
Name: Entry: 1

CSL 705: Theory of Computation

II semester 2011-12
Mon 06 Feb 2012 14:30-15:30 I Minor WS-213 Max Marks 40

1. Please answer in the space provided on the question paper. The other sheets are only for rough work and
will not be collected.

2. You may use any paper-based material including your class notes and any other text books.

3. You are not allowed to share reference material or rough pages during the exam.

4. You are not allowed to bring into the exam hall any electronic gadgets such as computers, mobile phones
or calculators.

5. Please keep your identity card with you. You may be asked for it at any time for verification.

1. (10 marks) Construct regular expressions r0, · · · , r4 over the alphabet 2 = {0, 1} representing each of
the following languages. You don’t need to prove anything, but it must be intuitively clear that your
answer correctly represents the required language.

L(r0) = {x ∈ 2
∗ | (x)2 mod 5 = 0}

L(r1) = {x ∈ 2
∗ | (x)2 mod 5 = 1}

L(r2) = {x ∈ 2
∗ | (x)2 mod 5 = 2}

L(r3) = {x ∈ 2
∗ | (x)2 mod 5 = 3}

L(r4) = {x ∈ 2
∗ | (x)2 mod 5 = 4}

Solution. The laziest and easisest thing to say is perhaps that the five languages may be described as the
solution to the set of simultaneous equations of regular expressions in the variables r0, r1, r2, r3 and r4
as derived from the following diagram.

0

2

3

4
1

0

1

1

0

1

0

0

1

0

1

r0 = 0∗ + r2.1
r1 = r0.1 + r3.0
r2 = r1.0 + r3.1
r3 = r1.1 + r4.0
r4 = 1 ∗+r2.0

An alternative method is to find one regular expression (say r0) by appealing to the proof of the theorem
that every regular language may be be represented by a regular expression. After that we may use the
above equations to express every other expression in terms of r0 by substitution.

The most tedious and mind-bending method would be to use the proof of the theorem individually for
each one of the expressions r0, r1, r2, r3 and r4.



Name: Entry: 2

2. (10 marks) Let L,M ⊆ Σ∗ be languages on a nonempty finite alphabet Σ. For any x, y ∈ Σ∗, the zip of
x and y (denoted x ./ y) is defined by induction as follows:

ε ./ y = {y}
x ./ ε = {x}
ax′ ./ by′ = ab.(x′ ./ y′) if x = ax′ and y = by′

It is extended to languages L and M as follows:

L ./ M = {x ./ y | x ∈ L, y ∈M}

Prove that L ./ M is a regular language if L and M are regular.

Solution. Actually L ./ M is regular if both L and M are regular. Let B = 〈P,Σ, β, p0, E〉 and C =
〈Q,Σ, γ, q10 , F 〉 be DFAs with L(B) = L and L(C) = M . The definition of ./ especially for strings of
unequal length complicates the matter a little bit. Hence given that x = y ./ z it is not in general,
possible to determine which symbol in x came from y and which from z. So we mark the symbols coming
from each language as follows. Let b and c be two new symbols and let Bb = 〈P, {b} × Σ, βb, p0, E〉 and
Cc = 〈Q, {c} × Σ, γc, q0, F 〉 be DFAs such that βb(p, (b, a)) = p′ iff β(p, a) = p′ and γc(q, (c, a)) = q′ iff
γ(q, a) = q′ It is then clear that a1 . . . an ∈ L(B) = L iff (b, a1) . . . (b, an) ∈ L(Bb) = Lb and a1 . . . an ∈
L(C) iff (c, a1) . . . (c, an) ∈ L(Cc) = M c. For any y = a0 . . . am ∈ L and z = a′0 . . . a

′
n ∈ M , we design a

composite automaton Dbc over the alphabet {b} × Σ ∪ {c} × Σ which accepts the string xbc = yb ./ zc

where yb = (b, a0) . . . (b, am) ∈ Lb and zc = (c, a′0) . . . (c, a′n) ∈M c so that

xbc =

 (b, a0)(c, a′0) . . . (b, am)(c, a′m)(c, a′m+1) . . . (c, a′n) if m < n
(b, a0)(c, a′0) . . . (b, am)(c, a′m)if m = n
(b, a0)(c, a′0) . . . (b, an)(c, a′n)(b, an+1) . . . (b, am) if m > n

To exercise the right amount of control we incorporate two pieces of control information in the state
space of the composite automaton. We define the state-space Qbc of the composite automaton Dbc as
Qbc = (T×{b, c}×P×Q)∪{qerr}, where T = {∅, b, c} is “termination” information, the second component
represents “turn” information and qerr is an error state. Hence for example a state (∅, c, p, q) ∈ Qbc denotes
the fact that for a given string input xbc = yb ./ zc, neither yb nor zc is known to be empty and the next
input symbol must be of the form (c, a). On the other hand if it is known that yb = ε then the state
({b}, c, p, q) ∈ Qbc denotes the fact that no more symbols from {b} × Σ = Σb are expected and the rest
of the input is from {c} × Σ = Σc. The initial state is qbc0 = (∅, b, p0, q0). The set of accepting states is
F bc = T × {b, c} × E × F . The transition function δbc is defined as follows

δbc((∅, b, p, q), (b, a)) = (∅, c, p′, q) if βb(p, a) = p′

δbc((∅, c, p, q), (c, a)) = (∅, c, p, q′) if γc(q, a) = q′

δbc((∅, b, p, q), (c, a)) = ({b}, c, p, q′) if p ∈ E ∧ γc(q, a) = q′

δbc((∅, c, p, q), (b, a)) = ({c}, b, p′, q) if q ∈ F ∧ βb(p, a) = p′

δbc(({b}, c, p, q), (b, a)) = qerr
δbc(({c}, b, p, q), (c, a)) = qerr
δbc(qerr, (b, a)) = qerr
δbc(qerr, (c, a)) = qerr
δbc(({b}, c, p, q), (c, a)) = ({b}, c, p, q′) if p ∈ E ∧ γc(q, a) = q′

δbc(({c}, b, p, q), (b, a) = ({c}, b, p′, q) if q ∈ F ∧ βb(p, a) = p′

Once Dbc has been designed to take care of all the control aspects, we may remove the labels b and c from
the alphabet of the automaton to produce the (non-deterministic) automaton N./ which is identical to
Dbc except for the fact that the alphabet is restored to Σ. The notion of acceptance is such that x ∈ Σ∗

may be accepted provided there exist y ∈ L and z ∈M such that x = y ./ z.



Name: Entry: 3

3. (10 marks) Let Σ = {a, b} and let L =
⋃
m>0

am <> bm. Prove that L is not a regular language.

Solution. Firstly we note the following easy to show facts:

(a) L ⊆ {x ∈ 2
∗ | #a(x) = #b(x)}1.

(b) For any n ≥ 0, anbn ∈ L.

(c) For any m,n ≥ 0, m 6= n⇒ ambn 6∈ L.

Armed with these facts we outline the challenger’s winning strategy. For any m > 0 chosen by the
defender, the challenger chooses x = ambm. The defender is then forced (by the constraints |uv| ≤ m and
v 6= ε) to choose u = ai and v = aj such that i ≥ 0, j > 0 and i+j ≤ m. This implies that w = am−i−jbm.
For any such decomposition of x, for each k ≥ 0 we have xk = ai(aj)kam−i−jbm = am+j(k−1)bm. Clearly,
xk 6∈ L for any value of k except k = 1. The challenger may then choose k = 0.

Remark. This problem also illustrates that whereas finite unions of regular languages are regular, infinite
unions of regular languages need not be regular. For each m ≥ 0 we know that am <> bm must be regular
because for each m, {am} and {bm} are both regular. However L which is an infinite union of regular
langauages, is not regular.

1In fact we may show equality



Name: Entry: 4

4. (10 marks) Design a DFA which accepts exactly the following language over the alphabet 2 = {0, 1}.

L = {x ∈ 2
∗ | (x)2 mod 84 = 47}

Solution. We know that for any k > 1, a DFA with k-states may be constructed where each of the k-states
numbered from 0 to k − 1 denotes the value of n mod k for any binary string whose value is n.

We have that 84 = 3×4×7 and since 3, 4, 7 are relatively prime to each other we may obtain the modulo-
84 DFA by taking the product of modulo-3, modulo-4 and modulo-7 automata. Since the automaton
accepts only binary strings of value 84k + 47, we need to determine the accepting state(s) of the 84-state
automaton. We have (84m+ 47) mod 3 = 2, (84m+ 47) mod 4 = 3 and (84m+ 47) mod 7 = 5.

Given the three automataD3i+2 = 〈P,2, δ3, p0, {p2}〉, D4j+3 = 〈Q,2, δ4, q0, {q3}〉 andD7k+5 = 〈R,2, δ7, r0, {r5}〉
the following table gives the transition functions of the three automata respectively.

δ3 0 1 δ7 0 1

p0 p0 p1 r0 r0 r1
p1 p2 p0 r1 r2 r3
p2 p1 p2 r2 r4 r5
δ4 r3 r6 r0
q0 q0 q1 r4 r1 r2
q1 q2 q3 r5 r3 r4
q2 q0 q1 r6 r5 r6
q3 q2 q3

The required automaton is the product of the above three automata and is defined by D84m+47 =
〈P ×Q×R,2, δ84, (p0, q0, r0), {(p2, q3, r5)}〉 and δ84((pi, qj , rk), b) = (pi′ , qj′ , rk′) iff δ3(pi, b) = pi′ , δ4(qj , b) =
qj′ and δ7(rk, b) = rk′ for each b ∈ 2.


