
Introduction to Logic for Computer Science

S. Arun-Kumar

September 26, 2002

Contents

1 Introduction and Mathematical Preliminaries 5

1.1 Motivation for the Study of Logic . 5

1.2 Sets . 7

1.3 Relations and Functions . 9

1.4 Operations on Binary Relations . 14

1.5 Ordering Relations . 15

1.6 Partial Orders and Trees . 16

1.7 Infinite Sets: Countability and Uncountability 17

1.8 Exercises . 22

2 Induction Principles 25

2.1 Mathematical Induction . 25

2.2 Complete Induction . 28

2.3 Structural Induction . 33

2.4 Exercises . 39

3 Propositional Logic 43

3.1 Syntax of Propositional Logic . 43

3.2 The model of truth . 45

3.3 Semantics of Propositional Logic . 47

3.4 Satisfiability, Validity and Contingency . 47

3

4 An Axiomatic Theory for Propositional Logic 51

4.1 Introduction . 51

4.2 Formal theories . 53

4.3 A Hilbert-style Proof System for Propositional Logic 58

4.4 A Natural Deduction Proof System . 64

4.5 Natural Deduction proofs of the Hilbert-style axioms 64

4.6 Derived Operators and Derived Inference Rules 68

4.7 Consistency, completeness and decidability . 79

4.8 Compactness . 89

4.9 Propositional Resolution . 91

5 Resolution in Propositional Logic 93

5.1 Introduction . 93

5.2 The Resolution procedure . 94

5.3 Space Complexity of Propositional Resolution. 96

5.4 Time Complexity of Propositional Resolution 96

Chapter 1

Introduction and Mathematical
Preliminaries

al-go-rism n. [ME algorsme<OFr.< Med.Lat. algorismus, after Muhammad ibn-
Musa Al-Kharzimi (780-850?).] The Arabic system of numeration: decimal sys-
tem.

al-go-rithm n [Var. of algorism.] Math. A mathematical rule or procedure for
solving a problem.
4word history: Algorithm originated as a varaiant spelling of algorism. The spelling
was probably influenced by the word aruthmetic or its Greek source arithm, ”num-
ber”. With the development of sophisticated mechanical computing devices in the
20th century, however, algorithm was adopted as a convenient word for a recursive
mathematical procedure, the computer’s stock in trade. Algorithm has ceased to be
used as a variant form of the older word.

Webster’s II New Riverside University Dictionary 1984.

1.1 Motivation for the Study of Logic

In the early years of this century symbolic or formal logic became quite popular with philoso-
phers and mathematicicans because they were interested in the concept of what constitutes
a correct proof in mathematics. Over the centuries mathematicians had pronounced various
mathematical proofs as correct which were later disproved by other mathematicians. The whole
concept of logic then hinged upon what is a correct argument as opposed to a wrong (or faulty)
one. This has been amply illustrated by the number of so-called proofs that have come up for
Euclid’s parallel postulate and for Fermat’s last theorem. There have invariably been “bugs”
(a term popularised by computer scientists for the faults in a program) which were often very
hard to detect and it was necessary therefore to find infallible methods of proof. For centuries
(dating back at least to Plato and Aristotle) no rigorous formulation was attempted to capture

5

the notion of a correct argument which would guide the development of all mathematics.

The early logicians of the nineteenth and twentieth centuries hoped to establish formal logic as
a foundation for mathematics, though that never really happened. But mathematics does rest
on one firm foundation, namely set theory. But Set theory itself has been expressed in first
order logic. What really needed to be answered were questions relating to the automation or
mechanizability of proofs. These questions are very relevant and important for the development
of present-day computer science and form the basis of many developments in automatic theorem
proving. David Hilbert asked the important question, as to whether all mathematics, if reduced
to statements of symbolic logic, can be derived by a machine. Can the act of constructing a proof
be reduced to the manipulation of statements in symbolic logic? Logic enabled mathematicians
to point out why an alleged proof is wrong, or where in the proof, the reasoning has been
faulty. A large part of the credit for this achievement must go to the fact that by symbolising
arguments rather than writing them out in some natural language (which is fraught with
ambiguity), checking the correctness of a proof becomes a much more viable task. Of course,
trying to symbolise the whole of mathematics could be disastrous as then it would become
quite impossible to even read and understand mathematics, since what is presented usually as
a one page proof could run into several pages. But at least in principle it can be done.

Since the latter half of the twentieth century logic has been used in computer science for various
purposes ranging from program specification and verification to theorem-proving. Initially its
use was restricted to merely specifying programs and reasoning about their implementations.
This is exemplified in the some fairly elegant research on the development of correct programs
using first-order logic in such calculi such as the weakest-precondition calculus of Dijkstra. A
method called Hoare Logic which combines first-order logic sentences and program phrases
into a specification and reasoning mechanism is also quite useful in the development of small
programs. Logic in this form has also been used to specify the meanings of some programming
languages, notably Pascal.

The close link between logic as a formal system and computer-based theorem proving is proving
to be very useful especially where there are a large number of cases (following certain patterns)
to be analysed and where quite often there are routine proof techniques available which are
more easily and accurately performed by therorem-provers than by humans. The case of the
four-colour theorem which until fairly recently remained a unproved conjecture is an instance of
how human ingenuity and creativity may be used to divide up proof into a few thousand cases
and where machines may be used to perform routine checks on the individual cases. Another
use of computers in theorem-proving or model-checking is the verification of the design of large
circuits before a chip is fabricated. Analysing circuits with a billion transistors in them is at
best error-prone and at worst a drudgery that few humans would like to do. Such analysis and
results are best performed by machines using theorem proving techniques or model-checking
techniques.

A powerful programming paradigm called declarative programming has evolved since the late
seventies and has found several applications in computer science and artificial intelligence. Most
programmers using this logical paradigm use a language called Prolog which is an implemented

form of logic1. More recently computer scientists are working on a form of logic called constraint
logic programming.

In the rest of this chapter we will discuss sets, relations, functions. Though most of these topics
are covered in the high school curriculum this section also establishes the notational conventions
that will be used throughout. Even a confident reader may wish to browse this section to get
familiar with the notation.

1.2 Sets

A set is a collection of distinct objects. The class of CS253 is a set. So is the group of all first
year students at the IITD. We will use the notation {a, b, c} to denote the collection of the
objects a, b and c. The elements in a set are not ordered in any fashion. Thus the set {a, b, c}
is the same as the set {b, a, c}. Two sets are equal if they contain exactly the same elements.

We can describe a set either by enumerating all the elements of the set or by stating the
properties that uniquely characterize the elements of the set. Thus, the set of all even positive
integers not larger than 10 can be described either as S = {2, 4, 6, 8, 10} or, equivalently, as
S = {x | x is an even positive integer not larger than 10}
A set can have another set as one of its elements. For example, the set A = {{a, b, c}, d}
contains two elements {a, b, c} and d; and the first element is itself a set. We will use the
notation x ∈ S to denote that x is an element of (or belongs to) the set S.

A set A is a subset of another set B, denoted as A ⊆ B, if x ∈ B whenever x ∈ A.

An empty set is one which contains no elements and we will denote it with the symbol ∅. For
example, let S be the set of all students who fail this course. S might turn out to be empty
(hopefully; if everybody studies hard). By definition, the empty set ∅ is a subset of all sets.
We will also assume an Universe of discourse U, and every set that we will consider is a subset
of U. Thus we have

1. ∅ ⊆ A for any set A

2. A ⊆ U for any set A

The union of two sets A and B, denoted A ∪ B, is the set whose elements are exactly the
elements of either A or B (or both). The intersection of two sets A and B, denoted A ∩ B, is
the set whose elements are exactly the elements that belong to both A and B. The difference
of B from A, denoted A − B, is the set of all elements of A that do not belong to B. The
complement of A, denoted ∼ A is the difference of A from the universe U. Thus, we have

1. A ∪B = {x | (x ∈ A) or (x ∈ B)}
1actually a subset of logic called Horn-clause logic

2. A ∩B = {x | (x ∈ A) and (x ∈ B)}
3. A−B = {x | (x ∈ A) and (x 6∈ B)}
4. ∼ A = U− A

We also have the following named identities that hold for all sets A, B and C.

Basic properties of set union.

1. (A ∪B) ∪ C = A ∪ (B ∪ C) Associativity

2. A ∪ φ = A Identity

3. A ∪ U = U Zero

4. A ∪B = B ∪ A Commutativity

5. A ∪ A = A Idempotence

Basic properties of set intersection

1. (A ∩B) ∩ C = A ∩ (B ∩ C) Associativity

2. A ∩ U = A Identity

3. A ∩ φ = φ Zero

4. A ∩B = B ∩ A Commutativity

5. A ∩ A = A Idempotence

Other properties

1. A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) Distributivity of ∩ over ∪
2. A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) Distributivity of ∪ over ∩
3. ∼ (A ∪B) =∼ A∩ ∼ B De Morgan’s law ∼ ∪
4. ∼ (A ∩B) =∼ A∪ ∼ B De Morgan’s law ∼ ∩
5. A ∩ (∼ A ∪B) = A ∩B Absorption ∪
6. A ∪ (∼ A ∩B) = A ∪B Absorption ∩

The reader is encouraged to come up with properties of set difference and the complementation
operations.

We will use the following notation to denote some standard sets:

The empty set: ∅
The Universe: U

The Powerset of a set A: 2A is the set of all subsets of the set A.

The set of Natural Numbers: 2 N = {0, 1, 2, . . .}
The set of positive integers: P = {1, 2, 3, . . .}
The set of integers: Z = {. . . ,−2,−1, 0, 1, 2, . . .}
The set of real numbers: R

The Boolean set: B = {false, true}

1.3 Relations and Functions

The Cartesian product of two sets A and B, denoted by A × B, is the set of all ordered pairs
(a, b) such that a ∈ A and b ∈ B. Thus,

A×B = {(a, b) | a ∈ A and b ∈ B}

Given another set C we may form the following different kinds of cartesian products (which
are not at all the same!).

(A×B)× C = {((a, b), c) | a ∈ A,b ∈ B and c ∈ C}

A× (B × C) = {(a, (b, c)) | a ∈ A,b ∈ B and c ∈ C}

A×B × C = {(a, b, c) | a ∈ A,b ∈ B and c ∈ C}

The last cartesian product gives the construction of tuples. Elements of the set A1×A2×· · ·×An

for given sets A1, A2, . . . , An are called ordered n-tuples.

2We will include 0 in the set of Natural numbers. After all, it is quite natural to score a 0 in an examination

An is the set of all ordered n-tuples (a1, a2, . . . , an) such that ai ∈ A for all i. i.e.,

An = A× A× · · · × A︸ ︷︷ ︸
n times

A binary relation R from A to B is a subset of A×B. It is a characterization of the intuitive
notion that some of the elements of A are related to some of the elements of B. We also use
the notation aRb to mean (a, b) ∈ R. When A and B are the same set, we say R is a binary
relation on A. Familiar binary relations from N to N are =, 6=, <, ≤, >, ≥. Thus the
elements of the set {(0, 0), (0, 1), (0, 2), . . . , (1, 1), (1, 2), . . .} are all members of the relation ≤
which is a subset of N× N.

In general, an n-ary relation among the sets A1, A2, . . . , An is a subset of the set A1 × A2 ×
· · · × An.

Definition 1.1 Let R ⊆ A× B be a binary relation from A to B. Then

1. For any set A′ ⊆ A the image of A′ under R is the set defined by

R(A′) = {b ∈ B | aRb for some a ∈ A′}

2. For every subset B′ ⊆ B the pre-image of B′ under R is the set defined by

R−1(B′) = {a ∈ A | aRb for some b ∈ B′}

3. R is onto (or surjective) with respect to A and B if R(A) = B.

4. R is total with respect to A and B if R−1(B) = A.

5. R is one-to-one (or injective) with respect to A and B if for every b ∈ B there is at most
one a ∈ A such that (a, b) ∈ R.

6. R is a partial function from A to B, usually denoted R : A ↪→ B, if for every a ∈ A there
is at most one b ∈ B such that (a, b) ∈ R.

7. R is a total function from A to B, usually denoted R : A −→ B if R is a partial function
from A to B and is total.

8. R is a one-to-one correspondence (or bijection) if it is an injective and surjective total
function.

Notation. Let f be a function from set A to set B. Then

• f : A
1-1−−→ B will denote that f is injective,

• f : A−−−→
onto

B will denote that f is surjective, and

• f : A
1-1−−−→

onto
B will denote that f is bijective,

Example 1.1 The following are some examples of familiar binary relations along with their
properties.

1. The ≤ relation on N is a relation from N to N which is total and onto. That is, both
the image and pre-image of ≤ under N are N itself. What are image and the pre-image
respectively of the relation <?

2. The binary relation which associates key sequences from a computer keyboard with their
respective 8-bit ASCII codes is an example of a relation which is total and injective.

3. The binary relation which associates 7-bit ASCII codes with the corresponding ASCII
character set is an example of a bijection.

The following figures illustrate the concepts of partial, injective, surjective, bijective and inverse
of a bijective function on finite sets. The directed arrows go from elements in the domain to
their images in the codomain.

b

a

cd

e
f

g

x

y

z

u

v

A B

p

Figure 1.1: A partial function (Why is it partial?)

We may equivalently define partial and total functions as follows.

b

a

c

e

g

x

y

u

v

A B

f

d

w
z

t

Figure 1.2: An injective function (Why is it injective?)

Definition 1.2 A function (or a total function) f from A to B is a binary relation f ⊆ A×B
such that for every element a ∈ A there is a unique element b ∈ B so that (a, b) ∈ f (usually
denoted f(a) = b and sometimes f : a 7→ b). We will use the notation R : A → B to denote
a function R from A to B. The set A is called the domain of the function R and the set B
is called the co-domain of the function R. The range of a function R : A → B is the set
{b ∈ B | for some a ∈ A, R(a) = b}. A partial function f from A to B, denoted f : A ↪→ B
is a total function from some subset of A to the set B. Clearly every total function is also a
partial function.

The word “function” unless otherwise specified is taken to mean a “total function”. Some
familiar examples of partial and total functions are

1. + and ∗ (addition and multiplication) are total functions of the type f : N× N→ N

2. − (subtraction) is a partial function of the type f : N× N ↪→ N.

3. div and mod are total functions of the type f : N × P → N. If a = q ∗ b + r such that
0 ≤ r < b and a, b, q, r ∈ N then the functions div and mod are defined as div(a, b) = q
and mod(a, b) = r. We will often write these binary functions as a ∗ b, a div b, a mod b
etc. Note that div and mod are also partial functions of the type f : N× N ↪→ N.

4. The binary relations =, 6=, <, ≤, >, ≥ may also be thought of as functions of the type
f : N× N→ B where B = {false, true}.

b

a

cd

e

g

x

y

z

u

v

A B

g

Figure 1.3: A surjective function (Why is it surjective?)

Definition 1.3 Given a set A, a list (or finite sequence) of length n ≥ 0 of elements from A,
denoted ~a, is a (total) function of the type ~a : {1, 2, . . . , n} → A. We normally denote a list of
length n by [a1, a2, . . . , an] Note that the empty list, denoted [], is also such a function [] : ∅ → A
and denotes a sequence of length 0.

It is quite clear that there exists a simple bijection from the set An (which is the set of all
n-tuples of elements from the set A) and the set of all lists of length n of elements from A.
We will often identify the two as being the same set even though they are actually different by
definition3. The set of all lists of elements from A is denoted A∗, where

A∗ =
⋃
n≥0

An

The set of all non-empty lists of elements from A is denoted A+ and is defined as

A+ =
⋃
n>0

An

An infinite sequence of elements from A is a total function from N to A. The set of all such
infinite sequences is denoted Aω.

3In a programming language like ML, the difference is evident from the notation and the constructor oper-
ations for tuples and lists

b

a

c

e

g

x

y

u

v

A B

d

w
z

h

Figure 1.4: An bijective function (Why is it bijective?)

1.4 Operations on Binary Relations

In this section we will consider various operations on binary relations.

Definition 1.4 1. Given a set A, the identity relation over A, denoted IA, is the set {〈a, a〉 |
a ∈ A}.

2. Given a binary relation R from A to B, the converse of R, denoted R−1 is the relation
from B to A defined as R−1 = {(b, a) | (a, b) ∈ R}.

3. Given binary relations R ⊆ A × B and S ⊆ B × C, the composition of R with S is
denoted R ◦ S and defined as R ◦ S = {(a, c) | aRb and bSc, for some b ∈ B}.

Note that unlike in the case of functions (where for any function f : A −→ B its inverse
f−1 : B −→ A may not always be defined), the converse of a relation is always defined. Given
functions (whether partial or total) f : A ↪→ B and g : B ↪→ C, their composition is the
function f ◦ g : A ↪→ C defined simply as the relational composition of the two functions
regarded as binary relations. Hence (f ◦ g)(a) = g(f(a)).

b

a

c

e

g

x

y

u

v

A B

d

w
z

h−1

Figure 1.5: The inverse of the bijective function in Fig 1.4(Is it bijective?)

1.5 Ordering Relations

We may define the n-fold composition of a relation R on a set A by induction as follows

R0 = IA

Rn+1 = Rn ◦R

We may combine these n-fold compositions to yield the reflexive-transitive closure ofR, denoted
R, as the relation

R∗ =
⋃
n≥0

Rn

Sometimes it is also useful to consider merely the transitive closure R+ of R which is defined
as

R+ =
⋃
n>0

Rn

Definition 1.5 A binary relation R on a set A is

1. reflexive if and only if IA ⊆ R;

2. irreflexive if and only if IA ∩R = ∅;
3. symmetric if and only if R = R−1;

4. asymmetric if and only if R∩R−1 = ∅;
5. antisymmetric if and only if (a, b), (b, a) ∈ R implies a = b.

6. transitive if and only if for all a, b, c ∈ A, (a, b), (b, c) ∈ R implies (a, c) ∈ R.

7. connected if and only if for all a, b ∈ A, if a 6= b then aRb or bRa.

Given any relation R on a set A, it is easy to see that R∗ is both reflexive and transitive.

Example 1.2 1. The edge relation on an undirected graph is an example of a symmetric
relation.

2. In any directed acyclic graph the edge relation is asymmetric.

3. Consider the reachability relation on a directed graph defined as: A pair of vertices (A, B)
is in the reachability relation, if either A = B or there exists a vertex C such that both
(A,C) and (C,B) are in the reachability relation. The reachability relation is the reflexive
transitive closure of the edge relation.

4. The reachability relation on directed graphs is also an example of a relation that need not
be either symmetric or asymmetric. The relation need not be antisymmetric either.

1.6 Partial Orders and Trees

Definition 1.6 A binary relation R on a set A is

1. a preorder if it is reflexive and transitive;

2. a strict preorder if it is irreflexive and transitive;

3. a partial order if is an antisymmetric preorder;

4. a strict partial order if it is irreflexive, asymmetric and transitive;

5. a linear order4 if it is a connected partial order;

6. a strict linear order if it is connected, irreflexive and transitive;

7. an equivalence if it is reflexive, symmetric and transitive.

4also called total order

1.7 Infinite Sets: Countability and Uncountability

Definition 1.7 A set A is finite if it can be placed in bijection with a set {m ∈ P|m < n} for
some n ∈ N.

The above definition embodies the usual notion of counting. Since it is intuitively clear we shall
not have anything more to say about.

Definition 1.8 A set A is called infinite if there exists a bijection between A and some proper
subset of itself.

This definition begs the question, “If a set is not infinite, then is it necessarily finite?”. It turns
out that indeed it is. Further it is also true that if a set is not finite then it can be placed
in 1 − 1-correspondence with a proper subset of itself. But the proofs of these statements are
beyond the scope of this chapter and hence we shall not pursue them.

Example 1.3 We give appropriate 1-1 correspondences to show that various sets are infinite.
In each case, note that the codomain of the bijection is a proper subset of the domain.

1. The set N of natural numbers is infinite because we can define the 1-1 correspondence

p : N
1-1−−−→

onto
P, with p(m) , m + 1.

2. The set E of even natural numbers is infinite because we have the bijection e : E
1-1−−−→

onto
F

where F is the set of all multiples of 4.

3. The set of odd natural numbers is infinite. (Why?)

4. The set Z of integers is infinite because we have the following bijection z : Z
1-1−−−→

onto
N

by which the negative integers have unique images among the odd numbers and the non-
negative integers have unique images among the even numbers. More specifically,

z(m) =

{
2m if m ∈ N
−2m− 1 otherwise

Example 1.4 The set R of reals is infinite. To prove this let us consider the open interval
(a, b) and use figure 1.6 as a guide to understand the mapping.

Take any line-segment AB of length b− a 6= 0 and bend it into the semi-circle
_

A′B′ and place
it tangent to the x-axis at the point (0, 0) (as shown in the figure). This semicircle has a

radius r =
b− a

π
. The centre C of this semi-circle is then located at the point (0, r) on the

2-dimensional plane.

0

P’

P’’

−1 1 p"

(0,r)
A’ C B’

x

y

Figure 1.6: Bijection between the arc A′B′ and the real line

Each point P ′ such that A′ 6= P ′ 6= B′ on this semi-circle corresponds exactly to a unique real

number p in the open interval (a, b) and vice-versa. Further the ray
−−→
CP ′ always intesects the

x-axis at some point P ′′. There exists a 1-1 correspondence between each such P ′ and P ′′ on
the x-axis. Let p′′ be the x-coordinate of the point P ′′. Since the composition of bijections is a
bijection, we may compose all these bijections to obtain a 1-1 correspondence between each p in
the interval (a, b) and the real numbers.

Definition 1.9 A set is said to be countable (or countably infinite) if it can be placed in
bijection with the set of natural numbers. Otherwise, it is said to be uncountable.

Fact 1.1 The following are easy to prove.

1. Every infinite subset of N is countable.

2. If A is a finite set and B is a countable set, then A ∪B is countable.

3. If A and B are countable sets, then A ∪B is also countable.

Theorem 1.2 N2 is a countable set.

Proof:

We show that N2 is countably infinite by devising a way to order the elements of N2 which
guarantees that there is indeed a 1-1 correspondence. For instance, an obvious ordering such
as

(0, 0) (0, 1) (0, 2) (0, 3) . . .
(1, 0) (1, 1) (1, 2) (1, 3) . . .
(2, 0) (2, 1) (2, 2) (2, 3) . . .

...
.

is not a 1-1 correspondence because we cannot answer the following questions with (unique)
answers.

0 1

2

3

4

5

6

7

8

9
n

y

x

(a,b)

(a−1, b+1)
(a, b+1)

D

D

D

D

D

D

0

1

2

3

4

i

Figure 1.7: Counting “lattice-points” on the “diagonals”

1. What is the n-th element in the ordering?

2. What is the position in the ordering of the pair (a, b)?

So it is necessary to construct a more rigorous and ingenious device to ensure a bijection. So

we consider the ordering implicitly defined in figure 1.7. By traversing the rays
−→
D0,

−→
D1,

−→
D2,

. . . in order, we get an obvious ordering on the elements of N2. However it should be possible
to give unique answers to the above questions.

Claim f : N2 −→ N defined by f(a, b) =
(a + b)(a + b + 1) + 2b

2
is the required bijection.

Proof outline: The function f defines essentially the traversal of the rays
−→
D0,

−→
D1,

−→
D2, . . . in

order as we shall prove. It is easy to verify that
−→
D0 contains only the pair (0, 0) and f(0, 0) = 0.

Now consider any pair (a, b) 6= (0, 0). If (a, b) lies on the ray
−→
Di, then it is clear that i = a + b.

Now consider all the pairs that lie on the rays
−→
D0,

−→
D1, . . . ,

−−→
Di−1

5

The number of such pairs is given by the “triangular number”

i + (i− 1) + (i− 2) + · · ·+ 1 =
i(i + 1)

2

5Under the usual (x, y) coordinate system, these are all the lattice points on and inside the right triangle
defined by the three points (i− 1, 0), (0, 0) and (0, i− 1). A lattice point in the (x, y)-plane is point whose x−
and y− coordinates are both integers.

Since we started counting from 0 this number is also the value of the lattice point (i, 0) under
the function f . This brings us to the starting point of the ray Di and after crossing b lattice
points along the ray Di we arrive at the point (a, b). Hence

f(a, b) =
i(i + 1)

2
+ b

=
(a + b)(a + b + 1) + 2b

2

We leave it as an exercise to the reader to define the inverse of this function. (Hint: Use
“triangular numbers”!) 2 2

Example 1.5 Let the language M0 of minimal logic be “generated” by the following process
from a countably infinite set of “atoms” A, such that A does not contain any of the symbols
“¬”, “→”, “(” and “)”.

1. A ⊆M0,

2. If µ and ν are any two elements of M0 then (¬µ) and (µ → ν) also belong to M0, and

3. No string other than those obtained by a finite number of applications of the above rules
belongs to M0.

set. We prove that the M0 is countably infinite.

Solution There are at least two possible proofs. The first one simply encodes of formulas into
unique natural numbers. The second uses induction on the structure of formulas and the fact
that a countable union of countable sets yields a countable set. We postpone the second proof
to the chapter on induction. So here goes!

Proof: Since A is countably infinite, there exists a 1 − 1 correspondence ord : A ↔ P which
uniquely enumerates the atoms in some order. This function may be extended to a function
ord′ which includes the symbols “¬”,“(”,“)”,“→”, such that ord′(“¬′′) = 1, ord′(“(”) = 2,
ord′(“)′′) = 3, ord′(“ →′′) = 4, and ord′(“A′′) = ord(“A′′) + 4, for every A ∈ A. Let Syms =
A ∪ {“¬′′, “(“, “)′′, “ →′′}. Clearly ord′ : Syms ↔ P is also a 1− 1 correspondence. Hence there
also exist inverse functions ord−1 and ord′−1 which for any positive integer identify a unique
symbol from the domains of the two functions respectively.

Now consider any string6 belonging to Syms∗. It is possible to assign a unique positive integer
to this string by using powers of primes. Let p1 = 2, p2 = 3, . . . , pi, . . . be the infinite list of
primes in increasing order. Let the function encode : Syms∗ −→ P be defined by induction on
the lengths of the strings in Syms∗, as follows. Assume s ∈ Syms∗, a ∈ Syms and “′′ denotes
the empty string.

encode(“′′) = 1
encode(sa) = encode(s)× pm

ord′(a)

6This includes even arbitrary strings which are not part of the language. For example, you may have strings
such as “)¬(”.

where s is a string of length m− 1 for m ≥ 1.

It is now obvious from the unique prime-factorization of positive integers that every string in
Syms∗ has a unique positive integer as its “encoding” and from any positive integer it is possible
to get the unique string that it represents. Hence Syms∗ is a countably infinite set. Since the
language of minimal logic is a subset of the Syms∗ it cannot be an uncountably infinite set.
Hence there are only two possibilities: either it is finite or it is countably infinite.

Claim. The language of minimal logic is not finite.
Proof of claim. Suppose the language were finite. Then there exists a formula φ in the language
such that encode(φ) is the maximum possible positive integer. This φ ∈ Syms∗ and hence is a
string of the form a1 . . . am where each ai ∈ Syms. Clearly

encode(φ) =
m∏

i=1

pi
ord′(ai)

. Now consider the longer formula ψ = (¬φ). It is easy to show that

encode(ψ) = 2ord′(“(“) × 3ord′(“¬′′) ×
m∏

i=1

pi+2
ord′(ai) × pm+3

ord′(“)′′)

and encode(ψ) > encode(φ) contradicting the assumption of the claim.

Hence the language is countably infinite. 2

Not all infinite sets that can be constructed are countable. In other words even among infinite
sets there are some sets that are “more infinite than others”. The following theorem and the
form of its proof was first given by Georg Cantor and has been used to prove several results in
logic, mathematics and computer science.

Theorem 1.3 (Cantor’s diagonalization). The powerset of N (i.e. 2N, the set of all subsets
of N) is an uncountable set.

Proof: Firstly, it should be clear that 2N is not a finite set, since for every natural number n,
the singleton set {n} belongs to 2N.

Consider any subset A ⊆ N. We may represent this set as an infinite sequence σA composed of
0’s and 1’s such that σA(i) = 1 if i ∈ A, otherwise σA(i) = 0. Let Σ = {σ|∀i ∈ N : σ(i) ∈ {0, 1}}
be the set of all such sequences. It is easy to show that there exists a bijection g : 2N

1-1−−−→
onto

Σ
such that g(A) = σA, for each A ⊆ N. Clearly, therefore 2N is countable if and only if Σ is

countable. Hence, if there exists a bijection f : Σ
1-1−−−→

onto
N, then f ◦ g is the required bijection

from 2N to N. On the other hand, if there is no bijection f then 2N is uncountable if and only if
Σ is uncountable. We make the following claim which we prove by Cantor’s diagonalization.

Claim 1.1 The set Σ is uncountable.

We prove the claim as follows. Suppose Σ is countable then there exists a bijection h : N
1-1−−−→

onto

Σ. In fact let h(i) = σi ∈ Σ, for each i ∈ N. Now consider the sequence ρ constructed in such
a manner that for each i ∈ N, ρ(i) 6= σi(i). In other words,

ρ(i) =

{
0 if σi(i) = 1
1 if σi(i) = 0

Since ρ is an infinite sequence of 0’s and 1’s, ρ ∈ Σ. But from the above construction it follows
that since ρ is different from every sequence in Σ it cannot be a member of Σ, leading to a
contradiction. Hence the assumption that Σ is uncountable must be wrong. 2

1.8 Exercises

1. Prove that for any binary relations R and S on a set A,

(a) (R−1)−1 = R
(b) (R∩ S)−1 = R−1 ∩ S−1

(c) (R∪ S)−1 = R−1 ∪ S−1

(d) (R− S)−1 = R−1 − S−1

2. Prove that the composition operation on relations is associative. Give an example of the
composition of relations to show that relational composition is not commutative.

3. Prove that for any binary relations R, R′ from A to B and S, S ′ from B to C, if R ⊆ R′

and S ⊆ S ′ then R ◦ S ⊆ R′ ◦ S ′

4. Prove or disprove7that relational composition satisfies the following distributive laws for
relations, where R ⊆ A×B and S, T ⊆ B × C.

(a) R ◦ (S ∪ T) = (R ◦ S) ∪ (R ◦ T)

(b) R ◦ (S ∩ T) = (R ◦ S) ∩ (R ◦ T)

(c) R ◦ (S − T) = (R ◦ S)− (R ◦ T)

5. Prove that for R ⊆ A×B and S ⊆ B × C, (R ◦ S)−1 = (S−1) ◦ (R−1).

6. Show that a relation R on a set A is

(a) antisymmetric if and only if R∩R−1 ⊆ IA

(b) transitive if and only if R ◦R ⊆ R
7that is, find an example of appropriate relations which actually violate the equality

(c) connected if and only if (A× A)− IA ⊆ R ∪R−1

7. Consider any reflexive relation R on a set A. Does it necessarily follow that A is not
asymmetric? If R is asymmetric does it necessarily follow that it is irreflexive?

8. Prove that

(a) Nn, for any n > 0 is a countably infinite set,

(b) If {Ai|i ≥ 0} is a countable collection of pair-wise disjoint sets (i.e. Ai ∩ Aj = ∅ for
all i 6= j) then A =

⋃
i≥0 Ai is also a countable set.

(c) N∗ the set of all finite sequences of natural numbers is countable.

9. Prove that

(a) Nω the set of all infinite sequences of natural numbers is uncountable,

(b) the set of all binary relations on a countably infinite set is an uncountable set,

(c) the set of all total functions from N to N is uncountable.

10. Prove that there exists a bijection between the set 2N and the open interval (0, 1) of real
numbers. Question: How do you handle numbers that are equal but have 2 different deci-
mal representations such as 0.89̄ and 0.9?. What can you conclude about the cardinality
of the set 2N in relation to the set R?

11. Prove that for any binary relations R and S on a set A,

(a) (R−1)−1 = R
(b) (R∩ S)−1 = R−1 ∩ S−1

(c) (R∪ S)−1 = R−1 ∪ S−1

(d) (R− S)−1 = R−1 − S−1

12. Prove that the composition operation on relations is associative. Give an example of the
composition of relations to show that relational composition is not commutative.

13. Prove that for any binary relations R, R′ from A to B and S, S ′ from B to C, if R ⊆ R′

and S ⊆ S ′ then R ◦ S ⊆ R′ ◦ S ′

14. Prove or disprove8that relational composition satisfies the following distributive laws for
relations, where R ⊆ A×B and S, T ⊆ B × C.

(a) R ◦ (S ∪ T) = (R ◦ S) ∪ (R ◦ T)

(b) R ◦ (S ∩ T) = (R ◦ S) ∩ (R ◦ T)

(c) R ◦ (S − T) = (R ◦ S)− (R ◦ T)

15. Prove that for R ⊆ A×B and S ⊆ B × C, (R ◦ S)−1 = (S−1) ◦ (R−1).

8that is, find an example of appropriate relations which actually violate the equality

16. Show that a relation R on a set A is

(a) antisymmetric if and only if R∩R−1 ⊆ IA

(b) transitive if and only if R ◦R ⊆ R
(c) connected if and only if (A× A)− IA ⊆ R ∪R−1

17. Consider any reflexive relation R on a set A. Does it necessarily follow that R is not
asymmetric? If R is asymmetric does it necessarily follow that it is irreflexive?

18. Prove that for any relation R on a set A,

(a) S = R∗ ∪ (R∗)−1 and T = (R∪R−1)∗ are both equivalence relations.

(b) Prove or disprove: S = T .

19. Given any preorder R on a set A, prove that the kernel of the preorder defined as R∩R−1

is an equivalence relation.

20. Consider any preorder R on a set A. We give a construction of another relation as
follows. For each a ∈ A, let [a]R be the set defined as [a]R = {b ∈ A | aRb and bRa}.
Now consider the set B = {[a]R | a ∈ A}. Let S be a relation on B such that for every
a, b ∈ A, [a]RS[b]R if and only if aRb. Prove that S is a partial order on the set B.

Chapter 2

Induction Principles

Theorem: All natural numbers are equal.
Proof: Given a pair of natural numbers a and b, we prove they are equal by per-
forming complete induction on the maximum of a and b (denoted max(a, b)).
Basis. For all natural numbers less than or equal to 0, the claim holds.
Induction hypothesis. For any a and b such that max(a, b) ≤ k, for some natural
k ≥ 0, a = b.
Induction step. Let a and b be naturals such that max(a, b) = k + 1. It follows that
max(a− 1, b− 1) = k. By the induction hypothesis a− 1 = b− 1. Adding 1 on both
sides we get a = b QED.

Fortune cookie on Linux

2.1 Mathematical Induction

Anyone who has had a good background in school mathematics must be familiar with two uses
of induction.

1. definition of functions and relations by mathematical induction, and

2. proofs by the principle of mathematical induction.

Example 2.1 We present below some familiar examples of definitions by mathematical induc-
tion.

1. The factorial function on natural numbers is defined as follows.

Basis. 0! = 1

25

Induction step. (n + 1)! = n!× (n + 1)

2. The n-th power (where n is a natural number) of a real number x is often defined as

Basis. x1 = x

Induction step. xn+1 = xn × x

3. For binary relations R, S on A we define their composition (denoted R ◦ S) as follows.

R ◦ S = {(a, c) | for some b ∈ A, (a, b) ∈ R and (b, c) ∈ S}
We may extend this binary relational composition to an n-fold composition of a single
relation R as follows.

Basis. R1 = R

Induction step. Rn+1 = R ◦Rn

Similarly the principle of mathematical induction is the means by which we have often proved (as
opposed to defining) properties about numbers, or statements involving the natural numbers.
The principle may be stated as follows.

Principle of Mathematical Induction – Version 1

A property P holds for all natural numbers provided

Basis. P holds for 0, and

Induction step. For arbitrarily chosen n > 0,
P holds for n− 1 implies P holds for n.

The underlined portion, called the induction hypothesis, is an assumption that is necessary
for the conclusion to be proved. Intuitively, the principle captures the fact that in order to
prove any statement involving natural numbers, it is suffices to do it in two steps. The first
step is the basis and needs to be proved. The proof of the induction step essentially tells us
that the reasoning involved in proving the statement for all other natural numbers is the same.
Hence instead of an infinitary proof (one for each natural number) we have a compact finitary
proof which exploits the similarity of the proofs for all the naturals except the basis.

Example 2.2 We prove that all natural numbers of the form n3 +2n are divisible by 3. Proof:

Basis. For n = 0, we have n3 + 2n = 0 which is divisible by 3.

Induction step. Assume for an arbitrarily chosen n ≥ 0, n3 + 2n is divisible by 3. Now
consider (n + 1)3 + 2(n + 1). We have

(n + 1)3 + 2(n + 1) = (n3 + 3n2 + 3n + 1) + (2n + 2)

= (n3 + 2n) + 3(n2 + n + 1)

which clearly is divisible by 3.

2

Several versions of this principle exist. We state some of the most important ones. In such
cases, the underlined portion is the induction hypothesis. For example it is not necessary to
consider 0 (or even 1) as the basis step. Any integer k could be considered the basis, as long
as the property is to be proved for all n ≥ k.

Principle of Mathematical Induction – Version 2

A property P holds for all natural numbers n ≥ k for some natural number k,
provided

Basis. P holds for k, and

Induction step. For arbitrarily chosen n > k,
P holds for n− 1 implies P holds for n.

Such a version seems very useful when the property to be proved is either not true or is undefined
for all naturals less than k. The following example illustrates this.

Example 2.3 Every positive integer n ≥ 8 is expressible as n = 3i + 5j where i, j ≥ 0.
Proof: .

Basis. For n = 8, we have n = 3 + 5, i.e. i = j = 1.

Induction step. Assuming for an arbitrary n ≥ 8, n = 3i + 5j for some naturals i and j,
consider n + 1. If j = 0 then clearly i ≥ 3 and we may write n + 1 as 3(i− 3) + 5(j + 2).
Otherwise n + 1 = 3(i + 2) + 5(j − 1).

2

However it is not necessary to have this new version of the Principle of mathematical induction
at all as the following reworking of the previous example shows.

Example 2.4 The property of the previous example could be equivalently reworded as follows.
“For every natural number n, n + 8 is expressible as n + 8 = 3i + 5j where i, j ≥ 0”.
Proof: .

Basis. For n = 0, we have n + 8 = 8 = 3 + 5, i.e. i = j = 1.

Induction step. Assuming for an arbitrary n ≥ 0, n + 8 = 3i + 5j for some naturals i and j,
consider n+1. If j = 0 then clearly i ≥ 3 and we may write (n+1)+8 as 3(i−3)+5(j+2).
Otherwise (n + 1) + 8 = 3(i + 2) + 5(j − 1).

2

In general any property P that holds for all naturals greater than or equal to some given k
may be transformed equivalently into a property Q, which reads exactly like P except that
all occurrences of “n” in P are systematically replaced by “n + k”. We may then prove the
property Q using the first version of the principle.

What we have stated above informally is, in fact a proof outline of the following theorem.

Theorem 2.1 The two principles of mathematical induction are equivalent. In other words,
every application of PMI - version 1 may be transformed into an application of PMI – version
2 and vice-versa.

In the sequel we will assume that the principle of mathematical induction always refers to the
first version.

2.2 Complete Induction

Often in inductive definitions and proofs it seems necessary to work an inductive hypothesis
that includes not just the predecessor of a natural number, but some or all of their predecessors
as well.

Example 2.5 The definition of the following sequence is a case of precisely such a definition
where the function F (n) is defined for all naturals as follows.

Basis. F (0) = 0

Induction step

F (n + 1) =

{
1 if n = 0

F (n) + F (n− 1) otherwise

This is the famous Fibonacci1 sequence.

One of the properties of the Fibonacci sequence is that the sequence converges to the “golden
ratio”2. For any inductive proof of properties of the Fibonacci numbers, we would clearly need
to assume that the property holds for the two preceding numbers in the sequence.

In the following, we present a principle that assumes a stronger induction hypothesis.

Principle of Complete Induction (PCI)

A property P holds for all natural numbers provided

Basis. P holds for 0.

Induction step. For an arbirary n > 0
P holds for every m, 0 ≤ m < n implies P holds for n

Example 2.6 Let F (0) = 0, F (1) = 1, F (2) = 1, . . . , F (n + 1) = F (n) + F (n− 1), . . .
be the Fibonacci sequence. Let φ be the “golden ratio” (1 + 5

√
5)/2. We now show that the

property F (n + 1) ≤ φn holds for all n.
Proof: By the principle of complete induction on n.

Basis. For n = 0, we have F (1) = φ0 = 1.

Induction step. Assuming the property holds for all m, 0 ≤ m ≤ n − 1, for an arbitrarily
chosen n > 0, we need to prove that F (n + 1) ≤ φn.

F (n + 1) = F (n) + F (n− 1)
≤ φn−1 + φn−2 by the induction hypothesis
= φn−2(φ + 1)
= φn since φ2 = φ + 1

2

Note that the feature distinguishing the principle of mathematical induction from that of com-
plete induction is the induction hypothesis. It appears to be much stronger in the latter case.
However, in the following example we again prove the property in example 2.6 but this time
we use the principle of mathematical induction instead.

1named after Leonardo of Fibonacci.
2one of the solutions of the equation x2 = x + 1. It was considered an aesthetically pleasing aspect ratio for

buildings in ancient Greek architecture.

Example 2.7 Let P(n) denote the property

“F (n + 1) ≤ φn.”

Rather than prove the original statement “For all n, P(n)” we instead consider the property
Q(n) which we define as

“For every m, 0 ≤ m ≤ n, P(m).”

and prove the statement “For all n, Q(n)”. This property can now be proved by mathematical
induction as follows. The reader is encouraged to study the following proof carefully.
Proof: By the principle of mathematical induction on n.

Basis. For n = 0, we have F (1) = φ0 = 1.

Induction step. Assuming the property Q(n − 1), holds for an arbitrarily chosen n > 0, we
need to prove the property Q for n. But for this it suffices to prove the property P for n,
since Q(n) is equivalent to the conjunction of Q(n − 1) and P(n). Hence we prove the
property P(n).

F (n + 1) = F (n) + F (n− 1)
≤ φn−1 + φn−2 by the induction hypothesis
= φn−2(φ + 1)
= φn since φ2 = φ + 1

2

The above example shows quite clearly that the induction hypothesis used in any application of
complete induction though seemingly stronger, can also lead to the proof of seemingly stronger
properties. But in fact, in the end the proofs are almost identical. These proofs lead us then
naturally into the next theorem.

Theorem 2.2 The two principles of mathematical induction are equivalent. In other words,
every application of PMI may be transformed into an application of PCI and vice-versa.

Proof: We need to prove the following two claims.

1. Any proof of a property using the principle of mathematical induction, is also a proof of
the same property using the principle of complete induction. This is so because the only
possible change in the nature of two proofs could be because they use different induction
hypotheses. Since the proof by mathematical induction uses a fairly weak assumption
which is sufficient to prove the property, strengthening it in any way does not need to
change the rest of the proof of the induction step.

2. For every proof of a property using the principle of complete induction, there exists a
corresponding proof of the same property using the principle of mathematical induction.
To prove this claim we resort to the same trick employed in example 2.6. We merely
replace each occurrence of the original property in the form P(n) by Q(n), where the
property Q is defined as

“For every m, 0 ≤ m ≤ n, P(m).”

Since Q(0) is the same as P(0) there is no other change in the basis step of the proof. In
the original proof by complete induction the induction hypothesis would have read

For arbitrarily chosen n > 0, for all m, 0 ≤ m ≤ n− 1, P(m)

whereas in the new proof by mathematical induction the induction hypothesis would read

For arbitrarily chosen n > 0, Q(n− 1)

Clearly the two induction hypotheses are logically equivalent. Hence the rest of the proof
of the induction step would suffer no other change. The basis step and the induction step
would together constitute a proof by mathematical induction of the property Q for all
naturals n. Since Q(n) logically implies P(n) it follows that the proof of property P for
all naturals has been done by mathematical induction.

2

The natural numbers are themselves defined as the smallest set N such that 0 ∈ N and whenever
n ∈ N, n+1 also belongs to N. Therefore we may state yet another version of PMI from which
the other versions previously stated may be derived. The intuition behind this version is that
a property P may also be considered as defining a set S = {x | xsatisfiesP}. Therefore if a
property P is true for all natural numbers the set defined by the property must be the set of
natural numbers. This gives us the last version of the principle of mathematical induction.

Principle of Mathematical Induction – Version 0

A set S = N provided

Basis. 0 ∈ S, and

Induction step. For arbitrarily chosen n > 0,
n− 1 ∈ S implies n ∈ S.

We end this section with an example of the use of induction to prove that for any n ∈ N, the
set of all n-tuples of natural numbers is only countably infinite.

Example 2.8 Assume there exists a 1-1 correspondence f2 : N2 → N. Use this fact to prove
by induction on n, that there exists a 1-1 correspondence fn : Nn → N, for all n ≥ 2.

Solution. In general, to prove that a given function F : A → B is a 1-1 correspondence, we
may prove it by contradiction. Then there are 2 cases to consider.

1. F is non-injective. Then there exist elements a, a′ ∈ A, such that a 6= a′ and F (a) =
F (a′).

2. F is non-surjective. Then there exists an element b ∈ B such that F (a) 6= b, for any
a ∈ A.

It is also easy to show that if F : A → B and G : B → C are both bijections then their
composition G ◦ F : A → C is also a bijection.

We now proceed to prove by induction on n.

Basis. For n = 2 it is given that f2 is a bijection.

Induction step. Assume the induction hypothesis,

For some n ≥ 2 there exists a bijection fn : Nn → N.

We need to prove that there exists a 1-1 correspondence (bijection) between Nn+1 and N. We
prove this by constructing a function fn+1 : Nn+1 → N.

Let g : Nn+1 → (Nn × N) be a function defined by

g(〈x1, . . . , xn, xn+1〉) = 〈〈x1, . . . , xn〉, xn+1〉

Claim: g is a 1-1 correspondence.

Let h : Nn+1 → (N× N) be defined by

h(〈x1, . . . , xn, xn+1〉) = 〈fn(〈x1, . . . , xn〉), xn+1〉

Claim: h is a 1-1 correspondence. It can be proved from the fact that fn : Nn → N is a bijection.

Since f2 is also a bijection, it follows that the composition of h and f2, viz. f2 ◦ h : Nn+1 → N
is also a bijection. Hence define fn+1 , f2 ◦ h, i.e.

fn+1(〈x1, . . . , xn, xn+1〉) = f2(h(〈x1, . . . , xn, xn+1〉))

Note.

1. Many people assume automatically that Nn+1 = Nn × N or Nn+1 = N× Nn. But while it
is true that there exists a bijection between Nn+1 and Nn × N, they are not equal as sets.
Hence we have defined the function g though it is not really necessary for the proof.

2. Very often countability is assumed by people and they try to argue that since the sets are
countable there should be a bijection. But it should be clear that estabilishing a bijection
is necessary first to prove that the required sets are countable. In fact the aim of this
problem is to construct a bijection to prove that the sets Nn are all countable.

2.3 Structural Induction

Definition. Let U be a set called the Universe, B a nonempty subset of U called the basis,
and let K called the constructor set be a nonempty set of functions, such that each function
f ∈ K has associated with it a unique natural number n ≥ 0 called its arity and denoted by
α(f). If a function f has an arity of n ≥ 0, then f : Un → U . A set A is said to be inductively
defined from B, K, U if it is the smallest set satisfying the following conditions:

1. B ⊆ A and

2. if f ∈ K is of arity n ≥ 0, a1, . . . , an ∈ A and f(a1, . . . , an) = a, then a ∈ A.

The set A is also to have been generated from the basis B and the rules of generation f ∈
K.

In other words A = ∩ {S ⊆ U | S satisfied conditions (1) and (2) }
We may also think of A as a set satisfying the equations

A = B ∪ ⋃{ f(An) | f ∈ K, α(f) = n ≥ 0}
where f(An) = { a|a = f(a1, . . . , an)}, for some < a1, . . . , an >∈ An}

Definition. Let U, B, K be as in the definition. Then a sequence a1, . . . , am of elements of
U is called a construction sequence for am if for all i=1, . . . , m either ai ∈ B or there exists
a constructor f ∈ K, of arity n > 0, and 0 < ii, . . . , in < i such that f(ai1, . . . , ain) = ai.

A contains all the elements of U which have a construction sequence. In our case the the rules
of generation are usually functions rather than relations. The basis along with the constructor
functions are said to define a grammar for the of syntactically correct sentences of the language
A.

Example. Consider the following definition of subclass of arithmetic expressions generated
from natural numbers, that is, arithmetic expressions made up only natural numbers and the

addition and multiplication operations. The rules may be expressed in English as follows.
(a) every natural number is an arithmetic expression .
(b) If e and e’ are arithmetic expressions, then exe’ and e+e’ are also arithmetic

expressions
(c)Only whatever is obtained by repeated applications of (a) and (b) is an arithmetic

expressions (and nothing else).

In the above definition of arithmetic expressions the universe consists of all possible strings
(i.e. finite sequence) made of natural numbers and the two symbols ’+’ and ’x’. Let

∑
be

any collection of symbols we use
∑∗ to denote the set of all finite sequences of elements from∑

. Hence U = (N ∪ {+, x})∗. The basis is the set N of naturals and the constructor set K
consists of two binary functions (i.e. functions of arity 2) viz f+(e, e′) =e+e’ and fx(e + e′) =
exe’. N ∪ K is the language of arithmetic expressions.

A convenient shorthand notation called the Backus-Naur Form (BNF) is usually employed to
express the rules of generation . For the language of arithmetic expressions defined above the
BNF is as follows.

e :: n — e+e — e X e
Where n denotes any natural number and e denotes an arbitrary arithmetic expression (Note
that the two occurrence of ’e’ in ’e+e’ do not denote necessarily the same expressions. Similarly
for the two ’e’s in exe’).

Now consider the arithmetic expressions 2+3*5. This expression could have been obtained by
either of the following constructions:

fx(f+(2, 3), 5)
f+(2, fx(3, 5)

The way we constructs sentences is often important in our understanding of a language. The
two orders of construction here also imply that the results of evaluation will differ in the two
cases. The first method of construction yields the result 25, whereas the second yields 17. We
would say that the given grammar is ambiguous because it is possible to generate sentences
which do not have unique constructions.

Example 2.9 The language of minimal logic defined by the following grammar

µ ::= A | (¬µ) | (µ → µ)

is countable.

Proof: We first begin classifying the formulas of the language according to their depth. Let
Mk be the set of formulas of the language such that each formula has a depth at most k for
k ≥ 0. We assume that M0 = A and Mk+1 = Mk ∪ {(¬µk), (µk → νk) | µk, νk ∈ Mk}. Let

¬
Mk be the set of all formulas of depth k + 1 of the form “(¬µk)” and let

→
Mk be the set of all

formulas of the form “(µk → νk)”, where µk, nuk ∈ Mk. We then have

Mk+1 = Mk∪
¬

Mk ∪
→

Mk

= Mk ∪ (
¬

Mk −Mk) ∪ (
→
Mk −Mk)

= Mk ∪Nk+1 ∪ Ak+1

Here Nk+1 represents the set of all formulas of depth exactly k + 1, whose root operator is ¬.
Simlarly Ak+1 represents the set of all formulas of depth exactly k + 1, whose root operator is
→. Hence the three sets are mutually disjoint.

Mk ∩Nk+1 = ∅, Mk ∩ Ak+1 = ∅, Nk+1 ∩ Ak+1 = ∅

The entire language may then be defined as the set M0 =
⋃

k≥0 Mk = A ∪⋃
k>0 Nk ∪⋃

k>0 Ak

Claim. Each of the sets Mk, Nk and Ak is countably infinite for all k ≥ 0.
Proof of claim. We prove this claim by induction on k. The basis is M0 = A and it is given
that it is countably infinite. The induction step proceeds as follows. We have by the induction
hypothesis that Mk is countably infinite. Hence there is a 1− 1 correspondence numk : Mk ←→
N. We use numk to construct the 1− 1 correspondence numk+1 as follows: We may use numk

to build a 1-1 correspondence between Nk and N. Similarly there exists a 1-1 correspondence
between Ak+1 and N× N given by the ordered pair of numbers (numk(µk), numk(νk)) for each
(µk → νk) ∈ Ak+1. But we know that there is a 1-1 correspondence diag : N× N←→ N.

Hence each of the 3 sets Mk, Nk+1 and Ak+1 is countably infinite. Their union is clearly
countably infinite by the following 1-1 correspondence.

numk+1(µk+1) =

3× numk(µk+1) if µk+1 ∈ Mk

3× numk(µk) + 1 if µk+1 ≡ ¬µk ∈ Nk

3× diag(numk(µk), numk(νk)) + 2 if µk+1 ≡ µk → νk ∈ Ak

Hence Nk+1 and Ak+1 are countably infinite from which it follows that Mk+1 is countably infinite.

Having proved the claim it follows (from the fact that a countable union of countably infinite
sets yields a countably infinite set) that M the language of minimal logic is a countably infinite
set. 2

Since ambiguity can lead to different interpretations ,we would like to avoid using grammars
which are ambiguous. One simple way of avoiding ambiguity in arithmetic expressions is to use
parentheses. Hence by expanding the set of symbols to include the pair of parentheses ’(’ and
’)’, we have

U = N ∪ { +, x, (,) })∗

and we may redefine the functions f+ and fx as follows:
f+(e, e′) = (e + e′)

fx(e, e′) = (exe′)
Alternatively the BNF for the new language is
e ::= n | (e+e) | (e x e)
In the new grammar the sentences 2+3x5 is no longer syntactically correct. In other words,
though 2+3x5 does belong to the universe U, it does not belong

to the set A by the inductive definition. However, in its place we have the two new sentences
((2+3)x5) and (2+(3x5)). Each of these sentence has a unique construction viz .

((2 + 3)x5) = fx(f+(2, 3), 5) (2 + (3x5)) = f+(2, fx(3, 5))
We are now ready to formally define when a language that is inductively defined is unambiguous.

Definition. Let T ⊆ U be inductively defined by a basis B and constructor set K. A is
said to be free (or unambiguous) if for every element a ∈ A, either A ∈ B or there exists
a unique constructor f ∈ K and a unique α(f)-tuple < a1, . . . , aα(f) > ∈ Aα(f) such that
f(a1, . . . , aα(f)) = a.

Structural Induction.
We present below a generalization of the principal of mathematical induction to arbitrary
inductively defined sets. It provides us a way of reasoning about the properties of structures
that are inductively defined.

Theorem. The Principle of structural induction (PSI). Let A ⊆ U be inductively defined by
the basis B and the constructor set K. Then a property P holds for all elements of A provided

(i) Basis. P is true for all basis elements.
(ii) Induction step. For each f ∈ K, if P holds for elements a1, . . . , aα(f) ∈ A

and f(a1, . . . , aα(f) = a, then P true for a.
Proof. Let C be the set of all elements of A that satisfy the property P,i.e. C = { a ∈ A |
P holds for a}. It is clear that C ⊆ A. It is therefore only necessary to show a ⊆ C. Clearly
from the inductive basis B ⊆ C. Also from (ii) it is clear that for any a1, . . . , aα(f) ∈ C and
f(a1, . . . , aα(f) = a that a ∈ C. Hence A ⊆ C and therefore A = C.

Example. Consider the following grammar of arithmetic expressions
e ::= n | (e+e) | (exe) | (e-e)

Let e be any expression and P be property
For every prefix1 e’ of e the number of left parentheses in e’ is greater than or equal to the
number of right parentheses.
This property holds for all expressions e in the language . P may be proved by PSI as follows:

1Given a string w of symbols, a string u is called a prefix of w if there is a string v such that w = u. v ,
where ’.’ denotes the just a position(or catenation) operation on strings. Clearly the empty string ε is a prefix
of every string and every string is a prefix of itself. u is called a proper prefix of w if v is a nonempty string.

Basis. It holds for all n ∈ N because no natural number has any parentheses.
Induction step. Let e be any expression not in the basis. Then e has only one of the following
forms viz. f � g, where � ∈ {+,x,-} and f, g are themselves expressions in the language. Then
we may assume the following.
Induction hypothesis.
(a) For every prefix f ’ of f , the number of left parentheses in f ’ is greater than or equal to the
number of right parentheses.
(b) For every prefix g’ of g the number of right parentheses in g’ is greater than or equal to the
number of right parentheses.

We now have to show that P holds for e = f � g. that is, we need to show that for every
prefix e’ of e, the number of left parentheses in e’ is at least as many as the number of right
parentheses in e’. For this it is necessary to consider the following cases, which are essentially
all the possible prefixes e’ of e
Case (i) e’= ε
Case (ii) e’=(
Case (iii) e’=(f’,where f’ is a prefix of f
Case (iv) e’=(f �
Case (v) (f � g’, where g’ is a prefix of g
Case (vi) e’=(f � g)
For each string e’ (which may be a prefix of a string of the language) Let L(e’) and R(e’) denote
respectively the numbers of left and right parentheses in e’. By the induction hypotheses we
may assume that property P holds for both f and g, i.e. for every prefix f’ of f and g’ of g, we
have the following inequalities.
(a) L(f’) ≥ R(f’) (b) L(g’) ≥ R(g’)
We prove case(v) and leave the rest of cases to be proved by the reader. We have e’=(f � g’
where g’ is a prefix of g. This yields the following

R(e’) = R(f) + R(g’)
L(e’) = 1 + L(f) + L(g’)

>L(f) + L(g’)
≥R(f) + R(g’)
= R(e’)

hence L(e’) ≥ R(e’)

We are now ready to show that even though structural induction seems to be more general than
mathematical induction,the are in fact equivalent. We leave it as an exercise for the reader to
prove that every proof by the principal of structural induction. To do this we need to define
the notion of depth of a member A, where A is an inductively define set.

However, we do realize that if A is not free then an element of A may not have a unique depth.
To this end we define the following.

Definition. Let A ⊆ U be a set inductively defined by a basis B and a constructor set
K. For each construction c(a) of a define the natural number 4(c(a)), called the depth of
construction of a as follows.

4(c(a)) = 0 for every element of the basis B.
if c(a) = f(c1(a1), . . . , cn(an)) for some n-ary (n ≥ 0) constructor f and elements
a1, . . . , an ∈ A, then

4(c(a)) = 1 + max(4(cn(a1)), . . . ,4(cn(an))).

Since an element of the set may have several different possible constructions, 4(a) may have
different values, though for a particular construction it would be unique.

Definition. Let A ⊆ U be a set inductively defined by a basis B and a constructor set K. For
every element a ∈ A, the depth of a is defined as a function δ : A → N, such that

δ(a) = min 4(c(a)) | c is a construction of a

Theorem. Every proof using PSI may be replaced by a proof using PMI.
proof. Let A be inductively defined by B, K, U and let P be a property of elements of A that
has been proved by PSI.
Let the property Q(n) for each natural number n be defined as

The property P holds for all elements of a depth
n

Then it is clear that the proof by PSI for each element of the basis is a proof of the basis step
for Q(0) and the induction hypothesis is the assumption
Q(m) holds for all 0 ≤ m < n.
The induction step is simply that if the induction hypothesis holds then Q holds for n. The
proof by PSI for each constructor in the induction step is a case for Q(n).

Inductive definitions of functions
Definition. Let a ⊆ U be inductively defined by B, K, and let V be any arbitrary set. Let
h: B → V
be a function and with every n-ary constructor f ∈ K, let
H(f): V n → V
be an n-ary function. Then a relation g ⊆ A x V is said to be inductively defined if g(b) =
h(b) for every b ∈ B and g(a) = H(f)(b(a1), . . . , g(an)) whenever f(a1, . . . an) = a.

Proposition. If a ⊆ U in the above definition is free (unambiguous) then the relation g given
above is well defined (i.e. g is a function g:A → V).
proof. Assume A is free and let g be as in the above definition, then we have to show that for
all a ∈ A, g(a) is unique. We prove this by PSI on A.

Since for all b ∈ B, there is no other way of constructing b, it follows that g(b) = h(b) is the
only image of b ∈ B. Suppose f(a1, . . . , an) = a ,for some n-ary constructor f ∈ K. By the
induction hypothesis g(a1) , . . . , g(an) all have unique values. Since A is unambiguous there is
no other way of constructing a and there is a unique definition of g(a) given by g(a) = H(r)
(g(a1), . . . , g(an)).

Note. This proposition on the inductive method of defining functions holds good even if f ∈
K is not a function. For if << a1, . . . , an >, a > and << a1, . . . , an >, a′ > both belong
to a relation f ∈ K, Then g(a) = H(r)(g(a1), . . . , g(an)) = g(a’), which makes g a well defined
function.

Also it is clear that if A is free then every element of a has a unique construction and therefore
the function 4 and δ coincide for each element.

Example. Consider the language L0 of propositional logic, where the basis B is the set of
atoms, (use capital letters like P, Q, R), and the language is defined by the BNF

p ::= P | (¬ p) | (p ∨ p) | (p ∧ p) | (p → p) | (p ↔ p)
Further let B = <{0,1}, . . .,+,-> be the algebraic system whose operations are defined as
follows.

0 . 0 = 0 . 1 = 1 . 0 = 0 and 1 . 1 = 1
1 + 1 = 0 + 1 = 1 + 0 = 1 and 0 + 0 = 0
0̄ = 1 and 1̄ = 0

Let τ : B → {0,1} be a truth value assignment for the propositional names in B. Then the
interpretation of propositional formulas in the truth assignment τ , is the function

T : L0 → {0, 1}
obtained by inductively extended τ as follows.
T [P] = τ [P]
T [(¬ p)] =T [P]
T [(p ∧ q)] = T [p].T [q]
T [(p ∨ q)] = T [p] + T [q]
T [p → q)] = T [p] + T [q]
T [(p ↔ q)] = T [p].T [q] + T [p].T [q]
We have assumed throughout that ’.’ has precedence over ‘+’ and ‘-’ has precedence over ‘.’.
It can be shown that T is a well defined function since the set PFB is free.

2.4 Exercises

1. Prove that version 1, 2 and 3 of PMI are mutually equivalent.

2. Find the fallacy in the proof of the following purported theorem.
Theorem: If X = Y then 2 = 1.

(a) X=Y ; Given
(b) X2=XY ; Multiply both sides by X
(c) X2 − Y 2 = XY − Y 2 ; Subtract Y 2 from both sides
(d) (X+Y)(X-Y)=Y(X-Y) ; Factor
(e) X+Y=Y ; Cancel out (X-Y) term
(f) 2Y=Y ; Substitute X for Y, by equation 1
(g) 2=1 ; Divide both sides by Y

3. Find the fallacy in the following proof by PMI. Rectify it and again prove using PMI.
Theorem:

1

1 ∗ 2
+

1

2 ∗ 3
+ . . . +

1

(n− 1)n
=

3

2
∗ 1

n

Proof: For n=1 the LHS is 1/2 and so is RHS. assume the theorem is true for some n > 1.
We then prove the induction step.

LHS =
1

1 ∗ 2
+

1

2 ∗ 3
+

1

(n− 1)n
+ . . . +

1

n(n + 1)

=
3

2
− 1

n
+

1

n(n + 1)

=
3

2
− 1

n
+

1

n
− 1

(n + 1)

=
3

2
− 1

n(n + 1)

which is required to be proved.

4. Let A be any set with a reflexive and transitive binary relation � defined on it. That is
to say, �⊆ A x A satisfies the following conditions.

(a) For every a ∈ A, a � a.

(b) For all a, b, c in A, a � b and b � c implies a � c.

Then show by induction that � ◦R =�n ◦R for all n ≥ 1.

5. Show using PSI that T is well defined.

6. The language of numerals in the arabic notation may be defined by the following simple
grammar
d ::= 0|1|2|3|4|5|6|7|8|9
n ::= d|nd
Define the value of a string in this language, so that it conforms to the normally accepted
meaning of a numeral

7. For the language of propositions we may also call the function τ a state, and look upon
the function T as defining the truth value of a proposition in a given state τ . Now redefine
the meaning of a proposition as the set of states in which the proposition has a truth
value of 1. if Σ denotes the set of all possible states i.e. Σ = {τ |τ : B → {0, 1}} then

(a) What is the domain and the range of the function ϕ?

(b) Define the function ϕ by structural induction.

(c) Prove using the principle of structural induction that for any proposition p, and a
state τ , T (p) = 1 if and only if tau belongs to the ϕ-meaning of p.

8. Let A be a language ,inductively defined by B, K, U. Define the set of syntax tree, TA of
the elements of A as follows:

(a) For each b ∈ B, there is a single node labelled b,

(b) For each n-ary operator � and a1, . . . , an, a ∈ A, if �(a1, . . . , an) = a, the syntax
tree t of a is a tree with root labelled by � and t1, . . . , tn as the immediate subtree
of t, where t1, . . . , tn are the syntax trees corresponding to a1, . . . , an respectively.

(a) Prove that every element of A has a unique syntax tree if A is free.

(b) Give an example to show that every syntax tree need not define a unique element of
A.

9. Let L0 be the language of propositional logic as defined in the last example. Then
intuitively speaking, a propositional formula p is a subformula of a propositional formula
q if the syntax tree of p is a subtree of the syntax tree of q.

(a) Define the notion of subformula inductively.

(b) Let of every formula q, SF(q) denote the set of all subformulas of q. Define SF(q)
inductively.

(c) Let p � q if and only if p is a subformula of q. Prove that � is a partial order on
L0.

Chapter 3

Propositional Logic

“Contrariwise”, continued Tweedledee, “if it was so, it might be, and if it were so,
it would be; but as it isn’t, it ain’t. That’s logic!”

Lewis Carroll, ”Through the Looking Glass”

3.1 Syntax of Propositional Logic

In this section we will use structural induction to define the syntax and semantics of proposi-
tional or sentential logic.

Definition 3.1 Let

• A be a countably infinite collection of propositional atoms, 1

• K = {¬,∧,∨,→,↔} be the set of operators with each operator being assigned a unique
arity2 defined by a function α : K→ N, such that α(¬) = 1, α(�) = 2, for � ∈ {∧,∨,→
,↔} and

• A and K be disjoint sets.

The language of propositional logic P0 is the smallest set generated from A and K.

1You may think of these atoms as playing a role similar to that of variables in any programming language.
2The arity of an operator simply signifies the number of operands that the operator requires. For example,

addition on numbers is a binary operation and hence its arity is 2. Operations on numbers such as
∑

are
unary (since they take a single operand such as a set or a sequence of numbers). Mathematically speaking, no
operator can have an undefined arity or infinite arity.

43

Alternatively we may define the language of propositional logic as the set of sentences generated
by the following grammar. This has the advantage that it allows us to also specify the other
conventions — such as precedence of operators, bracketing conventions etc. — while writing
and expressing propositions.

Definition 3.2 Let

• A be a countably infinite collection of propositional atoms,

• K ∪ {(,)} be disjoint from A,

• A ∪K ∪ {(,)} be the set of terminal symbols,

• φ be the single non-terminal symbol (also the start symbol of the grammar) and

φ ::= A | (¬φ) | (φ ∧ φ) | (φ ∨ φ) | (φ → φ) | (φ ↔ φ)

be the set of production rules where A ∈ A.

Then the language of propositional logic is the set of sentences generated by the above grammar.
The sentences of this language are also called well- formed formulas or wffs of propositional logic.

Example 3.1 The following are wffs of propostional logic, assuming that A, B, C, D are
atoms taken from the set A.

• (¬A)

• (A ∧B)

• (¬((A → B) → (C ↔ D)))

• ((A ∨D) ∧ ((¬C) ↔ D))

Example 3.2 The following are not wffs of propositional logic (Why not?)

• ((A∨ ↔) ∧ ¬C

• ((A ∨D) ∧ (¬C ↔ D))

• ¬((A → B) → (C ↔ D))

• ((A ∨D) ∧ ((¬C) ↔ D))

• (((A ∨D) ∧ ((¬C) ↔ D)))

The grammar above tells us that binary operators are all to be used in infix3 form and the
negation operator (¬) is to be used in prefix form 4.

We have used a fully bracketed syntax for propositions. This can make it quite cumbersome
to write propostions with so many parentheses. We shall however, we be much more relaxed
while writing out propositions by using the following precedence conventions:

Convention 3.1
↔ < → < ∨ < ∧ < ¬

is the increasing order of precedence of the operators. This implies that ¬ binds the tightest and
↔ binds the loosest.

Hence a propositional formula maybe written without parentheses provided it is clear what the
operands of each operator are, by applying the convention. And of course, we could always
override convention by using parentheses to enclose the appropriate entitites.

Example 3.3 Consider the following.

1. (A∨B)∧¬C. This clearly stands for ((A∨B)∧ (¬C)). The parentheses around ¬ have
been removed and so have the outermost pair of parentheses. The parentheses around
A ∨ B are necessary if we want the “∨” between A and B to bind more tightly than the
“∧” between B and ¬C.

2. On the other hand, the formula A∨B∧¬C, without any parentheses, would be interpreted
as being the same as (A ∨ (B ∧ (¬C))).

3.2 The model of truth

For any formal language it is important to be able to give a meaning to the symbols used in
the language. In general any formal language consists of variables symbols, constant symbols,
operators and punctuation symbols. The punctuation symbols (such as “(” and “)”) do not
carry any meaning in themselves; their role is restricted to ensuring readability and to aid in
parsing a sentence of the language. However, the other symbols in the language do carry with
them a meaning.

The notion of meaning itself may vary widely depending upon the kind of formal language
that is of interest to us. For example if the formal language is a programming language, then
meaning refers usually to the effect the various constructs have on the values being processed
by a program. In a logic, the notion of meaning is usually restricted to whether a sentence is

3That is, the operator appears between its operands
4the operator always precedes its operand

true or false. This primarily is the role of logic in mathemtatics. Ultimately, in any logical
formalization of a mathematical theory we are interested in how to reason about the “objects”
of the theory. We shall take the same view about the logical languages that we study in this
course. In the case of formal language models of natural languages (such as English) the notion
of meaning is much deeper and much harder to capture, since most sentences in such languages
usually refer to objects in the real-world. By a logic therefore, we refer to a formal language
and its semantics which along with notions of truth and falsity, define the meaning of each
sentence of the formal language.

While restricting our attention to the notion of truth (and falsity), we shall take a rather
simplistic view. We simply assume that any sentence in the language could either be true or
false5. This simplistic notion turns out to be quite powerful in modelling reasoning methods
which underlie a large part of mathematics. There are however systems of “multiple-valued
logics” and “fuzzy logics” where absolute truth and absolute falsity are merely the two extreme
points of a spectrum of truth and falsity6.

In defining the semantics of propositional logic, we use the boolean algebra of truth values
{0, 1} where 0 represents “false” and 1 represents truth. We also take the standard operations
of boolean algebra and augment it with two more operations.

Definition 3.3 Let B = 〈{0, 1}, { ,̄ ., +}, {≤, =}〉 be the 2-element boolean algebra where the
operations take their usual meanings. In other words, for a, b ∈ {0, 1} ⊆ N,

• ā = 1− a is the unary boolean inverse operation,

• a + b = max(a, b) is the binary summation operation which yields the maximum of two
boolean values regarded as natural numbers,

• a.b = min(a, b) is the binary product operation which yields the minimum of two boolean
values regarded as natural numbers,

• a ≤ b, and a = b denote the usual binary relations “less-than-or-equal-to” and “equals”
on natural numbers restricted to the set {0, 1}.

While ≤ and = are binary relations, it is possible to define corresponding binary operations as
shown below.

Definition 3.4 For a, b ∈ {0, 1} define

a ≤. b =

{
1 if a ≤ b
0 otherwise

a
.
= b =

{
1 if a = b
0 otherwise

5For instance, we assume there are no “shades of grey”
6There are “shades of grey” in such logics. In a multiple valued logic the spectrum comprising truth and

falsity consists of a finite collection of values (e.g. the set {0, 1, 2, . . . , n−1}), usually linearly ordered according
to the amount of truth or falsity that a value denotes. A fuzzy logic on the other hand uses a continuum, e.g.
the closed real interval [0, 1]

Armed with these operations we are now ready to define the semantics of propositional logic.

3.3 Semantics of Propositional Logic

Our notion of meaning is restricted to the two truth values 0 and 1 of the boolean algebra B
denoting falsity and truth respectively.

Definition 3.5 Let τ : A→ {0, 1} called a truth assignment, be a function which associates a
truth value with each atom in A. For each atom A under a truth assignment τ , τ(A) yields a
value 0 if A is false and 1 if it is true.

Then meaning (of a proposition φ) under the truth assignment τ is a function

T [[•]]τ : P → {0, 1}

defined by induction on the structure of the proposition as follows.

T [[A]]τ , τ(A) T [[¬φ]]τ , T [[φ]]τ
T [[φ ∧ ψ]]τ , T [[φ]]τ .T [[ψ]]τ T [[φ ∨ ψ]]τ , T [[φ]]τ + T [[ψ]]τ
T [[φ → ψ]]τ , T [[φ]]τ ≤. T [[ψ]]τ T [[φ ↔ ψ]]τ , (T [[φ]]τ

.
= T [[ψ]]τ)

We use the symbol , to denote that these are definitions and not mere equalities7.

3.4 Satisfiability, Validity and Contingency

Definition 3.6 A truth assignment τ satisfies a propositional formula φ if T [[A]]τ = 1. We
denote this fact by τ |= φ. Simlarly τ 6|= φ denotes the fact the τ does not satisfy φ. A formula
is said to be satisfiable only if there exists a truth which satisfies it.

Example 3.4 Consider three atoms A, B, C, and the formula A ∧B → C.

1. Let τ0 be a truth assignment in which all the three atoms are true. Clearly τ0 |= A∧B → C,

2. Let τ1 be a truth assignment in which all the three atoms are false. Again τ1 |= A∧B → C,

7A definition is also an equality and hence the left hand sides and right handsides of a definition can replace
each other always. However, they are equalities by definition and are not idenitites that are derived by other
means. For example an identity such as (a + b)(a− b) = a2 − b2 is an equality but is not a definition

3. Let τ2 be a truth assignment in which A and C are true. Clearly τ2 |= A ∧B → C,

4. Let τ3 be a truth assignment in which one of A and B is true and C is false. Clearly
τ3 6|= A ∧B → C,

5. The formula A ∧B → C is clearly satisfiable.

Definition 3.7 A formula is said to be unsatisfiable if there exists no truth assignment that
can satisfy it. An unsatisfiable proposition is also called a contradiction.

Example 3.5 The following formulas are unsatisfiable (assume A is an atom)

1. A ∧ ¬A

2. ¬(A ∨ ¬A)

Definition 3.8 A proposition φ ∈ P0 is said to be logically valid (denoted by |= p) , iff for
every truth assignment τ , τ |= p.

Definition 3.9 A proposition φ ∈ P0 is said to be unsatisfiable (or a contradiction), iff
for every truth assignment τ , T [[φ]]τ = 0.

Definition 3.10 A proposition is said to be contingent if it is neither a valid nor unsatisfiable.

A contingent statement is true for some (atleast one) truth assignment and false for some other
(atleast one) truth assignment.

Theorem 3.2 Let Γ = {φi|1 ≤ i ≤ n} be a finite set of propositions, and let ψ be any
proposition8. Then Γ |= ψ if and only if ((. . . ((φ1 ∧ φ2) ∧ φ3) ∧ . . . ∧ φn) → ψ) is a tautology.

Proof:

(⇒) Suppose Γ |= ψ. Logical consequence guarantees that for any truth assignment τ , if

T [[φ1]]τ = . . . = T [[φn]]τ = 1

then T [[ψ]]τ) = 1

8ψ could also be one of the propositions in Γ

Now assume ((. . . ((φ1 ∧φ2)∧φ3)∧ . . .∧φn) → ψ) is not a tautology. Then there exists a truth
assignment τ such that

T [[((. . . ((φ1 ∧ φ2) ∧ φ3) ∧ . . . ∧ φn) → ψ)]]τ = 0
i.e. (T [[(. . . ((φ1 ∧ φ2) ∧ φ3) ∧ . . . ∧ φn)]]τ ≤ T [[ψ]]τ) = 0
i.e. (T [[(. . . ((φ1 ∧ φ2) ∧ φ3) ∧ . . . ∧ φn)]]τ = 1 and T [[ψ]]τ) = 0
i.e. T [[φ1]]τ = . . . = T [[φn]]τ = 1 and T [[ψ]]τ) = 0

which contradicts the notion of logical consequence.

(⇐) Assume ((. . . ((φ1 ∧ φ2) ∧ φ3) ∧ . . . ∧ φn) → ψ) is a tautology, and suppose Γ 6|= ψ. Then
there exists a truth assignment τ such that

T [[φ1]]τ = . . . = T [[φn]]τ = 1 and T [[ψ]]τ) = 0

By working backwards over the steps of the previous proof, we obtain

T [[((. . . ((φ1 ∧ φ2) ∧ φ3) ∧ . . . ∧ φn) → ψ)]]τ = 0

from which it follows that ((. . . ((φ1∧φ2)∧φ3)∧ . . .∧φn) → ψ) is not a tautology, contradicting
our assumption.

2

Chapter 4

An Axiomatic Theory for Propositional
Logic

4.1 Introduction

The truth table technique that we have described to check out whether an argument is valid
is a rather cumbersome process, especially when the number of atomic proposition is large.
Even when an argument consists of just 6 atomic propositions we require a truth table with 64
rows! That means that with the truth table method we can only verify but small arguments.
Further the number of columns that have to be constructed depends upon the complexity of the
propositions involved. For each operator in the propositions a new column is required. Therefore
the size of the truth table increases exponentially with the number of atomic propositions. Other
methods such as semantic tableaus and resolution do provide more efficient and automated ways
of proving the validity of arguments, finding satisfying valuations etc.

Even more importantly, these model-checking methods are useful only for propositional ar-
guments. As we will see in the chapters on First Order Logic, it is impossible to construct
truth tables in all but the most trivial mathematical theories. This is because the truth ta-
bles or semantic tableau could be infinitary. When faced against such infinitary structures,
model-checking methods are neither adequate nor useful.

However, while model-checking methods possess the advantage that they are fast, simple and
can be automated easily on a modern day personal computer, they lack one important property
– viz they are nowhere near modelling the process of reasoning as understood in mathematics.
They are only useful for validating or falsifying arguments. After all, the main purpose of logic
is to formalize the process of reasoning, which allows one to use certain rules of logical deduction
to obtain conclusions that may be considered logically valid given certain assumptions. Also it
should disallow the use of invalid argument forms. As pointed out in the previous paragraph,
when we have to reason about structures that are infinitary in nature there are no methods
available except the method of deduction.

51

It would therefore be nice if we we could perform deductions using a small set of sound argument
forms. This set of the argument forms could be proved valid using the truth table technique.
However, it should not be necessary to resort to truth tables or to the semantics of the argument
in order to infer further facts form a given set of assumptions. It should be possible to obtain
conclusions by simply “looking” at the forms of the assumptions by a set of rules which allow
fresh conclusions to be drawn from the “patterns” of propositions. These rules, being sound,
allow us to draw valid conclusions, without using the “meaning” of the assumptions in any way.
Very often the notion of “meaning” in such systems is itself infinitary in nature.

Such a system of valid argument forms is called a deductive system (or proof) system. By its
very nature it prohibits the construction and the use of meaning in drawing correct conclusions
from a collection of assumptions. It allows only for small set of pattern matching and pattern
substitution rules.

A system based entirely on pattern matching and substitution has certain advantages. Firstly,
it is very general since it does not have to concern itself with underlying meanings. Secondly, it
is likely to be feasible to implement it algorithmically on machines, since the process of matching
and substitution is well understood by programmers and efficient algorithms do exist. However
as we shall see, for any given problem there may be many different ways of drawing the same
valid conclusion. In other words, there may be many different proofs. In such a case any
automatic system that implements the proof system, is best looked upon as a device to “check”
the correctness of a given proof rather than as a system to “create” a proof of a theorem.
In certain restricted cases, (especially where proof strategies are also programmed into the
system) we might be able to “create” or “generate” automatic proofs. Such systems are called
proof-assistants.

If a proof system is so constructed then it is clear that it should allow only valid arguments to be
proven. Secondly, if it allows for the construction of complex valid arguments from simpler ones,
then clearly it should preserve truth. Needless to say, if it is truth preserving then it should also
preserve validity or (to coin a new term) “tautologous-ness”. Therefore using combinations of
simple valid argument forms can give us more complex valid argument forms, and all of them
would be truth preserving.

In addition of course, such a system must be consistent, that is, it should not enable us to
prove contradictions unless the set of assumptions itself is inconsistent. Further it is desirable
that a deductive system be sufficiently powerful, so that all possible truth preserving arguments
can be proven. In other words we are looking for a deductively complete system.

In this chapter we define and prove some important properties of proof systems for propositional
logic. To keep the exposition simple, we use only a small subset of the original language of the
propositional logic that was previously defined. In other words we use only two connectives
initially. As will be evident later the other connectives may be defined in terms of the two
that we shall be using. We introduce the concepts of formal theories and proof systems. We
then define a formal theory of propositional logic and prove its consistency, completeness and
decidability. We also demonstrate the correctness of some important proof methods that are
used throughout mathematics and indeed in all forms of reasoning.

4.2 Formal theories

We define the notion of a formal theory. But briefly, a theory consists of some set of objects
(they could be mathematical or merely terms of a some formally defined language), a collection
of axioms and some rules of inference which allow us to prove properties about the objects of
the interest. A formal theory is one which satisfies certain conditions relating to whether it is
possible to verify certain properties algorithmically. We describe the idea of formal theory in
the following definition.

Definition 4.1

A formal theory T is said to be defined if it consists of the following.

1. A (countable) language L inductively defined from a countable collection of symbols, such
that the well-formed formulas or wffs of the language may be clearly separated from
other strings generated from the alphabet. More accurately, there exists an algorithm
which can determine for any string of symbols from the alphabet whether the string
belongs to the language. We say membership in the language is decidable if such an
algorithm exists. These symbols may be any collection of objects. In the case of proposi-
tional logic, we define the set of symbols to consist of all the atoms, the operators and the
parenthesis symbols, “(” and “)”. As usual we use the symbol L0 to denote the language
of propositions.

2. A set A ⊆ L of axioms. Usually a subset of the wffs is the set aside and called the
axioms of the theory. This set could be empty, nonempty but finite or even infinite. In
fact, in one of the proof systems we study, it is going to be empty.

3. A finite set of inference rules. Each inference ruleR of arity j for some j ≥ 0 is a relation
such that R ⊆ Lj×L and there exists an algorithm to decide membership in the relation.
In other words, for each rule of inference R, there exists a unique natural number j, such
that R ⊆ Lj ×L and there exists an algorithm such that for any pair 〈〈p1, . . . , pj〉, q〉 the
algorithm will determine whether the given pair belongs to R. If 〈〈p1, . . . , pj〉, q〉 ∈ R
then we say that q is a direct consequence of p1, . . . , pj by virtue of R. p1, . . . , pj are
called the premises (or the hypotheses) and q is called the conclusion. We also say
that the conclusion directly depends upon the premises. If j = 0 then the inference
rule is called an axiom schema.

We anticipate the notions of axiom schemas and rules of inference in propositional logic, by
using some of them as examples.

Example 4.1 Consider the following axiom schema.

X → (¬X → Y) (4.1)

It represents the set of all propositions that satisfy the structural constraint defined by the
schema. That is, this single schema represents the set of propositions

{p → (¬p → q) | p, q ∈ L0} (4.2)

The formulas in this set have the “shape” defined by the pattern in the schema 4.1. That
is for any propositions p and q, we say that p → (¬p → q) satisfies the shape defined by
X → (¬X → Y). Let p ≡ A → ¬B and q ≡ B → (¬A → B), where A and B are atoms. Then
(A → ¬B) → (¬(A → ¬B) → (B → (¬A → B))) belongs to the set in (4.2) defined above by
the schema in (4.1).

Example 4.2 Consider the following simple inference rule.

X → Y, Y → Z

X → Z
(4.3)

This 2-ary inference rule which essentially captures the transitivity of the conditional, represents
the set

{〈〈p → q, q → r〉, p → r〉 | p, q, r ∈ L0} (4.4)

Taking p ≡ A → B and q ≡ ¬B → A and r ≡ ¬B → ¬A, we find that the tuple of propositions

〈〈(A → B) → (¬B → A), (¬B → A) → (¬B → ¬A)〉, (A → B) → (¬B → ¬A)〉

does belong to the set in (4.4).

In example (4.2), the proposition (A → B) → (¬B → ¬A) is said to be a direct consequence
of the propostions (A → B) → (¬B → A) and (¬B → A) → (¬B → ¬A) by virtue of the rule
(4.3).

Note that an inference rule could be an infinitary relation. All that we want is that membership
in an inference rule must be decidable. This is most easily achieved by describing the “shapes”
of the premises and the conclusion of the inference rule in terms of the syntactic patterns of
the formulas involved in the rule. In fact it is obvious from the form of the rule (4.2) that it
describes the shape characteristics of the formulas involved in its premises and conclusion. The
same also holds for axiom schemas as in example (4.1).

This point will become clearer when we study proof systems for propositional logic. This is
especially true in the case when we need to define an infinite set of axioms for our theory.
If this infinite set of axioms can be partitioned into a finite collection of different “syntactic
patterns” then decidability of membership reduces to determining whether a given formula can
be expressed as a particular instance of one of the given finite set of patterns.

Definition 4.2 The axioms and rules of inference of a formal theory T together constitute a
proof system for the set of wffs of the theory.

Definition 4.3 A formal theory I is called axiomatic if there exists an algorithm which can
determine for any wff whether or not it is an axiom.

Hence for a formal theory (with a possibly infinite number of axioms!) to be axiomatic, it is
sufficient that there exists a finite collection of patterns or forms by which all the axioms can
be represented. In other words, if there are an infinite number of axioms, then they should all
be representable using some finite sequences of symbols, so that an algorithm may be employed
to determine the “axiom-hood” or otherwise of any arbitrary wff. Therefore in an axiomatic
theory it is common to find a finite set of axiom schemas, where each schema could represent
an infinite number of axioms, all of which have a similar pattern.

Notes

1. Very often we regard axioms (and axiom schemas) as rules of inference with an empty set
of premises .

2. The main difference between an axiom and an axiom schema is that whereas an axiom
is a single wff, an axiom schema denotes a set (possibly infinite) of wffs all of which have
the “shape” defined by the schema.

Definition 4.4 Let Γ be an arbitrary set of wffs in the lanaguage of a theory T . A witnessing
deduction π is a finite sequence p1, p2, . . . , pn of wffs such that for each pi, 1 ≤ i ≤ n,

1. pi ∈ Γ, or

2. pi is an axiom, or

3. p1 is a direct consequence of some wffs preceding it in the sequence, by virtue of a rule of
inference. That is pi is a direct consequence of wffs pk1 , . . . , pkm in π by virtue of some
m-ary rule of inference such that kj < i for each kj, 1 ≤ j ≤ m.

This witnessing deduction is also called a (formal) proof of pn from Γ and we write Γ `T pn

to denote that there exists a proof of pn from Γ. The subscript “T ” is often omitted when the
theory being referred to is understood.

The above definition of a formal proof captures the following points we already expect correct
proofs of a conclusion q from some set of hypotheses represented by Γ, to satisfy.

1. A proof is a sequence of steps.

2. The first step of the proof can only be an assumption from the set of hypotheses or an
application of an axiom (schema).

3. Every other step if it is not an assumption or an application of an axiom (schema) must
follow from previous steps (and should possess adequate justification!). This ensures that
there is no circularity in proofs.

By keeping the definition of a proof so simple, we have not tackled the question of what
adequate justification really means. Often in mathematics we use previously proven theorems
as justification. We do not actually formalize it here in the concept of a formal proof for
the simple reason, that we could always replace such a justification by a copy of the proof of
the theorem referred to. This simplicity in the definition of a formal proof also ensures that
circularity cannot creep in indirect ways (e.g. the proof of theorem T1 requires theorem T2,
while the proof of theorem T2 requires yet another theorem T3 and the proof of T3 requires
T1, etc.). In practice, however we will often use the results of previously proven theorems as
justification1. It is then to be understood as trying to abbreviate the proof for convenience
without losing any rigour.

Definition 4.5 Let p1, p2, . . . , pn ≡ q be a proof of q from Γ. Construct the following directed
graph of at least n nodes, such that

• each node represents a wff in the proof

• there are directed edges from the node representing pi in the proof to nodes pk1 , . . . , pkm in
the graph if and only if pi is a direct consequence of pk1 , . . . , pkm, by virtue of some m-ary
rule of inference.

• Replicate nodes which have more than one edge coming in to ensure that every node has
in-degree at most 1.

The resulting graph is called a proof tree for Γ ` q, rooted at q.

It should be intuitively clear to the intelligent reader from the above construction that the
graph so obtained is indeed a tree.

Questions.

1. How do you know the constructed graph is acyclic?

2. What can you say about the wffs represented by isolated nodes in the dag ?

3. What you say about the wffs at the root of the resulting proof tree ?

4. What you say about the wffs which are the leaves of the resulting proof tree?

5. What can you say about wffs in Γ that do nopt occur in either the proof or the proof
tree.

1Think of the theorem as the name of a macro whose expansion is its proof.

Definition 4.6 A (formal) theorem of a theory T is a wff q such that there exists a proof
of q from an empty set of premises. We write `I q to denote that q is a theorem in I.

In other words q is a formal theorem in T if there exists a sequence p1, . . . , pn such that each
pi (1 ≤ i ≤ n) is either an axiom or a direct consequence of some of the preceding wffs
in the sequence by virtue of a rule of inference. Further p1 can only be an axiom. Also of
necessity every proof is a finite sequence. Even though sometimes infinitary proofs are used in
mathematical theories (usually by inductive arguments), the finitary nature of a proof is often
taken for granted.

Remarks.

1. Every premise in Γ is a consequence of Γ.

2. The first step in a proof cannot be obtained by virtue of a rule of inference.

3. If q is a theorem then the first step in any proof of q must be an axiom.

4. Every axiom of a formal theory is also a theorem, since there is a proof of length 1 whose
first and last step is the axiom.

The facts in the following theorem may be proved by the reader using the definitions we have
given so far.

Theorem 4.1 Let Γ and ∆ be sets of wffs in a theory T .

Monotonicity If Γ ⊆ ∆ and Γ ` q, then ∆ ` q.

Compactness ∆ ` q if and only if there is a finite subset Γ ⊆ ∆ such that Γ ` q.

Substitutivity If ∆ ` q and for each p ∈ ∆, Γ ` p, then Γ ` q.

Definition 4.7 A theory is called decidable if there exists an algorithm, which can determine
whether a given wff is a theorem or not. Otherwise the theory is said to be undecidable.

It is important to note that nowhere in a formal theory does the semantics of the language
(in case the wffs of the theory are defined linguistically) play a role. However in constructing
a formal theory, we must ensure that the theory is in fact, compeletely reconciled with the
semantics of the language. Otherwise the theory is either inconsistent or it is a theory of
something else. In the following section we progress towards such a consistent and complete
theory for Propositional Logic. Needless to say, it would involve using semantics to justify the
axioms and the inference rules of the theory, though the theory itself may be presented without
any indication of the semantics of the language that we are considering.

4.3 A Hilbert-style Proof System for Propositional Logic

In this section we propose a formal theory H0 for Propositional Logic. We choose a minimalist
version of both the language and the system of axioms that we need. However, we would not
be sacrificing either the expressive power of the language or the set of theorems that may be
proven.

In contrast having a rich system may pose several problems. Firstly the system may be incon-
sistent, in the sense that unless we are very careful, every wff may actually be a theorem of
the system. Such a theory would be of little use to man or beast as it would allow us to prove
contradictory statements.

Secondly, while a rich system of axioms and inference rules (which is consistent) is very helpful
for a human being to construct proofs (it also has the advantages that there may be several
different ways of proving the same thing), it is easier to deal with a small but complete set of
axioms and inference rules which allow you to prove all provable facts.

The ease of dealing with a small system relates to the ability to show first of all that the
system is consistent which often would require a tedious case analysis on the axioms and rules
of inference. It may also involve constructing actual models which may be used in real life
reasoning. Model construction can be made easier by reducing the system to a minimal one.

Moreover, at a more fundamental level, there is the question of why should there be a large
proof system, if a smaller and more compact one can do the same job.

There are several proof systems for propositional logic available, and we will consider only one
of them in detail. We denote this particular theory by H0.

Definition 4.8 The formal theory H0 consists of

1. The language L0(¬,→) inductively defined from a countable set of atoms and having as
constructors only the operators ¬ and →. The well-formed formulas of the theory are the
elements of L0(¬,→).

2. There are three axiom schemas named K, S, N and a single rule of inference named MP
(standing for modus ponens). They are shown below.

(K) ` X → (Y → X)
(S) ` (X → (Y → Z)) → ((X → Y) → (X → Z))
(N) ` (¬Y → ¬X) → ((¬Y → X) → Y)
(MP) (X → Y), X ` Y

Notational Conventions and Explanatory Comments.

1. We will generally avoid the use of unnecessary parentheses, by assuming that ¬ has a
higher precedence than → and → associates to the right. This is largely for convenience
and is not part of the formal theory.

2. In order to make clear difference between an axiom and an axiom schema, we use the
upper case roman letters ’X’, ’Y ’, ’Z’ (possibly decorated with subscripts, superscripts
etc.) to denote “place-holders” (or names of places in a context, where arbitrary wffs can
be substituted in those places, with the proviso that if any two places have same name
then the same wff is substituted in both places).

3. For example, the axiom schema K represents an infinite number of axioms all of which
have the same “shape” constraint. That is, K denotes the set of formulas

{(p → (q → p)) | p, q ∈ L0}

Similarly the rule MP denotes the relation

{〈〈P → q, p〉, q〉 | p, q ∈ L0}

Similar comments apply to other axiom schemas.

4. It has become a practice in any rule of inference to write out the premisses simply sepa-
rated by commas, without using the conventional set braces (“{” and “}”).

5. We use the “turnstile” symbol (`) to separate the hypotheses from the conclusion in a
rule of inference. An axiom schema (or an axiom) is written starting with the “turnstile”
to denote the fact that it has an empty set of premises.

Exercises

1. Show that every axiom is a tautology.

2. Show using the truth table technique that MP is a valid inference rule.

3. Design algorithms to determine whether a wff in L0 is an axiom.

4. Design an algorithm to determine whether for any three wffs p,q,r of L0 , r is obtained
from p and q by virtue of the modus Ponens rule of inference.

In the sequel we will prove various theorems of the propositional logic. As a matter concerning
proof methodology we may state here that for the sake of convenience , brevity and to avoid
repetition we will often use previously proved theorems in performing deductions. This is
perfectly justified by substitutivity and is convenient so as to avoid repetition. Similarly, we

might also define and prove new rules of inference from the existing ones and invoke them in
further proofs2.

We will number the theorems of the formal theory of propositional logic either as T1, T2, . . .etc,
or in certain cases where there is a well known name we will use the name. Similarly the new
rules that we introduce will be numbered R1, R2 . . . etc. in the sequence in which they appear.

We begin with the reflexivity property of the conditional. To aid the reader in understanding
proofs, we give the substitutions that we make in the axioms and the rule of inference as part
of the justification of every step.

Lemma 4.1 (Reflexivity) ` p → p for propostion p.

Proof: Let p be any wff of L0.

1. p → ((p → p) → p) K{p/X, p → p/Y }
2. (p → ((p → p) → p)) → ((p → (p → p)) → (p → p)) S{p/X, p → p/Y, p/Z}
3. ((p → (p → p)) → (p → p)) MP(2, 1)

4. p → (p → p) K{p/X, p/Y }
5. p → p MP(3, 4)

2

The following diagram illustrates the notion of a proof tree for lemma (4.3).

For the sake of brevity we have labelled each node by its sequence number in the proof.

2An important issue and one which we must guard against is that of circularity i.e. proving a theorem by
using another proof depends upon the theorem under consideration . But a careful analysis of whatever we
have stated in the foregoing should convince the reader that there is nothing circular in using the result of a
previously proved theorem to prove a following theorem

r

rr

r r

�
�

�
���

�
�

�
���

�
�

�
���

@
@

@
@@I
�

�
�

���

@
@

@
@@I

5

4

3

1 2

Proof tree for theorem T1(Reflexivity)

Digression.
T1. ` X → X is really a theorem of I in conformance with the definition of a formal theory.
However we may prove certain properties about a formal theory itself. For instances, the fact
that we have earlier demonstrated about formal theories are proved not within any formal
theory but in an informal style as is done in mathematics. Hence any statement about a formal
theory or about theories in general are called meta-statements and theorem, lemmata etc.
that are necessary are appropriately enough called meta-theorems

In most natural language discourses, the distinction is seldom made between a statement and
a statement about statements. This is one reason made why reasoning in natural language
is prone to confusion. But more importantly, by not making these distinctions, one might be
led to inconsistency.The problem of self-reference which led to the paradoxes 3 both in natural

3The liar paradox is a simple example. Consider the statement ”This statement is false”. The question is
whether ”this statement is false” is true or false. If this statement were true then the statement is obviously
false. On the other hand if this statement were false, then the statement is true. Hence the statement is both
true and false.

Another simple example is the Grelling paradox. An adjective is said to be auto-logical if the property denoted
by the adjective is true for the adjective. Otherwise the adjective is said to be hetero-logical. For example the
word ”poly-syllabic” is auto-logical because ”poly-syllabic” is poly-syllabic whereas ”mono-syllabic” is not a
”mono-syllabic” word. The question now is whether the adjective ”hetero-logical” is heterological or not. We
leave it to the reader to prove that it is both hetero-logical and not hetero-logical.

language and in set theory4 may be attributed directly to this lack of distinction between
statements and meta-statements. In fact we are discussing the properties of one language
containing English and a large part of mathematics.

End of digression.

Most mathematical theory may be stated in the form ”if p then q”, for some propositions p
and q. Very often the proof of such a theorem begins by assuming that p is true and then goes
on to show that q is also true. In other words, whereas the statement of the theorem is of the
forms ` p → q the proof really is a proof of p ` q. The following theorem and its converse show
that the two equivalent (at least in the formal theory I0).

Meta-theorem(The Deduction Theorem). If Γ, p ` q then Γ ` p → q for all wffs p, q of
L0 and Γ ⊆ L0

Proof. Let the sequence p1, p2, . . . , pn ≡ q be a proof of p → q from Γ. This would follow from
the following stronger claim, which we prove by induction.

Claim. Γ ` p → pi for all i, 1 ≤ i ≤ n
Proof of Claim. By induction on i.
Basis: i=1. by definition pi must be either a premise or an axiom.
in other words, we have three cases, pi ≡ p, pi ∈ Γ or pi is an axiom.
Cases: pi ∈ Γ or pi is an axiom. Then
1. Γ ` pi Premise
2. Γ ` pi → (p → pi) A1, X ≡ pi, Y ≡ p
3. Γ ` p → pi 1,2,MP
Case: pi ≡ p. The claim follows from reflexivity (T11) and fact 1.

That proves the basis of the induction.

Induction hypothesis : Γ ` p → p for all k, 1 ≤ k < i ≤ n. |

Now consider pi. Now we have four cases of which three are as in the basis, viz. pi ≡ p,
pi ∈ Γorpi is an axiom. The proof of the claim for all these cases is identical to the proof of
the basis.
The last case is treated below.

Case: pi was obtained from pjandpm by virtue of MP, j<i and m<i.
Then without loss of generality we may assume pm ≡ pj → pi. By induction hypothesis we

4For a discussion on Russell’s, Cantor’s and Burali-Forti’s paradoxes, refer to any good text on axiomatic
set theory.

know Γ ` p → pj and Γ ` p → pm, i.e.Γ ` p → (pj → pi) Consider the proofs in which p → pj

and p → (pj → pi) are consequence of Γ. We assume that p → pj was obtained in j’ steps and
p → (pj → pi was obtained in m’ steps. Since both proofs are consequences of some set of the
premises we may concatenate them in a larger proof and continue the proof as follows.

j′ + m′ + 1. (p → (pj → pi)) →
((p → pj) → (p → pi)) A2, X ≡ p, Y ≡ pj, Z ≡ pi

j′ + m′ + 2. ((p → pj) → (p → pi)) m′, j′ + m′ + 1,MP

j′ + m′ + 3. p → pi j′, j′ + m′ + 2,MP

Hence Γ ` p → pi

End of claim

For i=n, it is clear from the claim that Γ ` p → pn.

Meta-theorem (Converse of the deduction theorem). For all Γ, p, q, if Γ ` p → q then
Γ, p ` q.
proof. Assume Γ ` p → q has a proof of length m. We reproduce the same proof with p as an
added assumption and extended it as follows.

4.4 A Natural Deduction Proof System

Rules of Natural Deduction

(¬ − I)
Γ, φ ` ff

Γ ` ¬φ
(¬ − E)

Γ,¬φ ` ff

Γ ` φ

(∧ − I)
Γ ` φ, Γ ` ψ

Γ ` φ ∧ ψ

(∧ − E1)
Γ ` φ ∧ ψ

Γ ` φ
(∧ − E2)

Γ ` φ ∧ ψ

Γ ` ψ

(∨ − I1)
Γ ` ψ

Γ ` φ ∨ ψ
(∨ − I2)

Γ ` φ

Γ ` φ ∨ ψ

(∨ − E)
Γ ` φ ∨ ψ, Γ ` φ → χ, Γ ` ψ → χ

Γ ` χ

(→ −I)
Γ, φ ` ψ

Γ ` φ → ψ
(→ −E)

Γ ` φ → ψ, Γ ` φ

Γ ` ψ

(↔ −I)
Γ ` φ → ψ, Γ ` ψ → φ

Γ ` φ ↔ ψ

(↔ −E1)
Γ ` φ ↔ ψ

Γ ` φ → ψ
(↔ −E2)

Γ ` φ ↔ ψ

Γ ` ψ → φ

4.5 Natural Deduction proofs of the Hilbert-style ax-

ioms

In this section we use the natural deduction system to derive some important formulas and
axiom-schemas. In particular we prove one of the deMorgan laws and the axioms of Hilbert-
style proof systems.

Example 4.3 Use the Natural deduction system to prove the formal theorem

` ¬(φ ∧ ψ) → (¬φ ∨ ¬ψ)

Solution. Check the proof tree (Fig. 4.1) whose nodes are labelled with step numbers from the
proof.

1.

1. ¬(φ ∧ ψ) AP1
2. φ ∨ ¬φ Proved in class

3.

[
1. ¬φ AP2
2. ¬φ ∨ ¬ψ 1.3.1,∨I

]

4. ¬φ → (¬φ ∨ ¬ψ) 1.3,→ I

5.

1. φ AP3

2.

1. ψ AP4
2. φ ∧ ψ 1.5.1, 1.5.2.1,∧I
3. (φ ∧ ψ) ∧ ¬(φ ∧ ψ) 1.1, 1.5.2.2,∧I

3. ¬ψ 1.5.2,¬I

4. ¬φ ∨ ¬ψ 1.5.3,∨I

6. φ → (¬φ ∨ ¬ψ) 1.5 → I

7. ¬φ ∨ ¬ψ 1.2, 1.4, 1.6,∨E

2. ¬(φ ∧ ψ) → (¬φ ∨ ¬ψ) 1,→ I

Example 4.4 Here we prove the axiom schema K of the Hilbert-style proof system using Nat-
ural deduction rules.

0.0.1. p, q ` p AP

0.1. p ` q → p → −I(1.1)

1. ` p → (q → p) → −I

Example 4.5 We prove the axiom-schema S of the Hilbert-style proof system.

1.6 1.7

1.3.1 1.3.2

1.31.21.1

2

1.5.2.1 1.5.2.2 1.5.2.3

1.5.1
1.5.2

1.5.3 1.5.4

1.5

1.4

1

Figure 4.1: The (ecologically sound) proof tree

0.0.0.1. p → (q → r), p → q, p ` p → q AP

0.0.0.2. p → (q → r), p → q, p ` p AP

0.0.0.3. p → (q → r), p → q, p ` q → −E

0.0.0.4. p → (q → r), p → q, p ` q → r → −E

0.0.0.5. p → (q → r), p → q, p ` r → −E

0.0.1. p → (q → r), p → q ` p → r → −I

0.1. p → (q → r) ` (p → q) → (p → r) → −I

1. ` (p → (q → r)) → ((p → q) → (p → r)) → −I

Example 4.6 This example gives the proof of the axiom-schema N of the Hilbert-style proof
system.

0.0.0.1. ¬q → ¬p,¬q → p ` p

0.0.0.2. ¬q → ¬p,¬q → p ` ¬p

0.0.0.3. ¬q → ¬p,¬q → p ` p ∧ ¬p

0.0.0.4. ¬q → ¬p,¬q → p ` ff ¬ − E

0.0.1. ¬q → ¬p,¬q → p ` q ¬ − E

0.1. ¬q → ¬p ` (¬q → p) → q → −I

1. ` (¬q → ¬p) → ((¬q → p) → q) → −I

Laws of logical equivalence

To complete the algebraic structure of a Boolean algebra we have introduced
two constants tt and ff in the language of propositional logic which corre-
spond to the truth values 1 and 0 respectively. But they may be defined as
abbreviations of the formulae φ ∨ ¬φ and φ ∧ ¬φ respectively.

(φ ∨ ψ) ∨ χ ⇔ φ ∨ (ψ ∨ χ) Associativity (φ ∧ ψ) ∧ χ ⇔ φ ∧ (ψ ∧ χ)
φ ∨ ψ ⇔ ψ ∨ φ Commutativity φ ∧ ψ ⇔ ψ ∧ φ
φ ∨ φ ⇔ φ Idempotence φ ∧ φ ⇔ φ
φ ∨ ff ⇔ φ Identity φ ∧ tt ⇔ φ
φ ∨ tt ⇔ tt Zero φ ∧ ff ⇔ ff
φ ∧ (ψ ∨ χ) ⇔ (φ ∧ ψ) ∨ (φ ∧ χ) Distributivity φ ∨ (ψ ∧ χ) ⇔ (φ ∨ ψ) ∧ (φ ∨ χ)
¬(φ ∨ ψ) ⇔ ¬φ ∧ ¬ψ De Morgan ¬(φ ∧ ψ) ⇔ ¬φ ∨ ¬ψ
φ ∧ (¬φ ∨ ψ) ⇔ φ ∧ ψ Absorption φ ∨ (¬φ ∧ ψ) ⇔ φ ∨ ψ
φ ∧ (φ ∨ ψ) ⇔ φ Adsorption φ ∨ (φ ∧ ψ) ⇔ φ
¬¬φ ⇔ φ Negation ¬tt ⇔ ff , ¬ff ⇔ tt
φ ∧ ¬φ ⇔ ff Complements φ ∨ ¬φ ⇔ tt
φ → ψ ⇔ ¬φ ∨ ψ Conditional
φ ↔ ψ ⇔ (φ → ψ) ∧ (ψ → φ) Biconditional φ ↔ ψ ⇔ (φ ∧ ψ) ∨ (¬φ ∧ ¬ψ)

4.6 Derived Operators and Derived Inference Rules

The Language L0 consists of only two operators.However they are adequate for the whole of
propositional logic. The operators may be defined in terms of these as follows. Within the
context of L0 the other operators are derived operators. They are defined as follows.

p ∨ q ≡ (¬p → q)
p ∧ q ≡ ¬(p → ¬q)
p ↔ q ≡ (p → q) ∧ (q → p)

There are several deductively complete systems for logic. Many of them are very small. But
they also have the disadvantage that they are not very intuitive and intuitively valid deductions
require a great deal of thought and practice in such systems. However , we could always define
new derived rules of inference which are intuitively appealing to them for future use , so that
they are very i complex proofs then become greatly simplified by appealing to them.

Some of these rules that are considered necessary are already familiar to the reader from our
earlier discussion on validity using the truth table method. Consider the following rules of
deduction. It is very easy to see by means of the truth table that they are all valid argument
forms. But even more interesting and important is the fact that these rules may be safely added

as new theorems in the systems
Ω∼0,where the other operators are new derived operators are

regarded as derived operators of the language L0.

We leave the proofs of these derived rules as the exercise for the reader.

Exercises.

1. Prove the following rules of inference in the system
Ω∼0.

Simplification. S1 X ∧ Y ` X S2. X ∧ Y ` Y
Conjunction. C1. X, Y ` X ∧ Y C2. X, Y ` Y ∧X
Addition. A1. X ` X ∨ Y A2. X ` Y ∨X
Disjunctive Syllogism. DS1. X ∨ Y,¬X ` Y DS2. X ∨ Y,¬Y ` X
Modus Tollens. MT. X → Y,¬Y ` ¬X
Constructive Dilemma. CD. X → Y, Z → W , X ∨ Z ` Y ∨W

2. Prove using the truth table technique that the above argument forms are all valid.

3. Prove all the logical equivalences given in the last chapter using the proof system of
Ω∼0.

—————————————————————————

Reasoning in Natural Language

We now posses enough ammunition in the form of rules and axioms and theorems to be able to
reason correctly about valid arguments without resorting to the truth-table technique. In fact,
by using the derived rules given in the last exercise set, one may actually almost the way one
would reason with a child in the natural language. We give examples of a few such arguments
and their proofs.

Example. Consider the following argument form and its proof which is given without repeat-
ing the premisses. The conclusion is separated from the last premiss by a ’`’ and a line separate
the premisses from the rest of the proof of the argument.

1. A ∨ ¬C
2. C ∨D
3. ¬A ` D ∨B

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

4. ¬C 1, 3, DS
5. D 2, 4, DS
6. D ∨B 5, A

Example. Here is another example.

1. ¬A → (C → E)
2. B ∨D → (F → (G → H))
3. A ∨ (B ∨D)
4. ¬A ∧ (C ∨ F) ` E ∨ (G ∧H)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

5. ¬A 4, S
6. C → E 1, 5, MP
7. B ∨D 3, 5, DS
8. F → (G ∧H) 2, 7, MP
9. C ∨ F 4, S
10. E ∨ (G ∧H) 6, 8, 9, CD

Logical Equivalence and Rule E

As must be clear to any reader who has attempt the exercises of the last chapter there are a
large number of equivalence that are tautologies (see question 8 in the exercises of the last

chapter). It was also mentioned that p ↔ q is a tautology exactly when both p and q have the
same truth value – that is,in any state they are either both true in the state or they are both
false. Therefore as far as questions of validity and deductions are concerned it should be clear
that if p ↔ q is a tautology then the replacement of one by the other will not affect the validity
of an argument . In fact we may state that as a theorem.

Metatheorem. If ` p ↔ q and Γ ` p then Γ ` q.

We leave the proof of this theorem as an exercise and concentrate instead on its application.

Example. Consider the following argument on the existence of God under the assumption
that there is evil in the world.

• If God exists then he is omnipotent and beneficient to all.

• If God is omnipotent He is able to prevent Evil.

• If God is beneficient to all then He is willing to prevent evil.

• If there is Evil, then God is not willing or not able to prevent it.

• There is Evil.

• Therefore there exists no god.

We ”symbolize” (i.e. give appropriate symbols to identify the various atomic propositions in
the argument and then rewrite the premisses and the conclusion using these symbols and the
logical connectives) the above argument as follows.

G God exists
O God is Omnipotent
B God is Beneficient to all
W God is Willing to prevent evil
A God is Able to prevent evil
E There is Evil

Argument and its proof are given below:

1. G → (O ∧B)
2. O → A
3. B → W
4. E → ¬W ∨ ¬A
5. E ` ¬G

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

6. ¬W ∨ ¬A 5,4,MP
7. ¬(W ∧ A) 6,E
8. ¬A → ¬O 2,E
9. ¬W → ¬B 3,E
10. ¬O ∨ ¬B 9.8.6,CD
11. ¬(O ∧B) 10,E
12. ¬G 1,11,MT

In the above example note the steps 7, 8 and 9, where E is given as a justification. A closer
look at these steps shows that we have used one of the tautology (p → q) ↔ (¬q → ¬p) .
In the previous chapter we also emphasized that logical equivalence is in fact, a congruence
relation. Hence given any proposition r in which p occurs as a subformula, the truth value
of the proposition remains unaffected by systematic replacing all occurrence of p by q. Put
algebraically, this is possible because logical equivalence is a congruence relation and hence
preserve not truth or validity, it also preserves falsity and inconsistency. The above theorem
in fact may be extended to take this property of the logical equivalence to give us a new rule,
which we call the equivalence rule.

Meta-Theorem (Rule E). Let r be a wff containing the wff p as a subformula. Let the wff s
be obtained from r by replacing one or more occurrences of p in r by q. If ¬p ↔ q and Γ¬r
then Γ¬s.

The above meta theorem allows us to do pattern matching and substitution on arbitrary sub-
formulas that may be nested deeply within some formula. This is in direct contrast to the other
rules of inference , which permit a pattern matching and substitution only at the top levels of
formulas and in order to perform such substitutions deeply, it is usually necessary to extract
those subformulas out and then apply the rules of inference. We refer to all application of this
special rule of inference by the name E (standing for ”equivalence”)

In the last example the context in each case where the rule E was applied not on any proper
subformula,but to whole formulas. This need not always be the case,since the above meta
theorem allows its application even for proper subformulas in a proof.the following example
illustrates its use in its complete generality.

Example (Taken from McKay). Consider the following argument of home finances. We sym-
bolize the prepositions in the argument in a manner that should be obvious to the intelligent
reader.

1. If we buy a cd player, we must cut down on small purchases or our financial plans will

be ruined.

2. If we buy more compact discs, we will not be cutting down on small purchases.

3. But if we buy a CD player, we will buy more compact discs.

Therefore if we buy a cd player our financial plans will be ruined.

The three premisses and the proof of conclusion are given below. In each line which has been
justified by an appeal to the rule E, we have also mentioned, within braces, the form of logical
equivalence (that is a tautology) that has been used to perform replacements.

1. P → (C ∨R)
2. M → ¬C
3. P → M ` P → R

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

4. P → ¬C 2,3,HS
5. P → ¬¬C ∨R 1,E {p ⇔ ¬¬p }
6. P → (¬C → R) 5,E {¬p ∨ q ⇔ p → q}
7. P ∧ ¬C → R 6,E {p → (q → r) ⇔ p ∧ q → r }
8. ¬C ∧ P → R 7,E {Commutativity of ∧ }
9. ¬C → (P → R) 8,E {p → (q → r) ⇔ p ∧ q → r }
10. M → (P → R) 2,9,HS
11. P → (P → R) 3,10,HS
12. P ∧ P → R 11,E { p → (q → r) ⇔ p ∧ q → r }
13. P → R 12,E { Idempotence of∧ }

In cases where the logical equivalence used are not exercises already solved by the reader we

urge him to prove these equivalences in
Ω∼0.

—————————————————————————–

Exercise

1. Prove metatheorem 1 stated above.

2. Prove metatheorem 2 stated above (Hint. Use structural induction)

——————————————————————————

More examples on reasoning – Conditional proofs and indirect proofs.

We illustrate in the following examples the use of the deduction theorem in performing condi-
tional proofs, indirect proofs and proofs by cases. A proof which uses the deduction theorem
directly is called a conditional proof and one which proves statement by proving a contradic-
tion is called an indirect proof.

Example. We consider the CD player example which was previously proved by a direct proof
and now give a proof which uses the deduction theorem.

1. P → (C ∨R)
2. M → ¬C
3. P → M ` P ⇒ R

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| 4. P Assumption Premiss (AP)
| 5. M 3,4,MP
| 6 C ∨R 1,4,MP
| 7. ¬C 2,5,MP
| 8. R 6,7,DS
9. P → R 4-8,DT

Note that the conditional proof steps 4-8 in the above example form a new scope5 (we indent it
to indicate that it is a new scope). It is very important to realise that in any proof which implies
the deduction theorem, preservation of truth (which is the hall-mark of a valid argument)
crucially depends upon the truth of the new premiss. Hence what is considered truth preserving
in the scope of the new premiss may not be true at all in the proof outside scope. Hence none
of the steps in the new scope can be referred to outside the boundaries of that acope. It should
be intuitively clear that all proofs by contradiction reallly do add an extra premiss and use the
deduction theorem to prove that the assumption of the premiss leads to a contradiction i.e. the
premiss is actually false.

However, within a given scope we may use steps that lie in an enclosing scope without any fear
of voilating the validity of the argument.

The conditional proof methaod and the restrictions we have imposed in the previous paragraph
find their echoes everywhere in mathematics. Since most theorems are expressed in the form of
conditional sr=tatements, many proofs would begin by assuming the antecedent and show that
the consequence follows from the antecedent by appealing to the premisses and to previously

5The rules governing the use of scopes are very similar to the rules of reference and usage of variables in
statically scoped programming languages like Pascal, ML etc. (as oppose to the dynamically scoped languages
like LISP, Scheme etc.)

proved lemmata/theorems and/or postulates/definitions. But no proof of a theorem would be
considered correct if it appealed to some step in the proof of another theorem in which an extra
assumption has been made (which subsequently leads to a contradiction). We may think of
the indented portion in the above example as a proof of the conditional statement immidiately
following it. Further we may consider the statement immidiately following a conditaional proof
to be a lemma which was not previously proved, but is somehow necessary for the proof of a
main theorem. Then the proof of the theorem would obviously appeal only to the lemma and
not the steps leading to its proof. Consider the following example which has two conditional
nested one within the other.

Example

1. A → B
2. C ∨D ` A → (¬D → (B ∧ C))

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| 3. A AP
| 4. B 1,3,MP
| | 5. ¬D AP
| | 6. C 2,5, DS
| | 7. B ∧ C 4,7,C
| 8. ¬D → B(B ∧ C) 5-7,DT
9. A → (¬D → B ∧ C) 3-8,DT

It is easy to see that as step 10 one cannot conclude B ∧ C from steps 4 and 6 and an appeal
to the conjuction rule because in the state in which A, B and c are all false and d is true, the
premisses are all true but the conclusion would be false. However under the assumption that A
is true and d is false (which are APs in steps 3 and 5 respectively), we validly conclude B ∧ C
(as can be seen in step 7).

As a matter of general strategy, it usually pays the conditional proof (CP) method whwnever
the topmost operator in the conclusion is an implication. The reader will see more examples of
the use of CP in the sequel.

Since a proof by contradiction (indirect proof) also uses extra premisses, the same scope rules
that apply to conditional proofs also apply in the case of indirect proofs.

Example We prove the argument about the nonexistent of God using the indirect proof
method.

1. G → (O ∧B)
2. O → A
3. B → W
4. E → ¬W ∨ ¬A
5. E ` ¬G

−−−

6 ¬W ∨ ¬A 4,5,MP
| 7. G AP
| 8. O ∧B 1,7,MP
| 9. O 8,S
| 10. A C2,9,MP
| 11. B 8,S
| 12. W 3,11,MP
| 13. W ∧ A 12,10,C
| 14. ¬(¬W ∨ ¬A) 13,E
| 15. (¬W ∨ ¬A) ∧ ¬(¬W ∨ ¬A) 6,14,E
16. ¬G 7-15,IP

Proofs by Cases

The proof method that we would like to mention is the method of proof by cases. Normally when
facts have to be proved (for instance about the various constructs of programming language)
we usually do an exhaustive case analysis and show that the property we have set out to prove
holds for each individual case (for a programming language, it holds for each possible different
costruct). Such proofs are called proofs by cases is really nothing more than an application of
the constructive dilemma rule.
p ∧ q
p → r
q → r
r ∨ r
r

However it is important to realise that using proof by cases involes the use of tautologies in the
proof. We explain this throgh the following example.

Example The above proof may also be done by cases and by conditional proofs.

1. B → P
2. P → (N → M)
3. ¬B → (I ∧ T) ` N → (T ∨M)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

4. B ∨ ¬B tautology
| 5. N :w AP
| | 6. B AP
| | 7. P 1,6,MP
| | 8. N → M 2,7, MP
| | 9. M 5,8, MP
| | 10. T ∨M 9,A
| 11 B → T ∨M 6,10,CP
| | 12. ¬B AP
| | 13. I ∧ T 3,12,MP
| | 14. T 13,s
| | 15. T ∨M 14, A
| 16 ¬B → T ∨M 12-15,CP
| 17 (T ∨M) ∨ (T ∨M) 4.11,16,CD
| 18. T ∨M 17,E
19 N → T ∨M 5-18,CP

The above example is the illustrative of two things. Firstly, one can nest conditional proofs to
any level of nesting provided that we make sure that we follow the acope rules in our in our
derivations. secondaly note the use of a tautology in step 4. It is easy to realize that the use of
tautologies does not affect the validity of a proof. In fact, often a proof by cases method will
use the above disjuntive tautology to exhastively list out all cases, so that the CD rule may be
evenualy applied.

Exercises.

1. Prove th following valid argument. Prove at least one argument each by direct proof,
conditional proof, indirect proof and proof by cases.

(a) A → B,¬A → C ` (A ∧B) ∨ (¬A ∧ C)

(b) (A ∧B) ∨ (¬A ∧ C) ` (A → B) ∧ (¬A → C)

(c) B → (C ∧ ¬D), (C ∧ A) → ¬E, F → (D ∨ E) ` A → (B → ¬F)

(d) ¬(A ∧ (B ∨ C), D → B, E ∨ C ` A → (E ∧ ¬D)

(e) ¬A → (B → C), A ∨B, B → ¬C,A → D ` A ∧D

(f) A → (c ∧D), B → (E ∨ ¬C), E → (¬A ∨ ¬D) ` ¬(A ∧B)

(g) A → (¬B ∧ ¬C), C ∨ E, B → (E ∧ ¬D), A ∨B ` E

2. Inconsistency of a set of sentences may be proved using the deduction system by as-
suminng all the sentences as premisses and then deriving a contradiction. Prove the
inconsistency of the following sets.

(a) {A ∧ ¬B, A → (B ∨ C),¬C}

(b) {¬A → (C ∨D), C → D,¬(D ∨ A)}

(c) {¬(B ↔ C) → A,D → ¬A,A → (D ∧ C), B ↔ ¬c}

(d) {S → ¬F,¬(S ∨ C) → T,¬(T ∨M),¬C,F ∧M}

3. You are present in the Congressional hearing on the IRAN CONTRA deal. The following
statements were made by REAGAN, BUSH and NORTH (the three accused in the case)
respectively in their testimonies:

REAGAN: BUSH is innocent but NORTH is guilty.
BUSH: I am innocent but on of the other two are guilty.
NORTH: If REAGAN is guilty then so is BUSH.

(a) Symbolize the statement made by the three accused.

(b) Assuming that all three spoke the truth deduce from the rules of inference, who is
guilty and who is innocent.

(c) If the innocent spoke the truth and the guilty lied deduce who is innocent and who
is guilty.

(d) Use the truth table method to verify that your answers to part b) and c) are indeed
correct.

4. Inspector Ghote (of H.R.F. Keating fame) has finally apprehended three suspects ARVE,
AHBARVE and CARVE, one of whom has murdered DHARVE. The three suspects made
the following statements.

ARVE: I did not kill Dharve. Dharve was an old acquaintance of BARVE’S and CARVE
hated Dharve.

BARVE: I did not murder Dharve. I did not even no him. Besides, I was out of town
the day murder took place.

CARVE: I did not murder Dharve. I saw both Arve and Barve with Dharve on the of
murder; one of them must have done it.

Inspector Ghote assume that the innocent are telling the truth whereas the guilty man
may or may not be lying. How did he solve the murder?

5. Consider the following argument.
If the price rise, then the poor and and the salaried class will be unhappy. If taxes
are increased then the businessmen will be unhappy. If the poor and the salaries class
or the businessmen are unhappy. If the poor and the Government will not be re-elected.
Inflation will rise if Government expenditure exceeds its revenue. Government expenditure
will exceed ids revenue unless taxes are increased or the Government resorts to deficit
financing or takes a loan from the IMF.

(a) What should the Government do to get re-elected?

(b) Now add two more premisses:
If the Government resorts to deficit financing then its expenditure will not exceed its
revenue. But if it resorts to deficit financing then prices will rise .
What should the Government do to re-elected?

(c) Suppose the following extra premiss is added:
The Government cannot borrow from the IMF if its expenditure exceeds its revenue.

Can you then prove that the Government will not get re-elected?

m+1. Γ, p ` p → q m,F1.
m+2. Γ, p ` p Premise
m+3. Γ, p ` q m+1, m+2, MP.

The deduction theorem and its converse are very useful in proving theorems and convenient
derived rules of inference. We number the derived inference rules by either giving them names
and by numbering them as ’R?’.
——————————————————————————–

Exercises.

1. Prove the following theorems and derived inference rules of
ω∼0.

R1. X → Y, Y → Z ` X → Z
R2. X → (Y → Z), Y ` X → Z
T2. ` ¬¬X → X
T3. ` X → ¬¬X
T4. ` ¬X → (X → Y)
T5. ` (¬Y → ¬X) → (X → Y)
T6. ` (X → Y) → (¬Y → ¬X)
T7. ` X → (¬Y → ¬(X → Y))
T8. ` (X → Y) → ((¬X → Y) → Y)

2. Other important proof techniques used in most mathematical theories are those of proof
by contradiction (also called the indirect proof method) and proof by cases. These meth-
ods may be stated as derived rules of inference respectively. Prove the following meta-
theorems.

(a) Indirect Proof Method. Γ ` X if and only if Γ,¬X ` ¬(Y → Y)

(b) Proof by Cases. Γ ` X if and only if Γ,¬Y → z ` Y → X and Γ,¬Y → z ` Z → X

——————————————————————————-

4.7 Consistency, completeness and decidability

There are several important issues to be dealt with n any mathematical theory. Foremost
among these is the question of whether the axioms of the theory are consistent. In other words,
any theory is quite useless if contradictory statements can be proved in the theory. Naturally,
if a contradiction and hence is a theorem.

Secondly, given a formal theory, we have some notion of what the statements in the theory mean
to us. In the case of propositional logic, we have defined a semantics. However in the formal
theory, we have not mention the semantics anywhere. Yet, we would like to relate the semantics
with the proof theory. Viewed from one angle, it is meant to check that the proof theory is
consistent with the semantics. Looked at another way, we would also like to determine what
facts in the theory are provable from the proof theory. Although in the case of propositional
logic, truth table are adequate to give us all the valid arguments we require, we will see that
in first order logic, truth tables may be of infinite size and therefore can not be constructed at
all. In such a situation we have to fall back on the proof theory to get whatever theorems e
require.

Given that the proof theory may be the only feasible tool available to us, we would like to
be able to determine to what extent is possible to derive the facts that are implied by the
semantics. This is the notion of completeness of a theory. A further question is, to what extent
can the theory be automated to give us answers to question we might ask of it. In other words is
the theory (or some large part of it) decidable? In this section we try to answer these questions
by first relating the semantics to the proof theory.

Definition. A formal theory is called consistent if not all the wffs are theorems.

We could have of course,defined a formal theory as being consistent if it is not possible to derive
a contradiction. However, such a definition would not be applicable in a formal theory in which
there is no (explicit) negation and it would become very difficult to show that it is consistent.
In the case of any theory of propositional logic which has ’¬’ as an operator however, the two
definitions would be equivalent.

Note that all axioms of a theory are in facts theorems (since there is a proof of length l, from
the empty set of premisses).

————————————————————————————————-

Exercise.

1. Prove that for some wff p in L0, if both p and ¬p are theorems of
Ω∼0 then every wff in

L0. is a theorem of
Ω∼0.

—————————————————————————————————

Metatheorem. Every theorem of
Ω∼0 is a tautology.

Proof. We prove this by induction on the lengths of proofs.
Base. Proofs of length 1. The claim is trivial since the first step of the proof of the any theorem

must be an axiom. But this first step is also the theorem. Since we know from the exercises that
each axiom is a tautology, it follows that all theorems with proofs of length 1 are tautologies.
Induction hypothesis : Every theorem of L0 which has a proof of length m, 0 ≤ m ≤ n, is a
tautology.

Let q be any theorem of
Ω∼0 whose proof is of length n. Let p1, . . . , pn ≡ q be the sequence of

wffs which constitute the proof of q. If q is an axiom then q was obtained by virtue of R0 on
some preceding wffs pi and pj , such that i ≤ n and j ≤ N . without loss of generality we may
assume that pj ≡ pi → q. By the induction hypothesis, we know that pi and pj are tautologies
and is easy to prove the following claim from the semantics.

Claim. if p and p → q are both tautologies then q is a tautology.
It follows therefore that q is a tautology.

Corollary.
Ω∼0 is consistent. Proof. Since the only theorems of

Ω∼0 are tautologies and there

exist wffs such as ¬(p → p) which are not tautologies, it follows that
Ω∼0 is consistent.

Before we show the completeness we need to prove a meta-lemma which shows that correspond-
ing to every row of the truth table of a proposition there exists a deduction in the proof system.
Equivalently, for every state there exists a deduction involving only the atoms in a proposition
or their negations. In the completeness theorem we will use this fact.

Example. Consider any wff, say ¬(P → ¬Q). Its truth table is shown below.

Now consider any arbitrary row of the truth table say the third row where P is true and Q is
false. In this row we see that ¬(P → ¬Q) is false. The deduction may be obtained from the
proof system as follows. (For convenience , we also list out the premisses in each step).

1. ¬Q,P ` Q Premiss
2. ¬Q,` P → ¬Q 1,deduction theorem
3. ¬Q,P ` P → ¬Q 2, F1
4. ¬Q,P ` (P → ¬Q) → ¬¬(P → ¬Q) T3
5. ¬Q,P ` ¬¬(P → ¬Q) 4,3,MP

Note that the state information was used only to set up the deduction. Other rows of the
truth table gives rise to other deductions corresponding to rows 1,2 and 4 are respectively,
¬Q, ¬P ` ¬¬(P → ¬Q), Q , ¬P ` ¬¬(P → ¬Q) and Q, P ` ¬(P → ¬Q) . The reader is
encouraged to proved these from the proof system. In other words, corresponding to each state
there exists a deduction. The form of the deduction should by now be clear to the reader.

Metalemma. Let p be a wff containing the atoms p1, . . . , pk. For each state σ and all i,
1 ≤ i ≤ k, let

P ∗
i ≡

{
Pi if σ(Pi) = 1
¬Pi if σ(Pi) = 0

and

P ∗ ≡
{

p if T [Pi]σ = 1
¬p if T [Pi]σ = 1

Then P ∗
1 , . . . , P ∗

k ` p∗.

Proof By induction on the number of occurrences of the operators in p. Let n be the number
of occurrences of operators in p.
Base case n=0. Clearly then p is an atom (p ≡ P1) and hence is made up of a single atom.
it is clear that if σ(P1) = 1 then p∗ ≡ P ∗

1 ≡ P1 and P1 ` P1. Similarly if σ(P1) = 0 then
p∗ ≡ P ∗

1 ≡ ¬P1 and ¬P1 ` ¬P1.
Induction hypothesis. The claim holds for all wffs with less than n (n ≤ 0) occurrence of the
operators.

Suppose p is a wff with n operators. Then there are two cases to consider.
Case p ≡ ¬q, where q has less than n operators. Then by the induction hypothesis we have
P ∗

1 , . . . , P ∗
k ` q∗.

Case T [q]σ = 1. Then T [p]σ = 0. and q∗ ≡ q and p∗ ≡ ¬p ≡ ¬¬q. Then we have the following
deduction.

1. P ∗
1 , . . . , P ∗

k ` q induction hypothesis
2. P ∗

1 , . . . , P ∗
k `→ ¬¬q T3 and F1

3. P ∗
1 , . . . , P ∗

k ` ¬¬q 1,2,MP

Hence P ∗
1 , . . . , P ∗

k ` p.

Case T [q]σ = 0. Then T [p]σ = 1. and q∗ ≡ ¬q and p∗ ≡ p ≡ ¬q. Then we have P ∗
1 , . . . , P ∗

k ` ¬q
by the induction hypothesis and hence P ∗

1 , . . . , P ∗
k ` p∗.

Case p ≡ q → r, where q and r have less than n operators. Then by the induction hypothesis
we have P ∗

1 , . . . , P ∗
k ` q∗. P ∗

1 , . . . , P ∗
k ` r∗. There are three cases to consider which are treated

in order.

Case T [q]σ = 0. Then T [p]σ = 1. and q∗ ≡ ¬q and p∗ ≡ p ≡ q → r. We then have the following
deduction.

1. P ∗
1 , . . . , P ∗

k ` ¬q induction hypothesis
2. P ∗

1 , . . . , P ∗
k ` ¬q → (q → r) T4

3. P ∗
1 , . . . , P ∗

k ` p∗ 1,2,MP

Case T [r]σ = 1. Then T [p]σ = 1. and r∗ ≡ r and p∗ ≡ p ≡ q → r. We then have the following
deduction.

1. P ∗
1 , . . . , P ∗

k ` r induction hypothesis
2. P ∗

1 , . . . , P ∗
k ` r → (q → r) A1 and F1

3. P ∗
1 , . . . , P ∗

k ` q → r 1,2,MP

Hence P ∗
1 , . . . , P ∗

k ` p.

Case T [q]σ = 1. and T [q]σ = 1. Then T [p]σ = 0, q∗ ≡ q,r∗ ≡ ¬r and p∗ ≡ ¬p ≡ ¬(q → r). We
then have the following deduction.

1. P ∗
1 , . . . , P ∗

k ` ¬q induction hypothesis
2. P ∗

1 , . . . , P ∗
k ` ¬r induction hypothesis

3. P ∗
1 , . . . , P ∗

k ` q → (¬r → ¬(q → ra)) T7 and F1
4. P ∗

1 , . . . , P ∗
k ` ¬r → ¬(q → r) 1,3,MP

5. P ∗
1 , . . . , P ∗

k ` ¬(q → r) 1,3,MP

Hence P ∗
1 , . . . , P ∗

k ` p.

It is important to realize that all we have done is to draw up a correspondence between the 2k

rows of a truth table with 2k different deductions that involve any wff p containing k atoms.
these deductions are proofs in the strict proof-theoretic sense, but each of them represents a
row of the truth table. The important link that this establishes is that each row of a truth
table of size 2k could equally well be represented by a set of k premisses, where each premiss
is an atom if the truth assignment is 0. Further we have shown that from these premisses, the
wff p may be proven if it is true in state and its negation may be proven if it false in the state.

The fact that the proof allows us to represent states and the truth values of compound proposi-

tions gives us intuitive evidence that the theory
Ω∼ is quite rich. the previous lemma shows that

the truth values of every compound proposition in every state may be obtained from the proof
theory by a deduction from a set of premisses which represent the relevant truth assignments

in that state. So it might seem since every theorem of
Ω∼0 is a tautology (and therefore its truth

value is independent of states), it should be possible to get rid of the premiss somehow. That
is indeed what we do in the following theorem.

Metatheorem (completeness of
Ω∼0). Every tautology of L0 is a theorem of

Ω∼0.
Proof. Let p be any tautology made of the atoms P1, . . . , Pk. In any state σ, p∗ ≡ p.
Claim. P ∗

1 , . . . , P ∗
k−1 ` p.

Proof of claim. Consider any two rows of the truth table which differ only in the truth value
assigned to Pk and are identical otherwise. By the previous metalemma we have the following
two deductions corresponding to the rows of the truth table in which σ(Pk) = 1 and σ(Pk) = 0
respectively.
P ∗

1 , . . . , P ∗
k−1, Pk ` p

P ∗
1 , . . . , P ∗

k−1,¬Pk ` p

Note that the premisses differ only for k. By the deduction theorem we can find deductions
P ∗

1 , . . . , P ∗
k−1,` Pk ` p

P ∗
1 , . . . , P ∗

k−1,` ¬Pk ` p
corresponding to the rows respectively. Since the premisses in the two deductions are identical
they may be concatenated to obtained the following deductions (assuming that the conditions
are lengths i and i’ respectively).

1. P ∗
1 . . . , P ∗

k−1 ` . . .
. . . .
. . . .
. . . .
i. P ∗

1 . . . , P ∗
k−1 ` Pk → p

i+1. P ∗
1 . . . , P ∗

k−1 ` . . .
. . . .
. . . .
. . . .
i+i’. P ∗

1 . . . , P ∗
k−1 ` ¬Pk → p

i+i’+1. P ∗
1 . . . , P ∗

k−1 ` (Pk → p) → ((¬Pk → p) → p)
T8,F1

i+i’+2. P ∗
1 . . . , P ∗

k−1 ` (¬Pk → p) i,i+i’+1,MP
i+i’+3. P ∗

1 . . . , P ∗
k−1 ` p i+i’,i+i’+2,MP

End of claim

If k=1 then the claim above is the required proof. If k ≥ 1 then apply the method used in the
claim another k-1 times to eliminate the other premisses. It follows that p is theorem.

The claim in the proof of the above theorem eliminates a premiss by constructing a single
deduction for each pair of deductions which differ only in the premiss that is to be eliminated.
In effect the claim produces 2k−1 different deductions from the original 2k by coalescing these
pairs appropriately. By repeated application of the claim the new 2k−1 deductions may be
reduced to a single deduction which has no premisses.

Corollary.
Ω∼0 is a decidable theory.

Proof. Since every theorem of
Ω∼0 is a tautology and vice versa and there exists an algorithm

whether a given wff in L0 is a tautology, it follows that it is possible to determine by an
algorithm whether a given wff is a theorem.

Notes

1. It is important to note that even though we have argued for the decidability of
Ω∼0 from

the fact that there is an algorithm to decide whether a given wff is a tautology , actually

the proof of the completeness theorem and the metalemma preceding it itself may be
regarded as an effective methodor an algorithmfor constructing the proof of the theorem
in L0. even though the method outlined in the proofs is likely to produce very long proof,
it is still a valid proof within the meaning of the word in the formal theory.

2. A consequence of the completeness theorem is that every valid argument in L0 can be
proved using the axioms and the modus ponens rule of inference . completeness result
is not restricted to only to tautologies but extends also to valid arguments because an
arguments of the forms p1, . . . , Pn ` q is valid if and only if p1 → (. . . (pn → q) . . .) is a
tautology. Hence from a proof of p1 → (. . . (pn ` q we may derive p1, . . . , pn ` q by n
applications of the deduction theorem.

Independence of the axioms of
Ω∼0 .

We have treated the most important concepts of a formal theory viz. , consistency, completeness
and decidability. Once we know that a theory is consistent we can go about trying to various
theorems knowing fully well that contradiction can not be proved. Further with completeness,
we also know that our proof theory is powerful enough to prove the sort of the facts that we have
we are interested in proving about the theory. However, there is always the nagging question
of whether we can do with less in sense that will be made clear in the sequel.

Given a set of axioms of any mathematical theory, mathematicians are always interested in
knowing whether some of the axioms are actually redundant. That is if we were to remove one
or more of these axioms, is the completeness of the theory affected in any way? Equivalently,
can one or more of the axioms of the theory be proven from the others ? If so, by removing
these axioms we would still have a complete theory.

The idea of obtaining a minimal set of axioms dates back to the middle ages, when several able
and not-so-able mathematicians felt that Euclid’s parallel postulates6 was redundant and that
it could be proved from the other axioms and postulated of the Euclidean geometry. While
nobody doubted the truth that a postulates ought to be. However all attempts to prove it from
the other postulates failed7 . The fact of the matter was simply that the parallel postulate
is independent of the other postulates. It is independent in the sense that neither it nor its
negation can be deduced from the other postulates. The independence of the postulates was
proved much later.

Coming back to the independence of axioms A1-a3 for the theory
Ω∼0 , we have the following

definitions.

6Through a given point not on a given line there exists a unique line parallel to the given line.
7However one mathematician (Geralamo Sccheri (1667-1773)), who felt it was indeed self -evident, replaced

the parallel postulates by assumptions that contradicted it and hoped to arrive at a logical contradiction by a
reduction ad absurdum method. He proved many theorem that he regarded as absurd because they did not
conform to well understood intuitions concerning euclidean geometry. But there where no logical contradictions
anywhere in his work. In fact, he came up with what were the first non-Euclidean geometries , even though he
was under the impression that he had successfully proved Euclid right

Definition. Given an axiomatic theory mathcalI the set of axioms is said to be independent
if each axiom of I is independent of the others. An axiom p of I is said to be independent of
others if there exists no proof of p which uses only the other axioms and the rules of inference.

In order to prove that A1-A3 is independent we require to show that each axiom is independent
of the others. Assume that we would like to prove that A1 is independent of others . For this
purpose it suffices to be able to identify a characteristic property that is satisfied by A2 and
A3 and is preserved by the modus ponens rule of inference. We refer to such characteristic
properties as hereditary. Then given any proof which does not use A1, we are guaranteed that
every step of the proof has this characteristic property if the assumptions in the proof have it.

Definition. A property of the wffs of a formal theory I is said to be hereditary if whenever
there is a set of wffs which possess this property, every wff that is deduced from one or more
of them by virtue of the rules of inference is guaranteed to possess the property.

We have already encountered such a property.

Example. For example, truth (i.e. the property of a proposition being true instead of false)
is a characteristic property of all valid arguments and is preserved by all the rules of inference
(provided the premisses are true) and is therefore a hereditary property.
Example. falsity is not a hereditary property of valid arguments.
Example. The property of a wff being a tautology is a hereditary property, since modus
ponens preserves tautologies.

But we can not use truth or ”tautologousness” as the characteristic property for proving the

independence of any axiom in
Ω∼0 . simply because, all the axioms and the inference rule share

the property. So it does not clearly differentiate one axiom from the others and the rule of
inference. And since falsity is not hereditary we can not use that either.

To define a hereditary property, it is also possible to use functions from wffs to some finite set
of values, such that the function is defined inductively and its result is a value from the range.
The meaning function L that we have defined earlier is one such with a two-element range
representing truth and falsity respectively. We could take some range and define a function f
on wffs inductively and then look for a property such as f(p) = c for some constant c in the
range of f. Alternatively if the range is some ordered set with a given ordering ≤ we could
determine whether f(p) ≤ c is a hereditary property. We shall follow such an approach.

Hence if we want to prove that the axiom A1 is independent of the other axioms we require
to inductively define a function f on wffs and choose a value c from the range such that the
following conditions satisfied.

• There exists an instance p of A1, such that f(p)f(p) = / = c

• All instances of A2 and A3 satisfy the property that for any instance p, f(p) = c.

• The modus ponens rule of inference preserves this property, i.e. whenever the premisses
of the rule satisfy the property f(p)=c, the conclusion does too.

It is then clear that f(p)=c is a hereditary property that will be satisfied by all proofs in which
there is no instance of axiom A1. Since A1 does not satisfy this characteristic property, it would
follow that A1 is independent of others. To prove the independence of the other axioms we
would have to find other such functions with similar properties and prove their independence
separately.

In defining these functions, we follow the method of truth tables, except that it may be impos-
sible to find a suitable function with a two element range and define the function through the
table.

Metalemma The axioms schema A1 in
Ω∼0 is independent of A2 and A3.

Proof consider the function f defined inductively on the formation rules of L0 by the following
tables. The range of f is the set {0,1,2} . The following claims are then easy to check and
prove. We say that a wff p is select if f(p) = 0 regardless of the values of its individual atoms.

Claim 1. All instances of A2 and A3 are select.

Claim 2. The modus ponens rule of inference preserves selectness , i.e. for all wffs p,q if
f(p → q) = f(p) = 0 then f(q) = 0.

Claim 3. There are instances of A1 which are not select.

Claim 3 follows from the fact for f(p)=0 and f(q)=1, we have (p → (q → p)) = 2.

p ¬p
0 1
1 1
2 0

p q p → q

0 0 0
0 1 2
0 2 2
1 0 2
1 1 2
1 2 0
2 0 0
2 1 0
2 2 0

The function f

Metalemma The axioms schema A2 in
Ω∼0 is independent of A1 and A2.

Proof consider the function f defined inductively on the formation rules of L0 by the following
tables. The range of f is the set {0,1,2} . The following claims are then easy to check and
prove. We say that a wff p is select if g(p) = 0 regardless of the values of its individual atoms.

claim 1. All instances of A1 and A3 are grotesque.

Claim 2. The modus ponens rule of inference preserves grotesqueness i.e. for all wffs p,q if
g(p → q) = g(p) = 0theng(q) = 0.

Claim 3. There are instances of A2 which are not grotesque.

p ¬p

0 1
1 0
2 1

p q p → q

0 0 0
0 1 2
0 2 1
1 0 0
1 1 2
1 2 0
2 0 0
2 1 0
2 2 0

The function g

Exercises.

1.define instances of A2 which are not grotesque.
2. Define a similar function h and a hereditary property which will prove that A3 is independent
of A1 and A2.

4.8 Compactness

In the completness theorem we have assumed willy-nilly that the set of hypotheses Γ from which
a proposition ψ may be proven (using a proof system such as Natural deduction) is finite. Is
it possible that there are formulas ψ which are a logical consequence of only an infinite set of
assumptions but are not a consequence of any finite set?

In other words, it is instructive to know what happens to the relation Γ |= ψ when Γ is an
infinite set of assumptions.

The following lemma is quite obvious. Also note from the definition of satisfiability that empty
set of formulas is satisfied by every truth assignment.

Lemma 4.2 If a set Γ of formulas is satisfiable then every finite subset of Γ is also satisfiable.

Lemma 4.3 If a set Γ of formulas is unsatisfiable then there exists a finite subset of Γ which
is also unsatisfiable.

Proof: Suppose Γ is a set of formulas that is unsatisfiable. Since Γ could be infinite8 the
set atoms(Γ) =

⋃
φ∈Γ atoms(φ) could also be infinite (though each individual set atoms(φ) is

always finite). Let {A0, A1, A2, . . .} be an enumeration of the set atoms(Γ).

The construction of the truth assignment tree. Consider the following finitely branching but
infinite depth binary tree. The tree, starting from a root labelled A0 has two, branches the left
branch signifies that A0 has been assigned the truth value 0 and the right branch denotes the
assignment 1. Each node at depth i, i ≥ 0 is similarly constructed. This tree is an infinite depth
tree with each node having exactly two branches. Note that there an uncountable number of
paths in this tree and each path corresponds to exactly one possible truth assignment.

Pruning the tree Since Γ is unsatisfiable, for every possible truth assignment τ , there exists at
least only formula φ ∈ Γ which is false. Since any such formula φ is made up of only a finite
number of atoms, there exists a finite point in the path corresponding to τ at which it is known
that φ is false along that path (in fact, φ is false along every path on the subtree rooted at that
point).

Along each path consider the shortest prefix of that path at which it is known that some formula
of Γ is false. Now consider the tree obtained from the original tree by pruning every path at
the earliest point at which some formula is φ is known to be false.

The finite subset of Γ In the resulting tree every path is of finite length and each path could be
labelled with the formula from Γ that it falsifies. Since the tree is finitely branching and every
path is of finite length, it follows from Konig’s lemma that the tree has only a finite number of
nodes. Hence it has only a finite number of paths, with each path labelled by a formula from

8We assume that Γ is not uncountable, since the language P0 has only countably many formulas.

Γ that it falsifies. The set of all such formula is a finite subset ∆ ⊆f Γ. It follows from our
construction that ∆ is unsatisfiable. 2

By combining the above two lemmas, we obtain the compactness theorem, stated below.

Theorem 4.2 A set Γ of formulas is satisfiable if and only if every finite subset of Γ is satis-
fiable

Proof: (⇒). If Γ is satisfiable then there exists a truth assignment τ such that T [[φ]]τ = 1 for
each φ ∈ Γ. Clearly every finite subset ∆ ⊆f Γ is satisfied by τ .

(⇐). If Γ is not satisfiable, then we know there exists a finite subset of Γ that is unsatisfiable.
But since every finite subset of Γ is satisfiable, Γ is also satisfiable. 2

Having proved the compactness theorem, we are now in a position, to answer the questions
raised in this section.

Corollary 4.1 Γ |= ψ if and only if there exists a finite subset ∆ ⊆f Γ such that ∆ |= ψ.

Proof: (⇐). Clearly if ∆ ⊆f Γ such that ∆ |= ψ then Γ |= ψ.

(⇒). Assume Γ |= ψ. Then we know Γ ∪ {¬ψ} is unsatisfiable. By compactness there exists a
finite subset ∆ ⊆f Γ ∪ {¬ψ} which is also unsatisfiable.

Claim 1: ¬ψ ∈ ∆.
Proof of claim 1. Suppose ¬ψ 6∈ ∆ Then ∆ ⊆f Γ. But by compactness then Γ is also
unsatisfiable, which is a contradiction. Hence ¬ψ ∈ ∆.

Claim 2: If ∆− {¬ψ} is unsatisfiable then Γ |= ψ.
Proof of claim 2. Suppose ∆ − {¬ψ} is unsatisfiable. Then since ∆ − {¬ψ} ⊆f Γ it is clear
from compactness that Γ is also unsatisfiable. Hence Γ |= ψ trivially follows.

Claim 3: If ∆− {¬ψ} is satisfiable then Γ |= ψ.
Proof of claim 3. We know that both Γ ∪ {¬ψ} and ∆ are unsatisfiable. Now consider any
truth assignment τ . If τ satisfies ∆− {¬ψ} but not ∆ then every formula in ∆− {¬ψ} must
be true under τ and ¬ψ must be false. But this implies ψ must be true under τ .

Hence for every truth assignment τ , ∆ − {¬ψ} |= ψ. Since ∆ − {¬ψ} ⊆f Γ, it is clear that
Γ |= ψ. 2

We may combine the above corollary with the soundness and completeness results that we have
already proved to obtain the following theorem.

Theorem 4.3 For any set of formulas Γ, Γ |= ψ if and only if there exists a finite ∆ ⊆f Γ
such that ∆ ` ψ.

Proof: (⇒). Assume Γ |= ψ, then there exists a finite ∆ ⊆f Γ such that ∆ |= ψ. By the
completeness it follows that ∆ ` ψ.

(⇐). Assume there exists a finite ∆ ⊆f Γ such that ∆ ` ψ. Then by the soundness theorem
∆ |= ψ, from which it follows trivially that Γ |= ψ. 2

4.9 Propositional Resolution

Chapter 5

Resolution in Propositional Logic

5.1 Introduction

Let Γ be a finite set of propositional formulas and suppose it is necessary to prove for some
propositional formula q that Γ |= q. If we were to attempt to prove this by resolution then we
would have to show that Γ ∪ {¬q} is a contradiction. In other words, we would be showing
that

∧
Γ∧¬q is always false. Let p be the conjunctive-normal form (CNF) of

∧
Γ∧¬q. Let n

be the number of distinct atoms occurring in p and let ∆ be the list of clauses in ∆. If each
clause is also represented as a list then ∆ is a list of lists of literals where each literal is either
an atom or the negation of an atom.

Note:

1. Mathematically, the only difference between sets and lists is that unlike sets,

(a) lists are ordered sequences of elements, and

(b) a list may contain duplicate occurrences of elements.

2. We may assume that there is a predefined total ordering of atoms, which is extended to
the representation of clauses and lists of clauses, in such a way that every clause made
of a set of literals has a unique representation as a list of literals sorted according to the
total ordering. The ordering may further be lifted to present a unique representation of
a list of clauses.

3. The empty list of clauses represents a tautology.

4. A nonempty list of clauses, containing the empty clause as an element represents a con-
tradiction.

93

5.2 The Resolution procedure

INPUT: A list of lists of literals.

OUTPUT: A list of lists of literals such that either

1. the clause represented by the empty list [] belongs to the list, in which case the list is
logically equivalent to the proposition ff, or

2. it is impossible to perform any more steps of resolution. It is easy to check whether it is
possible to perform any more resolution, by determining whether in the cleaned up list of
clauses, there is any occurrence of a complementary pair. The resulting list of clauses is
a logical consequence of the original list ∆ and yields a valuation under which Γ ∪ {¬q}
is not a contradiction.

ALGORITHM: Throughout the algorithm, we may use set notation and terminology when-
ever it causes no confusion. In such a case it is automatically implied that we mean the set
containing the same elements as the list with the same name. Before we proceed to the main
body of the algorithm we define two procedures.

procedure cleanup
For any list Φ of clauses,

1. For all clauses C, C ′, if C ⊆ C ′, then C ′ may be deleted from Φ without
affecting logical equivalence.

2. Any clause containing complementary pairs of literals, may be deleted
from Φ without affecting logical equivalence.

3. From any clause, duplicate occurrences of a literal may be deleted with-
out affecting logical equivalence.

The resulting list is said to be clean and is logically equivalent to the original
list Φ.

procedure resolution

For any clean list Φ and atom A let Λ, Λ̄ ⊂ Φ be the sets such that A ∈ C for
every C ∈ Λ and ¬A ∈ C̄ for each C̄ ∈ Λ̄. Since Φ is clean the two sets Λ and
Λ̄ satisfy the following properties:

1. Λ ∩ Λ̄ = ∅, i.e. Λ and Λ̄ are disjoint,

2. for each C ∈ Λ and C̄ ∈ Λ̄, A 6∈ C̄ and ¬A 6∈ C.

Then the new list Ψ of clauses after resolution is obtained as follows

Ψ = (Φ− (Λ ∪ Λ̄)) ∪ {D | D = (C − {A}) ∪ (C̄ − {¬A})}

Algorithm main:
Cleanup ∆;
while ([] 6∈ ∆) ∧ (a complementary pair (A,¬A) exists in ∆) do

begin
perform resolution on (A,¬A) in ∆, yielding a new list of clauses Φ;
Cleanup Φ to yield a new list Ψ;
∆ := Ψ

end.

d
{ }{ }

d
{r}

d
{r}

d
{r,¬r}@
@
@@�

�
��

d
{r,¬r}@
@
@@�

�
�� }{ �

�
�

�
�

���

@
@

@
@

@
@@R

(r,¬r)

�
�

�
�

�
���

�
�

�
�

�
�

�
�

��+

A
A
A
A
A
AAU

�
�

�
�

�
���

�
�

�
�

�
�

�
�

�
��+

XXXXXXXXXXXXXXXXXXXXXXXXXz

�
�

�
�

�
�

�
�

��+

Q
Q

Q
Q

Q
Q

Q
Q

QQs

(q,¬q)

d
{q,¬r}

d
{¬q, r}

d
{q, r}

d
{¬q,¬r} }{

Figure 5.1: A resolution proof

Note that cleaning up the set of clauses is absolutely essential for the algorithm to work correctly.
The figure 5.1 shows a resolution proof of the set of clauses corresponding to the contradiction
(q ∨ ¬r) ∧ (¬q ∨ r) ∧ (q ∨ r) ∧ (¬q ∨ ¬r). Try to perform resolution without cleaning up after
the first iteration (i.e. don’t delete the clause corresponding to r ∨ ¬r and see what happens).

5.3 Space Complexity of Propositional Resolution.

Assume n is the number of atoms of which ∆ is made up. After some iterations of resolution
and cleanup, assume there are k distinct atoms in the set of clauses on which resolution is

applied. After performing the cleanup procedure there could be at worst

(
2k
k

)
clauses with

each clause containing at most k literals. Now,

(
2k
k

)
=

2k(2k − 1) . . . (k + 1)

k(k − 1) . . . 1

Since for each i, 0 ≤ i < k, 2k − i ≥ 2× (k − i), we get

(
2k
k

)
≥ 2k.

For any complementary pair (A,¬A), it is possible that half of the

(
2k
k

)
clauses contain

A and the other half contain ¬A. This would be the worst possible scenario, as it yields the
maximum number of new clauses. In performing a single step of resolution over all possible

pairs of clauses, a maximum of (1
2

(
2k
k

)
)2 different clauses each containing at most k − 1

literals are thus obtained. Hence, before applying the cleanup procedure the space required
could be as high as

S(k) = (k − 1)(1
2

(
2k
k

)
)2 atoms

≥ k−1
4
× (2k)2 atoms

= (k − 1)× 22k−2 atoms

However, after cleanup the space requirement reduces to

(
2k − 2
k − 1

)
clauses each of size at

most k − 1 atoms thereby requiring a space of (k − 1)

(
2k − 2
k − 1

)
. Since k ≤ n the maximum

space required after the first application of resolution and before cleaning up exceeds the space
required for all other iterations and could be as high as (n− 1)× 22n−2.

5.4 Time Complexity of Propositional Resolution

Given a space of k

(
2k
k

)
to represent the clauses containing at most k atoms, we require a

time proportional to this amount of space in order to identify which clauses have to be resolved
against a particular complementary pair. After resolution we create a space of (k− 1)× 22k−2

which has to be scanned for the cleanup operations. Hence the amount of time required
to perform a step of resolution and the amount of time required to perform the cleanup are
both proportional to (k− 1)× 22k−2. Hence the total time required for performing resolution

followed by cleanup in n iterations (which is the maximum possible)

T (n) ≥ ∑n
k=1(k − 1)× 22k−2

which is clearly exponential.

Hence both the worst case time and space complexities are exponential in the number of atoms.

The bottom-line however is,

It still works!

