CSL705/CS355N: Theory of Computation

Tutorial: Context-Free Grammars

- 1. Prove that the following languages over the alphabet Σ are context-free.
 - (a) $L_1 = \{a^m b^n \mid m \neq n\}$ (b) $L_2 = \{a^m b^n \mid m < n\}$
 - (c) $L_3 = \{a^m b^n \mid m \ge n\}$
 - (d) $L_4 = \{a^m b^n \mid n = 2m\}$
 - (e) $L_5 = \{a^m b^n \mid n \neq 2m\}$
- 2. Consider the context-free grammar $G = \langle V, \Sigma, S, P \rangle$ where $V = \{S\}, \Sigma = \{a, b\}$ and P is defined by the rules

$$S \rightarrow \varepsilon \mid aSbS \mid bSaS$$

- (a) Define the language generated by G.
- (b) The grammar is ambiguous. Display two different derivation trees for the same word generated by the grammar.
- (c) <u>Without adding any new terminal symbols</u>, define an unambiguous grammar $G' = \langle V', \Sigma, S, P' \rangle$ that generates the same language.
- (d) Prove that $\mathcal{L}(G) = \mathcal{L}(G')$
- 3. Given a nonempty finite alphabet Σ .
 - (a) Design an unambiguous context-free grammar G_1 to generate the language $L = \{ww^R \mid w \in \Sigma^*\}$.
 - (b) Prove that the grammar G_1 is unambiguous.
 - (c) Let the set of *palindromes* over Σ be defined as $M = \{w \in \Sigma^* \mid w = w^R\}$. What is the set M L?
 - (d) Design an unambiguous context-free grammar G_2 to generate M.
 - (e) Prove that the grammar G_2 is unambiguous.
- 4. Consider the grammar $G = \langle \{S\}, \Gamma, S, P \rangle$ where $\Gamma = \{a, i, t, e\}$ and the productions are

$$S \longrightarrow \texttt{a} \mid \texttt{i}S\texttt{t}S \mid \texttt{i}S\texttt{t}S\texttt{e}S$$

- (a) Give an equivalent grammar G' in Chomsky Normal Form.
- (b) Prove that the grammar G is ambiguous.
- (c) Use a single pair of brackets $\Pi = \{[,]\}$ to remove this ambiguity by defining a modified grammar $G'' = \langle V'', \Gamma \cup \Pi, S, P'' \rangle$ such that $e(\mathcal{L}(G'')) = \mathcal{L}(G)$ where $e : (\Gamma \cup \Pi)^* \longrightarrow \Gamma^*$ is the erasure homomorphism defined by $e([) = e(]) = \varepsilon$ and h(c) = c for each $c \in \Gamma$. (Note: You don't need to prove that $e(\mathcal{L}(G'')) = \mathcal{L}(G)$, it should be obvious!).
- (d) Prove that G'' is unambiguous.