that are implied by other constraints

(Stage 2)
4. Multiple outgoing transitions from a location when

considered collectively can remove some constraints
(Stage 3)

5. An efficient renaming of clocks across all the locations of
the timed automata (Stage 4)

• Input TA A : Through four stages we get A4 which
preserves timed bisimulation and A4 has the least possible
number of clocks.

CONCUR 2014 16

Our Approach
• Use a semantic representation of the timed automata

Remove constraints and clocks more effectively.

• Method uses the following operations.
1. Remove constraints that are never enabled (Stage 1)
2. Splitting locations may reduce the number of clocks (Stage

2)
3. Remove constraints that are implied by other constraints

(Stage 2)
4. Multiple outgoing transitions from a location when

considered collectively can remove some constraints
(Stage 3)

5. An efficient renaming of clocks across all the locations of
the timed automata (Stage 4)

• Input TA A : Through four stages we get A4 which
preserves timed bisimulation and A4 has the least possible
number of clocks.

CONCUR 2014 17

Stage 1: Construct Zone Graph

• Nodes : (l ,Z), l : location, Z : zone.

• zone: A zone z = {v ∈ R|C|≥0 | v |= γ}, where γ is of the
form γ ::= x ^ c | x − y ^ c | g ∧ g, where c ∈ Z, x , y ∈ C
and ^ ∈ {≤, <,=, >,≥}.

• A zone is a convex set of valuations

CONCUR 2014 18

Prestabilizing Zones

L0

L1

L2

x ≤ 4 a

x > 5 ∧ y > 7 b

{x}

y

x

L1 4
Z1,2,3

Z4

Z5

Z6

4

5

7

5

7

2

4

(L0, 〈x <= 4, y = x〉)

(L0, 〈x > 4, y = x〉)

4

2

(L0, 〈x < 2, y = x〉)

(L0, 〈2 < x <= 4, y = x〉)

(L0, 〈x > 4, y = x〉)

(L0, 〈x = 2, y = x〉)

CONCUR 2014 19

Prestabilizing Zones

L0

L1

L2

x ≤ 4 a

x > 5 ∧ y > 7 b

{x}

y

x

L1

4
Z1,2,3

Z4

Z5

Z6

4

5

7

5

7

2

4

(L0, 〈x <= 4, y = x〉)

(L0, 〈x > 4, y = x〉)

4

2

(L0, 〈x < 2, y = x〉)

(L0, 〈2 < x <= 4, y = x〉)

(L0, 〈x > 4, y = x〉)

(L0, 〈x = 2, y = x〉)

CONCUR 2014 20

Prestabilizing Zones

L0

L1

L2

x ≤ 4 a

x > 5 ∧ y > 7 b

{x}

y

x

4
Z1,2,3

Z4

Z5

Z6

4

5

7

5

7

2

4

(L0, 〈x <= 4, y = x〉)

(L0, 〈x > 4, y = x〉)

L0

4

2

(L0, 〈x < 2, y = x〉)

(L0, 〈2 < x <= 4, y = x〉)

(L0, 〈x > 4, y = x〉)

(L0, 〈x = 2, y = x〉)

CONCUR 2014 21

Prestabilizing Zones

L0

L1

L2

x ≤ 4 a

x > 5 ∧ y > 7 b

{x}

y

x

4
Z1,2,3

Z4

Z5

Z6

4

5

7

5

7

2

4

(L0, 〈x <= 4, y = x〉)

(L0, 〈x > 4, y = x〉)

L0

4

2

(L0, 〈x < 2, y = x〉)

(L0, 〈2 < x <= 4, y = x〉)

(L0, 〈x > 4, y = x〉)

(L0, 〈x = 2, y = x〉)

CONCUR 2014 22

Pre-stability

An important property
Pre-stability ensures that if
• the zone Z in any node (l ,Z) in the zone graph is bounded

above,

• then it is bounded fully from above by a hyperplane x = h,
where x ∈ C and h ∈ N.

CONCUR 2014 23

Stage 1: Construct Zone Graph

l0

l1

l2

x ≤ 4{x}

x > 5
∧ y > 7

a

b

x

y

x = 5

y = 7

Z1

Z3
Z2

Z5

0

2

4

Z4

Z6

l0
x < 2
y = x

x = 2
y = x

2 < x ≤ 4
y = x

x > 4
y = x

l1 l1 l1

ε ε ε

a a a

0≤y−x<2
x ≤ 5

x > 5
y ≤ 7

ε

ε
ε

ε ε

y−x=2
x ≤ 5

2<y−x≤4
y ≤ 7

2<y−x≤4
x ≤ 5
y > 7

x > 5
y > 7

0≤y−x≤4

l2b
x > 5
y > 7

(Z1) (Z2) (Z3)

l0 l0 l0

l1 l1

l1

0≤y−x<2

0≤y−x≤4

(Z4)

(Z5)

(Z6)

Consider an edge l
g,a,R−−−→ l ′ If for all nodes (l ,Z), Z ∩ [[g]] = ∅,

then remove the edge.

CONCUR 2014 24

Splitting locations: Stage 2

Base zones: Zones without delay predecessors

l0

l1

l2

x ≤ 4{x}

x > 5
∧ y > 7

a

b

x

y

x = 5

y = 7

Z1

Z3
Z2

Z5

0

2

4

Z4

Z6

l11

l2

x < 2

{x}

x > 5y > 7

a

b

l0

l13

{x}
2 < x ≤ 4

b

l11

l2

c0 < 2

c0 > 5c0 > 7

a

b

l0

l13

{c0}
2 < c0 ≤ 4

b

(a) (b)

a a

l12

x = 2

a{x}

b
x > 5

l12

c0 = 2
a

b
c0 > 5

{c0}

Some constraints removed from the newly created locations
and clocks can be reused

CONCUR 2014 25

Splitting locations: Stage 2

Base zones: Zones without delay predecessors

l0

l1

l2

x ≤ 4{x}

x > 5
∧ y > 7

a

b

x

y

x = 5

y = 7

Z1

Z3
Z2

Z5

0

2

4

Z4

Z6

l11

l2

x < 2

{x}

x > 5y > 7

a

b

l0

l13

{x}
2 < x ≤ 4

b

l11

l2

c0 < 2

c0 > 5c0 > 7

a

b

l0

l13

{c0}
2 < c0 ≤ 4

b

(a) (b)

a a

l12

x = 2

a{x}

b
x > 5

l12

c0 = 2
a

b
c0 > 5

{c0}

Number of newly created locations bounded by the number of
zones: hence exponential in the number of clocks

No change in underlying semantics; zones distributed to
different locations, hence A2 timed bisimilar to A.

CONCUR 2014 26

Remove constraints by considering multiple
outgoing edges: Stage 3

l0

x ≤ 3
a

x > 3
a

l1

l2

l0

a

a

l1

l2

Multiple outgoing edges from the same location

Consider zones with the same set of actions enabled.

Check if removing some hyperplanes and hence some
constraints from the zone graph preserves timed bisimilarity.

CONCUR 2014 27

Remove constraints by considering multiple
outgoing edges: Stage 3

l0

x ≤ 3
a

x > 3
a

l1

l2

l0

a

a

l1

l2

l0 l0

l1 l2

a a

ε

x ≤ 3 x > 3

x > 3x ≥ 0

l0
x ≥ 0

l1 l2

x ≥ 0 x ≥ 0

a a

Check if removing hyperplanes and thus merging some zones
preserves timed bisimilarity.

Timed bisimilarity can be checked using the zone graph. (LZ
’97, GKNA ’13)
CONCUR 2014 28

Remove constraints by considering multiple
outgoing edges: Stage 3

l0

x ≤ 3
a

x > 3
a

l1

l2

l0

a

a

l1

l2

l0 l0

l1 l2

a a

ε

x ≤ 3 x > 3

x > 3x ≥ 0

l0
x ≥ 0

l1 l2

x ≥ 0 x ≥ 0

a a

Removing constraints can lead to a reduction in the number of
clocks.

Since every constraint removal checks timed bisimulation
explicitly, A3 is timed bisimilar to A.
CONCUR 2014 29

Clock renaming: Stage 4

Finding active clocks
Active clocks (act(l)) : clocks whose valuations are relevant for
defining the behaviour of the timed automaton from location l .

l11

l2

x < 2

{x}

x > 5y > 7

a

b

l0

l13

{x}
2 < x ≤ 4

b

a

l12

x = 2

a{x}

b
x > 5

act(l0) = {x0, y0}, act(l11) = {y11}, act(l12) = {x12}, act(l13) =
{x13}, act(l2) = ∅.
CONCUR 2014 30

Clock renaming: Stage 4
Partitioning active clocks
Active clocks: Partition act(l) at a location l into equivalence
classes.

∀x , y ∈ act(l), x ≡ y iff ∃c ∈ N. x − y = c.

E.g. x0 − y0 = 0.

l11

l2

x < 2

{x}

x > 5y > 7

a

b

l0

l13

{x}
2 < x ≤ 4

b

(a)
(c)

a

l12

x = 2

a{x}

b
x > 5

x0y0

y11
x12 x13

x0y0y11

x12
x13

(b)

Every equivalence class makes a vertex.

Add edge between equivalence classes of the same location.

y0 and y11 are merged since same same value flows.

Vertex colouring of the clock graph

CONCUR 2014 31

Clock renaming: Stage 4

Vertex colouring of the clock graph

l11

l2

x < 2

{x}

x > 5y > 7

a

b

l0

l13

{x}
2 < x ≤ 4

b

(a)
(c)

a

l12

x = 2

a{x}

b
x > 5

x0y0

y11
x12 x13

x0y0y11

x12
x13

(b)

This graph can be coloured using one color.

CONCUR 2014 32

Complexity: Stage 4

• Number of vertices in clock graph:

• Bounded by the number of locations × number of clocks,

• Hence, exponential in the number of clocks

• Graph colouring: EXPTIME in the number of vertices

• Thus, 2− EXPTIME in the number of the clocks.

CONCUR 2014 33

Minimality of clocks

Semantically every hyperplane in the zone graph of A4
indicates a change in the behaviour and is
essential for preserving bisimulation.

CONCUR 2014 34

Minimality of clocks

Minimal bisimilar TA
For a given timed automaton D, a minimal bisimilar TA is one
that is
• timed bisimilar to D and

• has the minimum number of clocks possible.

Fact
For every TA D, there exists a minimal bisimilar TA.

The timed automaton A4 has the same number of clocks as a
minimal bisimilar TA for A.

CONCUR 2014 35

Our Result

Theorem
Given a timed automaton A,

• there exists an algorithm to construct a TA A4

that is timed bisimilar to A such that

- among all the timed automata that are timed bisimilar to A

- A4 has the minimum number of clocks.

• Further the algorithm runs in time that is doubly
exponential in the number of clocks of A.

CONCUR 2014 36

Questions

CONCUR 2014 37

