On Decidability of Prebisimulation for Timed Automata

Shibashis Guha, Chinmay Narayan, S. Arun-Kumar

Department of Computer Science & Engineering Indian Institute of Technology, Delhi

July 12, 2012

Motivation

- Real time systems require performance and *timing* constraints are satisfied.
- Given two systems with same behavior, determine which performs better in terms of time.

Example

Timed Automata formalism to model systems

Figure: Example: An at least as fast as relation

CAV 2012

Contribution

- Defined a relation between two timed (automata) systems to compare their performances.
 Timed Performance Prebisimulation
- Designed an algorithm to decide *timed performance prebisimulation* relation

Related Work

- Timed Actor Interfaces [Geilen, Tripakis, Wiggers 11]
- Performance Preorder [Corradini, Gorrieri, Roccetti 95]
- Efficiency Preorder [S. Arun-Kumar, Hennessy 91]

Timed Automata

Definition

- Set of clocks *C*, finite set of actions *Act*.
- The clock constraints $\mathcal{B}(C)$ over a set of clocks C can be specified using the following grammar:

$$g ::= x \smile c \mid g \land g$$

where $c \in \mathbb{N}$ and $x \in C$ and $\smile \in \{<, \leq, =, >, \geq\}$.

• timed automaton over a finite set of clocks *C* and finite set of actions *Act* is the quadruple

 $(L,\ell_0,E,I),$

where

L is a finite set of locations, ranged over by ℓ ,

 $\ell_0 \in L$ is the initial location,

 $E \subseteq L \times \mathcal{B}(C) \times \textit{Act} \times 2^{C} \times L$ is a finite set of *edges*, and

 $I : L \rightarrow \mathcal{B}(C)$ assigns invariants to locations.

Timed automaton Semantics: Timed Labeled Transition System (TLTS)

- Infinite transition graph structure
- Nodes are timed automaton states or configurations; tuple (l, v)
- Two types of transitions

 $a \in Act: (\ell, v) \xrightarrow{a} (\ell', v')$ if there is an edge $(\ell \xrightarrow{g,a,r} \ell') \in E$ and $v \models g, v' = v[r]$ and $v' \models I(\ell')$

$$d \in \mathbb{R}_{\geq 0} : (\ell, v) \stackrel{a}{\longrightarrow} (\ell, v + d)$$
 such that $v \models I(\ell)$ and $v + d \models I(\ell)$.

Timed Equivalences

Timed Bisimulation

p and q are two timed valuations.

 $a \in Act, d \in R_{\geq 0}$

Timed Equivalences

Time Abstracted Bisimulation

Timed Performance Prebisimulation

$$\sim_t \subseteq \, \precsim \subseteq \, \sim_u$$

captures functional behaviour and performance simultaneously

CAV 2012

Decidability

- Timed Bisimualation and Time Abstracted bisimulation have been proved to be decidable for timed automata.
- Is Timed Performance Prebisimulation decidable?

Yes

Decidability

- Timed Bisimualation and Time Abstracted bisimulation have been proved to be decidable for timed automata.
- Is Timed Performance Prebisimulation decidable? Yes

Algorithm

Outline

- Given two timed automata A₁ and A₂ or two reachable configurations p and q, in timed automata, create the zone valuation graphs Z_(A1,p) and Z_(A2,q).
- Check for strong bisimilarity between the initial nodes of the zone valuation graphs and simultaneously for every pair (s₁, s₂) of bisimilar nodes in these two zone valuation graphs check if the **span** of s₁ is ≤ (or ≥) the **span** of s₂.

Zone Graph

A zone is a set of all clock valuations which satisfy a collection of formula of the form x - c or x - y - c.

For a timed automaton $A = (L, I_0, E, I)$, a *zone graph* is a transition system $(S, s_0, Lep, \rightarrow)$, where

- Lep = Act $\cup \{\varepsilon\}$,
- ε is an action corresponding to delay transitions of the processes of the zone,
- $S \subseteq L \times \Phi_{\vee}(C)$ is the set of nodes, $s_0 = (l_0, \phi_0(C))$, $\rightarrow \subseteq S \times Lep \times S$ is connected,
- $\phi_0(C)$ is the formula where all the clocks in C are 0.

Zone Valuation Graph

A zone graph $Z = (S, s_0, Lep, \rightarrow)$ with the following properties

- 1. set S is finite.
- 2. For every node $s \in S$ the zone corresponding to the constraints ϕ_s is convex.
- **3.** $v_{l_i} \models \phi_{s_r}$. Note that v_{l_i} may or may not satisfy $\phi_0(C)$.
- For any two processes *p*, *q* ∈ *T*(*A*), if their valuation satisfies the formula *φ_r* for the same node *r* ∈ *S* then *p* ∼_{*u*} *q*, i.e. *p* is time abstracted bisimilar to *q*.
- **5.** For two timed automata A_1 , A_2 and two processes $p \in T(A_1)$ and $q \in T(A_2)$, $Z_{(A_1,p)} \sim Z_{(A_2,q)} \Leftrightarrow p \sim_u q$.
- 6. It is minimal to the extent of preserving convexity of the zones.

Stages of Creating Zone Valuation Graph

Figure: Successive stages of creating the zone valuation graph

CAV 2012

Stages of Creating Zone Valuation Graph

Figure: Final zone valuation graph

Not the Full Story

Figure: Timed Automaton with infinite zone graph

Figure: Infinite zone graph

Abstraction: Location Dependent Maximum Constants

- Static Guard Analysis in Timed Automata Verification Behrmann et. al. 03
- For each clock *x* ∈ *C* and each locaion *l* ∈ *L*, a maximum constant *max^l_x* is determined beyond which the actual value of *x* in *l* is irrelevant. For a location *l* and a clock *x*, *max^l_x* ≤ *c*_x, the global maximum constant with which clock *x* is compared.
- Thus the number of nodes reduced compared to region graph abstraction.

Zone Graph with Abstraction for Automaton

Figure: Abstracted zone graph of Timed Automaton for $max_x^l = 1$ and $max_y^l = 1$

Zone Valuation graph with Abstraction for Automaton

Figure: Canonical abstracted zone graph of Timed Automaton for $max_x^l = 1$ and $max_y^l = 1$

Algorithm

Outline

- Given two timed automata or two reachable configurations in timed automata, create the zone valuation graphs as mentioned above.
- Check for strong bisimilarity between the initial nodes of the zone valuation graphs and simultaneously for every pair (s₁, s₂) of bisimilar nodes in these two zone valuation graphs check if the **span** of s₁ is ≤ (or ≥) the **span** of s₂.

Figure: Example: An at least as fast as relation

Zone Valuation Graph: Check Span of Strongly Bisimilar Nodes

Span: Minimum of ranges of clock valuations: $\mathcal{M}(s)$ for node *s*. critical clock of a node: range equals span

Figure: Zone Valuation Graphs of prebisimilar Timed Automata

CAV 2012

Correctness of algorithm

Flip in Delay (FID)

Two zone valuation graphs: $Z_{A_1,p}$ and $Z_{A_2,q}$.

For *any* strong bisimulation relation \mathcal{B} , between $Z_{A_1,p}$ and $Z_{A_2,q}$ consider two pairs of bisimilar nodes (s_{p_1}, s_{q_1}) and (s_{p_2}, s_{q_2})

$$s_{p_1}, s_{p_2} \in Z_{A_1,p}$$
 and $s_{q_1}, s_{q_2} \in Z_{A_2,q}$.

 $\mathsf{FID} \text{ exists if } \mathcal{M}(\textit{s}_{\textit{p}_1}) < \mathcal{M}(\textit{s}_{q_1}) \text{ and } \mathcal{M}(\textit{s}_{\textit{p}_2}) > \mathcal{M}(\textit{s}_{q_2}).$

Proof of Correctness

Lemma: For $p \in T(A_1)$ and $q \in T(A_2)$, $FID(Z_{(A_1,p)}, Z_{(A_2,q)}) \Rightarrow (p \not\preceq q \land q \not\preceq p)$

Proof Outline: Assume $p \sim_u q$

- $\mathcal{M}(s_{p1}) > \mathcal{M}(s_{q1})$ and $\mathcal{M}(s_{p2}) < \mathcal{M}(s_{q2})$
- $s_{p_1} \sim s_{q_1}$ and $s_{p_2} \sim s_{q_2}$

Figure: $\mathcal{M}(s_{p1}) > \mathcal{M}(s_{q1}) \Rightarrow p \not\preceq q$

Similarly, $\mathcal{M}(s_{p2}) < \mathcal{M}(s_{q2}) \Rightarrow q \not \preceq p$

Proof of Correctness

Lemma: For $p \in T(A_1)$ and $q \in T(A_2)$, $p \sim_u q \land \neg FID(Z_{(A_1,p)}, Z_{(A_2,q)}) \Rightarrow p \precsim q \lor q \precsim p$.

Proof Outline: $p \sim_u q \Rightarrow Z_{(A_1,p)} \sim Z_{(A_2,q)}$

$$d_1 = v_{p_1}(x) - min_x(s_{p_1}) \ d_2 = d_1 imes (\mathcal{M}(s_{q_1})/\mathcal{M}(s_{p_1})) \ v_{q_1}(y) = min_y(s_{q_1}) + d_2$$

Proof of Correctness

- Lemma: For $p \in T(A_1)$ and $q \in T(A_2)$, $FID(Z_{(A_1,p)}, Z_{(A_2,q)}) \Rightarrow (p \not\preceq q \land q \not\preceq p)$
- Lemma: For $p \in T(A_1)$ and $q \in T(A_2)$, $p \sim_u q \land \neg FID(Z_{(A_1,p)}, Z_{(A_2,q)}) \Rightarrow p \precsim q \lor q \precsim p$.
- Corollary: For $p \in T(A_1)$ and $q \in T(A_2)$, $q \preceq p \lor p \preceq q \Rightarrow p \sim_u q$ and $\neg FID(Z_{(A_1,p)}, Z_{(A_2,q)})$
- Theorem: For $p \in T(A_1)$ and $q \in T(A_2)$, $q \preceq p \lor p \preceq q \Leftrightarrow p \sim_u q$ and $\neg FID(Z_{(A_1,p)}, Z_{(A_2,q)})$

Complexity

Creating Zone Valuation Graph

- Preprocessing: Finding max^l_x for each clock x and each location *I*: *O*(t³), where t = |C| × n.
- Phase 1: $\mathcal{O}(|S| \times |C| \times n^2 + n^4 \times \log n)$, where |S| is the number of nodes in zone valuation graph after abstraction.
- Phase 2: Combining nodes that are strongly bisimilar: $\mathcal{O}(|R| \times \log |S|)$, where |R| is the number of related pairs. [Paige, Tarjan 87]

Checking prebisimulation

• $O(n_1^2 n_2^2 . m_1 m_2 | C | log(n_1 n_2))$, where n_1 and n_2 are the number of nodes in the zone valuation graphs and m_1 and m_2 are the number of edges respectively.

Conclusion and Future Work

- We propose here a zone based algorithm to decide timed performance prebisimulation.
- We have shown how the relation can be established between two protocols for reliable data transfer, *Stop-and-Wait ARQ* and *Alternating bit protocol* and shown that the latter is a better implementation.
- Zone valuation graph can also be used to decide timed bisimulation as well.
- Game characterizations similar to Striling's bisimulation games for timed automata processes.

Future Work

- An implementation to decide timed performance prebisimulation and other similar relations using our approach.
- Define a *weaker* prebisimulation in which one state can be defined to be at least as fast as the other state if the **total** time elapsed is compared over sequence of actions instead of comparing delays at every stage as in timed performance prebisimulation.
- congruence properties, e.g. under parallel composition