CSL705: Theory of Computation

Tutorial: Nondeterministic Push-down Automata

- 1. Construct NPDAs to recognise the following languages.
 - (a) $L_1 = \{a^m b^n \mid m \neq n\}$ (b) $L_2 = \{a^m b^n \mid m < n\}$ (c) $L_3 = \{a^m b^n \mid m \ge n\}$ (d) $L_4 = \{a^m b^n \mid n = 2m\}$ (e) $L_5 = \{a^m b^n \mid n \neq 2m\}$
 - (f) $L_6 = \{a^m b^n c^p \mid p = m + n\}$
- 2. Prove that for every NPDA $N = \langle Q, \Sigma, \Gamma, \Delta, q_0, \bot, F \rangle$ such that $\Sigma \cap \Gamma \neq \emptyset$ there exists an equivalent NPDA $N' = \langle Q, \Sigma, \Gamma', \Delta', q_0, \bot, F \rangle$ such that $\Sigma \cap \Gamma' = \emptyset$
- 3. Define a restricted NPDA, $N_r = \langle Q, \Sigma, \Gamma, \Delta_r, q_0, \bot, F \rangle$ such that with each transition, the stack changes by at most one symbol, i.e. $\Delta_r \subseteq_f (Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma) \times (Q \times (\Gamma, \Gamma \cup \Gamma \cup \{\epsilon\}))$ and for each $((q, a, A), (q', \alpha)), \alpha \in (\Gamma, \{A\} \cup \Gamma \cup \{\epsilon\})$ Prove that for every NPDA N there exists an equivalent restricted NPDA N_r (i.e. $\mathcal{L}(N) = \mathcal{L}(N_r)$).
- 4. Let L_1 and L_2 be context-free languages over a nonempty finite alphabet Σ accepted by NPDAs N_1 and N_2 respectively. Construct the NPDAs $N_{1\cup 2}$, $N_{1.2}$ and N_{1*} which accept the union, concatenation and *-closure of the languages respectively.
- 5. Let $h: \Sigma_1 \longrightarrow \Sigma_2^*$ be a homomorphism and let $N_1 = \langle Q_1, \Sigma_1, \Gamma_1, \Delta_1, q_{10}, \bot, F_1 \rangle$ be a NPDA. Define an NPDA $N_2 = \langle Q_2, \Sigma_2, \Gamma_2, \Delta_2, q_{20}, \bot, F_2 \rangle$ such that $h(\mathcal{L}(N_1)) = \mathcal{L}(N_2)$