

Introduction to Computer Science

S. Arun-Kumar sak@cse.iitd.ernet.in

Department of Computer Science and Engineering I. I. T. Delhi, Hauz Khas, New Delhi 110 016.

October 12, 2013

© S. Arun-Kumar

	Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	1 of <mark>887</mark>	QUIT	
--	-----------	----------	----	---	---	----	---------	-------------	-------	-----------------------	------	--

Contents

11T Delhi

1	Con	nputing	3
	1.1	Introduction to Computing	. 3
	1.2	Long Multiplication	. 26
		1.2.1 The algorithm	. 27
		1.2.2 Correctness	. 29
		1.2.3 The Effort of Long Multiplication	. 30
		1.2.4 Comparison	. 31
	1.3	Our Computing Tool	. 35
	1.4	Some Simple Algorithmic Definitions	. 64
	1.5	Substitution of functions	. 69
	1.6	Functions as inductively defined computational processes	. 79
	1.7	Algorithmic Definitions which are well-founded	. 79
	1.8	Recursive processes	. 84
	1.9	Correctness	. 86
	1.10) Complexity	. 88
	1.11	Efficiency, Why and How?	. 89
	1.12	2 Asymptotic analysis and Orders of growth	. 91
	1.13	3 The Analysis of Algorithms: The Big "O" notation	. 93
2	Mor	re examples of recursive algorithms	113
3	intro	oduction to SML	132
	3.1	Primitives: Integer & Real	. 134

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	2 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	----------	------	--

MT Delhi

Computer Science & Engineering Introduction to Computer Science

	3.2	Primitives: Booleans
	3.3	The Conditional
	3.4	The Binary Boolean Operators
	3.5	Nontermination and Boolean Operators
	3.6	Example: Fibonacci
	3.7	Fibonacci Numbers and the Golden Ratio
4	Algo	prithms: Design & Refinement 241
	4.1	Technical Completeness & Algorithms
	4.2	Algorithm Refinement
	4.3	Variations: Algorithms & Code
	4.4	Names, Scopes & Recursion
5	Ferr	nat's Factorization Method 376
		nat's Factorization Method 376
	Intro	
	Intro 6.1	ducing Reals 387
6	Intro 6.1 6.2	ducing Reals 387 Floating Point 387
6	Intro 6.1 6.2 Cor	aducing Reals 387 Floating Point 387 Root Finding, Composition and Recursion 412
6	Intro 6.1 6.2 Corr 7.1	aducing Reals 387 Floating Point 387 Root Finding, Composition and Recursion 387 ectness, Termination & Complexity 446
6	Intro 6.1 6.2 Cor 7.1 7.2	ducing Reals 387 Floating Point 387 Root Finding, Composition and Recursion 412 ectness, Termination & Complexity 446 Termination and Space Complexity 446
6	Intro 6.1 6.2 Cor 7.1 7.2 7.3	ducing Reals 387 Floating Point 387 Root Finding, Composition and Recursion 412 ectness, Termination & Complexity 446 Termination and Space Complexity 446 Efficiency Measures and Speed-ups 486

HOME PAGE CONTENTS	OSE 3 OF 887 QUIT	
--------------------	-------------------	--

	8.2	Polynomial Evaluation	556
	8.3	Generating Primes	569
	8.4	Compound Data & Lists	585
	8.5	Compound Data & List Algorithms	616
9	High	ner Order Functions & Structured Data	646
	9.1	Higher Order Functions	646
	9.2	Structured Data	673
	9.3	Generalized Sorting Algorithms	686
	9.4	User Defined Structured Data Types	715
10	Impe	erative Programming: An Introduction	737
	10.1	Introducing a Memory Model	737
	10.2	Imperative Programming:	766
	10.3	Arrays	793
11	A la	rge Example: Tautology Checking	807
	11.1	Large Example: Tautology Checking	807
	11.2	Tautology Checking Contd.	832
		ure-wise Index to Slides	863

HOME PAGE	CONTENTS	44	•	▶	••	Go Васк	FULL SCREEN	CLOSE	4 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	----------	------	--

Colour Coding of text

- Black is normal foreground colour.
- Brown is the colour of slide headings.
- Various colours like brown, red and blue are used to provide emphasis or to stand out from the usual text.
- The special colour magenta is used to denote a *hyperlink*. These hyperlinks are "mouse-clickable" and they take you to a different slide often out of order. You may use the GO BACK button to return in the *reverse order* of the traversal of hyperlinks.
- Blue type-writer font is used for SML keywords, system responses while running programs etc.

HOME PAGE

CONTENTS

•

Go Васк

FULL SCREEN CLOSE

1. Computing

1.1. Introduction to Computing

- 1. Introduction
- 2. Computing tools
- 3. Ruler and Compass
- 4. Computing and Computers
- 5. Primitives
- 6. Algorithm
- 7. Problem: Doubling a Square
- 8. Solution: Doubling a Square
- 9. Execution: Step 1
- 10. Execution: Step 2
- 11. Doubling a Square: Justified
- 12. Refinement: Square Construction
- 13. Refinement 2: Perpendicular at a point
- 14. Solution: Perpendicular at a point
- 15. Perpendicular at a point: Justification

Next: Our Computing Tool

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	6 OF 887	QUIT	
-----------	----------	----	---	---	-----------------	---------	-------------	-------	----------	------	--

Introduction

- This course is about computing
- Computing as a process is nearly as fundamental as arithmetic
- Computing as a mental process
- Computing may be done with a variety of tools which may or may not assist the mind

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	7 OF 887	QUIT
-----------	----------	----	---	---	-----------------	---------	-------------	-------	----------	------

Computing tools

- Sticks and stones (counting)
- Paper and pencil (an aid to mental computing)
- Abacus (still used in Japan!)
- Slide rules (ask a retired engineer!)
- Straight-edge and compass

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	8 OF 887	Quit

Straight-edge and Compass

Actually it is a **computing** tool.

- Construct a length that is half of a given length
- Bisect an angle
- Construct a square that is twice the area of a given square
- Construct $\sqrt{10}$

Home Page	CONTENTS	44	•	►	**	Go Васк	FULL SCREEN	CLOSE	9 of 887	QUIT

Straight-edge and Compass: Primitives

A more exact description of ruler and compass primitives

Straight-edge: Can specify lines, rays and line segments. Cannot really specify lengths since the ruler is only supposed to be an unmarked straight-edge.

Compass:

- 1. Can define arcs and circles,
- 2. Can specify only *comparative* non-zero lengths and not *absolute* lengths.

Straight-edge and Compass: Can specify points of intersection.

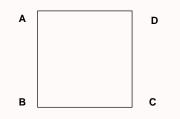
Note that an unmarked straight-edge cannot be used to compare lengths.

CONTENTS

44

Problem: Doubling a Square

Consider an example from "Straight-edge and Compass Constructions". Given a square, construct another square of <u>twice</u> the area of the original square.



Note.

- Whatever lengths we assume in the solution have to be taken only as symbolic and not absolute since with an unmarked straight-edge and compass only relative comparisons are possible no absolute lengths are possible.
- The (symbolic) lengths we assume are necessary only in the justification of correctness of the construction.

HOME PAGE	CONTENTS	44	4	•	••	Go Васк	FULL SCREEN	CLOSE	11 OF 887	QUIT	

Solution & Justification: Doubling a Square

Assume given a square $\Box ABCD$

1. Draw the diagonal \overline{AC} .

2. Complete the square $\Box ACEF$ on side \overline{AC} . Area of $\Box ACEF = 2a^2$.

Note.

- Even though this is a simple 2-step algorithm, the steps may not all be primitive operations.
- The non-primitive operations need to be regarded as new problems which have to be solved. This is the process of *refinement* of the algorithm.
- In this case Step 2 is a non-primitive operation which needs to be solved separately. One possible solution is shown in the hyperlink target of step 2.
- Assuming that step 2 can be executed correctly the blue text provides the justification which proves the *correctness* of this algorithm for the given problem.

 \blacktriangleright

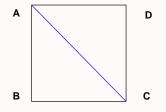
CONTENTS

of side a > 0.

 $AC = \sqrt{2}a$

Execution: Step 1

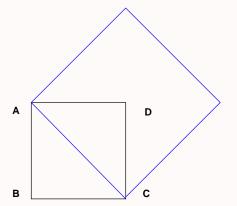
Step 1 is a primitive operation which may be executed using the straight-edge. Draw the diagonal \overline{AC} .



Home Page	CONTENTS	44	-	•	••	Go Васк	FULL SCREEN	CLOSE	13 OF 887	QUIT
HOWETAGE	OUNTENTS					GO BACK	I OLL SCREEN	OLUGE	15 01 007	Quit

Execution: Step 2

Complete the square $\Box ACEF$ on side \overline{AC} .



Step 2 is however not a primitive operation. So one regards it as a new problem to be solved by *refinement*.

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	14 OF 887	QUIT	
-----------	----------	----	---	---	-----------------	---------	-------------	-------	-----------	------	--

Refinement: Square

Given a line segment of length b > 0 construct a square of side b. Assume given a line segment \overline{PQ} of length b.

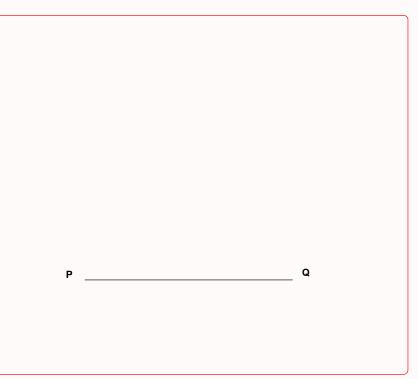
- 1. Construct two lines l_1 and l_2 perpendicular to \overline{PQ} passing through P and Q respectively
- 2. On the same side of \overline{PQ} mark points R on l_1 and S on l_2 such that PR = PQ = QS.
- **3.** Draw \overline{RS} . $\Box PQSR$ is a square of side *b*

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	1

15 OF 887

Square on Segment: 0

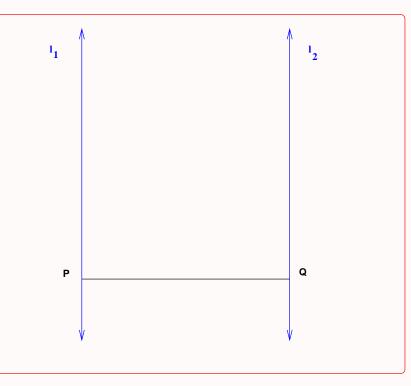
Assume given a line segment \overline{PQ} of length b.



Номе	PAGE	CONTENTS	44	•	►	**	Go Васк	FULL SCREEN	CLOSE	16 OF 887	QUIT	

Square on Segment: 1

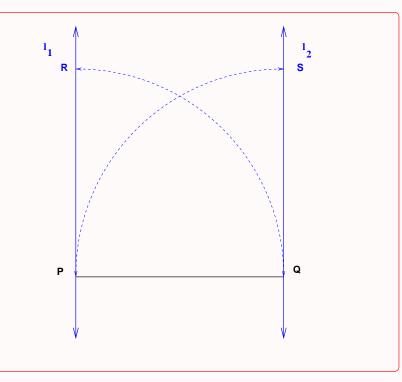
Construct two lines l_1 and l_2 perpendicular to \overline{PQ} passing through P and Q respectively



Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	17 OF 887	QUIT

Square on Segment: 2

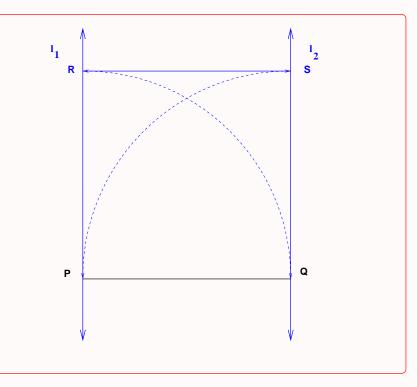
On the same side of \overline{PQ} mark points R on l_1 and S on l_2 such that PR = PQ = QS.



Home Page	CONTENTS	44	•		••	Go Васк	FULL SCREEN	CLOSE	18 OF 887	QUIT

Square on Segment: 3

Draw \overline{RS} . $\Box PQSR$ is a square of side b



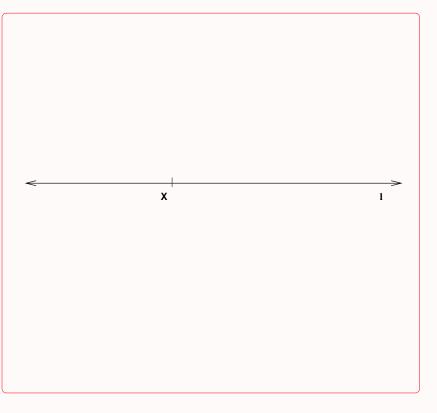
Square Construction algorithm

Номе	AGE CONTENT	6 44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	19 OF 887	QUIT	
------	-------------	------	---	---	-----------------	---------	-------------	-------	-----------	------	--

Refinement 2: Perpendicular at a point

Given a line, draw a perpendicular to it passing through a given point on it.

Assume given a line l containing a point X.



Home Page	CONTENTS	44	•	•	**	GO BACK	FULL SCREEN	CLOSE	20 OF 887	Quit

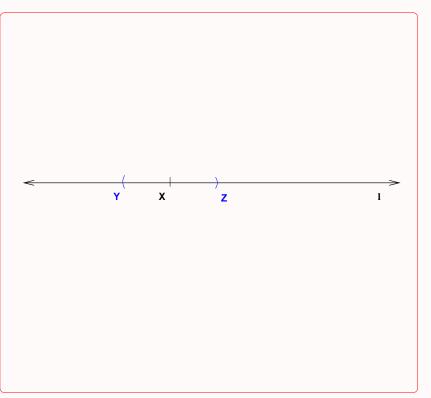
Solution: Perpendicular at a point

- 1. Choose a length c > 0. With X as centre mark off points Y and Z on l on either side of X, such that YX = c = XZ. YZ = 2c.
- **2.** Draw Circles $C_1(Y, 2c)$ and $C_2(Z, 2c)$ respectively.
- 3. Join the points of intersection of the two circles.

Home Page	CONTENTS	44	•	•	>>	Go Васк	FULL SCREEN	CLOSE	21 OF 887	QUIT

Perpendicular at a Point: 1

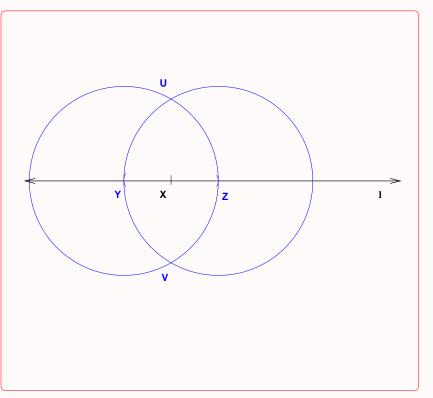
Choose a length c > 0. With X as centre mark off points Y and Z on l on either side of X, such that YX = c = XZ. YZ = 2c.



Home Page	CONTENTS	44	•	Þ	ÞÞ	Go Васк	FULL SCREEN	CLOSE	22 OF 887	QUIT
110 ME 1710E	Continue			-		GIO DINON	1 022 00112211	01001		4011

Perpendicular at a Point: 2

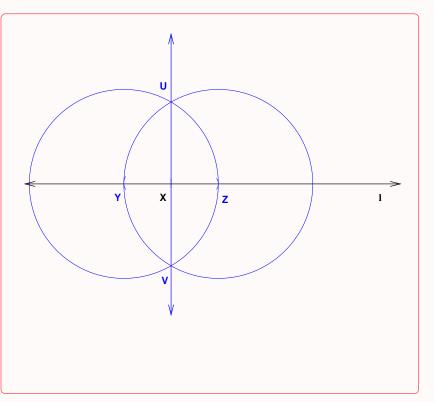
Draw Circles $C_1(Y, 2c)$ and $C_2(Z, 2c)$ respectively.



HOME PAGE	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	23 OF 887	QUIT

Perpendicular at a Point: 3

Join the points of intersection of the two circles.



				-					24 OF 997	•
HOME PAGE	CONTENTS	44	•	•	••	GO BACK	FULL SCREEN	CLOSE	24 OF 887	QUIT

Perpendicular at a point: Justification

- 1. The two circles intersect at points U and V on either side of line l. 2. $\stackrel{\leftrightarrow}{UV}$ is a perpendicular bisector of \overline{YZ} .
- 3. Since YX = c = XZ and YZ = 2c, $\stackrel{\leftrightarrow}{UV}$ is perpendicular to l and passes through X.

Back to square 1

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	25 OF 887	QUIT	
											1

The Computational Model

Every reasonable computational model such as the above must have the following capabilities:

- **Primitive operations and expressions** which represent the simplest objects with which the model is concerned.
- Methods of combination which specify how the primitive expressions and objects can be combined with one another to obtain compound expressions and compound objects.
- Methods of abstraction which specify how compound expressions and objects can be named and manipulated as units.

CONTENTS

•

Go Back

Methods of Abstraction

The Methods of abstraction in the construction were

- 1. Perpendicular at a point on a line, which was used to construct the square of a given length.
- 2. Square Construction algorithm which was used to construct a square on a line segment.

	Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	27 OF 887	QUIT
--	-----------	----------	----	---	---	----	---------	-------------	-------	-----------	------

The Use of Abstraction

Methods of abstraction are useful for

- specifying the method crisply and concisely in terms of problems known to be solvable (e.g the two-step solution to the given problem).
- separating logical sub-problems (e.g. the problem of perpendicular at a point on a line is a logically separate sub-problem of drawing a square on a line segment).
- avoiding repetitions of copies of similar solutions (e.g. to construct a square on a segment requires drawing *two* perpendiculars one at each end point of the line-segment – each perpendicular is an instance of the same algorithm viz. drawing a perpendicular to a line on a given point)

Home Page

CONTENTS

28 OF 887

1.2. Long Multiplication

Consider the following example from school arithmetic which illustrates multiplication of large numbers by a method called *long multiplication*.

				5	7	8	3	9	
				×	9	6	4	7	
			4	0	4	0	7	S	
		-	-	-	-	-	-	-	
		2	3	1	3	5	6	0	
	3	4	7	0	3	4	0	0	
5	2	0	5	5	1	0	0	0	
5	5	7	a	7	2	Q	J	Q	
J	J	1	9	1	2	0	0	0	

Many schools and text-books however omit the zeroes (0) at the right end of each of the lines of intermediate products.

One could ask the following questions from a purely mathematical and algorithmic standpoint.

1. What is the *algorithm* behind this method? Can it be expressed in a general fashion without resorting to examples?

Home Page	CONTENTS	44	•	•	**	Go Васк	FULL SCREEN	CLOSE	29 OF 887	QUIT

- 2. How does one guarantee that the method is *correct*? In other words, what is the mathematical *justification* of this method?
- 3. How does this compare with other methods of multiplication (for e.g. multiplication by repeated addition)?

1.2.1. The algorithm

A good way to design algorithms is also to design their justification side by side. Let a and b be two non-negative integers expressed in the usual decimal place-value notation. We use the notation $(a)_{10}$ to indicate that we are looking at the digits of a expressed as a sequence of digits a_m, \ldots, a_0 for some $m \ge 0$, where a_0 is the least significant digit (units digit) of a and a_m is the most significant one. Similarly b may be represented by the digits b_n, \ldots, b_0 for some $n \ge 0$. The place-value system¹ of representation of numbers gives us the identities $a = \sum_{i=0}^m 10^i a_i$ and $b = \sum_{j=0}^n 10^j b_j$.

Assuming without loss of generality that *a* is the multiplicand and *b* is the multiplier, we get (using the fact that multiplication distributes over addition and that multiplication is commutative and associative)

$$a \times b = a \times \sum_{j=0}^{n} 10^{j} b_{j} = \sum_{j=0}^{n} a \times 10^{j} b_{j} = \sum_{j=0}^{n} 10^{j} a b_{j} = a b_{0} + a b_{1} \cdot 10 + \dots + a b_{n} \cdot 10^{n}$$
(1)

¹unlike some other system such as the Roman numerals

	Home Page	CONTENTS	44	•	•	>>	GO ВАСК	FULL SCREEN	CLOSE	30 OF 887
--	-----------	----------	----	---	---	-----------------	---------	-------------	-------	-----------

Equation (1) is at the heart of the long multiplication method and justifies the method. Notice that when n > 0, $ab_0 + ab_1 \cdot 10 + \cdots + ab_n \cdot 10^n = ab_0 + (ab_1 + \cdots + ab_n \cdot 10^{n-1}) \cdot 10$. For completeness, we should mention that when n = 0 the method reduces to multiplying by a single digit number.

The method itself may be expressed in a technically complete fashion by the following algorithm. We use

" $\dot{-}$ " to denote the quotient of integer division and " $\overline{-}$ " to denote the remainder of integer division.

$$longmult(a,b) = \begin{cases} ab_0 & \text{if } n = 0\\ ab_0 + longmult(a,b').10 & \text{if } n > 0 \end{cases}$$
(2)

where

$$b_0 = b - 10$$
 and
 $b' = b - 10$

 b_0 is the units digit of *b* and equals the remainder obtained by dividing *b* by 10. *b'* on the other hand, is the number obtained by "deleting the units digit" of *b*. More accurately, it is the quotient of b/10 and hence $b' = \sum_{j=1}^{n} 10^j b_j$.

Of course, while performing long-multiplications, it is usually not necessary to count or know in advance the number of digits in *b*. We further notice that the two conditions n = 0 and n > 0 may equally well be replaced by the conditions b < 10 and $b \ge 10$ respectively yielding another version of the same algorithm wherein the dependence on *n* is removed.

HOME PAGE	CONTENTS	44	•	•	**	Go Васк	FULL SCREEN	CLOSE	31 OF 887	QUIT

where

$$longmult(a, b) = \begin{cases} ab_0 & \text{if } b < 10\\ ab_0 + longmult(a, b').10 & \text{if } b \ge 10 \end{cases}$$

$$b_0 = b - 10 \text{ and}$$

$$b' = b - 10$$

$$(3)$$

1.2.2. Correctness

We prove the following fairly straightforward theorem, to illustrate how proofs of correctness by induction may go.

Theorem 1.1 (The Correctness theorem). For all a > 0 and $b \ge 0$, algorithm (2) computes the product of a and b, i.e. $longmult(a, b) = a \times b = ab$.

Proof: If b = 0 then clearly $b_0 = b = 0$ and $ab_0 = 0$ and there is nothing to prove. If b > 0 we proceed by induction on $n \ge 0$ such that $10^n \le b < 10^{n+1}$ (i.e. n + 1 is the number of digits in b).

Basis When n = 0, $b = b_0$ and $longmult(a, b) = ab_0 = ab$ and the result follows.

Induction hypothesis (*IH*) Assume longmult(a, c) = ac for all c which have less than n + 1 digits, i.e. $0 \le c < 10^n$.

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	32 OF 887	QUIT

Induction Step Since n > 0 we have that b > 0. Then for $b_0 = b \div 10$ and $b' = b \div 10$ we have

$$b = 10b' + b_0 \tag{4}$$

and hence

$$\begin{aligned} longmult(a,b) &= ab_0 + longmult(a,b') \\ &= ab_0 + ab'.10 & (\mathsf{IH}) \\ &= a(b_0 + 10b') & (factoring out a) \\ &= ab & (by the identity (4)) \end{aligned}$$

The above proof does not really change whether we use algorithm (2) or algorithm (3), since we would still be using the value of n as the induction variable.

1.2.3. The Effort of Long Multiplication

In trying to answer the last question we may ask ourselves what exactly is the time or effort involved in executing the algorithm by say a typical primary school student to whom this method is taught. The tools available with such a student are

- the ability to perform addition and
- the ability to perform single-digit multiplication

Therefore if *a* and *b* are numbers of m+1 digits and n+1 digits respectively, n+1 single digit multiplications of *a* would have to be performed resulting in n+1 intermediate products to be summed up i.e. *n* addition

HOME PAGE CONTENTS	44	•	•	**	Go Васк	FULL SCREEN	CLOSE	33 OF 887	QUIT

operations would have to be performed.

1.2.4. Comparison

At the primary school, multiplication of numbers is usually introduced as "repeated addition". In effect this process could be described by the following algorithm.

$$repadd(a,b) = \begin{cases} 0 & \text{if } b = 0\\ a + repadd(a,b-1) & \text{if } b > 0 \end{cases}$$
(5)

We leave the proof of correctness of this algorithm as an exercise for the interested reader and mention only that it is easy to see that for b > 0 this algorithm would require b-1 addition operations of numbers that are at least m + 1 digits long, and is hence quite time-consuming for large values of b as compared to the algorithm (3) which uses the advantages of the place-value system to yield an algorithm which requires about $\log b$ additions and $\log b$ multiplications of a by a single digit. One wonders how the Romans ever managed to multiply even numbers which are less than 10000. Imagine what "MMMMDCCLXXXVIII × MMMDCCLXXIX" would work out to be!

HOME PAGE	CONTENTS
-----------	----------

CLOSE

QUIT

Computing and Computers

- Computing is much more fundamental
- Computing may be done without a computer too!
- But a Computer cannot do much besides computing.

Home Page	CONTENTS	44	•	►	>	Go Васк	FULL SCREEN	CLOSE	35 of 887	Quit

Primitives: Summary

- Each tool has a set of capabilities called primitive operations or primitives
 - Straight-edge: Can specify lines, rays and line segments.
 - Compass: Can define arcs and circles. Can compare lengths along a line.
 - Straight-edge and Compass: Can specify points of intersection.
- The primitives may be combined in various ways to perform a computation.
- Example Constructing a perpendicular bisector of a given line segment.

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	36 OF 887	QUIT

Algorithm

Given a problem to be solved with a given tool, the attempt is to evolve a combination of primitives of the tool in a certain order to solve the problem.

An explicit statement of this combination along with the order is an algorithm.

HOME PAGE C	Contents	•	Þ	••	Go Васк	FULL SCREEN	CLOSE	37 OF 887	QUIT
-------------	----------	---	---	----	---------	-------------	-------	-----------	------

1.3. Our Computing Tool

1. The Digital Computer: Our Computing Tool

- 2. Algorithms
- 3. Programming Language
- 4. Programs and Languages
- 5. Programs
- 6. Programming
- 7. Computing Models
- 8. Primitives
- 9. Primitive expressions
- 10. Methods of combination
- 11. Methods of abstraction
- 12. The Functional Model
- 13. Mathematical Notation 1: Factorial
- 14. Mathematical Notation 2: Factorial
- 15. Mathematical Notation 3: Factorial
- 16. A Functional Program: Factorial
- 17. A Computation: Factorial
- 18. A Computation: Factorial
- 19. A Computation: Factorial
- 20. A Computation: Factorial

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	38 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	-----------	------	--

Previous: Introduction to Computing

- 21. A Computation: Factorial
- 22. A Computation: Factorial
- 23. A Computation: Factorial
- 24. Standard ML
- 25. SML: Important Features

Next: Primitives: Integer & Real

HOME PAGE	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	39 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	-----------	------	--

The Digital Computer: Our Computing Tool

Algorithm: A finite specification of the solution to a given problem using the primitives of the computing tool.

- It specifies a definite input and output
- It is unambiguous

CONTENTS

• It specifies a solution as a finite process i.e. the number of steps in the computation is finite

 \blacktriangleright

CLOSE

Algorithms

An algorithm will be written in a mixture of English and standard mathematical notation (usually called *pseudo-code*). Usually,

- algorithms written in a natural language are often ambiguous
- mathematical notation is not ambiguous, but still cannot be understood by machine
- algorithms written by us use various mathematical properties. We know them, but the machine doesn't.
- Even mathematical notation is often not quite precise and certain intermediate objects or steps are left to the understanding of the reader (e.g. the use of "..." and ":").

CONTENTS

Functional Pseudo-Code

- *Functional pseudo-code* avoids most such implicit assumptions and attempts to make definitions more precise (e.g. the use of induction).
- *Functional pseudo-code* is still concise though more formal than standard mathematical notation.
- However *functional pseudo-code* is not formal enough to be termed a programming language (e.g. it does not satisfy strict grammatical rules and neither is it linear as most formal languages are).
- But *functional pseudo-code* is precise enough to analyse the correctness and complexity of an algorithm, whereas standard mathematical notation may mask many important details.

CONTENTS

Go Васк 🛛 🕞

Programming Language

- Require a way to communicate with a machine which has essentially no intelligence or understanding.
- Translate the algorithm into a form that may be "understood" by a machine
- This "form" is usually a program

Program: An algorithm written in a programming language.

CONTENTS

 \blacktriangleright

Programs and Languages

- Every programming language has a well defined vocabulary and a well defined grammar (called the syntax of the language).
- Each program has to be written following rigid grammatical rules (syntactic rules).
- A programming language and the computer together form our single computing tool
- Each program uses *only* the primitives of the computing tool

HOME PAGE	

CONTENTS

 \blacktriangleright

Programs

Program: An algorithm written in the grammar of a programming language.

A grammar is a set of rules for forming sentences in a language.

Each programming language also has its own vocabulary and grammar just as in the case of natural languages.

We will learn the grammar of the language as we go along.

CONTENTS

 \blacktriangleright

Programming

The act of writing programs and testing them is programming

Even though most programming languages use essentially the same computing primitives, each programming language needs to be learned.

Programming languages differ from each other in terms of the convenience and facilities they offer even though they are all equally "powerful" in terms of what they can actually compute.

CONTENTS

Computing Models

We consider mainly two models.

- Functional: A program is specified simply as a mathematical expression
- Imperative: A program is specified by a sequence of commands to be executed.

Programming languages also come mainly in these two flavours. We will often identify the computing model with the programming language.

CONTENTS

 \blacktriangleright

CLOSE

Primitives

Every programming language offers the following capabilities to define and use:

- Primitive expressions and data
- Methods of combination of expressions and data
- Methods of abstraction of both expressions and data

The functional model

Номе	PAGE
TIONE	FAGE

CONTENTS

 \blacktriangleright

CLOSE

Primitive expressions

The simplest objects and operations in the computing model. These include

- basic data elements: numbers, characters, truth values etc.
- basic operations on the data elements: addition, subtraction, multiplication, division, boolean operations, string operations etc.
- a naming mechanism for various quantitities and expressions to be used without repeating definitions

CONTENTS

CLOSE

Methods of combination

Means of combining simple expressions and objects to obtain more complex expressions and objects.

Examples: composition of functions, inductive definitions

CONTENTS

CLOSE

Methods of abstraction

Means of naming and using groups of objects and expressions as a single unit

Examples: functions, data structures, modules, classes etc.

CLOSE

The Functional Model

The functional model is very convenient and easy to use:

- Programs are written (more or less) in mathematical notation
- It is like using a hand-held calculator
- Interactive and so answers are immediately available
- The closeness to mathematics makes it convenient for developing, testing, proving and analysing algorithms.

Standard ML

CONTENTS

CLOSE

Explanations and Remarks

There are several models of computation available even on a modern digital computer. This is what makes the modern computer a universal computing mechanism. Most commonly available programming languages include Basic, C, C++ and Java. These programming languages are called *imperative* programming languages and have evolved mainly from the hardware of a modern digital computer. In many ways these languages remain very close to the details of hardware of a modern computer.

At the other end of the spectrum are models and programming languages which have evolved from mathematics and logic. Prominent among these are the *functional* programming languages. They may be loosely described as being closer to the language of mathematics than of modern digital hardware.

As we will see later both models have their distinct uses. The imperative models are much closer to the hardware facilities provided by modern digital computers. But a purely imperative model is too detailed and can become quite cumbersome to analyse and reason about. On the other hand, a purely functional model can become quite difficult to use with several existing hardware and software facilities especially when it comes to handling files, disks and other peripheral units.

Besides the above models there are other computing models too such as declarative, object-oriented, aspect-oriented models etc. which are outside the scope of discussion in this course.

We have preferred the functional model to other models mainly because this course is more about *computing* than about *computers per se*, though of course we use a modern digital computer to do most of the tasks in this course. Modern digital computers are tremendously complex objects – both in terms of hardware and software – and contain far more detail than a single mind can cope with at any instant of

 \blacktriangleright

CONTENTS

CLOSE

time. As a result, any user of the computer at any instant pays attention to only some of the facets of the computer. While writing documents a user only views the computer as a word processor, while using a spread-sheet the user sees it as a spread-sheet calculator and nothing else. A programmer views it simply as a language processing machine. The hardware and software together present an abstracted view of the machine to the user, depending on the use that is being made of the computer.

Computing however, involves not simply writing programs for a given model but analysing the methods employed and the properties of the methods and the programs as well. Our emphasis is on problemsolving – developing, proving and analysing algorithms and programs. These tasks are perhaps performed more rigorously and conveniently with the tools and the notation of mathematics available to us and it therefore is easier to present them in a concise and succinct manner and reason about them in a functional programming paradigm than through other paradigms. At the same time it is possible for the reader to dirty her hands by designing and running the code on a modern digital computer.

HOME PAGE	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	54 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	-----------	------	--

Mathematical Notation 1: Factorial

For simplicity we assume that n! = 1 for all integers less than 1. Then informally we may write it as

$$n! = \begin{cases} 1 & \text{if } n < 1\\ 1 \times 2 \times \ldots \times n & \text{otherwise} \end{cases}$$

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	55 of 887	QUIT

Mathematical Notation 2: Factorial

Or more formally we use *mathematical induction* to define it as

$$n! = \left\{ egin{array}{cc} 1 & ext{if } n < 1 \ n imes (n-1)! & ext{otherwise} \end{array}
ight.$$

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	56 OF 887	QUIT

A Functional Program: Factorial

fun fact n = if n < 1 then 1 else n * fact (n-1)

Refer here for a more detailed explanation of the syntax of SML and how to understand its responses.

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	57 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	-----------	------	--

QUIT

Factorial in SML

If we were to start the SML system on a terminal and input the above line, what we see is this

```
sml
Standard ML of New Jersey,
- fun fact n = if n < 1 then 1 else n * fact (n-1);
val fact = fn : int -> int
```

The lines starting with – are the response of the system to our input from the keyboard. Here SML has recognized that we have defined a function called fact which takes a single integer argument (formally referred to as n in the definition).

Home Page	CONTENTS	44	•	•	>>	Go Васк	FULL SCREEN	CLOSE	58 OF 887	

Evaluation: Factorial

If we were to give a further input fact 4; what we see on the terminal is the following.

```
sml
Standard ML of New Jersey,
- fun fact n = if n < 1 then 1 else n * fact (n-1);
val fact = fn : int -> int
- fact 4;
val it = 24 : int
```

An evaluation has been performed viz. fact 4 whose result is an integer value 24.

Home Page	CONTENTS

CLOSE

Computations in General

A computation takes place by a process of *simplification* (called *evaluation*) which may be understood as follows:

• Evaluation requires replacement of

simple variables by their values,

function names by their definitions,

argument names by the values of the actual arguments. In certain cases actual arguments may have to be first evaluated

- Evaluation takes place from left to right unless bracketing and association of operators dictate otherwise.
- Priority of operators is usually consistent with mathematical notation but may vary from language to language.

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	60 OF 887	QUIT

A Computation 1: Factorial

This process is akin to the way we compute in mathematics. For example, going strictly by the definition we have given we have the following *computations* for various values.

$$(-2)! = 1$$

$$= 1 \times (1 - 1)! = 1 \times 0! = 1 \times 1 = 1$$

	1	1	-			_			_	_
HOME PAGE	CONTENTS	••	•	►	>>	Go Back	FULL SCREEN	CLOSE	61 OF 887	Quit

A Computation 2: Factorial

$$3! = 3 \times (3 - 1)! = 3 \times 2! = 3 \times (2 \times (2 - 1)!) = 3 \times (2 \times 1!) = 3 \times (2 \times (1 \times (1 - 1)!)) = 3 \times (2 \times (1 \times 0!)) = 3 \times (2 \times (1 \times 0!)) = 3 \times (2 \times (1 \times 1)) = 3 \times (2 \times 1) = 3 \times 2 = 6$$

The bracketing and association shown above are followed by the machine.

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	62 OF 887	QUIT

A Computation: Factorial

Computations performed by a machine are very similar to the way we would compute except that it is done so mechanically that even associative laws and commutative laws are not known to the machine. As a result the bracketing that we see above is strictly to be followed. However what we actually see displayed in the SML system for various

However what we actually see displayed in the SML system for various values of n is as follows: - fact 3;

```
val it = 6 : int
- fact 8;
val it = 40320 : int
- fact 9;
val it = 362880 : int
```

The system does not show you the various steps of the computation.

CONTENTS

CLOSE

Mathematical Notation 3: Factorial

How about this definition?

$$n = \begin{cases} 1 & \text{if } n < 1\\ (n+1)!/(n+1) & \text{otherwise} \end{cases}$$
(6)

Mathematically correct since a definition implicitly defines a mathematical equality or identity. But . . .

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	64 OF 887	QUIT	

Computationally Incorrect Definitions

The last definition is computationally incorrect! Since the system would execute "*blindly*" by a process of replacing every occurrence of k! by the right hand-side of the definition (in this case it would be (k + 1)!/(k + 1)). So for 3! we would get

$$3! = (3+1)!/(3+1) = 4!/4 = ((4+1)!/(4+1))/4 = (5!/5)/4 = i = i$$

which goes on forever!

	Home Page Conte	TENTS	•	►	••	Go Васк	FULL SCREEN	CLOSE	65 OF 887	QUIT	
--	-----------------	-------	---	---	----	---------	-------------	-------	-----------	------	--

Algorithms & Nontermination

- An algorithm should guarantee that all its computations *terminate*. By this criterion the definition given above is not an algorithm whereas the one given previously is an algorithm.
- In fact for all our algorithmic definitions we would have to prove guaranteed termination.
- It is possible to write definitions in any programming language whose computations do not terminate for some legally valid arguments.

HOME PAGE	
-----------	--

CONTENTS

QUIT

1.4. Some Simple Algorithmic Definitions

The functional model is very close to mathematics; hence functional algorithms are easy to analyze in terms of correctness and efficiency. We will use the SML interactive environment to write and execute functional programs. This will provide an interactive mode of development and testing of our early algorithms. In the later chapters we will see how a functional algorithm can serve as a specification for development of algorithms in other models of computation.

In the functional model of computation every problem is viewed as an evaluation of a function. The solution to a given problem is specified by a complete and unambiguous functional description. Every reasonable model of computation must have the following facilities:

Primitive expressions which represent the simplest objects with which the model is concerned.

Methods of combination which specify how the primitive expressions can be combined with one another to obtain compound expressions.

Methods of abstraction which specify how compound objects can be named and manipulated as units.

In what follows we introduce the following features of our functional model:

- 1. The *Primitive* expressions.
- 2. Definition of one function in terms of another (substitution).

HOME PAGE CONTENTS 44 A I A I A GO BACK FULL SCREEN CLOSE 67 C	887 Quit
--	----------

- 3. Definition of functions using conditionals.
- 4. Inductive definition of functions.

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	68 OF 887	QUIT	
-----------	----------	----	---	---	-----------------	---------	-------------	-------	-----------	------	--

The Basic Sets

- \mathbb{N} : The set of *natural numbers* i.e. the *non-negative integers*
- \mathbb{P} : The set of *positive integers*
- \mathbb{R} : The set of *reals*
- \mathbb{B} : The set of *booleans* i.e. the truth values *true* and *false*

Home Page	CONTENTS	44	•	•	>	Go Васк	FULL SCREEN	CLOSE	69 OF 887	Quit

The Primitive Expressions:1

- Primitive functions of the type $f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ and $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ which we assume to be available in our functional model are addition (+), subtraction (-), multiplication (*).
- We will also assume the div and mod functions of the type $f : \mathbb{N} \times \mathbb{P} \to \mathbb{N}$. Note that if $a \in \mathbb{N}$ and $b \in \mathbb{P}$ and a = q * b + r for some integers $q \in \mathbb{N}$ and $0 \le r < b$ then div(a, b) = q and mod(a, b) = r.
- The division function $/:\mathbb{R}\times\mathbb{R}\to\mathbb{R}$ will be assumed to be valid only for real numbers.

Home Page	Contents	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	70 OF 887	QUIT

The Primitive Relations

- All relations are expressed as *boolean* valued functions.
- The *relations* =, \leq , <, \geq , > and \neq . are functions of the type $f : \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{B}$ or $f : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{B}$ depending on the context,
- In addition, relations may be combined using the functions $\wedge : \mathbb{B} \times \mathbb{B} \to \mathbb{B}$ (and), $\vee : \mathbb{B} \times \mathbb{B} \to \mathbb{B}$ (or) and $\neg : \mathbb{B} \to \mathbb{B}$ (not).

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	71 OF 887	QUIT	

1.5. Substitution of functions

W e give a few examples of definitions of one function in terms of another and the evaluation of such functions through substitution.

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	72 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	-----------	------	--

Example: Square

Finding the square of a natural number.

We can directly specify the function square, which is of the type $square : \mathbb{N} \to \mathbb{N}$ in terms of the standard *multiplication* function $* : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ as

 $square(n) = n \ast n$

Here, we are assuming that we can *substitute* one function for another provided they both return an item of the same type. To evaluate, say, square(5), we have to thus evaluate 5 * 5.

CONTENTS

FULL SCREEN CLOSE

74 OF 887

QUIT

Example 1: Substitution

We can build more complex functions from simpler ones. As an example, let us define a function to compute $x^2 + y^2$. We can define a function $sum_squares : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ as follows

$$sum_squares(x,y) = square(x) + square(y)$$

The function $sum_squares$ is thus defined in terms of the functions + and square.

Home Page	CONTENTS	44	•	Þ	••	Go Back	FULL SCREEN	CLOSE	

Example 2: Substitution

As another example, let us consider the following function $f:\mathbb{N}\to\mathbb{N}$ defined as follows

$$f(n) = sum_squares((n+1), (n+2))$$

HOME PAGE	
-----------	--

CONTENTS

4

GO BACK

FULL SCREEN

75 OF 887

Example 1: The Conditional

We give a few examples of function definitions using conditionals. Finding the absolute value of x. We define the function

$$abs: \mathbb{Z} \to \mathbb{N}$$

as

$$abs(x) = \begin{cases} x & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ -x & \text{if } x < 0 \end{cases}$$

◄

CLOSE

Example 2: The Conditional

Finding the larger of two numbers.

 $max : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ $max(a, b) = \begin{cases} a \text{ if } a \ge b \\ b \text{ otherwise} \end{cases}$

LIGHT	Dier
Номе	PAGE

CONTENTS

◄

 \blacktriangleright

GO BACK

W hile defining the functions *abs* and *max*, we have assumed that we can compare two natural numbers, and determine which is larger. The basic primitive used in this case is *if-then-else*. Thus if $a \ge b$, the function *max* returns *a* as the output, else it returns *b*. Note that for every pair of natural numbers as its input, *max* returns a unique number as the output.

In the case of *abs*, even though there seem to be three possible cases, the basic primitive used is still the *if-then-else* which may be read as

abs(x) = x if x > 0, $otherwise \ abs(x) = 0$ if x = 0 $otherwise \ abs(x) = -x$ if x < 0

Equivalently we may read it as

 $\begin{array}{ll} \textit{if} & x > 0 \textit{ then } abs(x) = x \\ \textit{else if } x = 0 \textit{ then } abs(x) = 0 \\ \textit{else} & abs(x) = -x \end{array}$

CLOSE

What is not an Algorithm?

Not all mathematically valid specifications of functions are algorithms. For example,

$$sqrt(n) = \begin{cases} m \text{ if } m * m = n \\ 0 \text{ if } \nexists m : m * m = n \end{cases}$$

is mathematically a perfectly valid description of a function of the type $sqrt: \mathbb{N} \to \mathbb{N}$. However the mathematical description does not tell us *how* to evaluate the function, and hence it is not an algorithm.

CONTENTS

Algorithmic Descriptions

An algorithmic description of the function may start with m = 1 and check if m * m = n for all subsequent increments of m by 1 till either such an m is found or m * m > n. We will soon see how to describe such functions as computational processes or algorithms such that the computational processes terminate in finite time.

As another example of a mathematically valid specification of a function which is *not* an algorithm, consider the following functional description of $f : \mathbb{N} \to \mathbb{N}$

$$f(n) = \begin{cases} 0 & \text{if } n = 0\\ f(n+1) - 1 & \text{otherwise} \end{cases}$$
(7)

The above specification has an infinite number of candidate solutions. For any constant $k \in \mathbb{N}$, the functions

$$f_k(n) = \left\{ egin{array}{cc} 0 & \mbox{if } n=0 \ k+n & \mbox{otherwise} \end{array}
ight.$$

are all solutions that satisfy the given specification (7). However, the specification (7) is not a valid algorithm because in order to evaluate f(1) we have to evaluate f(n+1) for n = 1, 2, 3, ... which leads to an infinite computational process. One can rewrite the specification of the above function, in an *inductive* form, as a function $g : \mathbb{N} \to \mathbb{N}$

$$g(n) = \begin{cases} 0 & \text{if } n = 0\\ g(n-1) + 1 & \text{otherwise} \end{cases}$$

Now this indeed defines a valid algorithm for computing $f_1(n)$. Mathematically the specifications for $f_1(n)$

HOME PAGE	CONTENTS	44	4	►	••	Go Васк	FULL SCREEN	CLOSE	80 OF 887	QUIT	

and g(n) are equivalent in that they both define the same function. However, the specification for g(n) constitutes a valid algorithm whereas that for f(n) does not. For successive values of n, g(n) can be computed as

$$\begin{array}{rcl} g(0) &=& 0 \\ g(1) &=& g(0) + 1 = 1 \\ g(2) &=& g(1) + 1 = g(0) + 1 + 1 = 2 \\ \vdots \end{array}$$

Exercise 1.1

- 1. Prove that $f_1(n) = g(n)$ for all $n \in \mathbb{N}$.
- 2. For each $k \in \mathbb{N}$, give an algorithmic definition to compute the function f_k .

Similarly, consider the definition

$$f(n) = f(n)$$

Every (unary) function is a solution to the above but it is computationally undefined.

Номе Р	e Contents	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	81 OF 887	QUIT	
--------	------------	----	---	---	----	---------	-------------	-------	-----------	------	--

1.6. Functions as inductively defined computational processes

All the examples of algorithmic descriptions we have presented so far are of functions which can be evaluated by substitutions or by evaluation of conditions. We give a few more examples of algorithms which are defined by induction.

1.7. Algorithmic Definitions which are well-founded

We give an example of an algorithm for computing the *greatest common divisor* (GCD) of two positive integers. This algorithm is a variation of the one invented by Euclid and at first sight does not appear to be inductive at all. But in fact it uses a generalization of mathematical induction called well-founded induction.

Example 1.2 Computing the GCD of two positive integers. We know that the greatest common divisor is a function which for any pair of non-negative integers, yields the greatest of all the common divisors of the two numbers.

Assume *a* and *b* are non-negative integers.

$$gcd(a,b) = \begin{cases} m & \text{if } a = 0 \lor b = 0 \lor m = n \\ gcd(m-n,n) & \text{otherwise} \end{cases}$$
(8)

where m = max(a, b) and n = min(a, b). Here and everywhere else in these notes \lor stands for (inclusive) "or" of conditions. Various questions arise regarding whether

Home Page	CONTENTS	44	-	•	••	Go Васк	FULL SCREEN	CLOSE	82 OF 887	QUIT

- 1. as an identity, equation (8) correctly defines a property of the greatest common divisor function for non-negative integers.
- 2. whether the identity may be used as an algorithm which is guaranteed to terminate i.e. does it define a finite computational process?

The following theorems could settle the two questions.

Theorem 1.3 Correctness of GCD identity. For any two non-negative integers a and b,

$$gcd(a,b) = \begin{cases} m & \text{if } a = 0 \lor b = 0 \lor m = m \\ gcd(m-n,n) & \text{otherwise} \end{cases}$$

where m = max(a, b) and n = min(a, b).

Proof:

- Case $a = 0 \lor b = 0 \lor m = n$. Notice that $a, b \ge 0$ and if one of them is 0 then the other is indeed the greatest common divisor, since every integer is a divisor of 0. On the other hand, m = max(a, b) = n = min(a, b) is possible if and only if a = b. Then again we have gcd(a, b) = a = b = m = n.
- Case $a \neq 0 \neq b$ and $m \neq n$. In this case we have a, b > 0 and hence m > n > 0. Without loss of generality we assume a > b > 0 (since the case b > a > 0 can be proven similarly). Then m = max(a, b) = a and n = min(a, b) = b. Further m n = a b. We then prove the following claims.
 - 1. Claim. Every common divisor of a and b is also a common divisor of a b and b.

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	83 OF 887	QUIT	

Proof: Since a, b > 0, they have at least one positive common divisor since 1 is a divisor of every non-negative integer. Let $d \ge 1$ be a common divisor of a and b. Then there exist a', b' > 0 such that a = da' and b = db'. We then have a - b = d(a' - b'). Hence d is a common divisor of a - b and b.

2. Claim. gcd(a, b) = gcd(a - b, b).

Proof: Let h = gcd(a, b) and let d > 0 be any common divisor of a and b. Clearly $h \ge d$ and by the previous claim h is also a common divisor of a - b and b and indeed the greatest of them.

The above theorem justifies that equation (8) is a valid mathematical identity. The next theorem shows that equation (8) does define a finite computational process.

Theorem 1.4 Equation (8) defines a finite computational process for non-negative integers.

Proof:

Case $a = 0 \lor b = 0 \lor m = n$. In all cases when a = b or one of the two numbers is 0 it is clear that the first condition of the identity immediately yields a result in one step.

Case $a \neq 0 \neq b$ and $m \neq n$. In this case a, b, m, n > 0 and we may define a measure given by m, and it is easy to see that a > m - n > 0 whenever a > b and b > m - n > 0 whenever b > a. It is then clear that $max(a, b) > m - n \ge 0$ always and hence the computational process is bounded above by max(a, b) and below by 0 and the larger of the two arguments in the computational process traverses down a subset of elements from the strictly decreasing finite sequence m, m - 1, m - 2, ..., 1, 0, and hence is guaranteed to terminate in a finite number of steps.

gcd as defined by equation (8) is a function because for every pair of non-negative integers as arguments,

HOME PAGE	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	84 OF 887	QUIT

it yields a non-negative integer. It is also a finite computational process, because given any two nonnegative integers as input, the description tells us, unambiguously, how to compute the solution and the process terminates after a finite number of steps. For instance, for the specific case of computing gcd(18, 12), we have

gcd(18, 12) = gcd(12, 6) = gcd(6, 6) = 6.

The larger of the two arguments in this computational process for instance goes through a subset of the elements in the finite sequence

 $18, 17, \ldots, 6, 5, 4, 3, 2, 1$

Thus a specification of a function is an algorithm only if it actually defines a finite computational process to evaluate it and this computational process may not always be inductive, though it must be well-founded in order that the process terminates.

Home Page	CONTENTS	44	•	►	**	Go Васк	FULL SCREEN	CLOSE	85 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	-----------	------	--

Algorithmic Descriptions

Any of the following constitutes an algorithmic description:

- 1. It is directly specified in terms of a pre-defined function which is either primitive or there exists an algorithm to compute it.
- 2. It is specified in terms of the evaluation of a condition.
- 3. It is inductively defined and the validity of its description can be established through the Principle of Mathematical Induction or through well-founded induction.
- 4. It is obtained through any finite number of combinations of the above three steps using substitutions.

CONTENTS

 \blacktriangleright

86 OF 887

1.8. Recursive processes

Complex functions can be algorithmically defined in terms of two main types of processes - *recursive* and *iterative*.

Recursive computational processes are characterized by a chain of deferred operations. As an example, we will consider an algorithm for computing the factorial of non-negative integer n.

Example 1.5

$$factorial : \mathbb{N} \to \mathbb{N}$$
$$factorial(n) = \begin{cases} 1 & \text{if } n = 0\\ n \times factorial(n-1) & \text{otherwise} \end{cases}$$

It is instructive to examine the computational process underlying the above definition. The computational process, in the special case of n = 5, looks as follows

$$factorial(5)$$

$$= (5 \times factorial(4))$$

$$= (5 \times (4 \times factorial(3)))$$

$$= (5 \times (4 \times (3 \times factorial(2))))$$

$$= (5 \times (4 \times (3 \times (2 \times factorial(1)))))$$

$$= (5 \times (4 \times (3 \times (2 \times (1 \times factorial(0))))))$$

$$= (5 \times (4 \times (3 \times (2 \times (1 \times 1)))))$$

Home Page	CONTENTS	44	4	►	••	Go Васк	FULL SCREEN	CLOSE	87 OF 887	QUIT	

 $= (5 \times (4 \times (3 \times (2 \times 1)))))$ = (5 × (4 × (3 × 2))) = (5 × (4 × 6)) = (5 × 24) = 120

A computation such as this is characterized by a *growing* and *shrinking* process. In the *growing* phase each "call" to the function is replaced by its "body" which in turn contains a "call" to the function with different arguments. In order to compute according to the inductive definition, the actual multiplications will have to be postponed till the base case of factorial(0) can be evaluated. This results in a growing process. Once the base value is available, the actual multiplications can be carried out resulting in a shrinking process. Computational processes which are characterized by such "deferred" computations are called *recursive*. This is not to be confused with the notion of a *recursive procedure* which just refers to the syntactic fact that the procedure is described in terms of itself.

Note that by a computational process we require that a machine, which has only the capabilities provided by the computational model, be able to perform the computation. A human normally realizes that multiplication is commutative and associative and may exploit it so that he does not have to defer performing the multiplications. However if the multiplication operation were to be replaced by a non-associative operation then even the human would have to defer the operation. Thus it becomes necessary to perform all recursive computations through deferred operations.

Exercise 1.2 Consider the following example of a function $f : \mathbb{N} \to \mathbb{Z}$ defined just like factorial except that

HOME PAGE	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	88 OF 887	QUIT
-----------	----------	----	---	---	-----------------	---------	-------------	-------	-----------	------

multiplication is replaced by subtraction which is not associative.

$$f(n) = \left\{ \begin{array}{ll} 1 & \text{if } n = 0 \\ n - f(n-1) & \text{otherwise} \end{array} \right.$$

- 1. Unfold the computation, as in the example of factorial(5) above, to show that f(5) = 2.
- 2. What properties will you use as a human computer in order to avoid deferred computations?

1.9. Correctness

T he correctness of the functional algorithm defined in example 1.5 can be established by using the Principle of Mathematical Induction (PMI). The algorithm adheres to an inductive definition and, consequently, can be proved correct by using PMI. Even though the proof of correctness may seem obvious in this instance, we give the proof to emphasize and clarify the distinction between a mathematical specification and an algorithm that implements it.

To show that: For all $n \in \mathbb{N}$, factorial(n) = n! (i.e., the function factorial implements the factorial function as defined below).

$$n! = \begin{cases} 1 & \text{if } n = 0\\ 1 \times 2 \times \ldots \times n & \text{otherwise} \end{cases}$$

Proof: By PMI on n.

Basis. When n = 0, factorial(n) = 1 = 0! by definitions of factorial and 0!.

Induction hypothesis. For k = n - 1, $k \ge 0$, we have that factorial(k) = k!.

Home Page	CONTENTS	44	_ -	•	••	Go Васк	FULL SCREEN	CLOSE	89 OF 887	QUIT

Induction step. Consider factorial(n).

 $\begin{array}{rcl} factorial(n) &=& n \times factorial(n-1) \\ &=& n \times (n-1)! & & \mbox{by the induction hypothesis} \\ &=& n! & & \mbox{by the definition of } n! \end{array}$

Hence the function factorial implements the factorial function n!.

Exercise 1.3 In the case of factorial we proved that the recursive definition of factorial equals a non-recursive specification for all natural numbers n. Consider the function f defined in exercise 1.2.

- 1. What does the function *f* actually compute (give a non-recursive description)?
- 2. Prove that your non-recursive specification equals the recursive specification for all naturals n.

HOME PAGE	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	90 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	-----------	------	--

1.10. Complexity

The other important aspect in the analysis of an algorithm is the issue of efficiency - both in terms of *space* and *time*. The efficiency of an algorithm is usually measured in terms of the space and time required in the execution of the algorithm (the space and time complexities). These are functions of the input size n.

A careful look at the above computational process makes it obvious that in order to compute factorial(n), the *n* integers will have to be remembered (or stacked up) before the actual multiplications can begin. Clearly, this leads to a space requirement of about *n*. We will call this the *space complexity*.

The time required to execute the above algorithm is directly proportional (at least as a first approximation) to the number of multiplications that have to be carried out and the number of function calls required. We can evaluate this in the following way. Let $\mathcal{T}(factorial(n))$ be the number of multiplications required for a problem of size n (when the input is n). Then, from the definition of the function factorial we get

$$\mathcal{T}(factorial(n)) = \begin{cases} 0 & \text{if } n = 0\\ 1 + \mathcal{T}(factorial(n-1)) & \text{otherwise} \end{cases}$$
(9)

 $\mathcal{T}(factorial(0))$ is obviously 0, because no multiplications are required to output factorial(0) = 1 as the result. For n > 0, the number of multiplications required is one more than that required for a problem of size n - 1. This is a direct consequence of the recursive specification of the solution. We may solve Equation 9 by telescoping, i.e.,

$$\mathcal{T}(factorial(n)) = 1 + \mathcal{T}(factorial(n-1))$$

= 2 + $\mathcal{T}(factorial(n-2))$ (10)

HOME PAGE	CONTENTS	44	•	►	••	Go Back	FULL SCREEN	CLOSE	91 OF 887	QUIT

$$= n + \mathcal{T}(factorial(0)) + n$$
$$= n$$

Thus n is the number of multiplications required to compute factorial(n) and this is the time complexity of the problem.

To estimate the space complexity, we have to estimate the number of deferred operations which is about the same as the number of times the function *factorial* is invoked.

Exercise 1.4 Show, in a similar way, that the number of invocations of *factorial* required to evaluate factorial(n) is n + 1.

Equation 9 is called a recurrence equation and we will use such equations to analyze the time complexities of various algorithms in these notes. Note that the measure of space and time given above are independent of how fast a computing machine is. Rather, it is given in terms of the amount of space required and the number of multiplications and function calls that are required. The measures are thus independent of any computing machine.

1.11. Efficiency, Why and How?

Modern technological advances in silicon have seen processor sizes fall and computing power rise dramatically. The microchip one holds in the palm today packs more computing power – both processor speed and memory size – than the monster monoliths that occupied whole rooms in the 50's. A sceptic is therefore quite entitled to ask: who cares about efficient algorithms anyway? If it runs too slow, just throw

 \blacktriangleright

CONTENTS

GO BACK

CLOSE

92 OF 887

the processor away and get a larger one. If it runs out of space, just buy a bigger disk! Let's perform some simple back-of-the-envelope calculations to see if this scepticism is justified.

Consider the problem of computing the *determinant* of a matrix, a problem of fundamental importance in numerical analysis. One method is to evaluate the determinant by the well known formula:

$$\det A = \sum_{\sigma} (-1)^{\operatorname{sgn}\sigma} A_{1,\sigma(1)} \cdot A_{2,\sigma(2)} \cdots A_{n,\sigma(n)}.$$

Suppose you have implemented this algorithm on your laptop to run in $10^{-4} \times 2^n$ seconds when confronted with any $n \times n$ matrix (it will actually be worse than this!). You can solve an instance of size 10 in $10^{-4} \times 2^{10}$ seconds, i.e., about a tenth of a second. If you double the problem size, you need about a thousand times as long, or, nearly 2 minutes. Not too bad. But to solve an instance of size 30 (not at all an unreasonable size in practice), you require a thousand times as long again, i.e. even running your laptop the whole day isn't sufficient (the battery would run out long before that!). Looking at it another way, if you ran your algorithm on your laptop for a whole year (!) without interruption, you would still only be able to compute the detrminant of a 38×38 matrix!

Well, let's buy new hardware! Let's go for a machine that's a hundred times as fast – now this is getting almost into supercomputing range and will cost you quite a fortune! What does it buy you in computing power? The same algorithm now solves the problem in $10^{-6} \times 2^n$ seconds. If you run it for a whole year non-stop (let's not even think of the electricity bill!), you can't even compute a 45×45 determinant! In practice, we will routinely encounter much larger matrices. What a waste!

Exercise 1.5 In general, show that if you were previously able to compute $n \times n$ determinants in some given time (say a year) on your laptop, the fancy new supercomputer will only solve instances of size

	Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE
--	-----------	----------	----	---	---	----	---------	-------------	-------

QUIT

93 OF 887

 $n + \log 100$ or about n + 7 in the same time.

Suppose that you've taken this course and invest in algorithms instead. You discover the method of *Gaussian elimination* (we will study it later in these notes) which, let us assume, can compute a $n \times n$ determinant in time $10^{-2}n^3$ on your laptop. To compute a 10×10 determinant now takes 10 seconds, and a 20×20 determinant now requires between one and two minutes. But patience! It begins to pay off later: a 30×30 determinant takes only four and a half minutes and in a day you can handle 200×200 determinants. In a years's computation, you can do monster 1500×1500 determinants.

1.12. Asymptotic analysis and Orders of growth

You may have noticed that there was something unsatisfactory about our way of doing things – the calculation was tuned too closely to our machine. The figure of $10^{-4} \times 2^n$ seconds is a bit arbitrary – the time to execute on one particular laptop – and has no other absolute significance for an analysis on a different machine. We would like to remedy this situation so as to have a mode of analysis that is applicable to *any* machine. It should tell us precisely how the problem *scales* – how does the resource requirement grow as the size of the input increases – on any machine.

We now introduce one such machine independent measure of the resources required by a computational process – the *order of growth*. If n is a parameter that measures the size of a problem then we can measure the resources required by an algorithm as a function R(n). We say that the function R(n) has an order of growth O(f(n)) (of order f(n)), if there exist constants K and n_0 such that $R(n) \leq Kf(n)$ whenever $n \geq n_0$.

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	94 OF 887	QUIT

In our example of the computation of factorial(n), we found that the space required is n, whereas the number of multiplications and function calls required are n and n + 1 respectively. We see, that according to our definition of order of growth, each of these are O(n). Thus, we can say that the *space complexity* and the *time complexity* of the algorithm are both O(n). In the example of determinant computation, regardless of the particular machine and the corresponding constants, the algorithm based on Gaussian elimination has time complexity $O(n^3)$.

Order of growth is only a crude measure of the resources required. A process which requires n steps and another which requires 1000n steps have both the same order of growth O(n). On the other hand, the $O(\cdot)$ notation has the following advantages:

- It hides constants, thus it is robust across different machines.
- It gives fairly precise indication of how the algorithm *scales* as we increase the size of the input. For example, if an algorithm has an order of growth O(n), then doubling the size of the input will very nearly double the amount of resources required, whereas with a $O(n^2)$ algorithm will *square* the amount of resources required.
- It tells us which of two competing algorithms will win out eventually *in the long run*: for example, however large the constant K may be, it is always possible to find a break point above which Kn will always be smaller than n^2 or 2^n giving us an indication of when an algorithm with the former complexity will start working better than algorithms with the latter complexities.
- Finally the very fact that it is a crude analysis means that it is frequently much easier to perform than an exact analysis! And we get all the advantages listed above.

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	95 of 887	QUIT

1.13. The Analysis of Algorithms: The Big "O" notation

A nalysis of an algorithm means analysing the resources required by the algorithm. The resources here are primarily the amount of space required to store values (including intermediate ones) and the amount of the time required to execute the algorithm, in terms of a number of "steps". The notion of a step requires some units as one machine's step may be different from another machine's step. We may even consider for the puproses of asymptotic analysis, a large-ish step such as the number of invocations of a function in order to simplify analysis.

There are other situations where other resources such as the band-width, the number of logic-gates or the number of messages sent may be useful measures for analysing the resources required by a system. However in the case of our algorithms our primary concern will be with the requirement of time and storage space required in the worst case by the algorithm.

In general, both measures depend upon the value or length of the input. It is normal in most books on Algorithms to launch into a rather long excursus on the machine model used to analyse the algorithm. We will however dispense with such things since everybody who reads these notes probably has a fair idea of the digital computer and anyway nobody reads that kind of trash.

Hence in our analysis we will primarily make use of functions $f : \mathbb{N} \longrightarrow \mathbb{R}$ and try to analyse the running time and the space requirements of algorithms in terms of these functions and compare the complexity of different algorithms for the same problem in terms of the asymptotic behaviour of functions which characterise their space requirements and/or running time as functions of the input size.

But we need to formalise these notions of asymptotic analysis. Asymptotic analysis involves determining

...

HOME PAGE	CONTENTS
TIONETAGE	OUNTENT

•

GO BACK

FULL SCREEN

CLOSE

96 OF 887

Quit

the growth-rate of a function for large values. Such a growth rate could easily be determined by computing the first derivative of the function if the function were continuously differentiable for large values. However, since our functions depend upon the input size, they turn out to be functions whose domain is the set of natural numbers rather than real numbers. Hence these "*discrete*" functions are not easily amenable to the tools of differential and integral calculus.

In figures 1, 2 we show plots of some of these functions. Notice that the scale has been chosen to make them look continuous and differentiable, but they are indeed discrete functions. Further note that the y-axis in figure 2 is in logarithmic scale to accommodate the various functions.

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	97 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	-----------	------	--

Asymptotically Non-negative Functions

Definition 1.6 A function $f : \mathbb{N} \longrightarrow \mathbb{R}$ is said to be asymptotically nonnegative if for some $k \ge 0$ and for all $m \ge k$, $f(m) \ge 0$.

That is, $f : \mathbb{N} \longrightarrow \mathbb{R}$ is asymptotically non-negative if for all sufficiently large values of n, f(n) is guaranteed to be non-negative.

Example 1.7 The function $f(n) = n^2 - 100$ is asymptotically non-negative for all values of $n \ge k = 10$.

Exercise 1.6 Is $f(n) = \sin n$ an asymptotically non-negative function? What about $g(n) = 1 + \sin n$ and $h(n) = 2 + \cos n$?

Let

 $\Phi = \{ f : \mathbb{N} \longrightarrow \mathbb{R} \mid f \text{ is asymptotically non-negative} \}$

be the set of all asymptotically non-negative functions.

HOME PAGE CC	ONTENTS	•	►	••	Go Васк	FULL SCREEN	CLOSE	98 OF 887	QUIT

The Order Θ

Definition 1.8 For any given function $g : \mathbb{N} \longrightarrow \mathbb{R}$, that is asymptotically non-negative, $\Theta(g(n)) \subseteq \Phi$ is the class of functions such that

 $\Theta(g(n)) = \{ f(n) \mid \exists c_0, c_1 \in \mathbb{R}, n_0 > 0 : \forall n \ge n_0 : 0 \le c_0.g(n) \le f(n) \le c_1.g(n) \}$

For any $f(n) \in \Theta(g(n))$ we write (by abuse of notation) $f(n) = \Theta(g(n))$.

If f(n) can be bounded from above and below by scalar multiples of g(n) for all sufficiently large values of n then $f(n) \in \Theta(g(n))$.

Exercise 1.7

1. Is $1 + \sin n = \Theta(1 + \cos n)$?

2. Is $2 + \sin n = \Theta(2 + \cos n)$

HOME PAGE CONTENTS 44 4 I I I I I CONTENTS CLOSE 99 OF 887	QUIT
--	------

Θ: Simple Examples: 1

Example 1.9 Given the function g(n) = 1 every constant function $f(n) = k \ge 0$ is a member of $\Theta(g(n))$.

Example 1.10 Given a linear function g(n) = 3n + 2, every linear function of n belongs to $\Theta(g(n))$. For example for a linear function $f(n) = 10^6 n + 10^5$ there exist constants $c_0 = 1$, $c_1 = 10^6$ and an $n_0 = 1$, such that for all $n \ge n_0$, we have $0 \le c_0 \cdot g(n) \le f(n) \le c_1 \cdot g(n)$

Home Page	CONTENTS	44	4	•	>	Go Васк	FULL SCREEN	CLOSE	100 OF 887	Quit

Θ: Simple Examples: 2

Example 1.11 The function $f(n) = 3n^2 + 4n - 10 \notin \Theta(g(n^3))$ because it is impossible to find some n_0 which will guarantee for some c_0 that $c_0.g(n) \leq f(n)$ holds for all $n \geq n_0$.

Example 1.12 For any function $f(n) = 4n^2 + 8n + 2 \in \Theta(n^2)$. However $f(n) \notin \Theta(n)$ and $f(n) \notin \Theta(n^k)$ for any constant k > 2.

The above example shows that lower-order terms become asymptotically insignificant when n is large.

Exercise 1.8 Let $f(n) = an^2 + bn + c \in \Phi$ for suitably chosen coefficients a, b and c. Determine values of c_0, c_1 and n_0 as functions of a, b and c such that $f(n) \in \Theta(n^2)$.

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	101 OF 887	QUIT

Θ: The Polynomials

Example 1.13 Every polynomial (in *n*) of degree $k \ge 0$ belongs to the class $\Theta(n^k)$.

Notice that in definition 1.8, it is necessary that g(n) be asymptotically non-negative and every member of $\Theta(g(n))$ is also asymptotically non-negative.

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	102 OF 887	QUIT

Θ: Some Simple Facts

Fact 1.14

- 1. Every asymptotically non-negative function g(n) is a member of $\Theta(g(n))$.
- 2. If $f(n) \in \Theta(g(n))$ then $g(n) \in \Theta(f(n))$.
- 3. If $f(n) \in \Theta(g(n))$ and $g(n) \in \Theta(h(n))$ then $f(n) \in \Theta(h(n))$

 \blacktriangleright

CLOSE

Operations

Theorem 1.15 Let d(n), e(n), f(n) and h(n) be asymptotically nonnegative functions.

1. If $d(n) \in \Theta(f(n))$ then $a.d(n) \in \Theta(f(n))$ for any real constant a.

2. If $d(n), e(n) \in \Theta(f(n))$ then $d(n) + e(n) \in \Theta(f(n))$.

3. If $d(n) \in \Theta(f(n))$ and $e(n) \in \Theta(g(n))$ then

(a) $d(n) + e(n) \in \Theta(f(n) + g(n))$ (b) $d(n).e(n) \in \Theta(f(n).g(n))$

HOME PAGE

►

CLOSE

T he facts 1.14 and theorem 1.15 must convince us that there exists an equivalence relation on asymptotically non-negative functions of n which reflects the fact that for large values of n the various functions separate out into various classes that do not intermingle, i.e. for example

- 1. all linear functions regardless of their coefficients remain in the same class and all quadratic functions remain in the same class, and
- 2. linear functions of *n* do not mingle with quadratic functions of *n* and polynomials of degree *k* do not mingle with those of degree k' for $k \neq k'$.

Home Page	CONTENTS	44	•	►	**	Go Васк	FULL SCREEN	

105 OF 887

$=_{\Theta}$: An Equivalence

Definition 1.16 Let $=_{\Theta} \subseteq \Phi \times \Phi$ be the binary relation such that $f(n) =_{\Theta} g(n)$ if and only if $f(n) \in \Theta(g(n))$.

From facts 1.14 it follows easily that

Corollary 1.17

- $\textbf{1.}=_{\Theta}\textit{is reflexive i.e. } f(n) =_{\Theta} f(n) \textit{ for each } f(n) \in \mathbf{\Phi}.$
- $\label{eq:g_alpha} \begin{array}{l} \textbf{2.} =_{\Theta} \textit{is symmetric i.e. for each } f(n), g(n) \in \mathbf{\Phi} \textit{, } f(n) =_{\Theta} g(n) \textit{ if and only if } g(n) =_{\Theta} f(n). \end{array}$
- 4. $=_{\Theta}$ is an equivalence relation on Φ .

HOME PAGE	

CONTENTS

CLOSE

It will be fairly common for us now to incorporate Θ within our calculations. For example we may use expressions like $n^2 + \Theta(n)$ to mean $n^2 + f(n)$ where f(n) is a linear function of n whose exact expression is either unknown or which is of no importance to us.

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	107 OF 887	QUIT	
-----------	----------	----	---	---	-----------------	---------	-------------	-------	------------	------	--

Θ in Equations

We may then use Θ in "equations" as follows.

$$4n^3 + 8n^2 - 3n + 10 = 4n^3 + \Theta(n^2)$$
$$= 4\Theta(n^3)$$
$$= \Theta(n^3)$$

where we actually mean

$$\begin{array}{ll} 4n^3 + 8n^2 - 3n + 10 \ =_{\Theta} \ 4n^3 + f(n) \ \text{for any} \ f(n) \in \Theta(n^2) \\ =_{\Theta} \ 4.g(n) & \text{for any} \ g(n) \in \Theta(n^3) \\ =_{\Theta} \ h(n) & \text{for any} \ h(n) \in \Theta(n^3) \end{array}$$

HOME PAGE	CONTENTS	44	•	►	••	GO BACK	FULL SCREEN	CLOSE	108 OF 887	QUIT

The Big O

While the Θ notation asymptotically bounds from both above and below, we are often mostly interested in what might be called the "worst-case" scenario in the analysis of an algorithm. We would like to simply give an upper bound based on the "worst-case" input. Any Θ bound based on the worst-case would not automatically bound all cases of input. It is simpler to take the worst-case bound and only bound it from above rather than below.

Definition 1.18 For any given function $g : \mathbb{N} \longrightarrow \mathbb{R}$, that is asymptotically non-negative, $O(g(n)) \subseteq \Phi$ is the class of functions such that

 $O(g(n)) = \{ f(n) \mid \exists c \in \mathbb{R}, n_0 > 0 : \forall n \ge n_0 : 0 \le f(n) \le c.g(n) \}$

For any $f(n) \in O(g(n))$ we write (by abuse of notation) f(n) = O(g(n)). The "O" notation provides an asymptotic way of saying that a function is "less than or equal to" another function

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	109 OF 887	QUIT

The Big o: Examples

Example 1.19 The combination of definition 1.18 and confusing notation can yield the following strange looking facts.

1. n = O(n) but $n \neq O(1)$ **2.** $n = O(n \log n)$ but $n \neq O(\log n)$ **3.** $n = O(n^2)$ **4.** $n = O(2^n)$

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	110 OF 887	QUIT	

The Big o and Θ

Fact 1.20

- 1. For any $g(n) \in \Phi$, $\Theta(g(n)) \subseteq O(g(n))$. Hence If $f(n) \in \Theta(g(n))$ then $f(n) \in O(g(n))$ for any $f(n) \in \Phi$.
- 2. If f(n) = O(g(n)) then $O(f(n)) \subseteq O(g(n))$.
- 3. If f(n) = O(g(n)) and g(n) = O(f(n)) then $f(n) = \Theta(g(n))$ and $g(n) = \Theta(f(n))$.
- 4. If f(n) = O(g(n)) but $g(n) \neq O(f(n))$ then $O(f(n)) \subset O(g(n))$.

HOME PAGE CONTENTS 44 A I I I OF 887

The Big o: More Facts

Theorem 1.21 Let d(n), e(n), f(n) and h(n) be asymptotically nonnegative functions.

1. If d(n) = O(f(n)) then a.d(n) = O(f(n)) for any real constant a.

2. If
$$d(n) = O(f(n))$$
 and $e(n) = O(g(n))$ then

(a)
$$d(n).e(n) = O(f(n).g(n))$$

(b) d(n) + e(n) = O(f(n) + g(n))

3. If d(n) = O(f(n)) and f(n) = O(g(n)) then d(n) = O(g(n))

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	112 OF 887	QUIT

The Relation \leq_O

Compare fact 1.20(2) and fact 1.14(2). Analogous to the equivalence relation $=_{\Theta}$ we have

Definition 1.22

- For all functions $f(n),g(n)\in \Phi,\ f(n)\leq_O g(n)$ if and only if $f(n)\in O(g(n)).$ Further,
- $\bullet \ f(n) <_O g(n) \ \textit{if and only if} \ f(n) \leq_O g(n) \ \textit{and} \ g(n) \not \in O(f(n)).$

While Θ defines an equivalence relation $=_{\Theta}$, *O* actually defines an ordering on functions. Just look at the strange facts and also look at the facts 1.20.

Home Page	CONTENTS	44	•	▶	••	GO BACK	FULL SCREEN	CLOSE	113 OF 887	QUIT	

\leq_O : A Quasi Order

Fact 1.23

- 1. \leq_O is reflexive *i.e.* $f(n) \leq_O g(n)$ for all f(n).
- $\begin{array}{l} \textbf{2.} f(n) \leq_O g(n) \textit{ and } g(n) \leq_O f(n) \textit{ implies } f(n) =_\Theta g(n) \textit{ for all } f(n), g(n) \in \\ \Phi. \end{array}$
- 3. \leq_O is transitive i.e. $f(n) \leq_O g(n)$ and $g(n) \leq_O h(n)$ implies $f(n) \leq_O h(n)$

Fact 1.23(2) also relates $=_{\Theta}$ and \leq_O .

Номе Р	E CONTENTS	TS ┥	•	►	>>	Go Васк	FULL SCREEN	CLOSE	114 OF 887	QUIT	
--------	------------	------	---	---	-----------------	---------	-------------	-------	------------	------	--

Big *o* in Equations

In a fashion similar to whatever we did in the case of Θ we may also incorporate "O" in our equations.

$$4n^{3} + 8n^{2} - 3n + 10 = 4n^{3} + O(n^{2})$$

= 4O(n^{3})
= O(n^{3})

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	115 OF 887	QUIT

2. More examples of recursive algorithms

N ow that we have established methods for analyzing the correctness and efficiency of algorithms, let us consider a few more examples of fundamental recursive algorithms.

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	116 OF 887	QUIT	
-----------	----------	----	---	---	-----------------	----------------	-------------	-------	------------	------	--

Example: Powering - Algorithm

Example 2.1 Computing x^n : Given an integer or a real number $x \neq 0$, compute x^n , where $n \geq 0$ is an integer.

$$power(x,n) = \begin{cases} 1 & \text{if } n = 0\\ x.power(x,n-1) & \text{otherwise} \end{cases}$$
(11)

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	117 OF 887	QUIT	

Example: Powering - Correctness & Complexity

Here again it is easily established (by induction on n) that

Correctness. $power(x, n) = x^n$ for all $x \neq 0$ and $n \ge 0$.

Complexity The number of multiplications required is given by the recurrence

$$\mathcal{T}(power(x,n)) = \begin{cases} 0 & \text{if } n = 0\\ 1 + \mathcal{T}(power(x,n-1)) & \text{if } n > 0\\ = n\\ = O(n) \end{cases}$$

and the space complexity assuming that S(power(x,0)) = 1 (at least one unit of space is required for the answer) is for n > 0, S(power(x,n)) = 1 + S(power(x,n-1)) = n + 1 = O(n). The number of invocations of *power* is given by the same recurrence as the space complexity (i.e. there is at least one invocation of *power*).

Home Page	CONTENTS	44	•	•	••	GO BACK	FULL SCREEN	CLOSE	118 OF 887	QUIT

Example: Fast Powering

Example 2.2 A faster method of powering depends upon the following correctness argument with the same conditions on *x* and *n* as in example 2.1.

$$x^{n} = \begin{cases} 1 & \text{if } n = 0\\ (x^{2})^{n - 2} & \text{if } n > 0 \text{ is even} \\ x.(x^{2})^{n - 2} & \text{if } n > 0 \text{ is odd} \end{cases}$$
(12)

Note that an integer n is even if and only if $n \ge 2 = 0$ and is odd otherwise. We then obtain the following algorithm.

 $fastpower(x,n) = \begin{cases} 1 & \text{if } n = 0 \\ fastpower(x.x,n - 2) & \text{if } n > 0 \land n - 2 = 0 \\ x.fastpower(x.x,n - 2) & \text{otherwise} \end{cases}$ (13)

Fast Powering: Correctness

We may then establish the following by induction on n.

It suffices to show by induction on n that the functions defined by equation 12 and algorithm 13 are the same for all values of n.

The computation of fastpower in the worst case (i.e. when the exponent always remains odd till it reaches a value 1 at the k-th step), proceeds as follows.

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	120 OF 887	QUIT	

Fast Powering: Worst-case Computation

 $\begin{array}{c} fastpower(x_{0}, n_{0}) \\ \rightsquigarrow x_{0}.fastpower(x_{1}, n_{1}) \\ \rightsquigarrow x_{0}.(x_{1}.fastpower(x_{2}, n_{2})) \\ \vdots \\ \rightsquigarrow x_{0}.(x_{1}.(\cdots (x_{k-2}.fastpower(x_{k-1}, n_{k-1}))\cdots)) \\ \rightsquigarrow x_{0}.(x_{1}.(\cdots (x_{k-2}.x_{k-1}.fastpower(x_{k}, 0))\cdots)) \\ \rightsquigarrow x_{0}.(x_{1}.(\cdots (x_{k-2}.(x_{k-1}.1)\cdots))) \\ \rightsquigarrow x_{0}.(x_{1}.(\cdots (x_{k-2}.(x_{k-1}.1)\cdots))) \\ \rightsquigarrow x_{0}.(x_{1}.(\cdots .x_{k-1})\cdots) \\ \rightsquigarrow \vdots \end{array}$

	HOME PAGE	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	121 OF 887	QUIT
--	-----------	----------	----	---	---	----	---------	-------------	-------	------------	------

Fast Powering: Worst-case Computation

where $x_0 = x$, $n_0 = n$ and for all $i \ge 1$, $x_{i+1} = x_i^2$, $n_{i+1} = n_i - 2$ and n_i is odd and finally $n_{k-1} = 1$. It is easy to see that

Fact 2.3 If $n_0 = 2^k - 1$ for some k > 0, then $n_i = n_{i-1} - 2 = 2^{(k-i)} - 1$ for each $i, 0 < i \le k$.

The above fact may be proven by induction on i and is left as an easy exercise to the student.

Fact 2.4 Every positive integer n lies between two consecutive powers of 2. That is, for any n > 0, there exists a smallest non-negative integer k such that $n < 2^k$. Hence if k > 0 we also have $2^{k-1} \le n < 2^k$, which implies $k = \lceil \log_2 n \rceil$.

HOME PAGE	CONTENTS	44	4	►	••	Go Васк	FULL SCREEN	CLOSE	122 OF 887	QUIT	

Fast Powering: Running Time

The number of multiplications in the worst-case is given by

$$\mathcal{T}(fastpower(x,n)) = \begin{cases} 0 & \text{if } n = 0\\ 1 + \mathcal{T}(fastpower(x^2, n - 2)) & \text{if } n > 0 \land n - 2 = 0\\ 2 + \mathcal{T}(fastpower(x^2, n - 2)) & \text{otherwise} \end{cases}$$
$$\leq \underbrace{2 + 2 + \dots + 2}_{k \text{ times}}$$
$$= 2k$$
$$= O(\log_2 n)$$

Since we are interested only in the number of multiplications required for large values of n we may safely assume $n \gg 0$.

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	123 OF 887	QUIT	

Fast Powering: Space Requirement

The maximum amount of space required is therefore given by

$$\begin{split} &\mathcal{S}(fastpower(x_0, n_0)) \\ &= 1 + \mathcal{S}(fastpower(x_1, n_1)) \\ &: \\ &= (k-1) + \mathcal{S}(fastpower(x_{k-1}, 1)) \\ &= k + \mathcal{S}(fastpower(x_k, 0)) \\ &= O(k) \end{split}$$

and is proportional to the space required to store the k values $x_0, \ldots, x_{k-1}, 1$ and whatever space may be required for the expression $fastpower(x_i, n_i)$ which is a constant amount of space. Hence the space complexity is also $O(k) = O(\log_2 n)$.

HOME PAGE	CONTENTS	44	•	►	••	GO ВАСК	FULL SCREEN	CLOSE	124 OF 887	QUIT	

Improving Fast Powering

Example 2.5 It is possible to improve the space complexity of algorithm 13. Notice that in the typical worst-case computation shown for algorithm 13 no simplification of the product is actually performed for the first k steps. This is because of the grouping of the multiplication operation in the form

$$\rightsquigarrow x_0.(x_1.(\cdots(x_{k-2}.(x_{k-1}.1)\cdots)))$$
 (14)

which defers the evaluation of the "." till all invocations of *fastpower* are completed. If we could arrange the computation to occur in such a manner that whatever product operation that could be performed actually gets evaluated and only the result is stored we could save on the space requirement. Hence the individual products need to be grouped differently so that the evaluation of the multiplication operation rather than being deferred to the end is performed within each invocation of the function.

Home Page	
-----------	--

CONTENTS

CLOSE

125 OF 887

Quit

Fast Powering 2

Let us call this new function fastpower2 which we define as follows.

HOME PAGE	CONTENTS	44	•	►	••	GO BACK	FULL SCREEN	CLOSE	126 OF 887	QUIT

117 Delhi _

Computer Science & Engineering Introduction to Computer Science

Fast Powering 2: Correctness

But this algorithm looks so different from the original problem of computing the power of a number that its correctness itself would be in serious doubt. Hence before we prove any results about its space complexity we need to prove that it indeed computes powers of numbers. The proof of correctness of algorithm (15) is complicated by the use of an auxiliary algorithm (16) on which the main function fastpower2 depends. Hence a proof of correctness of the expected behaviour of $fastpower_tr$ is required. The correctness of fastpower2 will then depend on this ex-

pected behaviour. We state a correctness lemma for $fastpower_tr$ before we proceed with the proof of correctness of fastpower2.

CONTENTS

127 OF 887

Fast Powering 2: Correctness Lemma Lemma 2.6 For all real y, p > 0, and integer $m \ge 0$, fastpower_tr(y, m, p) = $p.y^m$

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	128 OF 887	Quit

Fast Powering 2: Proof of Lemma

Proof: We prove this by induction on m.

Basis m = 0. From the definition we get $fastpower_tr(y, 0, p) = p = p.y^0$.

Induction hypothesis (*IH*) For all real y, p > 0 and integer $k, 0 \le k < m$, $fastpower_tr(y, k, p) = p.y^k$.

Induction Step Assume m > 0, then we have two cases to consider. *Case* m *is even, say* m = 2j > 0. Then clearly 0 < j < m and

$$fastpower_tr(y, 2j, p) = fastpower_tr(y^2, j, p)$$

since 2j - 2 = j < m. By the induction hypothesis we know $fastpower_tr(y^2, j, p) = p.(y^2)^j = p.y^{2j} = p.y^m$ and the claim is proved. *Case m is odd*, *say* m = 2j + 1 > 0. Then again we have 0 < j < m and

$$fastpower_tr(y, 2j + 1, p) = fastpower_tr(y^2, j, p.y)$$

Fast Powering 2: Correctness Final

Now using this lemma it is easy to see that for any real x > 0 and integer $n \ge 0$, by the definition of fastpower2 the two cases to consider are <u>Case n = 0</u>. In this case, by definition $fastpower2(x, 0) = 1 = x^0$. <u>Case n > 0</u>. In this case, again by definition and the previous lemma we get $fastpower2(x, n) = fastpower_tr(x, n, 1) = 1.x^n = x^n$. Hence the algorithm is indeed correct.

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	130 OF 887	QUIT

Fast Powering 2: Analysis

A typical computation is as follows

 $\begin{array}{l} fastpower2(x_{0},n_{0}) \\ \rightsquigarrow \ fastpower_tr(x_{0},n_{0},p_{0}) \\ \rightsquigarrow \ fastpower_tr(x_{1},n_{1},p_{1}) \\ \vdots \\ \rightsquigarrow \ fastpower_tr(x_{k},0,p_{k}) \\ \rightsquigarrow \ p_{k} \end{array}$

Corollary 2.7 (Invariant) For all i, $0 \le i \le k$, the following (invariant) property holds

$$x_0^{n_0}.p_0 = x_i^{n_i}.p_i$$

HOME PAGE	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	131 OF 887	Quit	

Fast Powering 2: Worst Case Running Time

In the worst case we have that each of $n_0, \ldots, n_{k-1} = 1$ is an odd number

and $x_0 > 1$, $n_0 = 2^k - 1$ for some k > 0, each $x_{i+1} = x_i^2$, $n_{i+1} = n_i - 2 = 2^{k-(i+1)}1 - 1$ $p_i = \prod_{j=0}^{i-1} x_j$ for each $i, 0 \le i < k$. Notice that $n_k = 0$, $p_0 = 1$ Hence it is easily shown that the number of multiplications and division by 2 that need to be performed is given by

$$\mathcal{T}(fastpower2(x_0, n_0)) \\ \rightsquigarrow \mathcal{T}(fastpower_tr(x_0, n_0, p_0)) \\ \rightsquigarrow 2 + \mathcal{T}(fastpower_tr(x_1, n_1, p_1)) \\ \vdots \\ \rightsquigarrow 2k + \mathcal{T}(fastpower_tr(x_k, 0, p_k)) \\ \rightsquigarrow O(k)$$

HOME PAGE	CONTENTS	44	•	►	>	GO BACK	FULL SCREEN	CLOSE	132 OF 887	QUIT	

Fast Powering 2: Worst Case Space Requirement

and the space required is given by

$$\begin{split} &\mathcal{S}(fastpower2(x_0,n_0)) \\ & \rightsquigarrow \ &\mathcal{S}(fastpower_tr(x_0,n_0,p_0)) \\ & \rightsquigarrow \ &\mathcal{S}(fastpower_tr(x_1,n_1,p_1)) \\ & \vdots \\ & \rightsquigarrow \ &\mathcal{S}(fastpower_tr(x_k,0,p_k)) \\ & \rightsquigarrow \ &O(1) \end{split}$$

Home Page	CONTENTS	44	•	►	**	Go Васк	FULL SCREEN	CLOSE	133 OF 887	QUIT

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	134 OF 887	QUIT	

QUIT

3. introduction to SML

Standard ML

- Originated as part of a theorem-proving development project
- Runs on both Windows and UNIX environments
- Is free like many other programming language systems.
- http://www.smlnj.org

Home Page	CONTENTS	44	•	►	**	Go Васк	FULL SCREEN	CLOSE	135 OF 887	

QUIT

SML: Important Features

- Has a small vocabulary of just a few short words
- Far more "intelligent" than currently available languages:
 - automatically finds out what various names mean and
 - their correct usage
- Haskell, Miranda and Caml are a few other such languages.

HOME PAGE	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	136 OF 887	

3.1. Primitives: Integer & Real

Algorithms & Programs
 SML: Primitive Integer Operations 1
 SML: Primitive Integer Operations 2
 SML: Primitive Integer Operations 3
 SML: Primitive Integer Operations 3
 SML: Primitive Integer Operations 3
 SML: Primitive Integer Operations 3

- 16. SML: Primitive Integer Operations 3
- 17. SML: Primitive Integer Operations 3
- 18. Quotient & Remainder
- 19. SML: Primitive Real Operations 1
- 20. SML: Primitive Real Operations 1

	Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	137 OF 887	Quit	
--	-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Previous: Primitives: Integer & Real

- 21. SML: Primitive Real Operations 1
- 22. SML: Primitive Real Operations 2
- 23. SML: Primitive Real Operations 3
- 24. SML: Primitive Real Operations 4
- 25. SML: Precision
- 26. Fibonacci Numbers
- 27. Euclidean Algorithm

Next: Technical Completeness & Algorithms

HOME PAGE	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	138 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Preamble: The Primitive Data types

We have mentioned that to solve a problem in a given computing model we need to evolve *a combination of the primitives of the model in a suitable order*. An algorithm is simply an explicit statement of this combination in an appropriate order. Further we require to express this in a clear, precise and unambiguous fashion (preferably mathematically). It is then necessary to translate this into a program of a formal programming language in order to be able to run it on a machine which has an implementation of the programming language.

We have chosen Standard ML as our vehicle for programming and it is necessary now to get familiar with the rudiments of the language. Most programming languages are fairly large and to formally learn the grammar and grammatical constructions can be tedious and boring. However we do have the advantage that (unlike natural languages), any errors we make in vocabulary (spelling) or grammar would be detected by the *compiler* of the language and pointed out to us. In fact, unless the program gets compiled without errors, it cannot be executed. We will use this feature to understand grammatical constructions as we go along, after learning and understanding just a few of the basic primitives, words and names in the language. This has the advantage that we very quickly start programming in the language without actually mastering all of it.

Most programming language systems however, are also organised as a collection of *modules* or *libraries*. With knowledge of only a few simple grammatical constructions and an understanding of some of the primitives of the modules that we want to use, we may very quickly start constructing and running programs in the language. It is therefore important to understand at least some of the most useful primitives in a module to be able to use them in the construction of programs.

••

HOME PAGE

CONTENTS

•• |

GO BACK

CLOSE

The modules of the SML system are classified in terms of *data types*. Each data type may be regarded as a set of elements along with various operations and relations on the data type and between various distinct data types.

The Integer data type consists of the set of integers along with various operations like addition, multiplication, subtraction and division, as well as various important relations like equality, less than, greater than etc. The concept of a data type therefore may be understood to mean a set of elements along with various operations and relations between elements of the set as well as operations and relations between it and other data types in the system.

The Real data type similarly consists of the set of real numbers along with various operations and relations on the reals. Some of the other data types that we will get familiar with are the data types of booleans, strings, lists etc.

Perhaps the most basic computation need since the dawn of history is that of counting. With counting came various operations on natural numbers such as addition and multiplication which finally led to the theory of integers. So it is natural that we begin our programming journey with the integers.

Home Page	CONTENTS
-----------	----------

 \blacktriangleright

GO BACK

CLOSE

Algorithms & Programs

- Algorithm
- Need for a formal notation
- Programs
- Programming languages
- Programming
- Functional Programming
- Standard ML

Factorial

Номе	DAOL	
HOME	FAGE	

4

◄

•

SML: Primitive Integer Operations 1

Our foray into the SML system begins by first opening a text terminal and typing the word "sml" followed by the ENTER key on the terminal.

```
Standard ML of New Jersey, ...
```

The SML system responds with the line giving the version of SML that the system currently supports and the SML prompt "–" which indicates that the system is expecting further input from the user.

CONTENTS

142 OF 887

SML As Integer Calculator: 1

Initially we deal with simple integer expressions. So right now we use it simply as a calculator for integer expressions. In each case we write the user input in blue followed by the ML system response also in blue.

```
- 5;
val it = 5 : int
```

Here ML has simply recognised that the user has typed the integer 5.

Notice that each time the user has to terminate the input by a ; and hit the ENTER key for ML to evaluate the input.

HOME PAGE

CONTENTS

SML As Integer Calculator: 2

We may add two integers, for example.

◄

```
- 3+4;
val it = 7 : int
```

CONTENTS

 \blacktriangleright

CLOSE

SML As Integer Calculator: 3

We may subtract one integer from another.

```
- 5 - 7;
val it = ~2 : int
```

Notice that ML uses the symbol "~" instead of the usual minus sign "-", to denote negative numbers.

But the binary operation of subtraction is denoted using the minus sign.

CONTENTS

CLOSE

145 OF 887

SML As Integer Calculator: 4

We may give fairly complex expressions.

◄

- 2 ***** 8 - 4 + 6 ;

val it = 18 : int

HOME PAGE

 \blacktriangleright

SML As Integer Calculator: 5

We may also give bracketed expressions using the parentheses symbols "(" and ")" for grouping expressions. ML follows the usual operator precedence conventions that we follow in mathematics (e.g. the so-called "BODMAS" rule).

```
-2*(8-4) + 6;
val it = 14 : int
-((8-3)*(4+2))*(9-3);
val it = 180 : int
```

However other bracketing symbols such as "[" and "]" and "{" and "}" are reserved for other purposes and are not available for use in arithmetic expressions.

HOME PAGE	
-----------	--

CONTENTS

SML As Integer Calculator: 6

Integer division consists of two operations - "div" for the quotient and "mod" for the remainder.

```
- ~ (5-9) *3 div 4;
val it = 3 : int
- ((8-3) * (4+2)) mod 7;
val it = 2 : int
```

Номе	DACE	
TOME	FAGE	

4

SML As Real Calculator: 1

Calculations with real numbers are similar - 3.28 - 4.32/4.89+3.84; val it = 6.23656441718 : real - (3.28 - 4.32)/(4.89+3.84); val it = ~0.119129438717 : real except that there is only division operator denoted by "/".

CONTENTS

SML As Real Calculator: 2

However integers and reals cannot appear in the same calculation.

```
- 3.28 - 4.32/4.89 + 3;
stdIn:3.2-3.20 Error: operator and operand don't agree
operator domain: real * real
operand: real * int
in expression:
        3.28 - 4.32 / 4.89 + 3
```

The integer "3" is the culprit in this case.

CONTENTS

SML As Real Calculator: 3

Integers have to be first converted into reals in a real number computation. The previous expression can be calculated as follows:

```
- 3.28 - 4.32/4.89 + 3.0;
val it = 5.39656441718 : real
```

The representation "3.0" is the real number representation of the real number 3.

CONTENTS

CLOSE

151 OF 887

SML As Real Calculator: 4

Alternatively integers can be first converted into reals in a real number computation. The previous expression therefore can be calculated as follows:

```
- 3.28 - 4.32/4.89 + real (3);
val it = 5.39656441718 : real
```

```
The function "real" when applied to the integer "3" converts it into a real number representation for 3.
```

CONTENTS

CLOSE

152 OF 887

SML: Primitive Integer Operations 1

Suppose the user now types "val x = 5" and presses the ENTER key.

```
sml
Standard ML of New Jersey, ...
- val x = 5;
```

"val" is an SML keyword (part of SML's vocabulary) indicating that a new name is going to be *defined*. The new name in this case "x" is being *defined* (indicated by the "=" symbol) to stand for the *value* "5". The expression is terminated by the semicolon (";").

CONTENTS

GO BACK

Keywords in Programming Languages

Keywords form the main vocabulary of any programming language. For all practical purposes we may regard the (single symbol) operators of the language e.g. $+, *, \tilde{-}, -$ etc. also as keywords. Some of the other keywords in SML that we shall come across are if, then, else, and, let, in, end etc. Normally a keyword should not be used as the name of any entity defined by the programmer. Sometimes the same keyword may take different meanings depending on the context in which it appears.

Besides keywords, values and programmer and language defined names, a typical programming language also has operators, punctuation and grouping symbols (bracketing). We will encounter these as we go along.

Home Page	
-----------	--

...

GO BACK

SML responds as follows:

val x = 5 : int

to indicate that the name x has been defined to have the value 5 which is an integer (indicated by the ": int").

Note that it was not necessary to inform SML that the value 5 is an integer. This is the simplest instance of SML's *type inference system*. In most cases SML will be able to classify the type to which values should belong without being informed by the user.

From this point on, the name x may be used in other expressions in place of the integer value 5. Now SML is ready with the prompt "–" on a new line for further input from the user.

CONTENTS

QUIT

155 OF 887

SML: Primitive Integer Operations 1

Let us define another name "y" and give it a value "6":

```
sml
Standard ML of New Jersey, ...
- val x = 5;
val x = 5 : int
- val y = 6;
val y = 6 : int
```

	_	
Номе		
	- 1 AG	

SML: Primitive Integer Operations 1

Now let us find the value of the expression "x+y".

```
sml
Standard ML of New Jersey, ...
- val x = 5;
val x = 5 : int
- val y = 6;
val y = 6 : int
- x+y;
val it = 11 : int
```

The word "it" is a special SML keyword which stands for the last value computed by SML.

HOME PAGE	

CONTENTS

Now let us compute other expressions say involving negative integers. The symbol "~" is used to indicate the negative of a number in SML. However the (binary) operation of subtraction is represented by "–".

```
sml
Standard ML of New Jersey, ...
- val x = 5;
val x = 5 : int
- val y = 6;
val y = 6 : int
- x+y;
val it = 11 : int
- x-y;
val it = ~1 : int
```

Notice how the value of *it* keeps changing with each new calculation that is performed. *it* may be thought of as a special container storing the value of the last expression that was evaluated.

HOME PAGE CONTENTS () I CLOSE 158 OF 887	QUIT	
---	------	--


```
Once it has a value, it may be used in other calculations too.
Standard ML of New Jersey, ...
- val x = 5;
val x = 5 : int
- val y = 6;
val y = 6 : int
- x+y;
val it = 11 : int
- x-y;
val it = ~1 : int
```

```
val it = ~1 : int
- it + 5;
val it = 4 : int
```

In the last two expressions above notice how the value of "it" changes from "~1" to "4" after the addition of the integer "5".

HOME PAGE CONTENTS 44 4 P P GO BACK FULL SCREEN CLOSE 159 0F 867 QUIT		Home Page	CONTENTS	44	•	F	••	Go Васк	FULL SCREEN	CLOSE	159 OF 887	QUIT
---	--	-----------	----------	----	---	---	----	---------	-------------	-------	------------	------

Multiplication of numbers is represented by "*".

```
val x = 5 : int
- val y = 6;
val y = 6 : int
- x+y;
val it = 11 : int
- x-y;
val it = ^{1} : int
- it + 5;
val it = 30 : int
```

CONTENTS

SML: Primitive Integer Operations 2

```
Let's define a few more names.
```

```
val y = 6 : int
- x+y;
val it = 11 : int
- x-y;
val it = ~1 : int
- it + 5;
val it = 4 : int
- x * y;
val it = 30; int
- val a = 25;
val a = 25 : int
```

◄

CONTENTS

SML: Primitive Integer Operations 2

```
val it = 11 : int
- x-y;
val it = ~1 : int
- it + 5;
val it = 4 : int
- x * y;
val it = 30 : int
- val a = 25;
val a = 25;
val b = 7; int
val b = 7 : int
```

◄

CONTENTS

Integer division is represented by the SML keyword "div".

```
val it = ~1 : int
- it + 5;
val it = 4 : int
- x * y;
val it = 30 : int
- val a = 25;
val a = 25 : int
- val b = 7;
val b = 7;
val d = a div b;
val q = 3 : int
```

Remember: Never divide by zero!

Номе	DAOF
HOME	FAGE

44

CONTENTS

The SML keyword "mod" represents the operation of finding the remainder obtained by dividing one integer by another non-zero integer.

```
- x * y;
val it = 30 : int
- val a = 25;
val a = 25 : int
- val b = 7;
val b = 7 : int
- val q = a div b;
val q = 3 : int
GC #0.0.0.0.2.45: (0 ms)
val r = 4 : int
```

The line containing the phrase "GC #0.0.0.0.2.45: (0 ms)" may be safely ignored by a beginning programmer.

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	164 OF 887	QUIT

One may want to check certain properties.

```
- val a = 25;
val a = 25 : int
- val b = 7;
val b = 7 : int
- val q = a div b;
val q = 3 : int
- val r = a mod b;
GC #0.0.0.0.2.45: (0 ms)
val r = 4 : int
- a = b*q + r;
val it = true : bool
```

The line " $a = b \star q + r$;" is an expression asking SML to determine whether the given statement is true. Note that the expression does not begin with any SML keyword such as "val" and is therefore not a definition.

HOME PAGE	CONTENTS

CLOSE

Quit

Let us look at operations involving negative integers.

```
- val b = 7;
val b = 7 : int
- val q = a div b;
val q = 3 : int
- val r = a mod b;
GC #0.0.0.0.2.45: (0 ms)
val r = 4 : int
- a = b*q + r;
val it = true : bool
- val c = 7;
val c = 7;
```

CONTENTS


```
- val q = a div b;
val q = 3 : int
- val r = a mod b;
GC #0.0.0.2.45: (0 ms)
val r = 4 : int
-a = b * q + r;
val it = true : bool
- val c = ~7;
val c = ~7 : int
- val q1 = a div c;
val q1 = ~4 : int
```

Notice that the result of dividing 21 by -7 seems to yield a quotient of -4. Why do you think that happens?

Home Page	

CONTENTS

What would be the remainder of the same division?

```
- val r = a mod b;
GC #0.0.0.2.45: (0 ms)
val r = 4 : int
-a = b*q + r;
val it = true : bool
- val c = ~7;
val c = ~7 : int
- val q1 = a div c;
val q1 = ^{4} : int
- val r1 = a mod c;
val r1 = ^{3} : int
```

The remainder is -3. Hmm!

CONTENTS

Does our standard property relating the dividend, divisor, quotient and remainder hold true for negative numbers too?

```
val r = 4 : int
- a = b*q + r;
val it = true : bool
- val c = ^7;
val c = ^7 : int
- val q1 = a div c;
val q1 = ^4 : int
- val r1 = a mod c;
val r1 = ^3 : int
- a ^2 c*q1 + r1;
val it = true : bool
```

Yes, it seems to!

CONTENTS

HOME PAGE	
HOME PAGE	

Quotient & Remainder

For any two integers a and b with $b \neq 0$, the quotient q and remainder r are uniquely determined to satisfy the identity

$$a = b \times q + r$$

such that

- $\bullet\,r$ is of the same sign as b and
- $0 \le |r| < |b|$ always holds.

Номе	DAOF
HOME	FAGE

CONTENTS

Remarks on Integers and Reals

It may be relevant at this point to note the following:

- Due to various representational issues only a finite subset of the integers is actually representable directly on a machine. These issues mainly relate to the *word length* supported by the hardware for storing in memory locations and registers. In general the set of integers supported on a word-length of w ranges from -2^{w-1} to $2^{w-1} 1$. For more details the reader may refer to standard textbooks on computer architecture.
- However it is possible to write programs which will extend the integers to be of arbitrarily large magnitude. In fact by about the middle of this course you should be able to do it in SML.
- Even though our school mathematics training equips us to regard the set of integers as a subset of the set of reals, it unfortunately does not hold on a digital computer. This is mainly because of various internal representation details which the reader may study from books on hardware and computer architecture. Hence for all practical purposes in programming we may think of the integers and reals as two distinct and independent data types with no apparent relation to each other. However there are functions which *convert* integers to reals and vice-versa.
- As in the case of the integers, the word length constrains the reals too to only a finite subset. Moreover all the reals that are represented in hardware are strictly speaking, only *rational numbers* due to the constraint of a finite representation.
- Further the gaps between the reals represented in hardware are determined by certain *precision* constraints which again depend on word-length.

HOME PAGE	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	171 OF 887	QUIT

One can go from integers to reals by explicitly converting an integer value

```
sml
Standard ML of New Jersey, ...
- val a = 25;
val a = 25 : int
- val real_a = real a;
val real_a = 25.0 : real
```

Here the word "real" occurring on the right hand side of the definition of the name "real_a" is actually a function from integers to reals which yields the real value representation 25.0 of the integer 25.

HOME PAGE

CONTENTS


```
sml
Standard ML of New Jersey, ...
- val real_a = real a;
val real_a = 25.0 : real
- val b = 7;
val b = 7 : int
- real_a + b;
stdIn:40.1-40.11 Error: operator and operand don't agree
  operator domain: real * real
  operand:
            real * int
  in expression:
    real_a + b
```

Notice that SML yields an error when an integer is added to a real number.

HOME PAGE	
-----------	--

CONTENTS

◄

GO BACK

CLOSE

QUIT

173 OF 887

SML expects the second operand to be real since the the first one is real.

```
stdIn:40.1-40.11 Error: operator and operand don't agree
 operator domain: real * real
 operand:
          real * int
 in expression:
   real_a + b
-b + real_a;
stdIn:1.1-2.6 Error: operator and operand don't agree [t
 operator domain: int * int
 operand: int * real
 in expression:
   b + real_a
```

In the second case it expects the second operand to be an integer since the first one is an integer.

HOME PAGE	CONTENTS	44	•	►	>>	GO BACK	FULL SCREEN	CLOSE	174 OF 887	QUIT

Overloading of operators

In the case of an operator such as "+" it is used to denote both integer addition as well as real addition even though the underlying implementations may be different. Such operators are said to be **overloaded**. Some of the other overloaded operators are those for subtraction ("-") and multiplication ("*"). Overloading of common arithmetic operators is deliberate in order to conform to standard mathematical notation. Usually the surrounding context of the operator would make it clear whether an integer or real operation is meant to be used. Where the context is not clear we say that it is *ambiguous*.

We may use these overloaded operators and continue our session as follows:

```
- val e = 2.71828182846;
val e = 2.71828182846 : real
- val pi = 3.14159265359;
val pi = 3.14159265359 : real
- pi+e;
val it = 5.85987448205 : real
- e+pi;
val it = 5.85987448205 : real
- e-pi;
val it = ~0.42331082513 : real
- pi-e;
val it = 0.42331082513 : real
- pi*e;
```

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	175 of 887	QUIT
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------

val it = 8.53973422268 : real - e*pi; val it = 8.53973422268 : real

Certain languages like C permit overloaded operators in ambiguous contexts. But then they do have disambiguating rules which clearly specify what the interpretation should be. SML does not however permit the use of such disambiguating rules. For instance in SML one cannot add an integer to a real number, whereas in C this is permitted and rules of whether the addition should be regarded as integer addition or real addition can be quite complex depending upon the context.

Номе I	Page
--------	------

 \blacktriangleright

GO BACK

FULL SCREEN

Real division is represented by the symbol "/".

```
- val a = 25.0;
val a = 25.0 : real
- val b = 7.0;
val b = 7.0 : real
- a/b;
val it = 3.57142857143 : real
- a div b;
stdIn:49.3-49.6 Error: overloaded variable not defined a
  symbol: div
  type: real
GC #0.0.0.3.98: (0 ms)
```

Note that the integer division operator "div" cannot be used with real numbers.

HOME PAGE		HOME PAGE	
-----------	--	-----------	--

CONTENTS

◄

•

Go Васк

FULL SCREEN

177 OF 887

CLOSE

Quit


```
- val c = a/b;
val c = 3.57142857143 : real
- trunc(c);
val it = 3 : int
- trunc (c + 0.5);
val it = 4 : int
- trunc ~2.36;
val it = ^2 : int
- trunc (~2.36 - 0.5)
val it = ~2 : int
- \text{trunc} (2.55 - 0.5);
val it = ^3 : int
```

"trunc" is a function which "truncates" a real number to yield only its integer portion. Notice that to round-off a *positive* real number to the nearest integer we may truncate the result of *adding* 0.5 to it. Similarly to round off a *negative* real number we *subtract* 0.5 and truncate the result.

Home Page

CONTENTS

GO BACK

FULL SCREEN

We may define real numbers also using the mantissa-exponent notation.

Notice the loss of precision in calculating "d+pi" and "d-pi".

Home Page

CONTENTS

SML: Precision

The loss of precision gets worse as the difference between the relative magnitudes of the numbers involved increases.

```
- pi + d*10.0;
val it = 30000000003.0 : real
- d*10.0 - pi;
val it = 299999999997.0 : real
- pi + d*100.0;
val it = 3E12 : real
- d*100.0 + pi;
val it = 3E12 : real
- d*100.0 -pi;
val it = 3E12 : real
- d*100.0 -pi;
val it = 3E12 : real
```

So much so that there seems to be no difference between the values of " $d \star 100.0 + pi$ " and " $d \star 100.0 - pi$ "

Home Page

CONTENTS

►

CLOSE

Quit

Precision of real arithmetic

Real arithmetic on modern computers is handled by the so-called *floating point processor*. Since this is also fixed precision arithmetic, various *round-off* procedures are adopted in most calculations. So real arithmetic for this reason is always approximate and seldom guaranteed to be accurate.

These practical concerns also affect various basic properties that we expect from real numbers. For one addition and multiplication may not be associative operations i.e. it is not guaranteed that (a + b) + c = a + (b + c). Even the commutativity and distributive properties of operations on real numbers are not guaranteed. Certain implementations may be quite smart. For example, look at this continuation of the previous SML session. As we have already seen there seems to be no difference in the values of "d*100.0 + pi" and "d*100.0 - pi". However consider the following fragment

```
- (d*100.0 + pi) - (d*100.0 - pi);
val it = 6.283203125 : real
- (d*1000.0 + pi) - (d*1000.0 - pi);
val it = 6.28125 : real
- (d*10000.0 + pi) - (d*10000.0 -pi);
val it = 6.25 : real
```

In each of the above cases look carefully at the approximations to 2π that have been obtained. The reason non-zero values have been obtained is simply because the underlying software and hardware have carefully isolated computations of numbers of greatly different magnitudes so as to give reasonable approximate answers. The approximations get less precise as the relative difference in magnitudes

CONTENTS

44

►

GO BACK

FULL SCREEN

QUIT

increases greatly.

HOME PAGE	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	182 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Comparing reals

The nature of representations and floating point algorithms on those representations makes it impossible to check for equality of two real numbers, since they may firstly have different representations, and secondly equality checking requires both of them be converted to the same representation for comparison. But this conversion itself may involve a loss of precision and thus the equality checking procedure itself becomes one of doubtful utility.

Hence the designers of SML have decided that real numbers may be compared for other relations, such as whether one real is less than another or greater than another *but not for equality*. The following continuation of the last session drives home the point. Study it carefully.

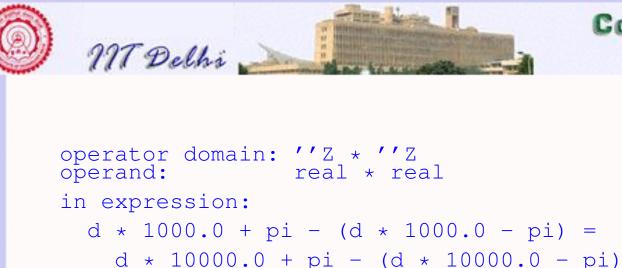
```
- (d*1000.0 + pi) - (d*1000.0 - pi) > (d*10000.0 + pi) - (d*10000.0 -pi);
val it = true : bool
- (d*1000.0 + pi) - (d*1000.0 - pi) >= (d*10000.0 + pi) - (d*10000.0 -pi);
val it = true : bool
```

The above statements are true simply because 6.28125 > 6.25. But the results are clearly counter-intuitive from the stand-point of mathematics.

Now look at the following.

```
- (d*1000.0 + pi) - (d*1000.0 - pi) = (d*10000.0 + pi) - (d*10000.0 -pi);
stdIn:29.1-29.70 Error: operator and operand don't agree [equality type required
```

HOME PAGE	CONTENTS	44	•	•	>>	Go Васк	FULL SCREEN	CLOSE	183 OF 887	QUIT



Study the last error message clearly prohibiting equality checking. This happens even if we actually give it identical values as in the following.

```
- 3.0 = 3.0;
stdIn:1.1-14.2 Error: operator and operand don't agree [equality type required]
operator domain: ''Z * ''Z
operand: real * real
in expression:
    3.0 = 3.0
```

HOME PAGE	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	184 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

3.2. Primitives: Booleans

- 1. Boolean Conditions
- 2. Booleans in SML
- 3. Booleans in SML
- 4. \wedge vs. and also
- 5. \lor vs. orelse
- 6. SML:orelse
- 7. SML: andalso
- 8. and, and also, \perp
- **9.** or, orelse, \perp
- 10. Complex Boolean Conditions

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	185 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Boolean Conditions

- Two (truth) value set : {true, false}
- Boolean conditions are those statements or names which can take only truth values.

Examples: n < 0, true, false</pre>

• Negation operator: not Examples: not (n < 0), not true, not false</pre>

	Home Page	CONTENTS	44	•	•	••	GO ВАСК	FULL SCREEN	CLOSE	186 OF 8
--	-----------	----------	----	---	---	----	----------------	-------------	-------	----------

887

Booleans in SML

```
Standard ML of New Jersey,
- val tt = true;
val tt = true : bool
- not(tt);
val it = false : bool
- val n = 10;
val n = 10 : int
- n < 10;
val it = false : bool
- not (n<10);
val it = true : bool
```

►

◄

3.3. The Conditional

The conditional in SML

Many functions are defined using a *conditional* construct. That is, depending upon certain conditions being satisfied the function yields one value and otherwise some other value. The simplest example of this from school mathematics perhaps is the absolute value function on the integers or the reals.

$$x| = \begin{cases} x & \text{if } x \ge 0\\ -x & \text{otherwise} \end{cases}$$
(17)

or equivalently as

$$x| = \begin{cases} x & \text{if } x \ge 0\\ -x & \text{if } x < 0 \end{cases}$$

Here " $x \ge 0$ " and "x < 0" are the two conditions. Note that they are expressions which can only be either *true* or *false* for a given value of x.

Such conditional definitions of the form (17) may be written in SML using the conditional expression

if condition then truevalue else falsevalue

The words if, then and else are all SML Keywords. The three words always appear in this order with the *condition* (a boolean expression) appearing between if and then. *truevalue* and *falsevalue* are referred to as the two *arms* or *clauses* of this conditional and are always separated by else. *truevalue* is the then-clause and *falsevalue* is the else-clause of the conditional.

HOME PAGE	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	188 OF 887	QUIT

Definition (17) is written in SML as fun abs x = if x >= 0 then x else ~x

Conditionals with more than two arms are also possible as in the case of the *signum* function

$$signum(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ -1 & \text{if } x < 0 \end{cases}$$
(18)

which may be rendered in SML as

```
fun signum x = if x > 0 then 1
else if x = 0 then 0
else ~1
```

Here it is important to note that the SML version is obtained by *nesting* two conditionals in the form

if condition1 then truevalue1 else (if condition2 then truevalue2 else falsevalue)

i.e. the second conditional appears as the else-clause of the first conditional. Notice also how this is made evident in the SML code by using *indentation* which aligns each else with the corresponding if. When the conditions are complex, we would write the then-clause in a separate line with the keyword then aligned with the keyword if. Such indentation makes code clearer to read though it does not affect compilation or running of the code.

There are two important points to note about conditional definitions.

Home Page	CONTENTS	44	•	►	••	GO BACK	FULL SCREEN	CLOSE	189 OF 887	QUIT	

Totality. For any given values of names used in the conditions, at least one of the conditions should be true. For example, the following is a definition which is *not* total

$$x| = \begin{cases} x & \text{if } x > 0\\ -x & \text{if } x < 0 \end{cases}$$

since it does not specify the value of |0|.

Mutual Exclusivity. The different conditions are all *mutually exclusive* in the sense that for any given value of the names occurring in the conditions, *exactly* one condition would be true. In the above example for any real or integer x only one of the two conditions can be true – both cannot be true for the same value of x. However in the case of the absolute value function the following could be considered a perfectly correct definition of |x|.

$$x| = \begin{cases} x & \text{if } x \ge 0\\ -x & \text{if } x \le 0 \end{cases}$$

since both conditions yield the same unique value for each value of x including for x = 0 even though the conditions are not mutually exclusive. However all programming languages with this conditional construct implicitly assume exclusivity.

The conditional is one of the most frequently used constructs in most programming languages. Even all inductive definitions depend upon separating the basis of the induction from the induction hypothesis and the conditional is a most useful way of doing this.

A convenient way to think about the conditional is as a ternary operator (made up of three keywords if, then and else) whose operands appear between the keywords of the operator. Actually every construct in every programming language may be thought of as an operator of appropriate *arity*. The conditional

HOME PAGE	CONTENTS	44	•	►	>	GO ВАСК	FULL SCREEN	CLOSE	190 OF 887	QUIT

is a 3-ary operator (or an operator of *arity* 3) in very much the same way as addition and subtraction are binary operators (i.e. 2-ary operators or operators of arity 2).

HOME PAGE	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE

The Conditional: Example: 1

Given any integer y denoting a year in the Christian calendar, we would like to determine whether it is a *leap year*. A leap year is one which is divisible by 4. Also not all years divisible by 4 are leap years. Century years are leap only if they are divisible by 400. So we define a *boolean* function *leap* which yields a value "true" if the year y is a leap year and false otherwise.

$$leap \ y = \begin{cases} true & \text{if } 400 \mid y \\ true & \text{if } 100 \not \mid y \text{ and } 4 \mid y \\ false & \text{otherwise} \end{cases}$$
(19)

where a|b stands for "b is divisible by a" and $a \not| b$ for "b is not divisible by a".

Home Page

44

CONTENTS

GO ВАСК Р

The Conditional: Example: 2

But divisibility checking is not primitive in SML. However, a|b for $a \neq 0$ if and only if $b \mod a = 0$ where \mod denotes the remainder obtained on division.

Definition (19) may be rewritten using mod.

$$leap \ y = \begin{cases} true & \text{if } y \ mod \ 400 = 0\\ true & \text{if } y \ mod \ 100 \neq 0 \text{ and } y \ mod \ 4 = 0 \\ false & \text{otherwise} \end{cases}$$
(20)

Notice how the conditions in this definition are *mutually exclusive* and *total*.

 \blacktriangleright

HOME PAGE

CONTENTS

The Conditional: Example: 3

```
In SML the definition may be written as
fun leap y = if y mod 400 = 0 then true
else if y mod 100 = 0
then false
else if y mod 4 = 0
then true
else false
```

Notice how the code has been indented to make clear the nesting structure and and how each *else*-clause has been aligned with its matching <u>if</u>.

CONTENTS

The Conditional: Identities

Notice that the function *leap* yields a boolean value on an integer argument. Also notice how the conditions are nested within one another.

Conditions can get pretty complicated and nesting levels would often reflect this complexity and therefore affect the readability of the code. There are many ways to tackle these problems.

Indentation Use a good indentation-style by aligning the keywords of a compound operator so that the code becomes readable. Remember that a programming language notation is a highly formalised mathematical notation. Though in general, it is to be compiled and run by a machine, it should also be readable and comprehensible so that one may easily identify errors and correct them. However good indentation alone does not solve the problem.

Simplifications using algebraic identities There are many algebraic identities that hold. The use of these identities can greatly simplify the code and shorten it and make it easier to read and understand and therefore ensure its correctness. In the case of the above example since both the conditions and the results are boolean one may effectively use some obvious identities to eliminate some occurrences of the constants true and false. We use \equiv as an equality relation between different SML expressions. We interpret it as an equality relation between SML expressions. So it is possible to substitute one side of the identity by the other in any SML expression without changing the meaning of the expression.

The principle of substitutivity (viz. that equals may be substituted for equals in all contexts) is an important principle in all of mathematics. Throughout your mathematics education you have probably used it unconsciously. This is an important consequence of using the pure functional programming

CONTENTS

CLOSE

QUIT

model.

◄

Using Identities

We use \equiv as an equality relation between different SML expressions. The simplest identity is the following:

	if condition
condition	\equiv then true
	else false

This identity (used from right to left) may be used to simplify the code of leap.

```
fun leap y = if y mod 400 = 0 then true
else if y mod 100 = 0
then false
else y mod 4 = 0
```

	_
Номе	PAGE

CONTENTS

 \blacktriangleright

Some More Identities

Some simple and obvious identities are

	if true
truevalue	\equiv then <i>truevalue</i>
	else falsevalue

	if false
falsevalue	\equiv then <i>truevalue</i>
	else falsevalue

		-	
HO	ME	PAGE	

4

◄

Other useful Identities

Another useful identity is the following.

		if cond	lition
not	(condition)	\equiv then :	false
		else t	true

A fairly general identity.

if condition	if not (condition)
then truevalue	\equiv then <i>falsevalue</i>
else falsevalue	else truevalue

where *truevalue* and *falsevalue* may themselves be conditional expressions.

 \blacktriangleright

CONTENTS

Structuring As conditions become even more complex and harder to understand, simplifications and appropriate indentation may still leave definitions complicated and hard to understand. In such situations a structuring mechanism which clearly isolates *logically distinct concepts* is then necessary. For example, even in the case of the leap year example we could divide the cases of the definition into those involving century years and others. So we isolate the century years from other years by defining auxiliary functions which capture the intuitive concept we are trying to program. Here is a definition which uses an auxiliary definition and also removes some redundant uses of the constants *true* and *false*.

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	200 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Structural Simplifications

$$century \ x = (x \ mod \ 100 = 0)$$

$$leap \ y = \begin{cases} (y \ mod \ 400 = 0) & \text{if } century(y) \\ (y \ mod \ 4 = 0) & \text{otherwise} \end{cases}$$

In SML the above definitions become

```
fun century x = (x mod 100 = 0);
fun leap y = if (century y)
then (y mod 400 = 0)
else y mod 4 = 0
```

Another example of a conditional is the number of days in any month of the year. Try defining this as a function of month number (1 to 12).

Home Page	CONTENTS

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	202 OF 887	QUIT

3.4. The Binary Boolean Operators

Binary Boolean Operators in SML

The two SML operators corresponding to "and" and "or" are the keywords andalso and orelse.

```
Examples:
- val n = 10;
val n = 10 : int
- (n >= 10) andalso (n=10);
val it = true : bool
- n < 0 orelse n >= 10;
val it = true : bool
- not ((n >= 10) andalso (n=10)) orelse n < 0;
val it = false : bool
```

	Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN
--	-----------	----------	----	---	---	----	---------	-------------

\wedge VS. andalso

The meanings of the two boolean operators may be defined using truth tables as we usually do in boolean algebra. For any two boolean conditions p and q we have the following truth table for the boolean operators \wedge and the SML operator andalso.

p	q	$p \wedge q$	$p \; {\tt andalso} \; q$
true	true		true
true	false	false	false
false	true	false	false
false	false	false	false

HOME PAGE	CONTENTS	44	•	•	••	Go Back	FULL SCREEN	CLOSE	204 OF 887	QUIT	

QUIT

\vee VS. orelse

Similarly the meanings of \lor and the SML operator orelse may be defined by the following truth table.

p	q	$p \lor q$	p orelse q
true	true	true	true
true	false	true	true
false	true	true	true
false	false	false	false

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	205 OF 887

Boolean operators and The Conditional

The boolean operators may also be expressed in terms of the conditional and the truth values as the following simple identities show.

 $p \text{ andalso } q \equiv \text{if } p \text{ then } q \text{ else } false$

(21)

(22)

 $p \text{ orelse } q \equiv \text{if } p \text{ then } \text{true } \text{else } q$

3.5. Nontermination and Boolean Operators

T he operators andalso and orelse differ from their Boolean algebra counterparts \land and \lor in one important aspect. This is best explained in the presence of nontermination. An example of a non-terminating function definition was that of the alternative definition of factorial given in definition (6) We have already seen examples of *leap* and *century*. We have also seen that such functions may be used in conditionals. It is quite possible to define boolean functions in SML which may not terminate on certain inputs.

One example is the following inductively defined function on the integers

 $gtz(n) = \begin{cases} true & \text{if } n = 1\\ gtz(n-1) & \text{otherwise} \end{cases}$

Notice that this function will never terminate for non-positive integer values of n. Now consider forming a complex boolean condition using such a function.

HOME PAGE	CONTENTS	44	•	•	>	Go Васк	FULL SCREEN	CLOSE

SML: orelse

```
Standard ML of New Jersey,
- val tt = true;
val tt = true : bool
- fun gtz n = if n=1 then true else gtz (n-1);
val gtz = fn : int -> bool
- tt orelse (gtz 0);
val it = true : bool
- (gtz 0) orelse tt;
```

The result of the last expression is never obtained!

◄

Номе	PAGE
TOME	FAGE

CONTENTS

Computation: 1

The computation of tt orelse (gtz 0) goes as follows — essentially a left to right evaluation of the expression unless bracketing associates the sub-expressions differently.

```
tt orelse (gtz 0)

\equiv true orelse (gtz 0)

\equiv if true then true orelse (gtz 0)

\equiv true
```

CONTENTS

Computation: 2

The computation of (gtz 0) orelse tt on the other hand goes as follows (again left to right simplification and evaluation unless dictated otherwise by the bracketing):

```
(gtz 0) orelse tt

≡ (if 0=1 then true else gtz (0-1)) orelse tt

≡ (gtz ~1) orelse tt

≡ ((if ~1=1 then true else gtz (~1-1)) orelse tt

≡ (gtz ~2) orelse tt

≡ ((if ~2=1 then true else gtz (~2-1)) orelse tt

≡ (gtz ~3) orelse tt

≡ ...
```

and so on forever.

CONTENTS

Home Page	

The Effect of Nontermination: 1

Since the evaluation of $(gtz \ 0)$ does not terminate, no result will be obtained for the expression $(gtz \ 0)$ orelse tt, whereas tt orelse $(gtz \ 0)$ will always yield the value true since by the identities, the condition $(gtz \ 0)$ is never evaluated and

```
tt orelse (gtz 0)

\equiv if tt then true else (gtz 0)

\equiv true
```

Hence

tt orelse (gtz 0) \neq (gtz 0) orelse tt

 \blacktriangleright

CONTENTS

SML: andalso

- val ff = false; val ff = false : bool - ff andalso (gtz 0); val it = false : bool - (gtz 0) andalso ff;

Similarly we have

CONTENTS

ff andalso (gtz 0) \neq (gtz 0) andalso ff

◄

$\wedge,$ and also with \bot

Let us denote nontermination by \perp . We then have a modified truth table as follows.

p	q	$p \wedge q$	$p \; {\tt andalso} \; q$
true	true	true	true
true	false	false	false
false	true	false	false
false	false	false	false
			⊥
true			⊥
	true		⊥
false		false	false
	false	false	

∧ is commutative whereas andalso is not (from the last two lines).

Home Page

CONTENTS

CLOSE

Or, orelse, \bot

p	q	$p \lor q$	p orelse q
true	true	true	true
true	false	true	true
false	true	true	true
false	false	false	false
			\perp
true		true	true
	true	true	\perp
false			
	false		

 \lor is commutative whereas orelse is not (as is clear from the last two lines of the table).

 \blacktriangleright

HOME PAGE

CONTENTS

••

CLOSE

QUIT

Conclusions

- The boolean operators andalso and orelse differ from their corresponding analogues in mathematics.
- Under all circumstances however, andalso and orelse satisfy the identities relating them to the conditional
- The boolean operators \wedge and \vee are commutative whereas <code>andalso</code> and <code>orelse</code> are not.
- The boolean operators \land and \lor are also associative. Are andalso and orelse associative? Prove using the conditional identitites or find a counterexample to show that they are not.
- How does negation interact with nontermination? Write a new truth table for not. Does it differ in behaviour from the usual boolean \neg ?

CONTENTS

QUIT

Exercises

- 1. Write down the full truth table for the not operator.
- 2. Prove that both andalso and orelse are both associative. That is

(a) p and also (q and also $r) \equiv (p$ and also q) and also r

(b) p orelse $(q \text{ orelse } r) \equiv (p \text{ orelse } q)$ orelse r

Hint: Do a case analysis on the <u>three</u> possible values of p.

- 3. Prove that andalso and orelse also satisfy the DeMorgan laws.
 - (a) not $(p \text{ andalso } q) \equiv (\text{not } p) \text{ orelse } (\text{not } q)$
 - (b) not $(p \text{ orelse } q) \equiv (\text{not } p) \text{ and also } (\text{not } q)$

Home Page	CONTENTS	44	•	•	••	GO BACK	FULL SCREEN	CLOSE	216 OF 887	QUIT

3.6. Example: Fibonacci

- 1. Fibonacci Numbers: 1
- 2. Fibonacci Numbers: 2
- 3. Fibonacci Numbers: 3
- 4. Fibonacci Numbers: 4
- 5. Fibonacci Numbers: 5
- 6. Is Fa(n, 1, 1) = F(n)?
- 7. Trial & Error
- 8. Generalization
- 9. Proof
- 10. Another Generalization
- 11. Try Proving it!
- 12. Another Generalization
- 13. Try Proving it!
- 14. Complexity
- 15. Complexity
- 16. Time Complexity: \mathcal{R}
- 17. Time Complexity
- 18. Time Complexity: \mathcal{R}
- 19. Bound on \mathcal{R}
- 20. Other Bounds: C_F
- 21. Other Bounds: A_F

◄

4

►

A Detailed Example

As a precursor of the various aspects involved in computing, we choose a rather simple example and study it thoroughly for the various properties. We start with a simple mathematical definition and prooceed to subject it to rigorous analysis and transformations. It is our aim to introduce the tools of the trade of computing by means of this example. The tools include the following.

- 1. A more or less direct translation of the definition into a functional program. There is a certain sense in which it would be quite obvious that this program exactly captures the definition of the function.
- 2. Alternative definitions which in a certain sense generalise the first one, leading to other functional programs which implement the same function.
- 3. Proofs of correctness which show that the new definitions indeed entirely capture all the properties of the first definition.
- 4. An analysis of the two definitions for what they mean in terms of computational complexity. Most of this requires no knowledge of digital computers and should be quite intuitive.

As our example we have chosen the function which generates the fibonacci numbers. The fibonacci number sequence is the sequence given by

$$0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, \dots$$

$$(23)$$

where except for the starting two numbers, every number in the sequence may be obtained as the sum of the two preceding numbers in the sequence. Sequences expressed as functions of the position (starting

											-
Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	218 OF 887	QUIT	

from a position 0) are fairly common and the fibonacci sequence is no exception. It may be generated by the following function

$$F(n) = \begin{cases} 0 & \text{if } n = 0\\ 1 & \text{if } n = 1\\ F(n-1) + F(n-2) & \text{if } n > 1 \end{cases}$$
(24)

The Fibonacci numbers have many interesting mathematical properties, and these properties could also be used to define algorithms for generating them. However, at this stage we use only the definition to study the relationships between mathematical definitions, algorithms obtained directly from the definitions, their correctness and their complexity.

Since we use several possible definitions for the generation of fibonacci numbers we subscript each new definition as we go along so that we can keep track of the various definitions we give. So we begin with

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	219 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Fibonacci Numbers: 1

$$F_1(n) = \begin{cases} 0 & \text{if } n = 0\\ 1 & \text{if } n = 1\\ F_1(n-1) + F_1(n-2) & \text{if } n > 1 \end{cases}$$

A slightly shorter but equivalent definition is as follows:

$$F_2(n) = \begin{cases} n & \text{if } 0 \le n \le 1 \\ F_2(n-1) + F_2(n-2) & \text{if } n > 1 \end{cases}$$

It is easy to see that these definitions generate the fibonacci sequence (23).

The function F_1 (and F_2) is a typical example of a function that is inductively defined. Our previous encounter with an inductively defined function was the factorial function.

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	220 OF 887	QUIT	

Fibonacci Numbers: 2 $F_1(n) = \begin{cases} 0 & \text{if } n = 0 \\ 1 & \text{if } n = 1 \\ F_1(n-1) + F_1(n-2) & \text{if } n > 1 \end{cases}$

This function may be directly translated into SML as follows:

```
fun fib1 (n) =
    if (n = 0) then 0
    else if (n = 1) then 1
    else fib1 (n-1) + fib1 (n-2);
```

	HOME PAGE	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	221 OF 887	Quit
--	-----------	----------	----	---	---	----	---------	-------------	-------	------------	------

Fibonacci Numbers: 3

$$F_2(n) = \begin{cases} n & \text{if } 0 \le n \le 1 \\ F_2(n-1) + F_2(n-2) & \text{if } n > 1 \end{cases}$$

This definition may be translated into SML as either

```
fun fib2 (n) =
    if (0 <= n) andalso (n <= 1)then n
    else fib2 (n-1) + fib2 (n-2);</pre>
```

or as

```
fun fib2' (n) =
    if (n = 0) orelse (n = 1) then n
    else fib2' (n-1) + fib2' (n-2);
```

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	222 OF 887	QUIT

Fibonacci Numbers: 4

One could give other alternative definitions as well. For example, consider the following function F_3 defined in terms of another function F_a . Let

$$F_{a}(n, a, b) = \begin{cases} a & \text{if } n = 0 \\ b & \text{if } n = 1 \\ F_{a}(n - 1, b, a + b) & \text{if } n > 1 \end{cases}$$

and then define

$$F_3(n) = F_a(n,0,1)$$

Home Page	CONTENTS	44	•	►	••	GO BACK	FULL SCREEN	CLOSE	223 OF 887	QUIT	

Fibonacci Numbers: 5

The two functions F_a and F_3 may then be translated into SML as

```
fun fib_a (n, a, b) =
    if (n = 0) then a
    else if (n = 1) then b
    else fib_a (n-1, b, a+b);
```

fun fib3 (n) = fib_a (n, 0, 1);
respectively.

HOME PAGE	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	224 OF 887	Quit

Is it Correct?

In the first two cases it was more or less "obvious" that the two definitions were indeed equivalent, i.e. that they defined the same function. But as we find more and more complex ways of defining F, the question arises as to whether the new definitions are equivalent to the old ones.

Intuition. F_a looks like a generalization of F.

- Question 1. What does it actually generalize to?
- Question 2. Does the generalization have a "closed" form i.e. can F_a be expressed in some way other than by using F_a itself?
- Question 3. Can one prove that F_3 is exactly the same function as F_1 (and F_2)?

Question 4. How does one go about proving such a thing?

A Direct Approach

Our intuition suggests that since

$$F_{a}(0,0,1) = 0$$

$$F_{a}(1,0,1) = 1$$

$$F_{a}(2,0,1) = 1$$

$$F_{a}(3,0,1) = 2$$

$$F_{3}(n) = F_{a}(n,0,1)$$
and

F may be obtained from F_a by simply setting a = 0 and b = 1. So we might try to prove a direct theorem relating *F* with this special case of F_a .

Theorem 3.1 For all integers n > 1,

$$F_a(n,0,1) = F(n)$$

Since the definitions are all inductive it is natural to first try a proof by mathematical induction. So let's have a go at it.

Номе Р	ie Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	226 OF 887	QUIT

Try Proving it!

Proof: By induction on n > 1.

Basis For n = 0, $F_a(0, 0, 1) = 0 = F(0)$ and for n = 1, $F_a(1, 0, 1) = 1 = F(1)$ **Induction hypothesis (IH)** Assume $F_a(k, 0, 1) = F(k)$, for some $k \ge 1$ **Induction Step**

> $F_a(k+1,0,1)$ {By definition of F_a } = $F_a(k,1,1)$ {Induction Hypothesis} = ???

STUCK!

So that does not work and we have to think of something else.

HOME PAGE	CONTENTS
-----------	----------

Trial & Error

Could one use trial and error to gather more intuition and understanding about the relationship between F_a and F?

$$F_{a}(0, a, b) = a$$

$$F_{a}(1, a, b) = b$$

$$F_{a}(2, a, b) = a + b = aF(1) + bF(2)$$

$$F_{a}(3, a, b) = F_{a}(2, b, a + b) = aF(2) + bF(3)$$

$$F_{a}(4, a, b) = F_{a}(3, b, a + b) = F_{a}(2, a + b, a + 2b)$$

$$= 2a + 3b = aF(3) + bF(4)$$

$$F_{a}(5, a, b) = F_{a}(2, a + 2b, 2a + 3b) = aF(4) + bF(5)$$

The patterns suggest the following.

Home Page	CONTENTS	44	•	►	**	Go Васк	FULL SCREEN	CLOSE	228 OF 887	QUIT

Generalization

- $F_a(0, a, b) = a$
- $F_a(1, a, b) = b$
- $F_a(n, a, b) = aF(n-1) + bF(n)$ for n > 1.

Theorem 3.2 For all integers a, b and n > 1,

$$F_a(n, a, b) = aF(n - 1) + bF(n)$$

If this theorem holds then a corollary of this theorem is the direct one (viz. $F_a(n, 0, 1) = F(n)$) that we tried and failed to prove. Now let's try to prove this theorem.

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	229 OF 887	QUIT

Proof by Induction on n > 1

Proof:

Basis For n = 2, $F_a(2, a, b) = a + b = aF(1) + bF(2)$

Induction hypothesis (*IH*) Assume $F_a(k, a, b) = aF(k-1)+bF(k)$, for some k > 1 and all integers a, b. Induction Step

$$\begin{cases} \text{Definition of } F_a \} \\ \{ \text{ Induction Hypothesis} \} \\ = bF(k-1) + (a+b)F(k) \\ = aF(k) + b(F(k-1) + F(k)) \\ = aF(k) + bF(k-1) + F(k)) \end{cases}$$

Aha! So that certainly worked!

HOME PAGE

CONTENTS

 \blacktriangleright

Another Generalization

Intuition. If *a* and *b* are successive fibonacci numbers (say for some $j \ge 1$, a = F(j-1) and b = F(j)) then $F_a(1, a, b) = b$ and $F_a(2, a, b) = F_a(1, F(j), F(j-1)+F(j)) = F(j+1)$ and then $F_a(n, a, b)$ is *n* steps ahead of *a* in the fibonacci sequence (23). Here is a more direct theorem

Theorem 3.3 For all integers $n \ge 1$ and $j \ge 1$,

$$F_a(n, F(j-1), F(j)) = F(n+j-1)$$

Proof: By induction on $n \ge 1$, for all values of $j \ge 1$.

Again a corollary of the above theorem is the direct theorem which we failed to prove earlier.

Corollary 3.4 For all integers $n \ge 1$, $F_a(n, F(0), F(1)) = F_a(n, 0, 1) = F(n)$

Home Page	
TIONILTAGE	

CONTENTS

••

•

FULL SCREEN

Try Proving it!

Proof:

Basis For n = 1, $F_a(1, F(j - 1), F(j)) = F(j)$

Induction hypothesis (*IH*) For some k > 1 and all $j \ge 1$, $F_a(k, F(j-1), F(j)) = F(k+j-1)$ Induction Step We need to prove $F_a(k+1, F(j-1), F(j)) = F(k+j)$.

$$F_a(k+1, F(j-1), F(j))$$

$$= F_a(k, F(j), F(j-1) + F(j))$$

$$= F_a(k, F(j), F(j+1))$$
{ Induction Hypothesis}
$$= F_a(k+j)$$

Well that also worked satisfactorily!

HOME PAGE	

CONTENTS

Lessons learned

We have shown the first non-obvious proof of correctness of an algorithm viz. that F_3 does generate the fibonacci sequence (23).

Our attempts to prove the correctness show that

- 1. Certain obvious and direct approaches may not always work,
- 2. An algorithm may have subtle generalizations (or even properties) which may need to be established before we attempt to prove correctness.
- 3. Coming up with such a generalised theorem is crucial to justify the correctness of the algorithm. Getting the right generalizations requires hard work and intuition about the algorithm.

In certain cases designing a new algorithm often requires studying the properties and proving fresh theorems based on properties. We will encounter this in several examples. In each case the only way to convince ourselves about the correctness of our algorithm is to prove it as we do in mathematics.

The process of coming up with alternative algorithms and also proving their correctness requires a degree of creativity higher than that in the standard school mathematics curriculum in India. Most exercises in school mathematics which involve proofs are such that the student is merely asked to prove a given statement. The student is seldom called upon to come up with a new (non-obvious) statement and also prove it right. Herein lies the creative element in correct algorithm design.

Home Page	
-----------	--

CONTENTS

•

GO BACK

Time Complexity

- Time complexity:
 - No of additions: $\mathcal{A}_F(n)$
 - No of comparisons: $\mathcal{C}_F(n)$
 - No of recursive calls to $F: \mathcal{R}_F(n)$
- Space complexity:

Home Page	CONTENTS	44	•	•	>>	Go Васк	FULL SCREEN	CLOSE	234 OF 887	QUIT

Space Complexity

- Time complexity:
- Space complexity:
 - left-to-right evaluation: $\mathcal{LR}_F(n)$
 - arbitrary evaluation: $\mathcal{U}_F(n)$

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	235 OF 887	QUIT	

Time Complexity: R

- Hardware operations like addition and comparisons are usually very fast compared to software operations like recursion unfolding
- The number of recursion unfoldings also includes comparisons and additions.

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	236 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Time Complexity

- It is enough to put bounds on the number of recursion unfoldings and not worry about individual hardware operations.
- Similar theorems may be proved for any operation by counting and induction.

So we concentrate on \mathcal{R} .

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	237 OF 887	Quit

Time Complexity: R

- $\mathcal{R}_F(0) = \mathcal{R}_F(1) = 0$
- $\mathcal{R}_F(n) = 2 + \mathcal{R}_F(n-1) + \mathcal{R}_F(n-2)$ for n > 1

To solve the equation as an initial value problem and obtain an upper bound we guess the following theorem.

Theorem 3.5 $\mathcal{R}_F(n) \leq 2^{n-1}$ for all n > 2*Proof:* By induction on n > 2.

	Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	238 OF 887	QUIT	
--	-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Bound on \mathcal{R}

Basis n = 3. $\mathcal{R}_F(3) = 2 + 2 + 0 \le 2^{3-1}$ Induction hypothesis (*IH*) For some k > 2, $\mathcal{R}_F(k) \le 2^{k-1}$

Induction Step If n = k + 1 then n > 3

$$\begin{aligned} \mathcal{R}_F(n) \\ &= 2 + \mathcal{R}_F(n-2) + \mathcal{R}_F(n-1) \\ &\leq 2 + 2^{n-3} + 2^{n-2} \quad \text{(IH)} \\ &\leq 2 \cdot 2^{n-3} + 2^{n-2} \quad \text{for } n > 3, \, 2^{n-3} \ge 2 \\ &= 2^{n-2} + 2^{n-2} \\ &= 2^{n-1} \end{aligned}$$

Home Page	CONTENTS	44	•	►	**	Go Васк	FULL SCREEN	CLOSE	239 OF 887	QUIT

Other Bounds: c_F

One comparison for each call.

- $\mathcal{C}_F(0) = \mathcal{C}_F(1) = 1$
- $\mathcal{C}_F(n) = \mathbf{1} + \mathcal{C}_F(n-1) + \mathcal{C}_F(n-2)$ for n>1

Theorem 3.6 $C_F(n) \leq 2^n$ for all $n \geq 0$.

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	240 OF 887	QUIT

Other Bounds: A_F

No additions for the basis and one addition in each call.

- $\mathcal{A}_F(0) = \mathcal{A}_F(1) = \mathbf{0}$
- $\mathcal{A}_F(n) = 1 + \mathcal{A}_F(n-1) + \mathcal{A}_F(n-2)$ for n > 1

Theorem 3.7 $A_F(n) \le 2^{n-1}$ for all n > 0.

Home Page	CONTENTS	44	4		ÞÞ	Go Васк	FULL SCREEN	CLOSE	241 OF 887	QUIT
TIOMETAGE	OONTENTS		•	•		GO BAOK	I GEE GOMEEN	OLOGE	241 01 007	Qui

3.7. Fibonacci Numbers and the Golden Ratio

The Fibonacci numbers are related to the golden ratio $\phi = (1 + \sqrt{5})/2 = 1.61803...$ which is one of the solutions of the quadratic equation

$$x^2 = 1 + x \tag{25}$$

The other solution $\psi = (1 - \sqrt{5})/2 = -0.61803...$ is the conjugate of ϕ . Since ϕ and ψ are both solutions of equation (25) it follows that

$$\phi^2 = \phi + 1 \tag{26}$$

$$\psi^2 = \psi + 1 \tag{27}$$

It is easy to prove by induction on n that

$$F_n = \frac{\phi^n - \psi^n}{\sqrt{5}} \tag{28}$$

Proof: It is clear that $F_0 = 0$. We then proceed by induction on n.

Basis.(n = 1) Trivial.

CONTENTS

Induction hypothesis. For all $k \ge 1$, k < n, $F_k = \frac{\phi^k - \psi^k}{\sqrt{5}}$.

Номе	DAOF 1
HOME	FAGE

44

Induction Step. Assume $n \ge 2$. We have

$$F_{n} = F_{n-1} + F_{n-2}$$

$$= \frac{\phi^{n-1} - \psi^{n-1}}{\sqrt{5}} + \frac{\phi^{n-2} - \psi^{n-2}}{\sqrt{5}}$$

$$= \frac{\phi^{n-2}(\phi+1) - \psi^{n-2}(\psi+1)}{\sqrt{5}}$$

$$= \frac{\phi^{n} - \psi^{n}}{\sqrt{5}}$$

By induction hypothesis

By the identities (26) and (27)

In fact notice that since $|\psi| < 1$ and $\sqrt{5} > 2$ we have that for all n > 1, $|\psi^n|/\sqrt{5} < 1/\sqrt{5} < 1/2$. Hence $F_n = \left\lfloor \frac{\phi^n}{\sqrt{5}} + \frac{1}{2} \right\rfloor$.

HOME PAGE	CONTENTS	44	•	►	••	GO ВАСК	FULL SCREEN	CLOSE	243 OF 887	QUIT	
-----------	----------	----	---	---	----	----------------	-------------	-------	------------	------	--

4. Algorithms: Design & Refinement

4.1. Technical Completeness & Algorithms

- 1. Recapitulation: Integers & Real
- 2. Recap: Integer Operations
- 3. Recapitulation: Real Operations
- 4. Recapitulation: Simple Algorithms
- 5. More Algorithms
- 6. Powering: Math
- 7. Powering: SML
- 8. Technical completeness
- 9. What SML says
- 10. Technical completeness
- 11. What SML says ... contd
- 12. Powering: Math 1
- 13. Powering: SML 1
- 14. Technical Completeness
- 15. What SML says
- 16. Powering: Integer Version
- 17. Exceptions: A new primitive
- 18. Integer Power: SML
- 19. Integer Square Root 1
- 20. Integer Square Root 2
- 21. An analysis
- 22. Algorithmic idea

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	244 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

- 23. Algorithm: isqrt
- 24. Algorithm: shrink
- 25. SML: shrink
- 26. SML: intsqrt
- 27. Run it!
- 28. SML: Reorganizing Code
- 29. Intsqrt: Reorganized
- 30. shrink: Another algorithm
- 31. Shrink2: SML
- 32. Shrink2: SML ... contd

HOME PAGE	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	245 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Recapitulation: Integers & Real

- Primitive Integer Operations
- Primitive Real Operations
- Some algorithms

Forward

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	246 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Recap: Integer Operations

- Primitive Integer Operations
 - –Naming, +, -, \sim
 - Multiplication, division
 - Quotient & remainder
- Primitive Real Operations
- Some algorithms

Back

Home Page	CONTENTS	44			••	GO BACK	FULL SCREEN	CLOSE	247 OF 887	QUIT	
HOME FAGE	CONTENTS	44	•	•	44	GO BACK	FULL SCREEN	GLOSE	247 OF 007	Quii	1

Back

Recapitulation: Real Operations

- Primitive Integer Operations
- Primitive Real Operations
 - Integer to Real

11T Delhi _

- Real to Integer
- Real addition & subtraction
- Real division
- Real Precision
- Some algorithms

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	248 OF 887	QUIT	

Recapitulation: Simple Algorithms

- Primitive Integer Operations
- Primitive Real Operations
- Some algorithms
 - Factorial
 - Fibonacci
 - Euclidean GCD

Back

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	249 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

More Algorithms

- Powering
- Integer square root
- Combinations ${}^{n}C_{k}$

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	250 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Powering: Math

For any integer or real number $x \neq 0$ and non-negative integer n

$$x^n = \underbrace{x \times x \times \cdots \times x}_{n \text{ times}}$$

Noting that $x^0 = 1$ we give an inductive definition:

$$x^n = \left\{ egin{array}{cc} 1 & ext{if } n=0 \ x^{n-1} imes x & ext{otherwise} \end{array}
ight.$$

Ном	e Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	251 OF 887	QUIT	
-----	--------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Powering: SML

```
fun power (x:real, n) =
    if n = 0
    then 1.0
    else power (x, n-1) * x
```

Is it technically complete?

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	252 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Technical completeness

Can it be always guaranteed that

- x will be real?
- *n* will be integer?
- *n* will be non-negative?
- $x \neq 0$?
- If x = 0 what is 0.0^{0} ?

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	253 OF 887	QUIT	

What SML says

Can it be always guaranteed that

- x will be real? YES
- n will be integer? YES

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	254 OF 887	QUIT

Technical completeness

Can it be always guaranteed that

- n will be non-negative? NO
- *x* ≠ 0**?** NO

```
If x = 0 what is 0.0^{0}?
```

```
- power(0.0, 0);
val it = 1.0 : real
```

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	255 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

What SML says ... contd

```
sml
Standard ML of New Jersey
val power = fn : real * int -> real
val it = () : unit
- power(~2.5, 0);
val it = 1.0 : real
- power (0.0, 3);
val it = 0.0 : real
- power (2.5, ~3)
```

Goes on forever!

Home Page	CONTENTS	44	•	Þ	ÞÞ	GO BACK	FULL SCREEN	CLOSE	256 OF 887	QUIT	
HOMETAGE	CONTENTO	••	•	-		GO BRON	I OLL COMLEM	OLOGE		Gion	1

Powering: Math 1

For any real number x and integer n

$$x^{n} = \begin{cases} 1.0/x^{-n} & \text{if } n < 0\\ 1 & \text{if } n = 0\\ x^{n-1} \times x & \text{otherwise} \end{cases}$$

HOME PAGE CONTENTS 44 A I I I I I CONTENTS 44 A I I I I I I CONTENTS 44 A I I I I I I I I I I I I I I I I I

Powering: SML 1

```
fun power (x, n) =
    if n < 0
    then 1.0/power(x, ~n)
    else if n = 0
    then 1.0
    else power (x, n-1) * x</pre>
```

Is this definition technically complete?

Номе Ра	44	•	►	**	Go Васк	FULL SCREEN	CLOSE	258 OF 887	QUIT

Technical Completeness

- $0.0^0 = 1.0$ whereas $0.0^n = 0$ for positive n
- What if x = 0.0 and n = -m < 0? Then

 $0.0^{n} = 1.0/(0.0^{m}) = 1.0/0.0$

Division by zero!

Home Page	Contents	• • •	•	••	Go Васк	FULL SCREEN	CLOSE	259 OF 887	QUIT	
-----------	----------	-------	---	----	---------	-------------	-------	------------	------	--

What SML says

```
- power (2.5, ~2);
val it = 0.16 : real
- power (~2.5, ~2);
val it = 0.16 : real
- power (0.0, 2);
val it = 0.0 : real
- power (0.0, ~2);
val it = inf : real
```

SML is somewhat more understanding than most languages

HOME PAGE

CONTENTS

CLOSE

The following is a faster powering method. See if you can figure it out!

```
fun power2 (x, n) =
    if n < 0
    then 1.0/power2 (x, ~n)
    else if n = 0
    then 1.0
    else
        let fun even m = (m mod 2 = 0);
        fun square y = y * y;
        val pwr_n_by_2 = power2 (x, n div 2);
        val sq_pwr_n_by_2 = square (pwr_n_by_2)
        in if even (n)
        then sq_pwr_n_by_2
        else x * sq_pwr_n_by_2
        end</pre>
```

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	261 OF 887	QUIT	
-----------	----------	----	---	---	-----------------	---------	-------------	-------	------------	------	--

Powering: Integer Version

 $x^{n} = \begin{cases} \text{undefined} & \text{if } n < 0\\ \text{undefined} & \text{if } x = 0 \& n = 0\\ 1 & \text{if } x \neq 0 \& n = 0\\ x^{n-1} \times x & \text{otherwise} \end{cases}$

Technical completeness requires us to consider the case n < 0. Otherwise, the computation can go on forever Notation: \bot denotes the *undefined*

	Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	262 OF 887	QUIT	
--	-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Exceptions: A new primitive

```
exception negExponent;
exception zeroPowerZero;
fun intpower (x, n) =
    if n < 0
    then raise negExponent
    else if n = 0
    then if x=0
        then raise zeroPowerZero
        else 1
    else intpower (x, n-1) * x
```

HOME PAGE

CONTENTS

Integer Power: SML

```
- intpower(3, 4);
val it = 81 : int
- intpower(~3, 5);
val it = ~243 : int
- intpower(3, ~4);
uncaught exception negExponent
raised at: intpower.sml:4.16-4.32
```

```
- intpower (0, 0);
```

uncaught exception zeroPowerZero
raised at: stdIn:24.26-24.39

Back to More Algos

Home Page	CONTENTS	44				Go Васк	FULL SCREEN	CLOSE	264 OF 887	QUIT	
TIONE FAGE	CONTENTS		•	-	>>	GO BACK	T ULL SCREEN	CLOSE	204 OF 887	Quii	

Integer Square Root 1

 $isqrt(n) = \lfloor \sqrt{n} \rfloor$

```
- fun isqrt n =
    trunc (Real.Math.sqrt
        (real (n)));
val isqrt = fn : int -> int
- isqrt (38);
val it = 6 : int
- isqrt (~38);
uncaught exception domain error
    raised at: boot/real64.sml:89.32-89.46
```

HOME PAGE	CONTENTS

CLOSE

Integer Square Root 2

Suppose Real.Math.sqrt were not available to us! isqrt(n) of a non-negative integer n is the integer $k\geq 0$ such that $k^2\leq n<(k+1)^2$ That is,

$$isqrt(n) = \left\{ egin{array}{cc} \bot & ext{if } n < 0 \ k & ext{otherwise} \end{array}
ight.$$

where $0 \le k^2 \le n < (k+1)^2$. This value of k is unique!

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	266 OF 887	QUIT	

An analysis

$$\begin{array}{l} 0 \leq k^2 \leq n < (k+1)^2 \\ \Rightarrow 0 \leq k \leq \sqrt{n} < k+1 \\ \Rightarrow 0 \leq k \leq n \end{array}$$

Strategy. Use this fact to close in on the value of k. Start with the interval [l, u] = [0, n] and try to shrink it till it collapses to the interval [k, k] which contains a single value.

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	267 OF 887	QUIT	

Algorithmic idea

If n = 0 then isqrt(n) = 0. Otherwise with [l, u] = [0, n] and

$$l^2 \le n < u^2$$

use one or both of the following to shrink the interval [l, u].

- if $(l+1)^2 \le n$ then try [l+1, u]otherwise $l^2 \le n < (l+1)^2$ and k = l
- if $u^2 > n$ then try [l, u 1]otherwise $(u - 1)^2 \le n < u^2$ and k = u - 1

Home Page

CONTENTS

CLOSE

268 OF 887

QUIT

Algorithm: isqrt

$$isqrt(n) = \begin{cases} \bot & \text{if } n < 0\\ 0 & \text{if } n = 0\\ shrink(n, 0, n) & \text{if } n > 0 \end{cases}$$

where

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	269 OF 887	QUIT	
-----------	----------	----	---	---	-----------------	---------	-------------	-------	------------	------	--

Algorithm: shrink

shrink(n,l,u) =

$$\begin{array}{ll} l & \text{if } l = u \\ shrink(n, l+1, u) & \text{if } l < u \\ & \text{and } (l+1)^2 \leq n \\ l & \text{if } (l+1)^2 > n \\ shrink(n, l, u-1) & \text{if } l < u \\ & \text{and } u^2 > n \\ u-1 & \text{if } l < u \\ & \text{and } (u-1)^2 \leq n \\ \perp & \text{if } l > u \end{array}$$

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	270 OF 887	QUIT

SML: shrink

```
exception intervalError;
fun shrink (n, l, u) =
    if l>u orelse
        l*l > n orelse
        u*u < n
        then raise intervalError
        else if (l+1)*(l+1) <= n
        then shrink (n, l+1, u)
        else l;
```

intsqrt

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	271 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

SML: intsqrt

```
exception negError;
fun intsqrt n =
    if n<0
    then raise negError
    else if n=0
    then 0
    else shrink (n, 0, n)
```

shrink

HOME PAGE	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	272 OF 887	QUIT	
-----------	----------	----	---	---	-----------------	---------	-------------	-------	------------	------	--

Run it!

```
exception intervalError
val shrink =
fn : int * int * int -> int
exception negError
val intsqrt = fn : int -> int
val it = () : unit
- intsqrt 8;
val it = 2 : int
- intsqrt 16;
val it = 4 : int
- intsqrt 99;
val it = 9 : int
```

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	273 OF 887	QUIT

SML: Reorganizing Code

- shrink was used to develop intsqrt
- Is shrink general-purpose enough to be kept separate?
- Shouldn't shrink be placed within intsqrt?

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	274 OF 887	QUIT

Intsqrt: Reorganized

```
exception negError;
fun intsqrt n =
   let fun shrink (n, l, u) = ...
   in if n<0
      then raise negError
   else if n=0
      then 0
      else shrink (n, 0, n)
   end
```

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	275 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

shrink: Another algorithm

Shrink

shrink2(n,l,u) =

$$\begin{cases} l & \text{if } l = u \text{ or } u = l+1 \\ shrink2(n,m,u) & \text{if } l < u \\ and m^2 \leq n \\ shrink2(n,l,m) & \text{if } l < u \\ \perp & \text{and } m^2 > n \\ \downarrow & \text{if } l > u \end{cases}$$

where $m = (l + u) \operatorname{div} 2$

Home Page	CONTENTS	44	-	•	••	Go Васк	FULL SCREEN	CLOSE	276 OF 887	QUIT

Shrink2: SML

```
fun shrink2 (n, l, u) =
    if l>u orelse
        l*l > n orelse
        u*u < n
    then raise intervalError
    else if l = u
    then l</pre>
```

Home Page	CONTENTS	44	•	Þ	FF	Go Васк	FULL SCREEN	CLOSE	277 OF 887	QUIT	
											1

Shrink2: SML ... contd

else

let val $m = (l+u) \operatorname{div} 2;$

val msqr = m*m

```
in if msqr <= n
   then shrink (n, m, u)
   else shrink (n, l, m)</pre>
```

end;

Back to More Algos

Home Page	CONTENTS	44	•	►	>	Go Васк	FULL SCREEN	CLOSE	278 OF 887	QUIT

4.2. Algorithm Refinement

- 1. Recap: More Algorithms
- 2. Recap: Power
- 3. Recap: Technical completeness
- 4. Recap: More Algorithms
- 5. Intsqrt: Reorganized
- 6. Intsqrt: Reorganized
- 7. Some More Algorithms
- 8. Combinations: Math
- 9. Combinations: Details
- 10. Combinations: SML
- 11. Perfect Numbers
- 12. Refinement
- 13. Perfect Numbers: SML
- 14. $\sum_{l}^{u} ifdivisor(k)$
- 15. SML: sum_divisors
- **16.** *if divisor* **and** *if divisor*
- 17. SML: Assembly 1
- 18. SML: Assembly 2
- 19. Perfect Numbers ... contd.
- 20. Perfect Numbers ... contd.
- 21. SML: Assembly 3
- 22. Perfect Numbers: Run

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	279 OF 887	QUIT	
-----------	----------	----	---	---	-----------------	---------	-------------	-------	------------	------	--

- 23. Perfect Numbers: Run
- 24. SML: Code variations
- 25. SML: Code variations
- 26. SML: Code variations
- 27. Summation: Generalizations
- 28. Algorithmic Improvements:
- 29. Algorithmic Variations
- 30. Algorithmic Variations

HOME PAGE	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	280 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Recap: More Algorithms

- x^n for real and integer x
- Integer square root

Forward

HOME PAGE	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	281 OF 887	QUIT	
-----------	----------	----	---	---	----	----------------	-------------	-------	------------	------	--

Recap: Power

- x^n for real and integer x
 - Technical Completeness
 - * Undefinedness
 - * Termination
 - More complete definition for real \boldsymbol{x}
 - Power of an integer
 - \perp and exceptions
- Integer square root

Home Page	CONTENTS	44	•	►	••	GO BACK	FULL SCREEN	CLOSE	282 OF 887	Quit

Recap: Technical completeness

Can it be always guaranteed that

- x will be real? YES
- n will be integer? YES
- *n* will be non-negative? NO
- *x* ≠ 0**?** NO
- If x = 0 what is 0.0^{0} ?

INFINITE COMPUTATION

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	283 OF 887	QUIT

Recap: More Algorithms

- x^n for real and integer x
- Integer square root
 - Analysis
 - Algorithmic idea
 - Algorithm
 - -where
 - -and let ...in ...end

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	284 OF 887	QUIT

Intsqrt: Reorganized

```
exception negError;
exception intervalError;
fun intsqrt n =
  let fun shrink (n, l, u) =
    if l>u orelse
       l*l > n orelse
       u*u < n
    then raise intervalError
    else if (l+1)*(l+1) <= n
    then shrink (n, l+1, u)
    else l;
```

LISUS DUSS	
Home Page	

CONTENTS

CLOSE

Intsqrt: Reorganized

in if n<0
 then raise negError
 else if n=0
 then 0
 else shrink (n, 0, n)
end</pre>

Back

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	286 OF 887	QUIT	
-----------	----------	----	---	---	-----------------	----------------	-------------	-------	------------	------	--

Some More Algorithms

- Combinations
- Perfect Numbers

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	287 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Combinations: Math

$${}^{n}C_{k} = \frac{n!}{(n-k)!k!}$$

1

$$= \frac{n(n-1)\cdots(n-k+1)}{k!}$$

$$= \frac{n(n-1)\cdots(k+1)}{(n-k)!}$$

$$= {}^{n-1}C_{k-1} + {}^{n-1}C_k$$

Since we already have the function fact, we may program ${}^{n}C_{k}$ using any of the above identities. Let's program it using the last one.

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	288 OF 887	QUIT	

Combinations: Details

Given a set of $n \ge 0$ elements, find the number of subsets of k elements, where $0 \le k \le n$

$${}^{n}C_{k} = \begin{cases} \bot & \text{if } n < 0 \text{ or} \\ k < 0 \text{ or} \\ k > n \\ 1 & \text{if } n = 0 \text{ or} \\ k = 0 \text{ or} \\ k = n \\ n^{-1}C_{k-1} + n^{-1}C_{k} & \text{otherwise} \end{cases}$$

Ном	e Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	289 OF 887	Quit

Combinations: SML

```
exception invalid_arg;
fun comb (n, k) =
    if n < 0 orelse
       k < 0 orelse
       k > n
    then raise invalid_arg
    else if n = 0 orelse
            k = 0 orelse
            n = k
    then 1
    else comb (n-1, k-1) +
         comb (n-1, k);
```

Back to Some More Algorithms

HOME PAGE CONTENTS ┥ 🔺 🕨 🕨 🕨 GO BACK FULL SCREEN CLOSE 290 OF 887 QUIT
--

Perfect Numbers

An integer n > 0 is perfect if it equals the sum of all its proper divisors. A divisor k | n is proper if 0 < k < n

 $k|n \iff n \mod k = 0$ perfect(n)

$$\iff n = \sum \{k : 0 < k < n, k | n\}$$

 $\iff n = \sum_{k=1}^{n-1} ifdivisor(k)$

where

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	291 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Refinement

- 1. ifdivisor(k) needs to be defined
- 2. $\sum_{k=1}^{n-1} ifdivisor(k)$ needs to be defined algorithmically.

HOME PAGE	CONTENTS	44	•		>	Go Васк	FULL SCREEN	CLOSE	292 OF 887	QUIT
-----------	----------	----	---	---------	-------------	---------	-------------	-------	------------	------

QUIT

Perfect Numbers: SML

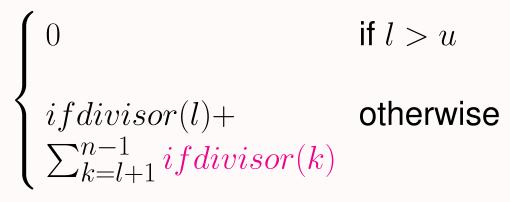
```
exception nonpositive;
fun perfect (n) =
  if n <= 0
  then raise nonpositive
  else
    n = sum_divisors (1, n-1)
```

where sum_divisors needs to be defined

	Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	293 OF 887	
--	-----------	----------	----	---	---	-----------------	----------------	-------------	-------	------------	--

 $\sum_{l}^{u} ifdivisor(k)$

 $\sum_{k=l}^{u} ifdivisor(k) =$



where ifdivisor(k) needs to be defined

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	294 OF 887	QUIT

SML: sum_divisors

From the algorithmic definition of $\sum_{k=l}^{u} ifdivisor(k)$

```
fun sum_divisors (l, u) =
    if l > u
    then 0
    else ifdivisor (l) +
        sum_divisors (l+1, u)
```

where ifdivisor(k) still needs to be defined

Home Page	CONTENTS

ifdivisor and ifdivisor

 $ifdivisor(k) = \begin{cases} k & \text{if } k \mid n \\ 0 & \text{otherwise} \end{cases}$

```
fun ifdivisor (k) =
    if n mod k = 0
    then k
    else 0
```

Not technically complete! However ...

HOME PAGE	CONTENTS	44	•	•	••	GO BACK	FULL SCREEN	CLOSE	296 OF 887	QUIT

SML: Assembly 1

```
fun sum_divisors (l, u) =
  if l > u then 0
  else
    let fun ifdivisor (k) =
        if n mod k = 0
        then k
        else 0
    in ifdivisor (l) +
        sum_divisors (l+1, u)
    end
```

Clearly $k \in [l, u]$

									_		
Home Page	CONTENTS	44	•	►	>>	GO BACK	FULL SCREEN	CLOSE	297 OF 887	QUIT	

SML: Assembly 2

```
exception nonpositive;
fun perfect (n) =
if n <= 0
then raise nonpositive
else
let fun sum_divisors (l, u) =
...
in n = sum_divisors (l, n-1)
end
```

```
Clearly k \in [l, u] = [1, n - 1] whenever n > 0.
Technically complete!
```

HOME PAGE CONTENTS 44 A DE DE GO BACK FULL SCREEN CLOSE 298 OF 8
--

Perfect Numbers . . . contd.

Clearly for all k, n/2 < k < n, ifdivisor(k) = 0.

 $\lfloor n/2 \rfloor = n \; \mathrm{div} \; 2 < n/2$

Hence

$$\sum_{k=1}^{n-1} ifdivisor(k) = \sum_{k=1}^{n \text{ div } 2} ifdivisor(k)$$

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	299 OF 887	QUIT	
-----------	----------	----	---	---	-----------------	---------	-------------	-------	------------	------	--

Perfect Numbers ... contd.

Hence

perfect(n)

$$\iff n = \sum_{k=1}^{n-1} ifdivisor(k)$$

$$\iff n = \sum_{k=1}^{n \text{ div } 2} ifdivisor(k)$$

where

$$ifdivisor(k) = \begin{cases} k & \text{if } k | n \\ 0 & \text{otherwise} \end{cases}$$

Home Pag	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	300 OF 887	QUIT	
----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

SML: Assembly 3

```
exception nonpositive;
fun perfect (n) =
```

```
if n <= 0
then raise nonpositive
else
let fun sum_divisors (l, u) =
    ...
in n = sum_divisors (1, n div 2)
end</pre>
```

```
Clearly k \in [l, u] = [1, n \text{ div}2] whenever n > 0.
Technically complete!
```

HOME PAGE	CONTENTS	44	•	►	••	GO BACK	FULL SCREEN	CLOSE	301 OF 887	QUIT	

Perfect Numbers: Run

```
exception nonpositive
val perfect = fn : int -> bool
val it = () : unit
- perfect ~8;
uncaught exception nonpositive
 raised at: perfect.sml:4.16-4.27
- perfect 5;
val it = false : bool
```

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	302 OF 887	QUIT

QUIT

Perfect Numbers: Run

```
- perfect 6;
val it = true : bool
- perfect 23;
val it = false : bool
- perfect 28;
GC #0.0.0.1.3.88: (1 ms)
val it = true : bool
- perfect 30;
val it = false : bool
```

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	303 OF 887	

SML: Code variations

```
exception nonpositive;
fun perfect (n) =
    if n <= 0
    then raise nonpositive
    else
        let
        fun ifdivisor (k) = ...;
        fun sum_divisors (l, u) = ...
        in
    n=sum_divisors (1, n div 2)
        end
```

Technically complete though ifdivisor, by itself is not!

HOWEFAGE		Home Page
----------	--	-----------

CONTENTS

CLOSE

SML: Code variations

```
What about this?
exception nonpositive;
fun perfect (n) =
   let
    fun ifdivisor (k) = ...;
    fun sum_divisors (l, u) = ...
    in if n <= 0
        then raise nonpositive
        else
n=sum_divisors (l, n div 2)
        end</pre>
```

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	305 OF 887	QUIT
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------

SML: Code variations

```
What about this?
exception nonpositive;
fun ifdivisor (k) = ...;
fun sum_divisors (l, u) = ...;
fun perfect (n) =
    if n <= 0
    then raise nonpositive
    else
        n=sum_divisors (l, n div 2)</pre>
```

Technically incomplete!

CONTENTS

Номе	PAGE	

Summation: Generalizations

Need a method to compute summations in general. For any function $f : \mathbb{Z} \to \mathbb{Z}$ and integers l and u,

$$\sum_{i=l}^{u} f(i) = \begin{cases} 0 & \text{if } l > u \\ f(l) + & \text{otherwise} \\ \sum_{i=l+1}^{u} f(i) \end{cases}$$

HOME PAGE CONTENTS 44 A B B B B B B B B B B B B B B B B B

Algorithmic Improvements:

perfect2 shrink2

Home Page	CONTENTS	44	4	►	••	Go Васк	FULL SCREEN	CLOSE	308 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Algorithmic Variations

- 1. For any k|n, m = n div k is also a divisor of n
- 2.1 is a divisor of every positive number
- 3. For n > 4, $\lfloor \sqrt{n} \rfloor < n \text{ div } 2$
- 4. It is easy to see by inspection that the first perfect number has to be greater than 4.
- 5. Hence $\sum_{k=1}^{n \text{ div } 2} ifdivisor(k) =$

$$\mathbf{l} + \sum_{k=2}^{\lfloor \sqrt{n} \rfloor} ifdivisor2(k)$$

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	309 OF 887	QUIT	

Algorithmic Variations

perfect(n)

$$\iff (n > 4) \land (n = 1 + \sum_{k=2}^{\lfloor \sqrt{n} \rfloor} ifdivisor2(k))$$

where

$$ifdivisor2(k) = \begin{cases} k+\\ (n \operatorname{div} k) & \text{if } k|n\\ 0 & \text{otherwise} \end{cases}$$

Are there any glitches? Is it technically correct and complete?

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	310 OF 887	QUIT

skip

Glitch

Question. What if for some value of k, $k = n \operatorname{div} k$? Question. Can a perfect number be a perfect square?

 HOME PAGE
 CONTENTS
 Image: Contents

4.3. Variations: Algorithms & Code

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	312 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Recap

- Combinations
- Perfect Numbers
- Code Variations
- Algorithmic Variations

forward

HOME PAGE CONTENTS	►► Go Back	FULL SCREEN CLOSE	313 OF 887	QUIT	
--------------------	------------	-------------------	------------	------	--

Recap: Combinations

$${}^{n}C_{k} = \frac{n!}{(n-k)!k!}$$

$$= \frac{n(n-1)\cdots(n-k+1)}{k!}$$

$$= \frac{n(n-1)\cdots(k+1)}{(n-k)!}$$

$$= {}^{n-1}C_{k-1} + {}^{n-1}C_k$$

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	314 OF 887	QUIT

Combinations 1

```
use "fact.sml";
exception invalid_arg;
fun comb_wf (n, k) =
    if n < 0 orelse
        k < 0 orelse
        k > n
    then raise invalid_arg
    else fact (n) div
        (fact(n-k) * fact(k));
```

HOME PAGE	
-----------	--

CONTENTS

CLOSE

QUIT

Combinations 2

```
exception invalid_arg;
fun comb (n, k) =
    if n < 0 orelse
       k < 0 orelse
       k > n
    then raise invalid_arg
    else if n = 0 orelse
            k = 0 orelse
            n = k
    then 1
    else (* 0<k<n *)
      prod (n, n-k+1) div
      fact (k)
```

				_	_	_	_	_		
Home Page	CONTENTS	••	•	►	••	GO BACK	FULL SCREEN	CLOSE	316 OF 887	QUIT

Combinations 3

```
exception invalid_arg;
fun comb (n, k) =
    if n < 0 orelse
       k < 0 orelse
       k > n
    then raise invalid_arg
    else if n = 0 orelse
            k = 0 orelse
            n = k
    then 1
    else (* 0<k<n *)
      prod (n, k+1) div
      fact (n-k)
```

Номе Рад	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	317 OF 887	QUIT

Perfect 2

perfect(n)

$$\iff (n > 4) \land (n = 1 + \sum_{k=2}^{\lfloor \sqrt{n} \rfloor} ifdivisor2(k))$$

$$\iff (n > 4) \land (2n = \sum_{k=1}^{\lfloor \sqrt{n} \rfloor} ifdivisor2(k))$$

where

ifdivisor2(k) =

$$\begin{cases} k+m & \text{if } k|n \text{ and } k \neq m \\ k & \text{if } k|n \text{ and } k=m \\ 0 & \text{otherwise} \end{cases}$$

where $m = (n \operatorname{div} k)$

CONTENTS

◄

CLOSE


```
local
  exception invalidArg;
  fun ifdivisor2 (n, k) =
    if n <= 0 orelse
       k <= 0 orelse
       n < k
    then raise invalidArg
    else if n mod k = 0
    then if k = n \operatorname{div} k
          then k
          else k + (n \text{ div } k)
    else 0;
  fun sum_div2 (n, l, u) =
    if n <= 0 orelse
        | <= 0 orelse</pre>
       l > n orelse
       u \leq 0 orelse
       u > n
```

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	319 OF 887	QUIT

QUIT

```
then raise invalidArg
    else if l > u
    then 0
    else ifdivisor2 (n, l) + sum_div2 (n, l+1, u)
in
  fun perfect n =
    if n <= 0
    then raise invalidArg
    else if n \le 4 then false
    else let val sqrt_n = Real.trunc(Real.Math.sqrt(real n))
         in 2*n = sum_div2 (n, 1, sqrt_n)
         end
end
exception LessThan5
fun genAllPerfectUpto (m) =
    if m < 5 then raise LessThan5
    else
        let fun genFromTo (I, u, P) =
                if l > u then P
```

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	320 OF 887	
HOMETAGE	OONTENTS	••		-		GO BAOK	TOLE COMELIN	OLOGE	020 01 007	


```
else if (perfect l)
then (print ((Int.toString l)^"\n");
genFromTo (l+1, u, l::P)
)
else genFromTo (l+1, u, P)
in genFromTo (5, m, [])
end
```

(* 6, 28, 496, 8128, 33550336, 8589869056, 137438691328
 are the first seven perfect numbers according to Wikipedia
*)

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	321 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

power

Power 2

The previous inductive definition used

$$x^n = \underbrace{(x \times x \times \dots \times x)}_{n-1 \text{ times}} \times x$$

We could associate the product differently

Home Page	CONTENTS	44	•	Þ	ÞÞ	Go Васк	FULL SCREEN	CLOSE	322 OF 887	QUIT	
	0011121110	••	•	-		0.0 2/10/1		02002	011 0. 00.	Q 011	1

A Faster Power

$$x^{n} = \underbrace{(x \times x \times \dots \times x)}_{n/2 \text{ times}}$$
$$\times \underbrace{(x \times x \times \dots \times x)}_{n/2 \text{ times}}$$

when n is even and

$$x^{n} = \underbrace{(x \times x \times \dots \times x)}_{\lfloor n/2 \rfloor \text{ times}} \\ \times \underbrace{(x \times x \times \dots \times x)}_{\lfloor n/2 \rfloor \text{ times}} \\ \times x$$

when n is odd

Home Page	CONTENTS	44	•	•	••	GO ВАСК	FULL SCREEN	CLOSE	323 OF 887	QUIT

Power2: Complete

power2(x, n) =

$$\begin{cases} 1.0/power2(x, n) & \text{if } n < 0\\ 1.0 & \text{if } n = 0\\ (power2(x, \lfloor n/2 \rfloor))^2 & \text{if } even(n)\\ (power2(x, \lfloor n/2 \rfloor))^2 \times x \text{ otherwise} \end{cases}$$

where $even(n) \iff n \mod 2 = 0$.

Home Page Contents 44 4	GO BACK FULL SCREEN CLOSE 324 OF 887 QUIT
-------------------------	---

Power2: SML

```
fun power2 (x, n) =
  if n < 0
  then 1.0/power2 (x, ~n)
  else if n = 0
  then 1.0
  else</pre>
```

Home Page	CONTENTS	44	•	•	>>	Go Васк	FULL SCREEN	CLOSE	325 OF 887	QUIT	
-----------	----------	----	---	---	-----------------	---------	-------------	-------	------------	------	--

Power2: SML

let fun even m =
 (m mod 2 = 0);
 fun square y = y * y;
 val pwr_n_by_2 =
 power2 (x, n div 2);
 val sq_pwr_n_by_2 =
 square (pwr_n_by_2)
 in if even (n)
 then sq_pwr_n_by_2
 else x * sq_pwr_n_by_2
end

TS

CLOSE

Computation: Issues

- 1. Correctness
 - (a) General correctness
 - (b) Technical Completeness
 - (c) Termination

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	327 OF 887	QUIT

General Correctness

- 1. Mathematical correctness should be established for all algorithmic variations.
- 2. Program Correctness: Mathematically developed code should not be moved around arbitrarily.
 - Code variations should also be mathematically proven

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	328 OF 887	Quit	

Code: Justification

- How does one justify the correctness of
 - this version and
 - this version?
- Can one correct this version?
- But first of all, what is incorrect about this version?

incorrectness

HOME PAGE	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	329 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Recall

- A program is an
 - -explicit,
 - unambiguous and
 - technically complete

translation of an algorithm written in mathematical notation.

- Moreover, mathematical notation is more concise than a program.
- Hence mathematical notation is easier to analyse and diagnose.

Home Page	CONTENTS	44	•	▶	••	Go Васк	FULL SCREEN	CLOSE	330 OF 887	QUIT	

Features: Definition before Use

incorrect version

Definition of a name before use:

- ifdivisor(k) is defined first.
- idivisor(k) uses the name n without defining it.
- k has been defined (as an argument of ifdivisor(k)) before being used.

He	ome Page	CONTENTS	44	•	►	>	Go Васк	FULL SCREEN	CLOSE	331 OF 887	QUIT
----	----------	----------	----	---	---	-------------	---------	-------------	-------	------------	------

Run ifdivisor

```
Standard ML of New Jersey,
- fun ifdivisor(k) =
= if n mod k = 0
= then k
= else 0
;
stdIn:18.8 Error:
unbound variable
or constructor: n
```

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	332 OF 887	QUIT
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------

Diagnosis: Features of programs

incorrect version

- So both $sum_divisors(l, u)$ and perfect(n) may use ifdivisor(k).
- $sum_divisors(l, u)$ is defined before perfect(n).
- So perfect(n) may use both ifdivisor(k) and $sum_divisors(l, u)$

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	333 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Back to Math

incorrect version

Let

$$ifdivisor(k) = \begin{cases} k & \text{if } k | n \\ 0 & \text{otherwise} \end{cases}$$

and $sum_divisors(l, u) = \begin{cases} 0 & \text{if } l > u \\ ifdivisor(l) + & \text{otherwise} \\ sum_divisors(l+1, u) \end{cases}$

and $perfect(n) \iff$

 $n = sum_divisors(1, \lfloor n/2 \rfloor)$

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	334 OF 887	QUIT	

Incorrectness

incorrect version

- ifdivisor(k) has a single argument k
- But it actually depends upon n too!
- But that is not made explicit in its definition.

Let's make it explicit!

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	335 OF 887	QUIT

ifdivisor3

 $ifdivisor3(n,k) = \begin{cases} k & \text{if } k | n \\ 0 & \text{otherwise} \end{cases}$ and $sum_divisors(l,u) =$

 $\begin{cases} 0 & \text{if } l > u \\ if divisor3(n, l) + & \text{otherwise} \\ sum_divisors(l+1, u) & \end{cases}$

and $perfect(n) \iff$

Let

 $n = sum_divisors(1, \lfloor n/2 \rfloor)$

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	336 OF 887	QUIT	

Run it!

```
Standard ML of New Jersey
- fun ifdivisor3 (n, k)
= = if (n mod k = 0)
= then k
= else 0;
val ifdivisor3 =
fn : int * int -> int
```

Home Page	CONTENTS	44	•	►	**	Go Васк	FULL SCREEN	CLOSE	337 OF 887	QUIT

Try it!

- fun sum_divisors (l, u) =
- = if l > u
- = then 0
- = else ifdivisor3 (n, l)+
- = sum_divisors (l+1, u);

stdIn:40.18 Error: unbound

```
variable or constructor: n
```

Now $sum_divisors$ also depends on n!

Home Page	CONTENTS
TIONILTAGE	CONTENTS

Hey! Wait a minute!

But $n \underline{\text{was}}$ defined in ifdivisor3 (n, k)!

So then where is the problem?

Let's ignore it for the moment and come back to it later

Home Page	CONTENTS	44	•	►	>	GO ВАСК	FULL SCREEN	CLOSE	339 OF 887	QUIT	

The *n*'s

Let

 $ifdivisor3(\underline{n}, k) = \begin{cases} k & \text{if } k | n \\ 0 & \text{otherwise} \end{cases}$

and $sum_{-}divisors2(\underline{n},l,u) =$

 $\begin{cases} 0 & \text{if } l > u \\ if divisor 3(n, l) + & \text{otherwise} \\ sum_divisor s(l+1, u) & \end{cases}$

and $perfect(\underline{n}) \iff$

 $n = sum_divisors2(n, 1, \lfloor n/2 \rfloor)$

HOME PAGE	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	340 OF 887	QUIT

Scope

- The scope of a name begins from its <u>definition</u> and ends where the corresponding scope ends
- Scopes end with definitions of functions
- Scopes end with the keyword end in any let ... in ...end

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	341 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Scope Rules

- Scopes may be disjoint
- Scopes may be nested one completely within another
- A scope cannot span two disjoint scopes
- Two scopes cannot (partly) overlap

forward

HOME PAGE	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	342 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

4.4. Names, Scopes & Recursion

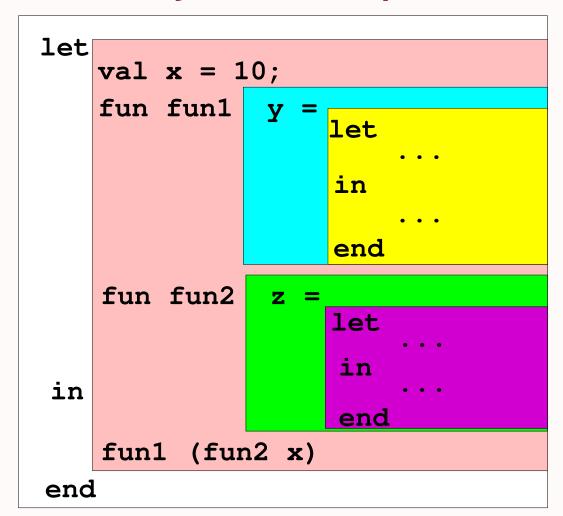
- 1. Disjoint Scopes
- 2. Nested Scopes
- 3. Overlapping Scopes
- 4. Spannning
- 5. Scope & Names
- 6. Names & References
- 7. Names & References
- 8. Names & References
- 9. Names & References
- 10. Names & References
- 11. Names & References
- 12. Names & References
- 13. Names & References
- 14. Names & References
- 15. Names & References
- 16. Definition of Names
- 17. Use of Names
- 18. local...in...end
- 19. local...in...end
- 20. local...in...end
- **21**. local...in...end
- 22. Scope & local

Home Page	CONTENTS	44	•	►	••	GO ВАСК	FULL SCREEN	CLOSE	343 OF 887	QUIT	
-----------	----------	----	---	---	----	----------------	-------------	-------	------------	------	--

- 23. Computations: Simple
- 24. Simple computations
- 25. Computations: Composition
- 26. Composition: Alternative
- 27. Compositions: Compare
- 28. Compositions: Compare
- 29. Computations: Composition
- 30. Recursion
- 31. Recursion: Left
- 32. Recursion: Right

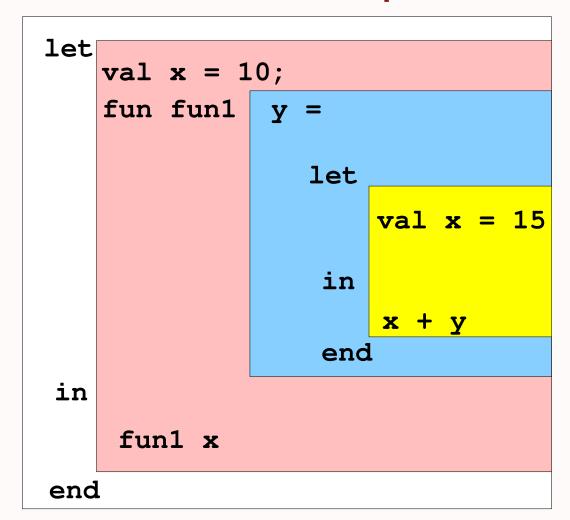
Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	344 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Disjoint Scopes



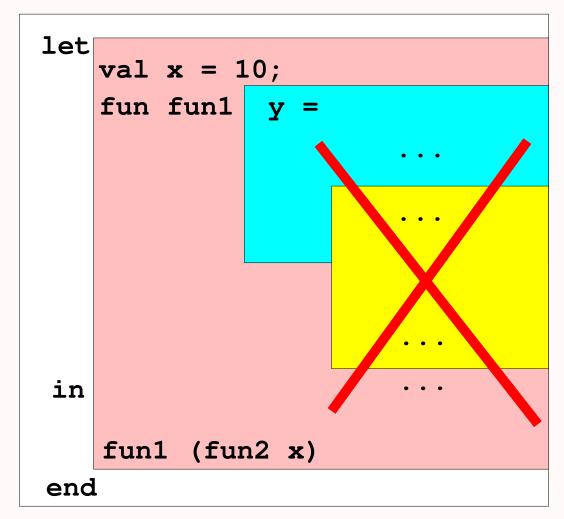
Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	345 OF 887	Quit

Nested Scopes



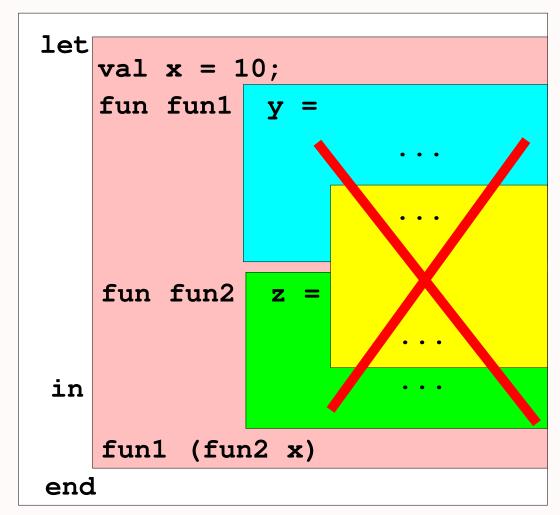
Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	346 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Overlapping Scopes



Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	347 OF 887	QUIT

Spannning



Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	348 OF 887	QUIT	

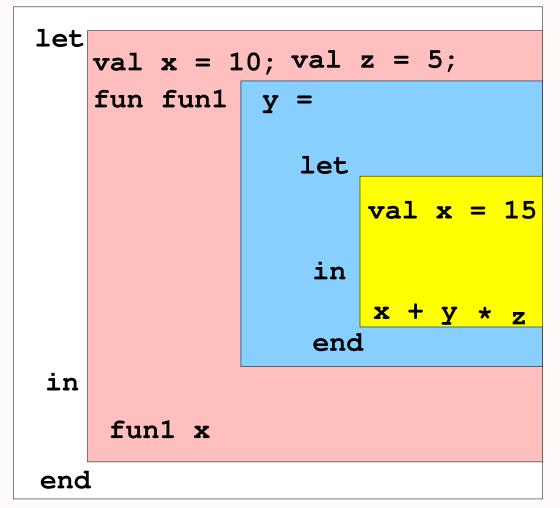
Scope & Names

- A name may occur either as being defined or as a use of a previously defined name
- The same name may be used to refer to different objects.
- The use of a name refers to the <u>textually</u> most recent definition in the innermost enclosing scope

diagram

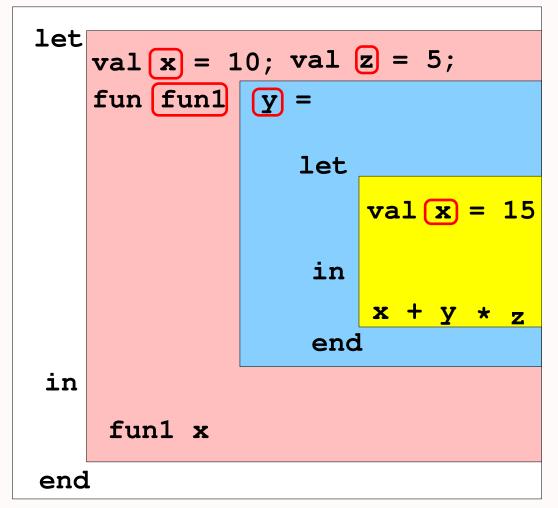
Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	349 OF 887	QUIT	
-----------	----------	----	---	---	----	----------------	-------------	-------	------------	------	--

Names & References



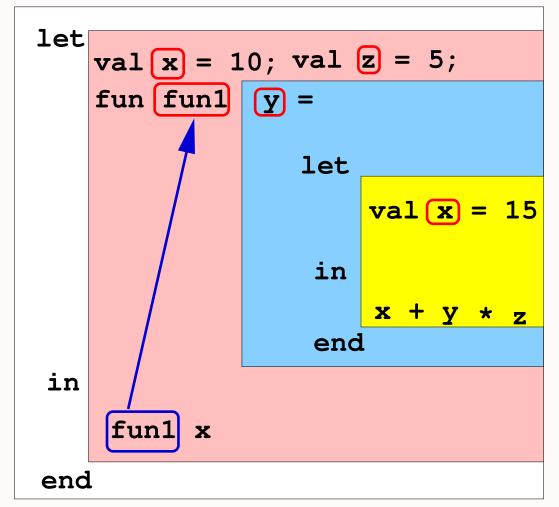
Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	350 OF 887	QUIT	

Names & References



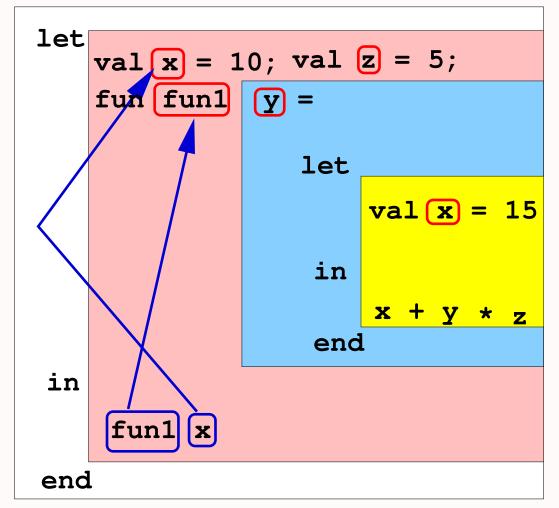
HOME PAGE	CONTENTS	••	•	►	>>	GO BACK	FULL SCREEN	CLOSE	351 OF 887	QUIT	

Names & References



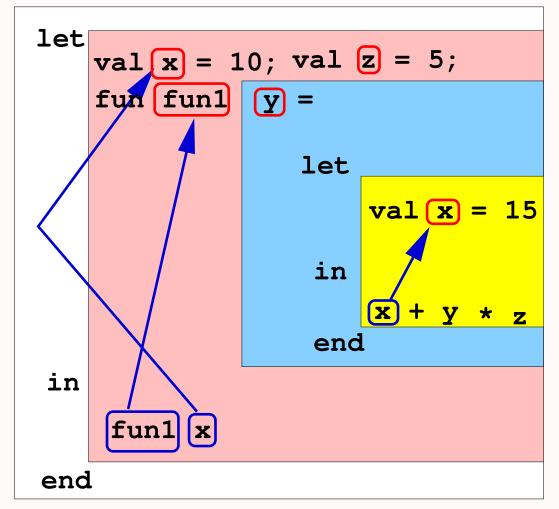
Home Page	CONTENTS	44	4	►	>>	Go Васк	FULL SCREEN	CLOSE	352 OF 887	QUIT

Names & References



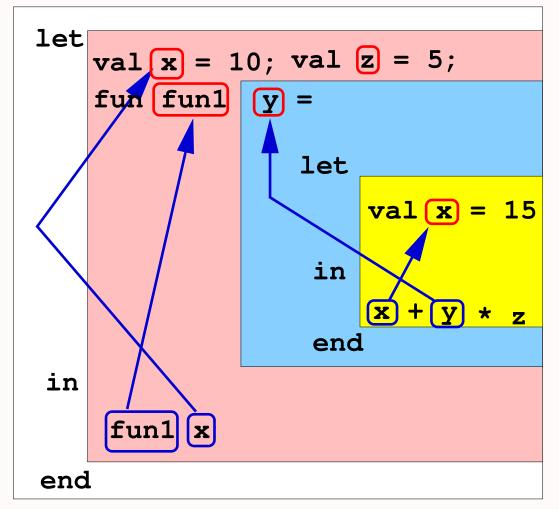
Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	353 OF 887	QUIT	
-----------	----------	----	---	---	----	----------------	-------------	-------	------------	------	--

Names & References



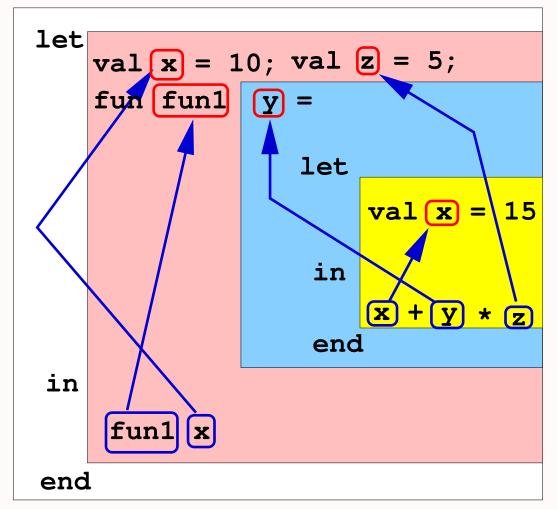
Home Page Contents	►► Go Back	FULL SCREEN CLOSE	354 OF 887 QUIT
--------------------	------------	-------------------	-----------------

Names & References



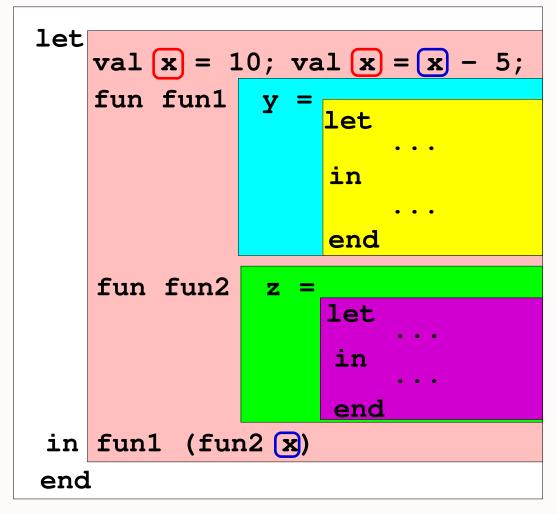
Home Page	CONTENTS	44	4	►	>>	Go Васк	FULL SCREEN	CLOSE	355 OF 887	QUIT

Names & References



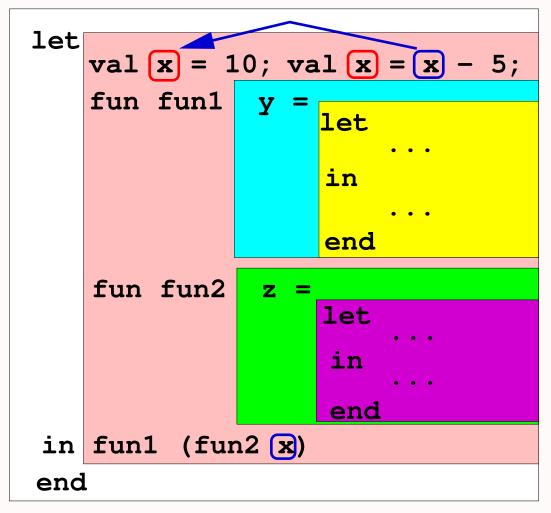
Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	356 OF 887	QUIT	
-----------	----------	----	---	---	----	----------------	-------------	-------	------------	------	--

Names & References



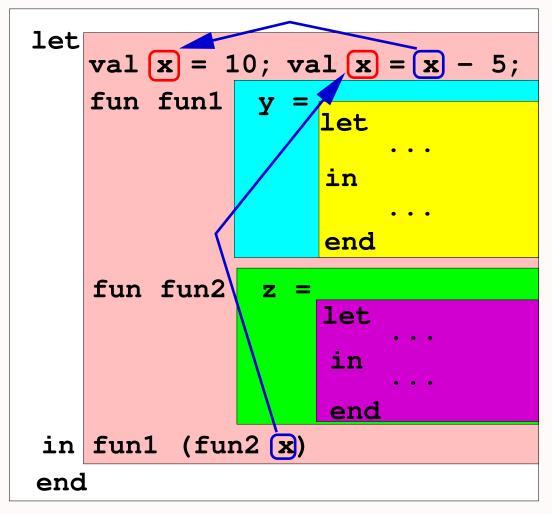
HOME PAGE	CONTENTS	••	•	►	••	GO BACK	FULL SCREEN	CLOSE	357 OF 887	QUIT	

Names & References



											-
HOME PAGE	CONTENTS	••	•	►	••	GO BACK	FULL SCREEN	CLOSE	358 OF 887	QUIT	

Names & References



	h				-			_	_		<u> </u>
HOME PAGE	CONTENTS	44	•	•	••	GO BACK	FULL SCREEN	CLOSE	359 OF 887	Quit	

Definition of Names

Definitions are of the form

qualifier <u>name</u> $\dots = body$

- val <u>name</u> =
- fun \underline{name} (argnames) =
- local definitions in definition end

Home Page	CONTENTS	44	•	▶	••	Go Васк	FULL SCREEN	CLOSE	360 OF 887	QUIT	

Use of Names

Names are used in expressions. Expressions may occur

- by themselves to be evaluated
- as the *body* of a definition
- as the *body* of a let-expression let *definitions* in *expression* end

use of local

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	361 OF 887	QUIT	
-----------	----------	----	---	---	-----------------	---------	-------------	-------	------------	------	--

local...in...end

perfect

local

exception invalidArg;

```
fun ifdivisor3 (n, k) =
    if n <= 0 orelse
        k <= 0 orelse
        n < k
    then raise invalidArg
    else if n mod k = 0
    then k
    else 0;</pre>
```

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	362 OF 887	QUIT
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------

local...in...end

perfect

```
fun sum_div2 (n, l, u) =
  if n <= 0 orelse
     l <= 0 orelse
     l > n orelse
     u <= 0 orelse
     11 > n
  then raise invalidArg
  else if l > u
  then 0
  else ifdivisor3 (n, l)
     + sum_div2 (n, l+1, u)
```

CONTENTS

CLOSE

local...in...end

perfect

```
in
fun perfect n =
    if n <= 0
    then raise invalidArg
    else
        let
        val nby2 = n div 2
        in
        n = sum_div2 (n, 1, nby2)
        end</pre>
```

end

	Home Page	CONTENTS	44	•	►	••	GO BACK	FULL SCREEN	CLOSE	364 OF 887	Quit
--	-----------	----------	----	---	---	----	---------	-------------	-------	------------	------

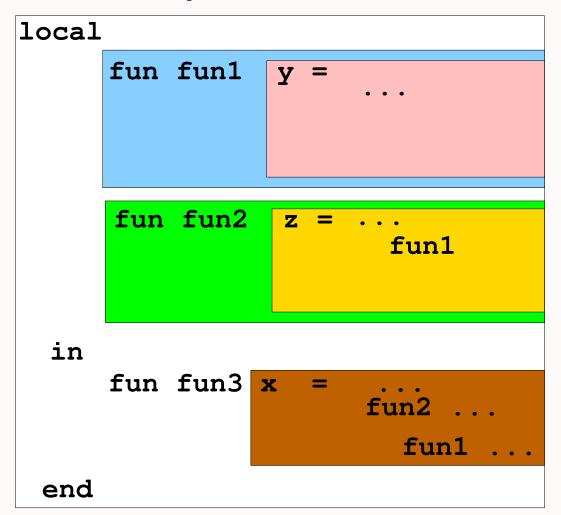
local...in...end

perfect

```
Standard ML of New Jersey,
- use "perfect2.sml";
[opening perfect2.sml]
GC #0.0.0.1.10: (1 ms)
val perfect = fn : int -> bool
val it = () : unit
- perfect 28;
val it = true : bool
- perfect 6;
val it = true : bool
- perfect 8128;
val it = true : bool
```

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	365 OF 887	QUIT
-----------	----------	----	---	---	-----------------	---------	-------------	-------	------------	------

Scope & local



Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	366 OF 887	QUIT

Computations: Simple

For most simple expressions it is

- left to right, and
- top to bottom
- except when
 - presence of brackets
 - precedence of operators

determine otherwise.

Hence

Home Page	CONTENTS	44	•	►	••	GO ВАСК	FULL SCREEN	CLOSE	367 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Simple computations

$$4+6-(4+6) \operatorname{div} 2$$

= 10-(4+6) div 2
= 10-10 div 2
= 10-5
= 5

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	368 OF 887	QUIT

Computations: Composition

$$f(x) = x^2 + 1$$
$$g(x) = 3 * x + 2$$

Then for any value a = 4

$$f(g(a)) = f(3 * 4 + 2) = f(14) = 14^2 + 1 = 196 + 1 = 197$$

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	369 OF 887	QUIT

QUIT

Composition: Alternative

$$f(x) = x^2 + 1$$
$$g(x) = 3 * x + 2$$

Why not

$$f(g(a)) = g(4)^2 + 1$$

= $(3 * 4 + 2)^2 + 1$
= $(12 + 2)^2 + 1$
= $14^2 + 1$
= $196 + 1$
= 197

HOME PAGE	CONTENTS	44	•	▶	>>	GO BACK	FULL SCREEN	CLOSE	370 OF 887	

Compositions: Compare

$$f(g(a)) \qquad f(g(a)) \\
= f(3 * 4 + 2) = g(4)^2 + 1 \\
= f(14) \qquad = (3 * 4 + 2)^2 + 1 \\
= (12 + 2)^2 + 1 \\
= 14^2 + 1 \qquad = 14^2 + 1 \\
= 196 + 1 \qquad = 196 + 1 \\
= 197 \qquad = 197$$

Home Page

◄

CLOSE

Compositions: Compare

Question 1: Which is more correct? Why? Question 2: Which is easier to implement? Question 3: Which is more efficient?

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	

372 OF 887

Computations: Composition

A computation of f(g(a)) proceeds thus:

- g(a) is evaluated to some value, say b
- f(b) is next evaluated

Home Page	CONTENTS	44	•	•	>	GO ВАСК	FULL SCREEN	CLOSE	373 OF 887	QUIT	

$\begin{aligned} & \textit{Recursion} \\ & factL(n) = \begin{cases} 1 & \text{if } n = 0 \\ factL(n-1) * n & \text{otherwise} \end{cases} \\ & factR(n) = \begin{cases} 1 & \text{if } n = 0 \\ n * factR(n-1) & \text{otherwise} \end{cases} \end{aligned}$

HOME PAGE	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	374 OF 887	QUIT

Recursion: Left

factL(4)

 $= \cdots$

◄

- = (factL(4-1)*4)
- = (factL(3) * 4)
- = ((factL(3-1)*3)*4)
- = ((factL(2) * 3) * 4)= (((factL(2 - 1) * 2) * 3) * 4)

- H(PAGE	

4

CLOSE

Recursion: Right

$$factR(4) = (4 * factR(4 - 1)) = (4 * factR(3)) = (4 * (3 * factR(3 - 1))) = (4 * (3 * factR(2))) = (4 * (3 * (2 * factR(2 - 1))))$$

Номе	PAGE

◄

◄

CLOSE

Quit

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	377 OF 887	QUIT	

HOME PAGE	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	378 OF 887	QUIT	

5. Fermat's Factorization Method

Fermat Factorization

A beautiful method devised by Fermat for factoring a positive integer n into a *pair of factors*. The main virtue of the method is that

- it does not require knowing all the primes less than \sqrt{n} to find a factor or to discover that n is a prime.
- the algorithm may be recursively applied to each of the pair of factors to obtain all the *prime factors*.

 \blacktriangleright

CONTENTS

379 OF 887

Fermat: Initial Refinement

Given any integer n > 0, Fermat's method

- 1. yields the pair (2, n/2) if n is even,
- 2. otherwise (if *n* is odd) it attempts to find two factors *m* and *j* where n = m.j, $\sqrt{n} \le m \le n$ and $1 \le j \le \sqrt{n}$.

$$fermat0(n) = \begin{cases} (2, n/2) & \text{if } n \overline{\cdot} 2 = 0\\ fermat1(n) & \text{otherwise} \end{cases}$$
(29)

Home Page	CONTENTS	44	•	•	>>	Go Васк	FULL SCREEN	CLOSE	380 OF 887	QUIT

Fermat: Factors of n

Fact 5.1 The positive factors of n > 0 may be divided into two equal classes D(n) and E(n) such that

$$D(n) = \{ d \mid 1 \le d \le \sqrt{n}, d | n \}$$
(30)

$$E(n) = \{e \mid \sqrt{n} \le e \le n, e|n\}$$
(31)

and

1. For every $d \in D(n)$ there is a unique $e = n/d \in E(n)$, 2. For every $e \in E(n)$ there is a unique $d = n/e \in D(n)$, 3. *n* is a perfect square if and only if $\sqrt{n} \in D(n) \cap E(n)$ and 4. $1 \leq \min D(n) \leq \max D(n) \leq \sqrt{n} \leq \min E(n) \leq \max E(n) = n$.

CONTENTS

CLOSE

381 OF 887

Fermat: *n* is odd

Fact 5.2 Assume *n* is odd. Now consider the smallest factor $m = \min E(n)$.

Case n is a prime. Then m = n.

Case *n* is a perfect square. Then $m = \sqrt{n} = \lfloor \sqrt{n} \rfloor = \lfloor \sqrt{n} \rfloor$.

Case *n* is composite but not a perfect square. Then $\lceil \sqrt{n} \rceil \leq m < \max E(n) \leq (n+1)/2.$

Hor	ME PAGE	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	382 OF 887	QUIT

Fermat: Refinement 1

fermat0

- 1. If *n* is a perfect square then it yields (\sqrt{n}, \sqrt{n}) .
- 2. If *n* is an odd composite but not a perfect square, then it tries to find the *smallest* factor *m* such that $\lceil \sqrt{n} \rceil \leq m < n$ and yields the pair (m, n/m). Notice *n* cannot have any proper factor greater than (n + 1)/2. Hence $\lceil \sqrt{n} \rceil \leq m < (n + 1)/2$.
- 3. If *n* is an odd prime then *n* is not a perfect square and the smallest factor *m* such that $\sqrt{n} \le m \le n$ is *n* itself and it yields the pair (n, 1).

The above steps may be formalized by the following functional pseudocode

$$fermat1(n) = \begin{cases} (k,k) & \text{if } odd(n) \land n = k^2 \\ findfactors(n,k,(n+1)/2) & \text{if } odd(n) \land k = \lceil \sqrt{n} \rceil \end{cases}$$
(32)

Fermat: Finding Factors

Since we know 3 is a prime, 4 is a perfect square and 5 is a prime, we assume n > 5.

Fact 5.3 Assume n > 5 is odd and is not a perfect square. Then

1.
$$\sqrt{n} < \lfloor n/2 \rfloor$$
 .

2. If n = a.b, with $a \neq b$, 2 < a, b < n, then

(a) Both a and b are odd.

(b) Without loss of generality, $1 \le b < \sqrt{n} < a \le n$.

(c) Both a + b and a - b are even.

(d) Every odd composite number is expressible as a difference of perfect squares.

$$n = [(a+b)/2]^2 - [(a-b)/2]^2 = x^2 - y^2 = (x+y).(x-y)$$
(33)

(e) If n is an odd prime then a = n and b = 1 and hence x = (n + 1)/2and y = (n - 1)/2.

HOME PAGE CON	•	►	••	Go Васк	FULL SCREEN	CLOSE	384 OF 887	QUIT	

Fermat: Finding Factors 2

1. Hence one tries to solve the equation

$$x^2 - n = y^2 \tag{34}$$

and takes the factors to be (x + y) and (x - y).

2. Notice that x = (n + 1)/2 and y = (n - 1)/2 satisfies the above identity for all odd n. However we would then have x + y = n and x - y = 1. If x = (n + 1)/2 is the least value of x which solves equation (34) then there would be no divisors other than n and 1 which implies that n is a prime.

Home Page

CONTENTS

FULL SCREEN

CLOSE

Fermat: Finding Factors 3

We have for any positive x, y which solve the equation (34)

- $x^2 \ge n$
- x > y > 0 since $x^2 y^2 = n > 0$,
- $x > \sqrt{n}$ since $x^2 y^2 = n > 0$,
- $x y < \sqrt{n} < x + y < n$ since both (x + y) and (x y) are divisors of n,

CONTENTS

CLOSE

Fermat: Finding Factors 4

fermat1

Assume *n* is odd and not a perfect square. Then let $k = \lceil \sqrt{n} \rceil$. Find the smallest *m* in the range [k, (n + 1)/2] such that $p = m^2 - n$ is a perfect square. Then the two factors are $m + \sqrt{p}$ and $m - \sqrt{p}$.

$$findfactors(n,m,q) = \begin{cases} (m + \lfloor \sqrt{p} \rfloor, m - \lfloor \sqrt{p} \rfloor) & \text{if } p = \lfloor \sqrt{p} \rfloor^2 \\ findfactors(n,m+1,q) & \text{if } p \neq \lfloor \sqrt{p} \rfloor^2 \land m < q \\ (n,1) & \text{otherwise} \end{cases}$$
(35)

HOME PAGE	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	387 OF 887	QUIT

Fermat: The Complete Algorithm

fermat0

fermat1

findfactors

$$fermat0(n) = \begin{cases} (2, n/2) & \text{if } n \ \overline{\cdot} \ 2 = 0\\ fermat1(n) & \text{otherwise} \end{cases}$$

where

$$fermat1(n) = \begin{cases} (k,k) & \text{if } odd(n) \land n = k^2 \\ findfactors(n,k,(n+1)/2) & \text{if } odd(n) \land k = \lceil \sqrt{n} \rceil \end{cases}$$

where

$$findfactors(n,m,q) = \begin{cases} (m + \lfloor \sqrt{p} \rfloor, m - \lfloor \sqrt{p} \rfloor) & \text{if } p = \lfloor \sqrt{p} \rfloor^2 \\ findfactors(n,m+1,q) & \text{if } p \neq \lfloor \sqrt{p} \rfloor^2 \land m < q \\ (n,1) & \text{otherwise} \end{cases}$$

Home Page

CONTENTS

••

◄

•

CLOSE


```
fun odd n = (n \mod 2 = 1)
fun even n = not (odd n)
fun sqr n = n * n
fun isqrtceil n = ceil (Math.sqrt (real n))
local
    fun findfactors (n, m, q) = (* fermat's method *)
        let val p = sqr(m) - n
            val isqrtfloorp = floor(Math.sqrt (real p))
        in if p = sqr(isqrtfloorp)
            then (m + isgrtfloorp, m - isgrtfloorp)
            else if m < q
            then findfactors (n, m+1, q)
            else (n, 1)
        end
    fun fermat1 n =
        let val k = isqrtceil n
        in if n = k \cdot k then (k, k)
            else findfactors (n, k, (n+1) div 2)
        end
in fun fermat0 n = if (even n) then (2, n div 2) else fermat1 n
end
```

								_	_	
Home Page	CONTENTS	44	•	►	••	GO BACK	FULL SCREEN	CLOSE	389 OF 887	QUIT

6. Introducing Reals

6.1. Floating Point

- 1. So Far-1: Computing
- 2. So Far-2: Algorithms & Programs
- 3. So far-3: Top-down Design
- 4. So Far-4: Algorithms to Programs
- 5. So far-5: Caveats
- 6. So Far-6: Algorithmic Variations
- 7. So Far-7: Computations
- 8. Floating Point
- 9. Real Operations
- 10. Real Arithmetic
- 11. Numerical Methods
- 12. Errors
- 13. Errors
- 14. Infinite Series
- 15. Truncation Errors
- 16. Equation Solving
- 17. Root Finding-1
- 18. Root Finding-2
- 19. Root Finding-3
- 20. Root Finding-4

Home Page	CONTENTS	44	•	Þ	••	Go Васк	FULL SCREEN	CLOSE	390 OF 887	QUIT	
											í –

So Far-1: Computing

- The general nature of computation
- The notion of primitives, composition & induction
- The notion of an algorithm
- The digital computer & programming language

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	391 OF 887	QUIT	-

So Far-2: Algorithms & Programs

- Algorithms: Finite mathematical processes
- Programs: Precise, unambiguous explications of algorithms
- Standard ML: Its primitives
- Writing technically complete specifications

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	392 OF 887	QUIT	

So far-3: Top-down Design

integer Square Root

- Begin with the function you need to design
- Write a
 - small compact technically complete definition of the function
 - perhaps using other functions that have not yet been defined
- Each function in turn is defined in a top-down manner

Perfect Numbers

	Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE
--	-----------	----------	----	---	---	----	---------	-------------	-------

393 OF 887

Quit

So Far-4: Algorithms to Programs

- Perform top development till you require only the available primitives
- Directly translate the algorithm into a Program
- Use scope rules to localize or generalize

SML code for perfect

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	394 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

So far-5: Caveats

- Don't arbitrarily vary code from your algorithmic development
 - It might work or
 - It might not work
 - unless properly justified
- May destroy technical completeness
- May create scope violations.

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	395 c

OF 887

So Far-6: Algorithmic Variations

Algorithmic Variations

- Are safe if developed from first principles. Thus ensuring their
 - mathematical correctness
 - technical completeness
 - termination properties

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	396 OF 887	QUIT

So Far-7: Computations

- Work within the notion of mathematical equality
 - Simple expressions
 - Composition of functions
 - Recursive computations
- But are generally irreversible

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	397 OF 887	QUIT	

QUIT

Floating Point

- Each real number 3E11 is represented by a pair of integers
 - 1. Mantissa: 3 or 30 or 300 or ...
 - 2. Exponent: the power of 10 which the mantissa has to be multiplied by
- What is displayed is not necessarily the same as the internal representation.
- There is no unique representation of a real number

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	398 OF 887	

Real Operations

Depending upon the operations involved

- Each real number is first converted into a suitable representation
- The operation is performed
- The result is converted into a suitable representation for display.

skip to Numerical methods

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	399 of 887	QUIT	
-----------	----------	----	---	---	-----------------	---------	-------------	-------	------------	------	--

Real Arithmetic

- for addition and subtraction the two numbers should have the same exponent for ease of integer operations to be performed
- the conversion may involve loss of precision
- for multiplication and division the exponents may have to be adjusted so as not to cause an integer overflow or underflow.

back

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	400 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Numerical Methods

- Finite (limited) precision
- Accuracy depends upon available precision
- Whereas integer arithmetic is <u>exact</u>, real arithmetic is not.
- Numerical solutions are a finite approximation of the result

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	401 OF 887	QUIT	

Errors

- Hence an estimate of the error is necessary.
- If *a* is the "correct" value and a* is the computed value, **absolute error** = $a^* - a$ **relative error** = $\frac{a^* - a}{a}$

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	402 OF 887	QUIT
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------

Errors

- Errors in floating point computations are mainly due
- finite precision Round-off errors
- fnite process It is impossible to compute the value of a (convergent) infinite series because computations are themselves finite processes. Infinite series

HOME PAGE CONTENTS	►► Go Васк	FULL SCREEN CLOSE	403 OF 887	QUIT
--------------------	------------	-------------------	------------	------

Infinite Series

cannot be computed to ∞

$$e^x = \sum_{m=0}^{\infty} \frac{x^m}{m!}$$

$$\cos x = \sum_{m=0}^{\infty} \frac{(-1)^m x^{2m}}{(2m)!}$$

$$\sin x = \sum_{m=0}^{\infty} \frac{(-1)^m x^{2m+1}}{(2m+1)!}$$

Truncation

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	404 OF 887	QUIT

Truncation Errors

and hopefully it is good enough to restrict it to appropriate values of n

$$e^x \quad \approx \sum_{m=0}^n \frac{x^m}{m!}$$

$$\cos x \approx \sum_{m=0}^{n} \frac{(-1)^m x^{2m}}{(2m)!}$$

$$\sin x \approx \sum_{m=0}^{n} \frac{(-1)^m x^{2m+1}}{(2m+1)!}$$

back to Errors

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	405 OF 887	QUIT

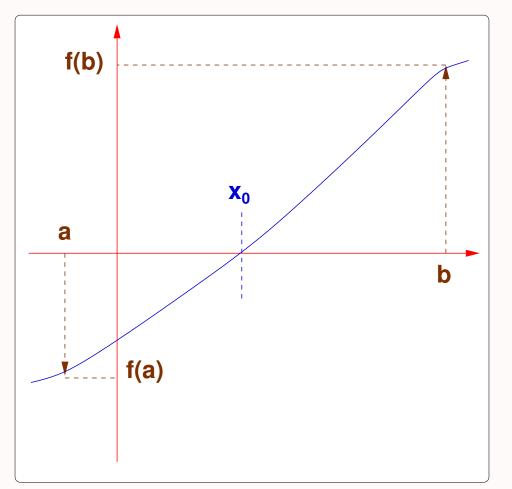
Equation Solving

- The fifth most basic operation
- Root finding: A particular form of equation solving

f(x) = 0

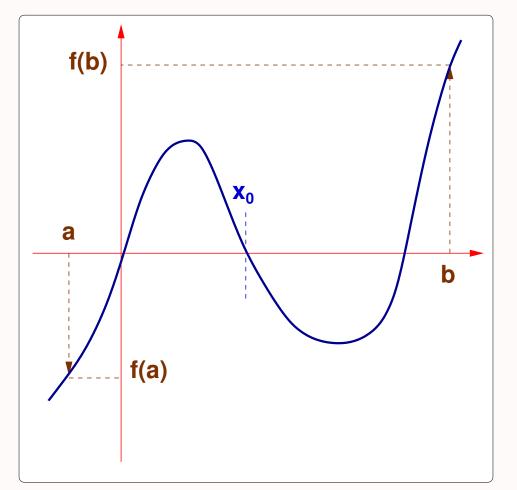
|--|

Root Finding-1



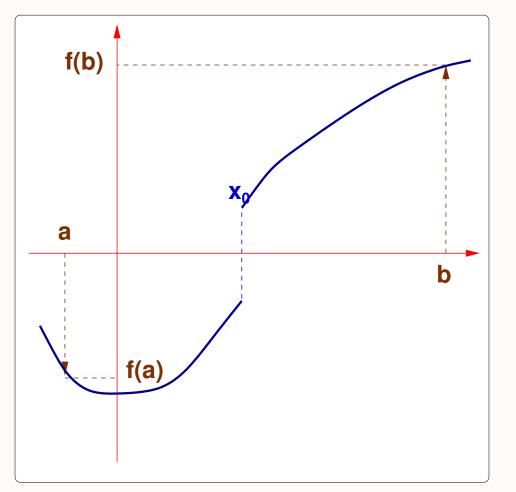
Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	407 OF 887	QUIT

Root Finding-2



Home Page	CONTENTS			 GO BACK	FULL SCREEN	CLOSE	408 OF 887	Ошт
HOME FAGE	CONTENTS		•	 GO BACK	FULL SCREEN	CLOSE	400 OF 887	QUIT

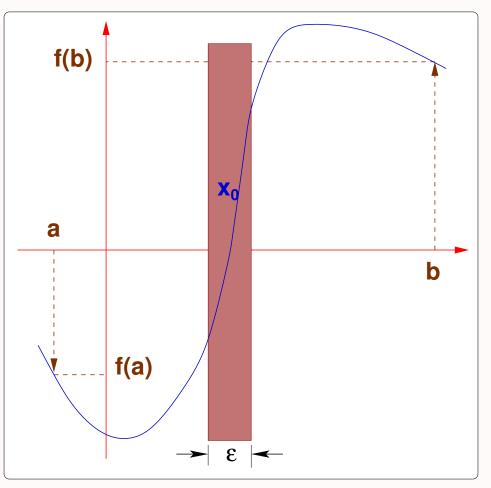
Root Finding-3



Home Page	CONTENTS	44	4	•	••	Go Васк	FULL SCREEN	CLOSE	409 OF 887	Quit

Root Finding-4

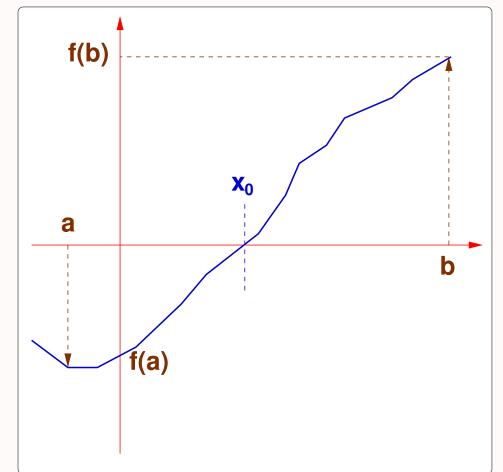
Rather steep isn't it?



Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	410 OF 887	QUIT

Root Finding-5

Continuous functions which are not smooth?



			_	_		_		_	
HOME PAGE	CONTENTS	••	 ▶	>>	GO BACK	FULL SCREEN	CLOSE	411 OF 887	Quit

The Bisection Method

- Given that
 - $-f: \mathbb{R} \longrightarrow \mathbb{R}$ is continuous
 - a and b (a < b) are real values such that f(a) and f(b) have different signs
- f(x) = 0 does have one (or more) solution(s) in the interval [a, b].

One may take inspiration from *shrink*² to find <u>a</u> root of the equation f(x) = 0, by bisecting the interval [a, b].

HOME PAGE	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	412 OF 887	QUIT	

Root Finding: Bisection

Choose a sufficiently small value $\varepsilon > 0$. We try to find an approximation to the root as follows:

$$root_bisect(a,b) = \begin{cases} a & \text{if } |f(a)| \leq \varepsilon \\ b & \text{if } |f(b)| \leq \varepsilon \\ root_bisect(a,m) \text{ else if } sgn(f(m)) = sgn(f(b)) \\ root_bisect(m,b) \text{ else if } sgn(f(m)) = sgn(f(a)) \end{cases}$$

where m = (a + b)/2.0.

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	413 OF 887	QUIT	

Bisection Method: Cases

- 1. Eventually obtain an approximation in case 1
- 2. Eventually obtain an approximation to one of the roots in case 2
- 3. May never find one if it is not continuous as in case 3
- 4. May go on forever if the curve is too steep as in case 4
- 5. But works even with continuous functions that are not everywhere differentiable within the interval

Home Page	CONTENTS	44	•	
-----------	----------	----	---	--

GO BACK

FULL SCREEN CLOSE

6.2. Root Finding, Composition and Recursion

- 1. Root Finding: Newton's Method
- 2. Root Finding: Newton's Method
- 3. Root Finding: Newton's Method
- 4. Root Finding: Newton's Method
- 5. Root Finding: Newton's Method
- 6. Root Finding: Newton's Method
- 7. Newton's Method: Basis
- 8. Newton's Method: Basis
- 9. Newton' Method: Algorithm
- 10. What can go wrong!-1
- 11. What can go wrong!-2
- 12. What can go wrong!-2
- 13. What can go wrong!-3
- 14. What can go wrong!-4
- 15. Real Computations & Induction: 1
- 16. Real Computations & Induction: 2
- 17. What's it good for? 1
- 18. What's it good for? 2
- **19.** *newton*: Computation
- 20. Generalized Composition
- **21.** Two Computations of h(1)
- **22.** Two Computations of h(-1)

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	415 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

- 23. Recursive Computations
- 24. Recursion: Left
- 25. Recursion: Right
- 26. Recursion: Nonlinear
- 27. Some Practical Questions
- 28. Some Practical Questions

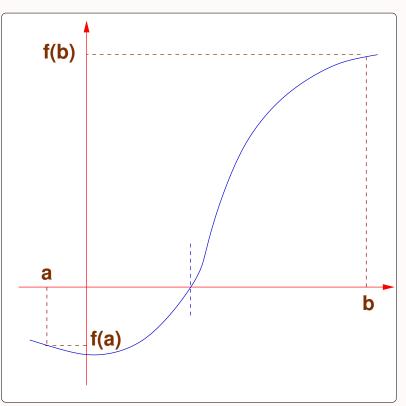
Ном	ME PAGE	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	416 OF 887	QUIT	
-----	---------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Root Finding: Newton's Method

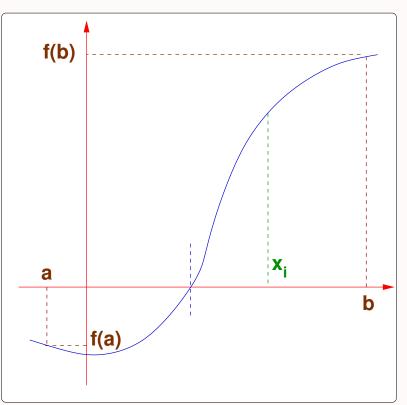
Consider a function f(x)

- smooth and continuously differentiable over [a, b]
- with a non-zero derivative f'(x) everywhere in [a, b]
- the signs of f(a) and f(b) are different

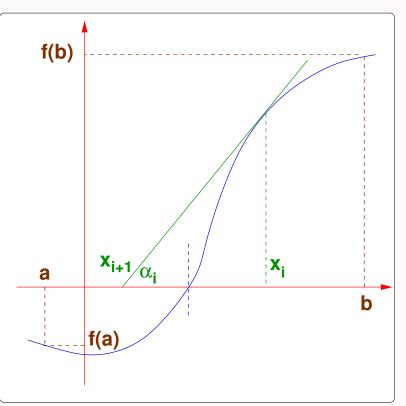
Home Page	CONTENTS	44	•	▶	••	GO BACK	FULL SCREEN	CLOSE	417 OF 887	QUIT



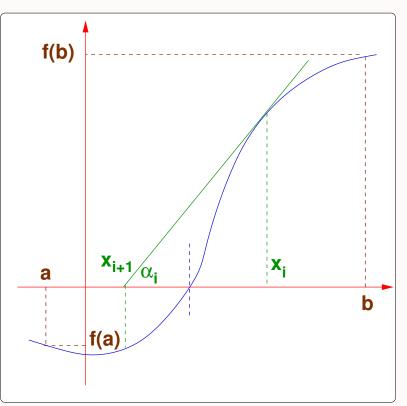
Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	418 OF 887	QUIT



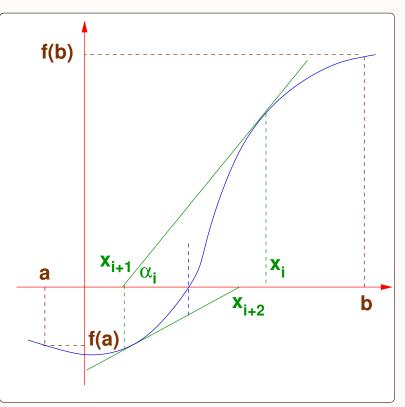
Home Page	CONTENTS	44	4	►	••	GO BACK	FULL SCREEN	CLOSE	419 OF 887	Quit	



HOME PAGE	CONTENTS	44	4	►	••	GO BACK	FULL SCREEN	CLOSE	420 OF 887	QUIT	



Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	421 OF 887	QUIT	



Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	422 OF 887	QUIT	

Newton's Method: Basis

 $\tan \alpha_i = f'(x_i) = \frac{f(x_i)}{x_i - x_{i+1}}$ whence

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

Starting from an initial value $x_0 \in [a, b]$, if the sequence $f(x_i)$ converges to 0 i.e

$$f(x_0), f(x_1), f(x_2), \dots \to 0$$

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	423 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Newton's Method: Basis

 $i.e. \lim_{n \to \infty} |f(x_n)| = 0$

 $i.e. \forall \varepsilon > 0 : \exists N \ge 0 : \forall n > N :$

 $|f(x_n)| < \varepsilon$

then the sequence

 x_0, x_1, x_2, \cdots

converges to a root of f.

1			-		-	-	_	_	
HOME PAGE	CONTENTS	••	 •	>>	GO BACK	FULL SCREEN	CLOSE	424 OF 887	Quit

Newton's Method: Algorithm

Select a small enough $\varepsilon > 0$ and x_0 . Then $newton(f, f', a, b, \varepsilon, x_i) =$

 $\begin{cases} x_i & \text{if } |f(x_i)| < \varepsilon \\ newton(f, f', a, b, \varepsilon, x_{i+1}) & \text{otherwise} \end{cases}$

where

 $x_0 \in [a, b]$

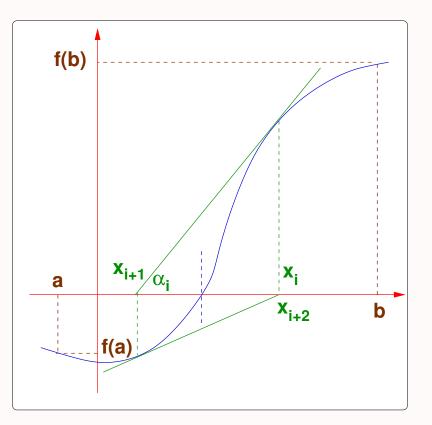
and

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)} \in [a, b]$$

HOME PAGE	CONTENTS	44	•	►	**	Go Васк	FULL SCREEN	CLOSE	425 OF 887	QUIT	

What can go wrong!-1

Oscillations!



Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	426 OF 887	QUIT

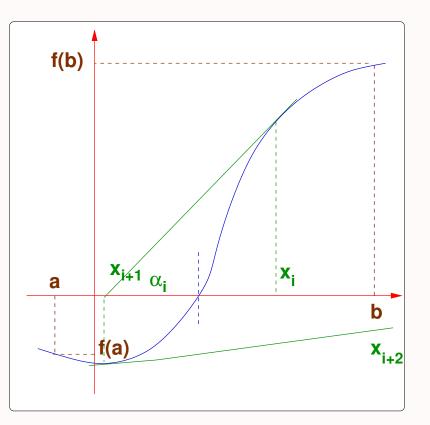
What can go wrong!-2

An intermediate point may lie outside [a, b]! The function may not satisfy all the assumptions outside [a, b]. There are then no guarantees about the behaviour of the function.

HOME PAGE	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	427 OF 887	QUIT
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------

What can go wrong!-2

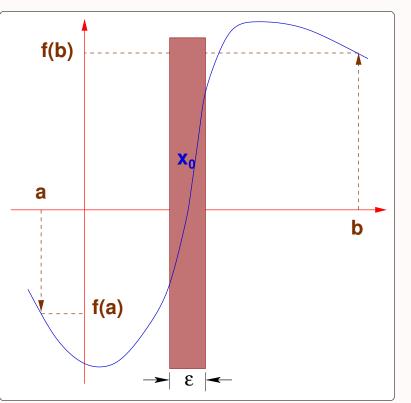
Interval bounds error!



Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	428 OF 887	QUIT

What can go wrong!-3

The function may be too steep

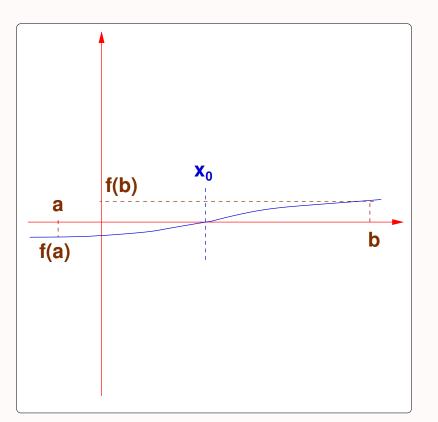


for the available precision.

HOME PAGE	CONTENTS	44	•	►	••	GO BACK	FULL SCREEN	CLOSE	429 OF 887	QUIT

What can go wrong!-4

Or too shallow!



Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	430 OF 887	QUIT

Real Computations & Induction: 1

Newton's method (when it does work!) computes a sequence

 $x_0, x_1, x_2, \ldots x_n$

of essentially discrete values such that even if the sequence is not totally ordered, there is some discrete convergence measure viz.

$$|f(x_i) - 0|$$

which is well-founded.

Home Page	CONTENTS	44	•	►	>	Go Васк	FULL SCREEN	CLOSE	431 OF 887	QUIT	
-----------	----------	----	---	---	-------------	---------	-------------	-------	------------	------	--

Real Computations & Induction: 2

That is, for some decreasing sequence of integers $k_i \ge 0$,

$$k_0 > k_1 > k_2 > \dots > k_n = 0$$

we have

$$k_i \varepsilon \le |f(x_i) - 0| < (k_i + 1)\varepsilon$$

and therefore inductive on integer multiples of ε

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	432 OF 887	QUIT	

What's it good for? 1

Finding the positive *n*-th root $\sqrt[n]{c}$ of a c > 0 and n > 1 amounts to solving the equation

$x^n = c$

which is equivalent to finding the root of f(x) with

$$f(x) = x^n - c$$

$$f'(x) = nx^{n-1}$$

with [a, b] = [0, c] or $[0, \sqrt{c}]$ and an appropriately chosen ε .

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	433 OF 887	QUIT

What's it good for? 2

Finding roots of polynomials.

$$f(x) = \sum_{i=0}^{n} c_i x^i$$
$$f'(x) = \sum_{i=1}^{n} i c_i x^{i-1}$$

and

- an appropriately chosen ε ,
- an appropriately chosen [a, b] with one of the limits possibly being c_0 .

HOME PAGE	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	434 OF 887	QUIT	

newton: Computation

$$newton(f, f', a, b, \varepsilon, x_{0})$$

$$\rightarrow newton(f, f', a, b, \varepsilon, x_{1})$$

$$\rightarrow newton(f, f', a, b, \varepsilon, x_{2})$$

$$\rightarrow newton(f, f', a, b, \varepsilon, x_{3})$$

$$= 1$$

$$\rightarrow newton(f, f', a, b, \varepsilon, x_{n})$$

$$\rightarrow x_{n}$$

Номе	PAGE

••

◄


```
exception Negative_tolerance
exception Empty_interval
exception Out_of_bounds
fun newton (f, f', a,b, e, x:real) =
    let val y = f (x);
    val y' = f' (x);
    in if e < 0.0 then raise Negative_tolerance
    else if a >= b then raise Empty_interval
    else if x < a orelse x > b then raise Out_of_bounds
    else if Real.abs(y) < e
    then x
    else newton (f, f', a,b,e, x - y/y')
    end;
```

```
(* Try it out *)
```

```
USe "ics/fastpower.sml";
```

```
fun f1(x) = power2(x, 6) - x - 1.0
```

◄

HOME PAGE	CONTENTS	••
-----------	----------	----

 \blacktriangleright


```
fun f1'(x) = 6.0 \times power2(x, 5) - 1.0
(*
 newton (f1, f1', 1.0, 2.0, 0.00005, 1.5);
 val it = 1.13472414532 : real
*)
(* We could also count the number of iterations *)
fun newton2 (f, f', a,b, e, x:real, c) =
    let val y = f(x);
        val y' = f'(x);
     in ( print (Int.toString(c)^". "^Real.toString(x)^"\n");
          if e < 0.0 then raise Negative_tolerance
          else if a >= b then raise Empty_interval
          else if x < a orelse x > b then raise Out_of_bounds
          else if Real.abs(y) < e then x
          else newton2 (f, f', a,b,e, x - y/y', c+1)
     end
```

HOME PAGE	
LIOWE FAGE	

CONTENTS

 \blacktriangleright


```
(* Try it out *)
(*
- newton2 (f1, f1', 1.0, 2.0, 0.00005, 1.5, 0);
0. 1.5
1. 1.30049088359
2. 1.1814804164
3. 1.13945559028
4. 1.13477762524
5. 1.13472414532
val it = 1.13472414532 : real
```

```
We may verify the result
```

```
- f1(it);
val it = 7.11358523198E<sup>o</sup>08 : real
```

*)

```
fun f2 x = 2.0 \times Math.sin(x) - x
```

```
fun f2' x = 2.0 * Math.cos(x) - 1.0
```

HOME PAGE	
-----------	--

CONTENTS

◄

►


```
(* We get
- f2(0.5*Math.pi);
val it = 0.429203673205 : real
- f2(Math.pi);
val it = ~3.14159265359 : real
Therefore there is root in the interval [0.5 * Math.pi, Math.pi] besides the
obvious root at 0.0
*)
(*
- newton2 (f2, f2', 0.5*Math.pi, Math.pi, 0.00001, 0.75*Math.pi, 0);
0. 2.35619449019
1. 1.96601321439
2. 1.89811156854
3. 1.8954982162
val it = 1.8954982162 : real
*)
```

HOME PAGE	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	439 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Generalized Composition

Computations

h(x) = f(x, g(x))where $f(x, y) = \begin{cases} 0 & \text{if } x < 0 \\ y & \text{otherwise} \end{cases}$ $g(x) = \begin{cases} 0 & \text{if } x = 0 \\ (x - 1) + 1 & \text{otherwise} \end{cases}$

(x)	$) = \langle$	g(x-1) + 1	otherwise
-----	---------------	------------	-----------

	Home Page	CONTENTS	44	•	►	>>	Go Back
--	-----------	----------	----	---	---	-----------------	---------

CLOSE

QUIT

Two Computations of *h*(1)

Home Page	CONTENTS	44	4	►	>	Go Васк	FULL SCREEN	CLOSE	441 OF 887	QUIT

Two Computations of h(-1)

$$\begin{array}{c|ccc} h(-1) & | & h(-1) \\ \rightsquigarrow f(-1,g(-1)) & | \rightsquigarrow f(-1,g(-1)) \\ \rightsquigarrow 0 & | \rightsquigarrow f(-1,(g(-2)+1)) \\ & \mathsf{DONE!} & | \rightsquigarrow f(-1,((g(-3)+1)+1) \\ & | \rightsquigarrow \dots \\ & | \rightsquigarrow \mathsf{FOREVER!} \end{array}$$

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	442 OF 887	QUIT

Recursive Computations

- Newton's method
- Factorial
 - -factL
 - -factR

skip to nonlinear recursion skip to Recursion Revisited

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	443 OF 887	QUIT	
-----------	----------	----	---	---	-----------------	---------	-------------	-------	------------	------	--

Recursion: Left

factL(4) (factL(4-1)*4) (factL(3)*4) ((factL(3-1)*3)*4) ((factL(2)*3)*4) (((factL(2-1)*2)*3)*4) ((factL(2-1)*2)*3)*4)

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	444 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

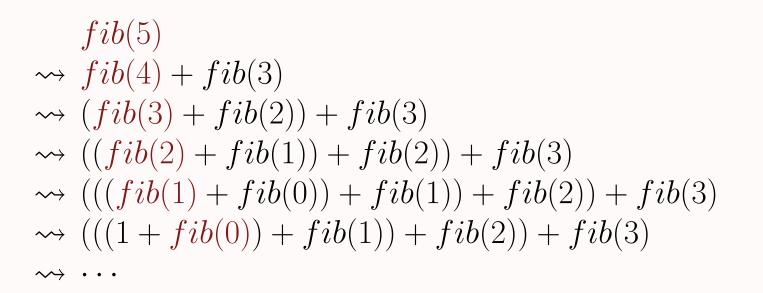
Recursion: Right

factR(4) $\rightsquigarrow (4 * factR(4 - 1))$ $\rightsquigarrow (4 * factR(3))$ $\rightsquigarrow (4 * (3 * factR(3 - 1)))$ $\rightsquigarrow (4 * (3 * factR(2)))$ $\rightsquigarrow (4 * (3 * (2 * factR(2 - 1))))$ $\sim \cdots$

Ном	PAGE	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	445 OF 887	QUIT
-----	------	----------	----	---	---	----	---------	-------------	-------	------------	------

Recursion: Nonlinear

Fibonacci



contd ...

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	446 OF 887	QUIT	
-----------	----------	----	---	---	-----------------	---------	-------------	-------	------------	------	--

Some Practical Questions

- What is the essential difference between the computations of *newton* and the two factorial programs? Answer: Constant space vs. Linear space
- What is the essential similarity between the computations of factL and factR? Answer
- Why can't we calculate beyond *fib*(43) using the definition Fibonacci, on ccsun50 or a P-IV? Answer

HOME PAGE CONTENTS 44 A D D GO BACK FULL SCREEN	CLOSE	
---	-------	--

447 OF 887

Some Practical Questions

- What does a computation of Fibonacci look like?
- What is the essential difference between the computations of Fibonacci and newton or factL or factR?

HOME PAGE	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	448 OF 887	QUIT
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------

7. Correctness, Termination & Complexity

7.1. Termination and Space Complexity

- 1. Recursion Revisited
- 2. Linear Recursion: Waxing
- 3. Recursion: Waning
- 4. Nonlinear Recursions
- 5. Fibonacci: contd
- 6. Recursion: Waxing & Waning
- 7. Unfolding Recursion
- 8. Non-termination
- 9. Termination
- 10. Proofs of termination
- 11. Proofs of termination: Induction
- 12. Proof of termination: Factorial
- 13. Proof of termination: Factorial
- 14. Fibonacci: Termination
- 15. GCD: Definition
- 16. GCD computations
- 17. Well-foundedness: GCD
- 18. Well-foundedness
- 19. Induction is Well-founded
- 20. Induction is Well-founded
- 21. Where it doesn't work
- 22. Well-foundedness is inductive

Home Page	CONTENTS	44	4	•	 Go Васк	FULL SCREEN	CLOSE	449 OF 887	QUIT	
TIOMETAGE	OONTENTS				 GO BACK	I OLL OCHEEN	OLOGE	449 OF 667	Quii	

- 23. Well-foundedness is inductive
- 24. GCD: Well-foundedness
- 25. Newton: Well-foundedness
- 26. Newton: Well-foundedness
- 27. Example: Zero
- 28. Questions
- 29. The Collatz Problem
- 30. Questions
- 31. Space Complexity
- 32. Newton & Euclid: Absolute
- 33. Newton & Euclid: Relative
- 34. Deriving space requirements
- 35. GCD: Space
- 36. Factorial: Space
- 37. Fibonacci: Space
- 38. Fibonacci: Space

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	450 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Recursion Revisited

- Linear recursions
 - -Waxing
 - Waning
- Non-linear recursion

									454 05 007	
HOME PAGE	CONTENTS	••	•	►	>>	GO BACK	FULL SCREEN	CLOSE	451 OF 887	Quit

Linear Recursion: Waxing

$$factL(4) \rightsquigarrow (factL(3) * 4) \rightsquigarrow ((factL(2) * 3) * 4) \rightsquigarrow (((factL(1) * 2) * 3) * 4) \rightsquigarrow ((((factL(0) * 1) * 2) * 3) * 4)$$

contrast with newton

HOME PAGE CONTENTS 44 A DOMESSION GO	K FULL SCREEN CLOSE 452 OF 887 QUIT
--------------------------------------	-------------------------------------

Recursion: Waning

contrast with newton

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	453 OF 887	QUIT

Nonlinear Recursions

Fibonacci

- Each computation of fib has its own waxing and waning
- There is still an "envelope" which shows waxing and waning.

Home Page	CONTENTS	44	•	>	>>	GO ВАСК	FULL SCREEN	CLOSE	454 OF 887	QUIT	
-----------	----------	----	---	-------------	-----------------	---------	-------------	-------	------------	------	--

Fibonacci: contd

 $\rightsquigarrow (((1+1) + F_2(1)) + F_2(2)) + F_2(3)$ $\rightsquigarrow (2 + F_2(1)) + F_2(2)) + F_2(3)$ $\rightsquigarrow ((2+1) + F_2(2)) + F_2(3)$ $\rightsquigarrow \cdots$

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	455 OF 887	QUIT	
-----------	----------	----	---	---	-----------------	---------	-------------	-------	------------	------	--

Recursion: Waxing & Waning

- Waning: Occurs when an expression is simplified without requiring replacement of names by definitions.
- Waxing: Occurs when a *name* is replaced by its *definition*.
 - name by value replacements
 - occurs in generalized composition but just once if it is not recursively defined
 - Unfolding recursion

Home Page	CONTENTS	44	•	▶	>>	Go Васк	FULL SCREEN	CLOSE	456 OF 887	QUIT
	<u> </u>				(1	()			

Unfolding Recursion

- may occur several times (terminating), or
- even an infinite number of times leading to nontermination

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	457 OF 887	Quit
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------

Non-termination

Algorithm

- Simple expressions <u>never</u> lead to nontermination
- (Generalized) composition <u>never</u> leads to nontermination
- Recursion may lead to non-termination or infinite computations, unless proved otherwise

Номе Р	e Contents	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	458 OF 887	QUIT
--------	------------	----	---	---	----	---------	-------------	-------	------------	------

Termination

Since recursion may lead to nontermination

- Termination needs to be proved for recursive definitions, and
- for expressions and definitions that use recursively defined names as components.

HOME PAGE	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	459 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Proofs of termination

A recursive definition guarantees termination

- if it is inductive, or
- it is well-founded

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	460 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Proofs of termination: Induction

A recursive definition guarantees termination

- if it is inductive, Examples:
 - Factorial
 - Fibonacci
- it is well-founded, though not obviously inductive

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	461 OF 887	QUIT

Proof of termination: Factorial

Factorial

Consider factL defined only for non-negative integers. We prove that it is an algorithm i.e. that it terminates

Basis : For n = 0, factL(n) = 1 which is not a recursive definition. Hence it does indeed terminate in a single step.

Home Page Contents	►► Go Back	FULL SCREEN CLOSE	462 OF 887	Quit
--------------------	------------	-------------------	------------	------

Proof of termination: Factorial

Induction hypothesis. For some n > 0, $\forall k : 0 \le k \le n : factL(k)$ terminates in $\propto k$ steps. Induction step. Then factL(m + 1) = factL(m) + (m + 1) is guaranteed to

Induction step. Then factL(n + 1) = factL(n) * (n + 1) is guaranteed to terminate in $\propto (n + 1)$ steps, since factL(n) does so in $\propto n$ steps.

back

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	463 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Fibonacci: Termination

Fibonacci

The proof is similar to that of factL.

Basis For n = 0 or n = 1 $F_2(n) = 1$.

Induction hypothesis For some n > 0, $\forall k : 0 \le k \le n : F_2(k)$ terminates in $\propto f(k)$ steps

Induction Step Then since each of $F_2(n)$ and $F_2(n-1)$ is guaranteed to terminate in $\propto f(n)$ and $\propto f(n-1)$ steps $F_2(n+1) = F_2(n) + F_2(n-1)$ is also guaranteed to terminate in $f(n+1) \propto f(n) + f(n-1)$ steps.

Home Page	CONTENTS	44	•	▶	

GO BACK

FULL SCREEN CLOSE

GCD: Definition

Assume *a* and *b* are non-negative integers.

 $gcd(a,b) = \begin{cases} m & \text{if } a = 0 \lor b = 0 \lor m = n \\ gcd(m-n,n) & \text{otherwise} \end{cases}$

where m = max(a, b) and n = min(a, b).

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	465 OF 887	QUIT	

GCD

GCD computations

gcd(12, 64) $\rightarrow gcd(12, 52)$ $\rightarrow gcd(12, 40)$ $\rightarrow gcd(12, 28)$ $\rightarrow gcd(12, 16)$ $\rightarrow gcd(12, 4)$ $\rightarrow gcd(8, 4)$ $\rightarrow gcd(4, 4)$ $\rightarrow 4$

HOME PAGE	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	466 OF 887	QUIT	

Well-foundedness: GCD

GCD

The sequence of maximum of the arguments obtained in the computation is well-founded i.e.

- it is a sequence of *non-negative integers*, and
- it is *strictly decreasing* sequence bounded below by 0.

 $m_1 > m_2 > \cdots > m_{k-1} > m_k \ge 0$

where $m_1 = max(a, b)$ and if $n_1 = min(a, b)$ then for each i, k > i > 1 we have $m_i > m_{i+1} = max(m_i - n_i, n_i)$.

Home Page Contents		► ►	GO BACK FULL SCREEN	CLOSE	467 OF 887	QUIT	
--------------------	--	-----	---------------------	-------	------------	------	--

QUIT

Well-foundedness

- A definition is well-founded if it is possible to define a measure (i.e. a function w of its arguments) called the well-founded function such that
- 1. the well-founded function takes only non-negative integer values
- 2. with each successive recursive call the value of the well-founded function is guaranteed to decrease by at least 1.

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	468 OF 887

Induction is Well-founded

The well-founded function usually is a measure of the number of computation steps that the algorithm will take to terminate

- Factorial $w(n) \propto n$
- Fibonacci $w(n) \propto f(n)$

Then

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	469 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Induction is Well-founded

- w(n) is always non-negative if factL and F_2 are defined only for non-negative integers
- The argument to factL and F_2 in each recursive unfolding is strictly decreasing.

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	470 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Euclidean GCD

The original algorithm by Euclid went as follows:

$$eugcd(a,b) = \begin{cases} m & \text{if } a = 0 \lor b = 0 \lor m = n \\ eugcd(m\%n,n) & \text{otherwise} \end{cases}$$

where m = max(a, b), n = min(a, b) and m%n is the remainder obtained on dividing *m* by *n*. Notice that in this case

 $m \ge n > m\%n \ge 0$

is guaranteed. We may argue that the sequence of remainders obtained is always well-founded.

Home Page	CONTENTS	44	•	▶	>>	Go Васк	FULL SCREEN	CLOSE	471 OF 887	Quit	

Where it doesn't work

Such proofs do not work when

- *fact* arbitrarily extended to include negative integers. (since w(n) no longer strictly non-negative)
- $fact(n) = fact(n+1) \operatorname{div} (n+1)$, even if n is non-negative (since w(n) is no longer decreasing)

since the function is no longer well-founded.

Home Page	CONTENTS	44	•	•	>>	Go Васк	FULL SCREEN	CLOSE	472 OF 887	QUIT	

Well-foundedness is inductive

But the induction variable is

- hidden or
- too complex to worry about, or
- it serves no useful purpose for the algorithm, except as a counter.

HOME PAGE	CONTENTS	44	•		>>	Go Васк	FULL SCREEN	CLOSE	473 OF 887	Quit

Well-foundedness is inductive

Given any well-founded function $w(\vec{x})$ whose values form a decreasing sequence in some algorithm

 $y_0 > y_1 > \dots > y_{n-1} > y_n \ge 0$

it is possible to put this sequence in 1-1 correspondence with the set $\{0, \ldots, n\}$ via a function *ind* such that

 $ind(w(\vec{x})) = n - i$

Home Page	CONTENTS	44	•	F	>>	Go Васк	FULL SCREEN	CLOSE	474 of 887	QUIT	
-----------	----------	----	---	---	-----------------	---------	-------------	-------	------------	------	--

GCD

GCD: Well-foundedness

Well-founded function for *gcd*

w(a,b) = b

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	475 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Newton: Well-foundedness

Newton's Method

Convergence condition

$$f(x_0), f(x_1), f(x_2), \dots \to 0$$

Compute the discrete value sequence

 $x_0, x_1, x_2, \ldots x_n$

such that

$$k_0 > k_1 > k_2 > \dots > k_n = 0$$

where

HOME PAGE CONTENTS 44 4 I I I I I GO BACK FULL SCREEN CLOSE 476 OF 887 QUIT	Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	476 OF 887	QUIT
---	-----------	----------	----	---	---	----	---------	-------------	-------	------------	------

Newton: Well-foundedness

Newton's Method

$$k_i \varepsilon \le |f(x_i) - 0| < (k_i + 1)\varepsilon$$

and therefore inductive on integer multiples of ε Hence

$$w(x) = \lfloor \frac{|f(x)|}{\varepsilon} \rfloor$$

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	477 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Example: Zero

A peculiar way to define the *zero* function zero(x) =

$\begin{cases} zero(x+1.0) & \text{if } x \leq -1.0 \\ 0.0 & \text{if } -1.0 < x < 1.0 \\ zero(x-1.0) & \text{if } x \geq 1.0 \end{cases}$

 $w(x) = \lceil |x| \rceil$ is the well-founded function

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	478 OF 887	QUIT

Questions

Q: Is it always possible to find a well-founded function for each algorithm?

A: Unfortunately not! However if we can't then we cannot call it an algorithm!. But if we can then we are guaranteed that the algorithm will terminate.

The Collatz Problem

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	479 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

The Collatz Problem

Is the following definition an algorithm?

$$collatz(m) = \begin{cases} 1 & \text{if } m \leq 1\\ collatz(m \text{ div } 2) & \text{if } m \text{ is even}\\ collatz(3 * m + 1) & \text{otherwise} \end{cases}$$

Unproven Claim. $collatz(m) \rightsquigarrow 1$ for all m.

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	480 OF 887	QUIT	
										/	7

QUIT

Questions

Q: what other uses can well-founded functions be put to? A: They can be used to estimate the complexity of your algorithm in *order of magnitude* terms.

Space Complexity : The amount of memory space required, as a function of the input

Time Complexity : The amount of time (number of computation steps) as a function of the input

Home Page	CONTENTS	44	•	►	>	Go Васк	FULL SCREEN	CLOSE	481 OF 887	

Space Complexity

What is the space complexity of

- Newton's method
- Euclidean GCD
- Factorial
- Fibonacci

								_		_
HOME PAGE	CONTENTS	••	•	►	>>	Go Back	FULL SCREEN	CLOSE	482 OF 887	QUIT

Newton & Euclid: Absolute

Newton's Method Computation

Newton's method (wherever and whenever it works well) requires space to compute

- the value of f at each point x_i
- the value of f' at each point x_i
- the value of x_{i+1} from the above

Their absolute space requirements could be different. But ...

Euclidean GCD Computation

CONTENTS

CLOSE

Quit

Newton & Euclid: Relative

Newton's Method Computation

GCD and Newton's method (wherever and whenever it works well) require the same amount of space for each recursive unfolding since each fresh unfolding can reuse the space used by the previous one.

> Euclidean GCD Computation

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	484 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Deriving space requirements

We may use the algorithm itself to derive the space required as follows:

Assume that memory *proportional to* calculating and outputting the answer is a unit. Then space as a function of the input is given by

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	485 OF 887	QUIT

GCD: Space

$$\mathcal{S}_{gcd(a,b)} = \begin{cases} 1 & \text{if } b = 0\\ \mathcal{S}_{gcd(b,a \bmod b)} & \text{otherwise} \end{cases}$$

This implies (from well-foundedness) that the entire computation ends with the space of a unit.

 $\mathcal{S}_{gcd(a,b)} \propto 1$

A similar analysis and result holds for *newton*

HOME PAGE CONTENTS << HOME PAGE CONTENTS < HOME PAGE CONTENTS < HOME PAGE CONTENTS HOME PAGE CONTE	QUIT
--	------

Factorial: Space

factL

$$\mathcal{S}_{factL(n)} = \begin{cases} 1 & \text{if } n = 0\\ \mathcal{S}_{factL(n-1)} + 1 & \text{otherwise} \end{cases}$$

The 1 is for output and the +1 is because one needs to store space proportional to remembering "*multiply by n*".

$\mathcal{S}_{factL(n)} \propto n$.

A similar analysis and result holds for factR.

Home Page	CONTENTS	44
-----------	----------	----

►► Go Back

FULL SCREEN

CLOSE

Fibonacci: Space

Fibonacci

When n > 1 there are two evaluations of F_2 with arguments n - 1 and n - 2 respectively. However assuming the second evaluation proceeds only after the first evaluation is done we may write the space requirement as

$$\mathcal{S}_{F_{2}(n)} = \begin{cases} 1 & \text{if } 0 \le n \le 1\\ 1 + max(\mathcal{S}_{F_{2}(n-1)}, \mathcal{S}_{F_{2}(n-2)}) & \text{if } n > 1 \end{cases}$$

For large values of n and since we are only interested in orders of magnitude rather than exact space calculations we conclude that

$$\mathcal{S}_{F_2(n)} \leq 1 + \mathcal{S}_{F_2(n-1)} \propto n$$

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	488 OF 887	QUIT	

7.2. Efficiency Measures and Speed-ups

- 1. Recapitulation
- 2. Recapitulation
- 3. Time & Space Complexity
- 4. *isqrt*: Space
- 5. Time Complexity
- 6. isqrt: Time Complexity
- 7. isqrt2: Time
- 8. *shrink* vs. *shrink*2: Times
- 9. Factorial: Time Complexity
- 10. Fibonacci: Time Complexity
- 11. Comparative Complexity
- 12. Comparisons
- 13. Comparisons
- 14. Efficiency Measures: Time
- 15. Efficiency Measures: Space
- 16. Speeding Up: 1
- 17. Speeding Up: 2
- 18. Factoring out calculations
- 19. Tail Recursion: 1
- 20. Tail Recursion: 2
- 21. Factorial: Tail Recursion
- 22. Factorial: Tail Recursion

Home Pag	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	489 OF 887	QUIT	
----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

- 23. A Computation
- 24. Factorial: Issues
- 25. Fibonacci: Tail Recursion
- 26. Fibonacci: Tail Recursion
- 27. fibTR: SML
- 28. State in Tail Recursion
- 29. Invariance

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	490 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Recapitulation

- Recursion & nontermination
- Termination & well-foundedness
- Well-foundedness proofs
- Well-foundedness & Complexity

Ном	IE PAGE	CONTENTS	44	4	►	••	Go Васк	FULL SCREEN	CLOSE	491 OF 887	QUIT

Recapitulation

- Recursion & nontermination
- Termination & well-foundedness
- Well-foundedness proofs
 - By induction
 - well-founded functions
 - By well-founded functions
 - induction as well-foundedness
 - Well-foundedness as induction
- Well-foundedness & Complexity

HOME PAGE

CONTENTS

Time & Space Complexity

Questions

An order of magnitude estimate of the time or space (memory) required (in terms of some large computation steps).

- Newton & Euclid's GCD
- Deriving space requirements
 - Integer Sqrt
 - Factorial
 - Fibonacci

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	493 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

$$\begin{split} \textit{isqrt: Space} \\ \textit{Integer Sqrt} & \textit{shrink} \\ \mathcal{S}_{isqrt(n)} = \mathcal{S}_{shrink(n,0,n)} \textit{ for large } n. \\ \mathcal{S}_{shrink(n,l,u)} = \\ \begin{cases} 1 & \text{if } l = u \\ \mathcal{S}_{shrink(n,l+1,u)} & \text{if } l < u \dots \\ \mathcal{S}_{shrink(n,l,u-1)} & \text{if } l < u \dots \end{cases} \end{split}$$

Assuming 1 unit of space for output. By induction on |[l, u]|

 $S_{isqrt(n)} = S_{shrink(n,0,n)} \propto 1$

									404 007		
Home Page	CONTENTS	••	•	►	>>	GO BACK	FULL SCREEN	CLOSE	494 OF 887	QUIT	1

Time Complexity

As in the case of space we may use the algorithm itself to derive the time complexity.

- Integer sqrt
- Factorial
- Fibonacci

forward

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	495 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

isqrt: Time Complexity

Integer Sqrt shrink

Assume condition-checking (along with +1 or -1) takes a unit of time. Then $\mathcal{T}_{shrink(n,l,u)} =$

$$\begin{cases} 0 & \text{if } l = u \\ 1 + \mathcal{T}_{shrink(n,l+1,u)} & \text{if } l < u \dots \\ 1 + \mathcal{T}_{shrink(n,l,u-1)} & \text{if } l < u \dots \end{cases}$$

Then $\mathcal{T}_{shrink(n,l,u)} \propto |[l,u]| - 1$ and

 $\mathcal{T}_{isqrt(n)} = \mathcal{T}_{shrink(n,0,n)} \propto n$

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	496 OF 887	QUIT	

isqrt2: Time

shrink2

Assume condition-checking (along with $(l + u) \operatorname{div} 2$) takes a unit of time. Then $\mathcal{T}_{shrink2(n,l,u)} =$

$$\begin{cases} 0 & \text{if } u \leq l \leq u \\ 1 + \mathcal{T}_{shrink2(n,m,u)} & \text{if } m^2 \leq n \dots \\ 1 + \mathcal{T}_{shrink2(n,l,u-1)} & \text{if } m^2 > n \end{cases}$$

If $2^{k-1} \le |[l, u]| - 1 < 2^k$ then the algorithm terminates in at most k steps. Since $k = \lceil \log_2 |[l, u]| - 1 \rceil$,

 $\frac{\mathcal{T}_{shrink2(n,l,u)} \propto \lceil \log_2 |[l,u]| - 1 \rceil}{\mathcal{T}_{isqrt2(n)} \propto \lceil \log_2 n \rceil}$

Home Page	CONTENTS	44	•	►	>	Go Васк	FULL SCREEN	CLOSE	497 OF 887	QUIT	

shrink VS. shrink2: Times

shrink sh

shrink2

- 1. The time units are different,
- 2. But they differ by a constant factor at most.
- 3. So clearly, for large n, shrink2 is faster than shrink
- 4. But for small *n*, it depends on the constant factor.
- 5. Implicitly assume that the actual unit of time includes the time required to unfold the recursion.

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	498 OF 887	QUIT

Factorial: Time Complexity

Here we assume multiplication takes unit time.

$$\mathcal{T}_{factL(n)} = \begin{cases} 0 & \text{if } n = 0\\ \mathcal{T}_{factL(n-1)} + 1 & \text{otherwise} \end{cases}$$

Then

 $\mathcal{T}_{factL(n)} \propto n$

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	499 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

factL

Fibonacci: Time Complexity

Fibonacci

Assuming addition and condition-checking together take a unit of time, we have

$$\mathcal{T}_{F_1(n)} = \begin{cases} 0 & \text{if } n \le 1\\ \mathcal{T}_{F_1(n-1)} + \mathcal{T}_{F_1(n-2)} & \text{if } n > 1 \end{cases}$$

It follows that

$$2^{n-2} < \mathcal{T}_{F_1(n)} \le 2^{n-1}$$

Home Page	CONTENTS	44	-	►	••	Go Васк	FULL SCREEN	CLOSE	500 OF 887	QUIT

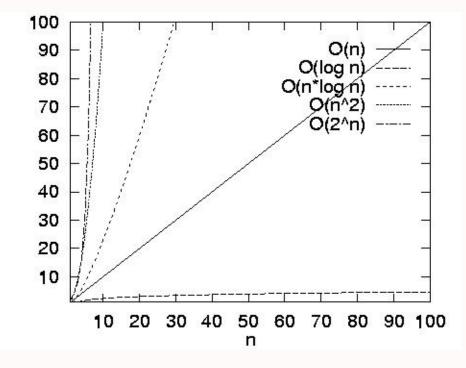
Comparative Complexity

Algorithm	Space	Time
isqrt(n)	O(1)	O(n)
isqrt2(n)	O(1)	$O(\log_2 n)$
factL(n)	O(n)	O(n)
fib(n)	O(n)	$O(2^n)$
fibTR(n)	O(1)	O(n)

HOME PAGE	CONTENTS	44	•	►	••	GO BACK	FULL SCREEN	CLOSE	501 OF 887	QUIT

Comparisons

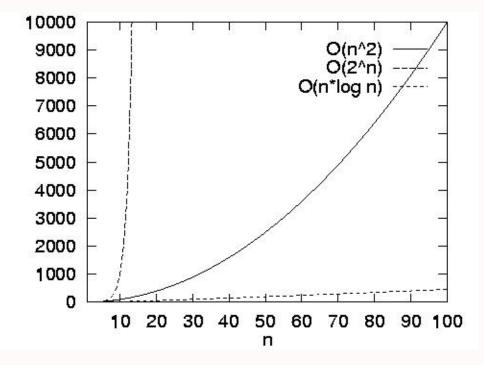
For smaller values



Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	502 OF 887	QUIT

Comparisons

For large values



Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	503 OF 887	QUIT

Efficiency Measures: Time

An algorithm for a problem is <u>asymptotically</u> faster or <u>asymptotically</u> more time-efficient than another for the <u>same problem</u> if its time complexity is bounded by a function that has a *slower* growth rate as a function of the value of its arguments.

Home Page	CONTENTS	44	•	►	**	Go Васк	FULL SCREEN	CLOSE	504 OF 887	QUIT

Efficiency Measures: Space

Similarly an algorithm is asymptotically more space efficient than another if its space complexity is bounded by a function that has a *slower* growth rate.

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	505 OF 887	QUIT
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------

Speeding Up: 1

Q: Can fibonacci be speeded up or made more space efficient?

A: Perhaps by studying the nature of the function e.g. *isqrt2* vs. *isqrt* and attempting more efficient algorithmic variations.

HOME PAGE	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	506 OF 887	QUIT
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------

Speeding Up: 2

Q: Are there general methods of speeding up or saving space?

A: Take inspiration from *gcd*, *newton*, *shrink*2

HOME PAGE CONTENTS GO BACK FULL SCREEN CLOSE 507 OF 887	CLOSE 507 OF 887 QUIT
---	-----------------------

Factoring out calculations

 $gcd(a_{0}, b_{0})$ $compute a_{1}, b_{1}$ $\rightarrow gcd(a_{1}, b_{1})$ $compute a_{2}, b_{2}$ $\rightarrow gcd(a_{2}, b_{2})$ $\rightarrow \cdots$ $\rightarrow gcd(a_{n}, b_{n})$ $\rightarrow a_{n}$

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	508 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Tail Recursion: 1

- Factor out calculations and remember only those values that are required for the next recursive call.
- Create a vector of state variables and include them as arguments of the function

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	509 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

QUIT

Tail Recursion: 2

- Try to reorder the computation using the state variables so as to get the next state completely defined.
- Redefine the function entirely in terms of the state variables so that the recursive call is the outermost operation.

	Home Page	CONTENTS	44	•	•	••	GO ВАСК	FULL SCREEN	CLOSE	510 OF 887	
--	-----------	----------	----	---	----------	----	---------	-------------	-------	------------	--

Factorial: Tail Recursion

factL Waxing

factL Waning

QUIT

- The recursive call precedes the multiplication operation. *Change it!*
- Define a state variable p which contains the product of all the values that one must remember
- Reorder the computation so that the computation of p is performed before the recursive call.
- For that redefine the function in terms of *p*.

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	511 OF 887	

Factorial: Tail Recursion

Factorial

$$factL2(n) = \begin{cases} \bot & \text{if } n < 0\\ 1 & \text{if } n = 0\\ factL_tr(n, 1) & \text{otherwise} \end{cases}$$

where

$$factL_tr(n,p) = \begin{cases} p & \text{if } n = 0\\ factL_tr(n-1,np) & \text{otherwise} \end{cases}$$

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	512 OF 887	QUIT

A Computation

factL2(4) $\rightarrow factL_tr(4,1)$ $\rightarrow factL_tr(3,4)$ $\rightarrow factL_tr(2,12)$ $\rightarrow factL_tr(1,24)$ $\rightarrow factL_tr(0,24)$ $\rightarrow 24$

Reminiscent of gcd and newton!

	Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	513 OF 887	QUIT
--	-----------	----------	----	---	---	----	----------------	-------------	-------	------------	------

Factorial: Issues

- Correctness: Prove (by induction on n) that for all $n \ge 0$, factL2(n) = n!.
- Termination: Prove by induction on n that every computation of factL2 terminates.
- Space complexity: Prove that $S_{factL2(n)} = O(1)$ (as against $S_{factL(n)} \propto n$).
- Time complexity: Prove that $\mathcal{T}_{factL2(n)} = O(n)$

Complexity table

											_
Home Page	CONTENTS	44	•	•	••	GO BACK	FULL SCREEN	CLOSE	514 OF 887	QUIT	

Fibonacci: Tail Recursion

- Remove duplicate computations by defining appropriate state variables
- Let *a* and *b* be the consecutive fibonacci numbers fib(m 2) and fib(m 1) required for the computation of fib(m).
- The state consists of the variables *n*, *a*, *b*, *m*.

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	515 OF 887	QUIT

Fibonacci: Tail Recursion $fibTR(n) = \begin{cases} \bot & \text{if } n < 0 \\ 1 & \text{if } 0 \le n \le 1 \\ fib_iter(n, 1, 1, 1) & \text{otherwise} \end{cases}$

where

$$fib_iter(n, a, b, m) = \begin{cases} b & \text{if } m \ge n\\ fib_iter(n, b, a + b, m + 1) & \text{otherwise} \end{cases}$$

	Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	516 OF 887	QUIT	
--	-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

fibTR: SML

```
local
  fun fib_iter (n, a, b, m) =
      (* fib (m) = b , fib (m-1) = a *)
      if m >= n then b
      else fib_iter (n, b, a+b, m+1);
in
fun fibTR (n) =
    if n < 0 then raise negativeArgument
    else if (n <= 1) then 1
    else fib_iter (n, 1, 1, 1)
end;
```

HON	IE PAGE	CONTENTS
HON	IE PAGE	CONTENTS

CLOSE

QUIT

State in Tail Recursion

- The variables that make up the *state* bear a definite relation to each other.
- INVARIANCE. That relationship between the state variables does not change throughout the computation of the function.

Invariance

- The invariant property of a tail-recursive function must hold Initially when it is first invoked, and Continues to hold before every successive invocation
- The invariant property characterizes the entire computation and the algorithm and is crucial to the proof of correctness

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE

7.3. Invariance & Correctness

- 1. Recap
- 2. Recursion Transformation
- 3. Tail Recursion: Examples
- 4. Comparisons
- 5. Transformation Issues
- 6. Correctness Issues 1
- 7. Correctness Issues 2
- 8. Correctness Theorem
- 9. Invariants & Correctness 1
- 10. Invariants & Correctness 2
- 11. Invariance Lemma: *factL_tr*
- 12. Invariance: Example
- 13. Invariance: Example
- 14. Proof
- **15.** Invariance Lemma: *fib_iter*
- 16. Proof
- 17. Correctness: Fibonacci
- 18. Variants & Invariants
- 19. Variants & Invariants
- 20. More Invariants
- 21. Fast Powering 1
- 22. Fast Powering 2

Номе Рад	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	520 OF 887	QUIT	
----------	----------	----	---	---	-----------------	---------	-------------	-------	------------	------	--

- 23. Root Finding: Bisection
- 24. Advantage Bisection

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	521 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Recap

- Asymptotic Complexity:
 - -Space
 - Time
- Comparative Complexity
- Comparisons:
 - Small inputs
 - Large inputs

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	522 OF 887	QUIT	

Recursion Transformation

- To achieve constant space and linear time, if possible
- Speeding up using tail recursion
 - Factor out calculations
 - Reorder the computations with state variables
 - Recursion as the outermost operation

Home Page	CONTENTS	44	•	▶	••	Go Васк	FULL SCREEN	CLOSE	523 OF 887	Quit	

Tail Recursion: Examples

- Factorial vs. Factorial: *factL* vs. *factL*2 vs.
- Fibonacci vs. Fibonacci: *fib* vs. *fibTR*

Home Page Contents	•	►	••	Go Васк	FULL SCREEN	CLOSE	524 OF 887	QUIT
--------------------	---	---	----	---------	-------------	-------	------------	------

Comparisons

Algorithm	Space	Time
isqrt(n)	O(1)	O(n)
isqrt2(n)	O(1)	$O(\log_2 n)$
factL(n)	O(n)	O(n)
factL2(n)	O(1)	O(n)
fib(n)	$O(2^n)$	$O(2^n)$
fibTR(n)	O(1)	O(n)

Home Page	CONTENTS	44	•	►	**	GO ВАСК	FULL SCREEN	CLOSE	525 OF 887	QUIT	

Transformation Issues

- Correctness: Prove that the new algorithm computes the same function as the original simple algorithm
- Termination: Prove by induction on n that every computation is finite.
- Space complexity: Compute it.
- Time complexity: Compute it.

Home Page	CONTENTS	44	•	•	>>	Go Васк	FULL SCREEN	CLOSE	526 OF 887	QUIT

Correctness Issues 1

• Absolute correctness: For any function *f*, that an algorithm *A* that <u>claims</u> to implement it, prove that

$$f(\vec{x}) = A(\vec{x})$$

for all argument values \vec{x} for which f is defined.

• Transformation correctness:

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	527 OF 887	QUIT	

QUIT

Correctness Issues 2

- Absolute correctness:
- Transformation correctness: For any algorithm *A* and a transformed algorithm *B* prove that

$$A(\vec{x}) = B(\vec{x})$$

for all argument values \vec{x} for which A is defined. Then B is absolutely correct provided A is absolutely correct.

	Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	528 OF 887	
--	-----------	----------	----	---	---	----	---------	-------------	-------	------------	--

Correctness Theorem

Invariant properties factL2

Theorem 7.1 For all $n \ge 0$, factL2(n) = n!

Proof: For n = 0, it is clear that factL2(0) = 1 = 0!. For n > 0, $factL2(n) = factL_tr(n, 1)$. The proof is *done* provided we can show that $factL_tr(n, 1) = n!$.

HOME PAGE	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	529 OF 887	QUIT

Invariants & Correctness 1

Invariant properties factL2

QUIT

• To prove the absolute or transformation correctness of a tail-recursion transformation usually requires an invariant property to be proven about the tail-recursive function.

HOME PAGE	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	530 OF 887	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	--

Invariants & Correctness 2

Invariant properties factL2

- This allows the independent proof of the properties of the tail-recursive function without reference to the function that uses it.
- It reflects the design of the algorithm and its division into sub-problems.

Home Page	CONTENTS	44	•		••	Go Васк	FULL SCREEN	CLOSE	531 OF 887	QUIT
-----------	----------	----	---	---------	----	---------	-------------	-------	------------	------

Invariance Lemma: *factL_tr*

Invariant properties factL2

Lemma 7.2 For all $n \ge 0$ and p $factL_tr(n, p) = (n!)p$

Proof: By induction on n.

Back to theorem

HOME PAGE	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	532 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Invariance: Example

factL2

 $factL_tr(4,7)$ $\rightarrow factL_tr(3,28)$ $\rightarrow factL_tr(2,84)$ $\rightarrow factL_tr(1,168)$ $\rightarrow factL_tr(0,168)$ $\rightarrow 168$

Contrast with a factL2(4) computation

	Home Page	CONTENTS	44	•	►	>>	
--	-----------	----------	----	---	---	-----------------	--

GO BACK

533 OF 887

Invariance: Example

factL2

So what exactly *is* invariant?

$$factL_tr(4,7) \quad 168 = 4! \times 7$$

 $\rightsquigarrow factL_tr(3,28) \quad 168 = 3! \times 28$
 $\rightsquigarrow factL_tr(2,84) \quad 168 = 2! \times 84$
 $\rightsquigarrow factL_tr(1,168) \quad 168 = 1! \times 168$
 $\rightsquigarrow factL_tr(0,168) \quad 168 = 0! \times 168$
 $\rightsquigarrow 168$

Home Page	CONTENTS	44	•	•	>>	Go Васк	FULL SCREEN	CLOSE	534 OF 887	QUIT	

Proof

Basis For n = 0, $factL_tr(0, p) = p = (0!)p$. **Induction hypothesis (***IH***) For all** k, $0 < k \le n$, $factL_tr(k, p) = p = (k!)p$

Induction Step

$$factL_tr(n + 1, p) = factL_tr(n, (n + 1)p) = (n!)(n + 1)p \quad (IH) = (n + 1)!p$$

Home Page	CONTENTS	44	•	Þ	ÞÞ	Go Васк	FULL SCREEN	CLOSE	535 OF 887	QUIT	
											1

Back to lemma

Invariance Lemma: *fib_iter*

 fib_iter F

Lemma 7.3 For all $n > 1, a, b, m : 1 \le m \le n$, if $a = \mathbf{F}(m-1)$ and $b = \mathbf{F}(m)$, then

 $\mathsf{INV}: fib_iter(n, a, b, m) = \mathbf{F}(n)$

Proof: By induction on k = n - m

Home Page	CONTENTS	44				Go Васк	FULL SCREEN	CLOSE	536 OF 887	QUIT	
HOME FAGE	CONTENTS	44	•	•	44	GO BACK	FULL SCREEN	CLOSE	536 OF 887	QUII	Í

Proof

Basis For k = 0, n = m, it follows that $fib_{-}iter(n, a, b, m) = \mathbf{F}(n)$

Induction hypothesis (*IH*) For all n > 1 and $1 \le m \le n$, with $n - m \le k$, INV holds

Induction Step Let $1 \le m < n$ such that n - m = k + 1, $\mathbf{F}(m) = b$ and $\mathbf{F}(m-1) = a$. Then $\mathbf{F}(m+1) = a + b$ and

$$fib_iter(n, a, b, m)$$

= $fib_iter(n, b, a + b, m + 1)$
= $\mathbf{F}(n)$ (IH)

Home Page	CONTENTS	44	•		ÞÞ	Go Васк	FULL SCREEN	CLOSE	537 OF 887	QUIT	
		• •	-	-							1

Correctness: Fibonacci

fibTR

Fibonacci

Theorem 7.4 For all $n \ge 0$, $fibTR(n) = \mathbf{F}(n)$.

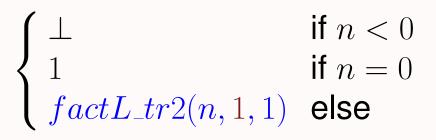
Proof: For $0 \le n \le 1$, it holds trivially. For n > 1, $fibTR(n) = fib_iter(n, 1, 1, 1) = \mathbf{F}(n)$, by the invariance lemma, with m = 1, $a = 1 = \mathbf{F}(m-1)$ and $b = 1 = \mathbf{F}(m)$.

Home Page Contents -	Þ	••	Go Васк	FULL SCREEN	CLOSE	538 OF 887	QUIT
----------------------	---	----	----------------	-------------	-------	------------	------

Variants & Invariants

factL2

factL3(n) =



where

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	539 OF 887	QUIT	
-----------	----------	----	---	---	-----------------	---------	-------------	-------	------------	------	--

factL2

Variants & Invariants

$$\begin{split} fact L_tr2(n,p,m) = & \qquad & \text{if } n=m \\ \begin{cases} p & \text{if } n=m \\ fact L_tr2(n,(m+1)p,m+1) & \text{else} \end{cases} \end{split}$$

$$factL_tr2(n,p,m) = (m!)p$$

for all $1 \le m \le n$.

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	540 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

More Invariants

• *shrink* For all n > 0, l, u, if $[l, u] \subseteq [0, n]$,

$$l \le \lfloor \sqrt{n} \rfloor \le u$$

 $\bullet shrink2$

For all n > 0, l, u, if $[l, u] \subseteq [0, n]$,

$$m = \lfloor (l+u)/2 \rfloor$$
 and $l \leq \lfloor \sqrt{n} \rfloor \leq u$

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	541 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Fast Powering 1

power2

power3(x, n) =

where

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	542 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Fast Powering 2

power2

$$powerTR(x, n, p) = \begin{cases} p & \text{if } n = 0\\ powerTR(x^2, n \text{ div } 2, p) & \text{if } even(n)\\ powerTR(x^2, n \text{ div } 2, xp) & \text{otherwise} \end{cases}$$
where $even(n) \iff n \mod 2 = 0$.
$$\boxed{powerTR(x, n, p) = x^n p}$$

									I	
Home Page	CONTENTS	••	•	•	>>	GO BACK	FULL SCREEN	CLOSE	543 OF 887	Quit

Root Finding: Bisection

Newton's Method

Algorithm

Select a small enough $\varepsilon > 0$ and x_0 . Then if $sgn(f(a)) \neq sgn(f(b))$, $bisect(f, a, b, \varepsilon) =$

 $\left\{ \begin{array}{ll} c & \text{if } |f(c)| < \varepsilon \\ bisect(f,c,b,\varepsilon) & \text{if } sgn(f(c)) \neq sgn(f(b)) \\ bisect(f,a,c,\varepsilon) & \text{otherwise} \end{array} \right.$

where c = (a+b)/2

HOME PAGE	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	544 OF 887	QUIT

Advantage Bisection

More robust than Newton's method

- Requires continuity and change of sign
- Does not require differentiability
- Could change the condition suitably to take care of very shallow curves
- Oscillations could occur only if the function is too steep.
- An intermediate point can never go outside the interval.

Home Page	Contents	••	•	►	>>	Go Васк	FULL SCREEN	CLOSE	545 OF 887	QUIT	

8. Compound Data

8.1. Tuples & Lists

- 1. Recap: Tail Recursion
- 2. Examples: Invariants
- 3. Tuples
- 4. Lists
- 5. New Lists
- 6. List Operations
- 7. List Operations: cons
- 8. Generating Primes upto n
- 9. More Properties
- 10. Composites
- 11. Odd Primes
- **12.** primesUpto(n)
- **13.** generateFrom(P, m, n, k)
- **14**. *generateFrom*
- **15.** primeWRT(m, P)
- **16.** primeWRT(m, P)
- **17.** *primeWRT*
- 18. Density of Primes
- 19. The Prime Number Theorem
- 20. The Prime Number Theorem
- 21. Complexity
- 22. Diagnosis

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	546 OF 887	QUIT
-----------	----------	----	---	---	-----------------	---------	-------------	-------	------------	------

Recap: Tail Recursion

- Asymptotic Complexity:
 - Time Linear Space Constant
- Correctness: Capture the algorithm through Invariant Invariance Lemma Bound function Proof by induction

CONTENTS

Examples: Invariants

factL_tr2 shrink & shrink2

$$\boxed{l \leq \lfloor \sqrt{n} \rfloor \leq u}$$

$$m = \lfloor (l+u)/2 \rfloor \text{ and } l \leq \lfloor \sqrt{n} \rfloor \leq u$$

Fast Powering

 $powerTR(x, n, p) = x^n p$

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	548 OF 887	QUIT

Tuples: Formation

Simplest form of compound data: Cartesian products.

- Each element of a cartesian product is a tuple
- Tuples may be constructed as we do in mathematics, simply by enclosing the elements (separated by commas) in a pair of parentheses.

HOME PAGE	CONTENTS
-----------	----------

Tuples: Decomposition

• Individual components of a tuple may be taken out too.

```
- #1 a;
val it = 2 : int
- #2 (a);
val it = 3.0 : real
- #3 a;
val it = false : bool
```

	_										
Ном	e Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	550 OF 887	QUIT

Tuples: divmod

```
Standard ML of New Jersey, ...
- fun divmod (a, b) =
        (a div b, a mod b);
val divmod =
fn : int * int -> int * int
- val dm = divmod (24,9);
val dm = (2,6) : int * int
- #1 dm;
val it = 2 : int
- #2 dm;
val it = 6 : int
```

	Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	551 OF 887	QUIT
--	-----------	----------	----	---	---	-----------------	---------	-------------	-------	------------	------

Constructors & Destructors

Every way of constructing compound data from simpler data elements has

- Constructors: Operators which construct compound data from simpler ones (for tuples it is simply (, , and)).
- **Destructors**: Operators which allow us to extract the individual components of a compound data item (for tuples they are #1, #2 ... depending upon how many components it consists of).

HOME PAGE

CONTENTS

Tuples: Identity

Every tuple that has been broken up into its components using its destructors can be put together back again using its constructors. Given a tuple $\mathbf{a} \in A_1 \times A_2 \times \ldots \times A_n$, we have

$$a = (#1 a, #2 a, ..., #n a)$$

HOME PAGE	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	553 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Lists

An α *list* represents a sequence of elements of a given type α . Given a (nonempty) list

- A list is ordered
- There may be more than one occurrence of an element in the list
- only the first element (called the head) of the list is immediately accessible.

Home Page	CONTENTS	44	•	•	>>	Go Васк	FULL SCREEN	CLOSE	554 OF 887	QUIT

New Lists

- An empty list [] can always be created. It is of type α *list* for any type α .
- A nonempty list of type α *list* may be created using the *cons* (infix ::) operation on any element of type α and a (nonempty or empty) list of type α *list*.

Given a (nonempty) list L,

- A new list M may be created from an existing list L by the tl operation.
- the last element that was added becomes the head of the new list.
- Two lists are equal only if they have the same elements in the same order

CONTENTS

List Operations

- The empty list: *nil* or []
- Nonempty lists: Given a nonempty list *L*

L = [1, 2, 3, 4]

head : $hd : \alpha List \to \alpha$

$$\boxed{hd(L)=1}$$

tail : $tl : \alpha List \to \alpha List$

$$tl(L) = [2, 3, 4]$$

HOME PAGE	CONTENTS	••	•	►	>>	GO BACK	FULL SCREEN	CLOSE	556 OF 887	QUIT	

List Operations: cons

- L = [1, 2, 3, 4]
 - **cons**: $cons : \alpha \times \alpha List \rightarrow \alpha List$

cons(0,nil) = [0]

cons(0, L) = 0 :: L = [0, 1, 2, 3, 4]

1 :: (0 :: L) = [1, 0, 1, 2, 3, 4]

back to lists Recap

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	557 OF 887	QUIT	
-----------	----------	----	---	---	-----------------	---------	-------------	-------	------------	------	--

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	558 OF 887	QUIT	

8.2. Polynomial Evaluation

Polynomial Evaluation

Evaluating a polynomial

$$p(x) = \sum_{i=0}^{n} a_i x^i$$

given

• its coefficients as a list $[a_n, \ldots, a_0]$ of values from the highest degree term to the constant a_0 .

 \blacktriangleright

• a value for the variable x.

Assume an empty list of coefficients yields a value 0.

Home Page	CONTENTS	44	•	►

GO BACK

559 OF 887

Naive Solution

$$poly0(L,x) = \begin{cases} 0 & \text{if } L = nil\\ hx^n + poly0(T,x) & \text{if } L = h :: T \end{cases}$$
(36)

where

$$n = |L| - 1$$

	F		_								_
HOME PAGE	CONTENTS	44	•	►	>>	GO BACK	FULL SCREEN	CLOSE	560 OF 887	QUIT	

Complexity of poly0

- Space. O(n) to store both the list and the intermediate computations (unless a fresh list is created for each invocation of poly0 in such a case it could be $O(n^2)$).
- Additions. O(n) additions. Also the computation of the length of the list in each invocation of poly0.
- Multiplications. n(n-1)/2 by the simplest powering algorithm.
- Multiplications. $O(\log_2(n) + O(\log_2(n-1) + \dots + O(\log_2(1)) = O(\log_2(n!)))$ by the fast powering algorithm. However by Stirling's approximation^{*a*} we have

$$\ln(n!) = n \ln(n) - n + O(\ln(n)) = O(n \log_2(n))$$

We could save on some of these computations using Horner's rule.

^asee Wikipedia http://en.wikipedia.org/wiki/Stirling_approximation

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	561 OF 887	QUIT

Horner's Rule

Factor out the multiplications to get

$$p(x) = (\dots((a_n x + a_{n-1})x + a_{n-2})x + \dots)x + a_0$$

and define a tail-recursive function which requires only n multiplications.

$$poly1(L,x) = poly_{-}tr(0,L,x)$$
(37)

where

$$poly_tr(p,L,x) = \begin{cases} p & \text{if } L = nil\\ poly_tr(px+h,T,x) & \text{if } L = h :: T \end{cases}$$
(38)

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	562 OF 887	QUIT

$_{poly1}$ in SML

Question 1. What is the right theorem to prove that $poly_tr$ is the right generalization for the problem?

Ans.

HOME PAGE	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	563 OF 887	QUIT

poly1 in SML

local

fun poly_tr (p, [], x) = p
| poly_tr (p, (h::T), x) =
 poly_tr (p*x + h, T, x)

in

end;

Ans.
$$poly_tr(p, L, x) = px^{n+1} + \sum_{i=0}^n a_i x^i$$

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	564 OF 887	QUIT	
											2

Complexity of *poly1*: Savings from *poly0*

- Space. O(n) to store both the list and the intermediate computations (unless a fresh list is created for each invocation of poly0 in such a case it could be $O(n^2)$).
- Additions. O(n) additions. Also the length of the list need not be computed.
- **Multiplications.** O(n) multiplications. This is the biggest saving in this algorithm.

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	565 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Reverse Input

Supposing the coefficients were given in reverse order $[a_0, \ldots, a_n]$. Reversing this list will be an extra O(n) time and space. Though the asymptotic complexity does not change much, it is more interesting to work directly with the given list.

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	566 OF 887	QUIT

revpoly0

$$revpoly0(L,x) = \begin{cases} 0 & \text{if } L = nil \\ h + x \times revpoly0(T,x) & \text{if } L = h :: T \end{cases}$$

Home Page	Contents	44	•	Þ	••	Go Васк	FULL SCREEN	CLOSE	567 OF 887	QUIT	

Tail Recursive

We transform *revpoly*⁰ in a completely standard fashion to obtain a tail-recursive version.

$$revpoly1(L, x) = revpoly1_tr(L, x, 1, 0)$$
(39)

where

$$revpoly1_tr(L, x, p, s) = \begin{cases} s & \text{if } L = nil \\ revpoly1(T, x, px, s + ph) & \text{if } L = h :: T \end{cases}$$
(40)

Here *p* represents the value of x^i for each *i*, $0 \le i \le n$. Question 2. What is the invariant for this tail-recursive version?

Home Page	CONTENTS

••

• •

GO BACK

CLOSE

Tail Recursion: SML

local

in

```
fun revpoly1 (L, x) =
    revpoly1_tr (L, x, 1.0, 0.0)
```

end

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	569 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Complexity of *revpoly*1

Space. O(n) space to store the list Multiplications. 2n multiplications Additions. n additions.

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	570 OF 887	QUIT

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	571 OF 887	QUIT	

8.3. Generating Primes

Generating Primes upto n

Definition 8.1 A positive integer n > 1 is composite iff it has a proper divisor d|n with 1 < d < n. Otherwise it is prime.

- 2 is the smallest (first) prime.
- 2 is the only even prime.
- No other even number can be a prime.
- All other primes are odd

Home Page	CONTENTS

 \blacktriangleright

More Properties

- Every number may be expressed <u>uniquely (upto order)</u> as a product of prime factors.
- No divisor of a positive integer can be greater than itself.
- For each divisor d|n such that $d \leq \lfloor \sqrt{n} \rfloor$, $n/d \geq \lfloor \sqrt{n} \rfloor$ is also a divisor.

Home Page	CONTENTS	44	•	•	>	Go Васк	FULL SCREEN	CLOSE	573 OF 887	QUIT

Composites

- If a number n is composite, then it has a proper divisor d, $2 \le d \le \lfloor \sqrt{n} \rfloor$.
- If a number *n* is composite, then it has a prime divisor *p*, $2 \le p \le \lfloor \sqrt{n} \rfloor$.
- An odd number cannot have any even divisors.
- An odd composite number n has an odd prime divisor $p, 3 \le p \le \lfloor \sqrt{n} \rfloor$.

Home Page	Contents	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	574 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Odd Primes

- \bullet An odd number >1 is a prime iff it has no proper odd divisors
- An odd number > 1 is a prime iff it is not divisible by any odd prime smaller than itself.
- An odd number n > 1 is a prime iff it is not divisible by any odd prime $\leq \lfloor \sqrt{n} \rfloor$.

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	575 of 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

primesUpto(n)

$$primesUpto(n) = \begin{cases} \begin{bmatrix} 1 & \text{if } n < 2 \\ [(1,2)] & \text{if } n = 2 \\ primesUpto(n-1) & \text{elseif } even(n) \\ generateFrom([(1,2)],3,n,2) & \text{otherwise} \end{cases}$$

where in generateFrom(P, m, n, k),

- P is a list of ordered pairs (i, p_i) containing the first k 1 primes,
- *k* denotes the index of the next prime to be found,
- $m > p_{k-1}$ is the next number to be tried as a possible candidate for the k-th prime,
- $m \leq n$ is odd and
- there are no primes in the interval $[p_{k-1}+2,\ldots,m-2]$

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	576 OF 887	QUIT

generateFrom(P, m, n, k)

bound function

$$n-m$$

Invariant

$$2 < m \leq n \wedge odd(m)$$

implies

$$P = [(k - 1, p_{k-1}), \cdots, (1, p_1)]$$

and

$$\forall q : p_{k-1} < q < m : composite(q)$$

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	577 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

generateFrom

$$generateFrom(P, m, n, k) = \begin{cases} P & \text{if } m > n \\ generateFrom & \text{elseif} \\ (((k, m) :: P), m + 2, n, k + 1) \ pwrt \\ generateFrom & \text{else} \\ (P, m + 2, n, k) \end{cases}$$

where pwrt = primeWRT(m, P)

He	OME PAGE	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	578 OF 887	QUIT

QUIT

primeWRT(m, P)

Definition 8.2 A number m is prime with respect to a list L of numbers iff it is not divisible by any of them.

- A number is prime iff it is prime with respect to the list of all primes smaller than itself.
- From properties of odd primes it follows that a number n is prime iff it is prime with respect to the list of all primes $\leq \sqrt{n}$

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	579 OF 887

primeWRT(m, P)

bound function length(P)

Invariant If $P = [(i - 1, p_{i-1}), ..., (1, p_1)]$, for some $i \ge 1$ then

- $p_k \ge m > p_{k-1}$, and
- *m* is prime with respect to $[(k-1, p_{k-1}), \ldots, (i, p_i)]$
- m is a prime iff it is a prime with respect to P

Номе	Page Coi	NTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	580 OF 887	QUIT

primeWRT

$$primeWRT(m, P) = \begin{cases} true & \text{if } P = nil \\ false & \text{elseif } h|m \\ primeWRT(m, tl(P)) & \text{else} \end{cases}$$

where

(i,h) = hd(P)

for some i > 0.

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	581 OF 887	QUIT


```
(* Program for generating primes upto some number *)
local
    fun primeWRT (m, []) = true
       primeWRT (m, (_, h)::t) =
        if m \mod h = 0 then false
        else primeWRT (m, t)
    fun generateFrom (P, m, n, k) =
        if m > n then P
        else if primeWRT (m, P)
        then ( print (Int.toString (m)^" is a prime\n");
               generateFrom (((k, m)::P), m+2, n, k+1)
        else generateFrom (P, m+2, n, k)
in
fun primesUpto n =
    if n < 2 then []
    else if n=2 then [(1,2)]
    else if (n \mod 2 = 0) then primesUpto (n-1)
    else generateFrom ([(1,2)], 3, n, 2);
end
```

	Home Page	CONTENTS	44	•
--	-----------	----------	----	---

Density of Primes

Let $\pi(n)$ denote the number of primes upto n. Then

n	$\pi(n)$	%
100	25	25.00%
1000	168	16.80%
10000	1229	12.29%
100000	9592	9.59 %
1000000	78,498	7.85%
1000000	664579	6.65 %
10000000	5761455	5.76 %

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	583 OF 887	QUIT	

The Prime Number Theorem

$$\lim_{n \to \infty} \frac{\pi(n)}{n/\ln n} = 1$$

Proved by Gauss.

• Shows that the primes get sparser at higher n

• A larger percentage of numbers as we go higher are composite. from David Burton: *Elementary Number Theory*.

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	584 OF 887	Quit

The Prime Number Theorem

n	$\pi(n)$	%	$\lim_{n \to \infty} \frac{\pi(n)}{n/\ln n}$
100	25	25.00%	
1000	168	16.80%	1.159
10000	1229	12.29%	1.132
100000	9592	9.59 %	1.104
1000000	78,498	7.85%	1.084
1000000	664579	6.65 %	1.071
10000000	5761455	5.76 %	1.061

from David Burton: *Elementary Number Theory*.

Home Page

CONTENTS

Complexity

function	calls
primesUpto	1
generateFrom	n/2
primeWRT	$\sum_{m=3,odd(m)}^{n} \pi(m)$

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	586 OF 887	QUIT

Diagnosis

For each $m \leq n$,

- *P* is in descending order of the primes
- m is checked for divisibility $\pi(m)$ times
- From properties of odd primes it should not be necessary to check each *m* more than $\pi(\lfloor \sqrt{m} \rfloor)$ times for divisibility.
- Organize *P* in ascending order instead of descending.

ascending-order

QUIT

	Home Page	CONTENTS	44	•	•	••	Go Back	FULL SCREEN	CLOSE	587 OF 887
--	-----------	----------	----	---	---	----	---------	-------------	-------	------------

8.4. Compound Data & Lists

- 1. Compound Data
- 2. Recap: Tuples
- 3. Tuple: Formation
- 4. Tuples: Selection
- 5. Tuples: Equality
- 6. Tuples: Equality errors
- 7. Lists: Recap
- 8. Lists: Append
- 9. cons vs. @
- 10. Lists of Functions
- 11. Lists of Functions
- 12. Arithmetic Sequences
- 13. Tail Recursion
- 14. Tail Recursion Invariant
- 15. Tail Recursion
- 16. Another Tail Recursion: AS3
- **17.** Another Tail Recursion: *AS3_iter*
- 18. AS3: Complexity
- 19. Generating Primes: 2
- **20.** primes2Upto(n)
- **21.** generate2From(P, m, n, k)
- **22**. generate2From

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	588 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

- **23.** prime2WRT(m, P)
- **24**. *prime*2*WRT*
- 25. primes2: Complexity
- 26. primes2: Diagnosis

HOME PAGE	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	589 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Compound Data

- Forming (compound) data structures from simpler ones
- Breaking up compound data into its components.

HOME PAGE	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	590 OF 887	QUIT
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------

Recap: Tuples

formation : Cartesian products of types
selection : Selection of individual components
equality : Equality checking
equality errors : Equality errors

forward to Lists

HOME PAG	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	591 OF 887	QUIT	
----------	----------	----	---	---	-----------------	---------	-------------	-------	------------	------	--

Tuple: Formation

```
Standard ML of New Jersey,
- val a = ("arun", 1<2, 2);
val a = ("arun", true, 2)
        : string * bool * int
- val b = ("arun", true, 2);
val b = ("arun", true, 2)
        : string * bool * int
```

back

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	592 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Tuples: Selection

```
- #2 a;
val it = true : bool
- #1 a;
val it = "arun" : string
- #3 a;
val it = 2 : int
- #4 a;
stdIn:1.1-1.5 Error: operator and operand don't agree [r
  operator domain: {4:'Y; 'Z}
  operand:
           string * bool * int
  in expression:
    (fn \{4=4, \ldots\} => 4) a
```

back

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	593 OF 887	QUIT	
-----------	----------	----	---	---	-----------------	---------	-------------	-------	------------	------	--

Tuples: Equality

```
- a = b;
val it = true : bool
- (1<2, true) = (1.0 < 2.0, true);
val it = true : bool
- (true, 1.0 < 2.4)
= (1.0 < 2.4, true);
val it = true : bool
```

back

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	594 of 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Tuples: Equality errors

```
- ("arun", (1, true))
= ("arun", 1, true);
stdIn:1.1-29.39 Error: operator and operand don't agree
  operator domain: (string * (int * bool)) * (string *
          (string * (int * bool)) * (string * i
 operand:
  in expression:
    ("arun", (1, true))
  = ("arun",1,true)
- ("arun", (1, true))
= (("arun", 1), true);
stdIn:1.1-29.39 Error: operator and operand don't agree
```

Home Page	CONTENTS

Lists: Recap

formation : Sequence α List selection : Selection of individual components new lists : Making new lists from old

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	596 OF 887	QUIT

The Append Operation:

Unlike *cons* which prepends an element to a list, the infix append binary operation, @, on lists appends a list to another list. i.e. if $L = [a_0, \dots, a_{l-1}]$ and $M = [b_0, \dots, b_{m-1}]$ then $L@M = [a_0, \dots, a_{l-1}, b_0 \dots, b_{m-1}]$. The append operation satisfies the following properties:

$$\begin{bmatrix} @M &= M \\ L@[] &= L \\ (L@M)@N &= L@(M@N) \end{bmatrix}$$

where L, M and N are three lists of the same type of elements. Further if |L| denotes the length of a list then

|L@M| = |L| + |M|

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	597 OF 887	QUIT	

Lists: Append

```
- op @;
val it = fn : 'a list * 'a list
               -> 'a list
- [1,2,3] @ [~1, ~3];
val it = [1, 2, 3, 1, 3]
         : int list
- [[1,2,3], [~1, ~2]]
@ [[1,2,3], [~1, ~2]];
val it =
[[1,2,3], [~1,~2],
 [1, 2, 3], [~1, ~2]]
: int list list
```

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	598 OF 887	Quit

:: **VS.** @

cons is a constant time = O(1) operation. But @ is linear = O(n) in the length *n* of the first list. @ is defined *inductively on the length of the first list* as

$$L@M = \begin{cases} M & \text{if } L = nil \\ h :: (T@M) & \text{if } L = h :: T \end{cases}$$
$$\mathcal{T}_{L@M} = \begin{cases} 0 & \text{if } L = nil \\ 1 + \mathcal{T}_{T@M} & \text{if } L = h :: T \end{cases}$$

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	599 of 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Lists of Functions

- fun add1 x = x+1; val add1 = fn : int -> int - fun add2 x = x + 2; val add2 = fn : int -> int - fun add3 x = x + 3; val add3 = fn : int -> int

Home Page	CONTENTS	44	•	►	••	GO BACK	FULL SCREEN	CLOSE	600 OF 887	QUIT	

Lists of Functions

```
- val addthree
= [add1, add2, add3];
val addthree
= [fn,fn,fn] : (int -> int) list
- fun addall x = [(add1 x), (add2 x), (add3 x)];
val addall = fn : int -> int list
- addall 3;
val it = [4,5,6] : int list
```

CLOSE

QUIT

Arithmetic Sequences

$$AS1(a, d, n) = \begin{cases} [] & \text{if } n \le 0\\ AS1(a, d, n-1)@[a + (n-1) * d] & \text{else} \end{cases}$$
$$\mathcal{T}_{AS1(a, d, n-1)@[a + (n-1) * d] & \text{if } n \le 0 \end{cases}$$

$$\mathcal{T}_{AS1(a,d,n)} = \left\{ \mathcal{T}_{AS1(a,d,n-1)} + \mathcal{T}_{L_{n-1}} \otimes [a+(n-1)*d] \right\}$$
 else where $L_{n-1} = AS1(a,d,n-1)$

function	calls	Order
AS1	n	O(n)
\bigcirc	n	O(n)
••	$\sum_{i=0}^{n} i$	$O(n^2)$

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	602 OF 887	QUIT

$$\begin{aligned} & \textbf{Tail Recursion} \\ & AS2(a,d,n) = \begin{cases} [] & \text{if } n \leq 0 \\ & AS2_tr(a,d,n,0,[]) & \text{else} \end{cases} \end{aligned}$$

where for any initial L_0 and $n \ge k \ge 0$

$$INV2: L = L_0@[a]@...@[a + (k - 1) * d]$$

	Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	603 OF 887	QUIT	
--	-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Tail Recursion: Invariant

 $INV2: L = L_0@[a]@...@[a + (k - 1) * d]$

and bound function

$$n-k$$

$$AS2_tr(a, d, n, k, L) = \begin{cases} L & \text{if } k \ge n \\ AS2_tr(a, d, n, k+1, L@[a+k*d]) & \text{else} \end{cases}$$

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	604 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Tail Recursion: Complexity

function	calls	Order
AS2	1	
$AS2_tr$	n	O(n)
	n	O(n)
••	$\sum_{i=0}^{n} i$	$O(n^2)$

So this tail recursion simply doesn't help!

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	605 OF 887	QUIT

Another Tail Recursion :
$$AS3$$

 $AS3(a, d, n) = \begin{cases} [] & \text{if } n \leq 0 \\ AS3_tr(a, d, n, []) & \text{else} \end{cases}$

where for any initial L_0 , $n_0 \ge n > 0$, and

$$INV3 : L = (a + (n - 1) * d) :: \dots :: (a + (n_0 - 1) * d) :: L_0$$

Home Page	CONTENTS	44	4	►	••	Go Васк	FULL SCREEN	CLOSE	606 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Another Tail Recursion: AS3_tr

$$INV3: L = (a + (n - 1) * d) :: \dots :: (a + (n_0 - 1) * d) :: L_0$$

and bound function n,

$$AS3_tr(a,d,n,L) = \begin{cases} L & \text{if } n \leq 0\\ AS3_tr(a,d,n-1,(a+(n-1)*d)::L) & \text{else} \end{cases}$$

	Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	607 OF 887	QUIT	
--	-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

AS3: Complexity

function	calls	Order
AS3	1	
$AS3_tr$	n	O(n)
\bigcirc	0	
	$\sum_{i=0}^{n} 1$	O(n)

Home Page	CONTENTS	44	•	►	••	GO BACK	FULL SCREEN	CLOSE	608 OF 887	QUIT

Generating Primes: Recap

- $\bullet primesUpto$
- generateFrom and its invariant
- primeWRT(m, P)

Note that

- 1. primeWRT(m, P) is evaluated for every candidate against the currently generated primes
- 2. primeWRT(m, P) checks divisibility against every prime generated.
- 3. It suffices to check only against the primes that are smaller than \sqrt{m} for any odd number *m*, by properties of composites.

CONTENTS

Generating Primes: Version 2

 $primes2Upto(n) = \begin{cases} \begin{bmatrix} 1 & \text{if } n < 2 \\ [(1,2)] & \text{if } n = 2 \\ primes2Upto(n-1) & \text{elseif } even(n) \\ generate2From([(1,2)], 3, n, 2) & \text{otherwise} \end{cases}$

where the only difference between primes2Upto(n) and primesUpto(n) is the evalution of generate2From instead of generateFrom.

HOME PAGE CONTENTS 44 A DE DE GO BACK FULL SCREEN CLOSE 610 OF 887 QUIT

Invariant & Bound Function: Version 2

invariant

bound function |n-m|

Invariant2

$$2 < m \le n \land odd(m)$$

implies

$$P = [(1, p_1), \cdots, (k - 1, p_{k-1})]$$

and

$$\forall q: p_{k-1} < q < m: composite(q)$$

i.e. the list P of primes is in ascending order.

Home Page	CONTENTS

QUIT

generate 2 From

generateFrom

generate2From(P, m, n, k) =

 $\left\{ \begin{array}{ll} P & \text{if } m > n \\ generate2From(P@[(k,m)],m+2,n,k+1) & \text{elseif } pwrt \\ generate2From(P,m+2,n,k) & \text{else} \end{array} \right.$

where pwrt = prime2WRT(m, P)

Home Page	CONTENTS	44	•	►	>	Go Васк	FULL SCREEN	CLOSE	612 OF 887	QUIT	

prime2WRT(m, P)

bound function length(P)

Invariant If $P = [(i, p_i), \dots (k - 1, p_{k-1})]$, for some $i \ge 1$ then

- $p_k \ge m > p_{k-1}$, and
- *m* is prime with respect to $[(1, p_1), \ldots, (i 1, p_{i-1})]$
- m is a prime iff it is a prime with respect to $[(1,p_1),\ldots,(j,p_j)]$, where $p_j \leq \lfloor \sqrt{m} \rfloor < p_{j+1}$

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	613 OF 887	QUIT
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------

prime2WRT

$$prime2WRT(m, P) = \begin{cases} true \\ true \\ false \end{cases}$$

(+-----

if P = nilif $h > m \operatorname{div} h$ elseif h|mprime2WRT(m, tl(P)) else

where

(i,h) = hd(P)

for some i > 0

Home Page	CONTENTS	44	•	•	>>	Go Васк	FULL SCREEN	CLOSE	614 OF 887	QUIT	
-----------	----------	----	---	---	-----------------	---------	-------------	-------	------------	------	--

primes2: Complexity

function	calls
primes 2 Up to	1
generate2From	n/2
prime2WRT	$\sum_{m=3,odd(m)}^{n} \pi(\lfloor \sqrt{m} \rfloor)$

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	615 OF 887	QUIT

primes2: Diagnosis

generate2From

- Uses (1) to create an ascending sequence of primes
- For each new prime p_k this operation takes time O(k).
- Can tail recursion be used to reduce the complexity due to @?
- Can a more efficient algorithm using :: instead of @ be devised (as in the case of AS3)?

CONTENTS

616 OF 887

- (* This is really the same as primes.sml but uses the fact that it suffices to check divisibility only with respect to all the primes less than the square-root of the candidate number. As a result,
 - 1. the primes have to be placed in ascending order in the list P
 - 2. But this implies that the new prime generated is appended to the list of primes rather than prefixed to it.

```
See the slide "Generating Primes: Recap"
```

```
local
```

*)

```
fun prime2WRT (m, []) = true
    prime2WRT (m, (_, h)::t) =
    if h > m div h (* h*h > m *) then true
    else if (m mod h = 0) then false
    else prime2WRT (m, t)
fun generate2From (P, m, n, k) =
    if m > n then P
    else if prime2WRT (m, P)
    then ( print (Int.toString (m)^" is a prime\n");
        generate2From ((P@[(k, m)]), m+2, n, k+1)
```

HOME PAGE	

CONTENTS

◄

 \blacktriangleright


```
)
else generate2From (P, m+2, n, k)
in
fun primes2Upto n =
if n < 2 then []
else if n=2 then [(1,2)]
else if (n mod 2 = 0) then primes2Upto (n-1)
else generate2From ([(1,2)], 3, n, 2);
```

end

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	618 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

8.5. Compound Data & List Algorithms

- 1. Compound Data: Summary
- 2. Records: Constructors
- 3. Records: Example 1
- 4. Records: Example 2
- 5. Records: Destructors
- 6. Records: Equality
- 7. Tuples & Records
- 8. Back to Lists
- 9. Lists: Correctness
- 10. Lists: Case Analysis
- 11. Lists: Correctness by Cases
- **12.** List-functions: *length*
- **13.** List Functions: *search*
- 14. List Functions: *search*2
- 15. List Functions: *ordered*
- 16. List Functions: *insert*
- **17.** List Functions: *reverse*
- **18.** List Functions: *reverse*2
- **19.** List Functions:*merge*
- **20.** List Functions:*merge*
- 21. List Functions:merge contd.
- **22.** ML: *merge*
- 23. Sorting by Insertion
- 24. Sorting by Merging

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	619 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

- 25. Sorting by Merging
- 26. Functions as Data
- 27. Higher Order Functions

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	620 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Compound Data: Summary

- Compound Data:
 - Tuples: Cartesian products of different types (ordered)
 Lists: Sequences of the same type of element
 Records: Unordered named aggregations of elements of different types.
- Constructors & Destructors

CONTENTS

Records: Constructors

- A record is a set of values drawn from various types such that each component (called a field) has a unique name.
- Each record has a type defined by

field names

types of fieldnames

The order of presentation of the record fields does not affect its type in any way.

CONTENTS

622 OF 887

Records: Example 1

Standard ML of New Jersey,

- val pinky =
- { name = "Pinky", age = 3,
 fav_colour = "pink"};
- val pinky = {age=3, fav_colour="pink", name="Pinky"}
 - : {age:int, fav_colour:string, name:string }

Home Page

CONTENTS

Records: Example 2

```
- val billu =
{ age = 1,
   name = "Billu",
   fav_colour = "blue"
};
- val billu =
{age=1,fav_colour="blue",name="Billu"}:
{age:int, fav_colour:string, name:string}
- pinky = billu;
val it = false : bool
```

Номе	DAOF	

CONTENTS

Records: Destructors

```
#age billu;
val it = 1 : int
- #fav_colour billu;
val it = "blue" : string
- #name billu;
val it = "Billu" : string
```

CONTENTS

Records: Equality

```
- val pinky2 =
{ name = "Pinky",
   fav_colour = "pink",
   age = 3
};
- val pinky2 =
{age=3,fav_colour="pink",name="Pinky"}:
{age:int, fav_colour:string, name:string}
- pinky = pinky2;
val it = true : bool
```

CONTENTS

Tuples & Records

- A k-tuple may be thought of as a record whose fields are numbered #1 to #k instead of having names.
- A record may be thought of as a generalization of tuples whose components are named rather than being numbered.

back

CONTENTS

Back to Lists

• Every $L : \alpha \ List$ satisfies



<u>XOR</u>

$$L = hd(L) :: tl(L)$$

• Many functions on lists (L) are defined by induction on its length (|L|).

$$f(L) = \begin{cases} c & \text{if } L = []\\ g(h,T) & \text{if } L = h :: T \end{cases}$$

◄

GO BACK

Lists: Correctness

Hence their properties (\mathscr{P}) are proved by induction on the length of the list.

Basis |L| = 0. Prove $\mathscr{P}([])$

Induction hypothesis (*IH*) Assume for some $|T| = n \ge 0$, $\mathscr{P}(T)$ holds. Induction Step Prove $\mathscr{P}(h :: T)$ for L = h :: T with |L| = n + 1

Home Page	CONTENTS	44	•	>>	Go Васк	FULL SCREEN	Close	629 OF 887	QUIT

Lists: Case Analysis

inductive defns on lists

• Every list has exactly one of the following forms (patterns)

• ML provides convenient case analysis based on patterns.

```
fun f [] = c
    | f (h::T) = g (h, T)
;
```

44

Lists: Correctness by Cases

Lists-correctness

Property *P* is proved by <u>case analysis</u>. Basis Prove

Induction hypothesis (IH) Assume

Induction Step Prove

$$\mathscr{P}(h :: T)$$

	_
HOME	PAGE

CONTENTS

44

List-functions: *length*

 $\begin{cases} length [] = 0\\ length (h :: T) = 1 + (length T) \end{cases}$

Home Page	CONTENTS	44	
-----------	----------	----	--

◄

GO BACK

List Functions: reverse

Reverse the elements of a list $L = [a_0, \dots, a_{n-1}]$ to obtain $M = [a_{n-1}, \dots, a_0]$. $\begin{cases} reverse [] &= [] \\ reverse (h :: T) = (reverse T)@[h] \end{cases}$

Theorem 8.3 *For any list* $L = [a_0, \dots, a_{l-1}]$, $l \ge 0$,

$$reverse(L) = [a_{l-1}, \dots, a_0]$$

 \blacktriangleright

Proof: By induction on *l*. Time Complexity?? $O(n^2)$

CONTENTS

HOME PAGE

44

GO BACK

QUIT

List Functions: reverse2

 $\begin{cases} reverse2 [] = [] \\ reverse2 (h :: T) = rev ((h :: T), []) \end{cases}$

where

$$\begin{cases} rev ([], N) = N \\ rev (h :: T, N) = rev (T, h :: N) \end{cases}$$

Lemma 8.4 *For any list* N *and list* $L = [a_0, \dots, a_{l-1}]$ *,* $l \ge 0$ *,*

$$rev(L,N) = a_{l-1} :: \cdots :: a_0 :: N$$

Proof: By induction on l.

Corollary 8.5 For any list $L = [a_0, \dots, a_{l-1}]$,

$$reverse2(L) = [a_{l-1}, \dots, a_0]$$

Proof: Follows from lemma ?? with N = []. Time Complexity: O(n)

Номе Ри	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	634 OF 887	
---------	----------	----	---	---	----	---------	-------------	-------	------------	--

List Functions: search

To determine whether x occurs in a list L

 $\begin{cases} search (x, []) = false\\ search (x, h :: T) = true \text{ if } x = h\\ search (x, h :: T) = search(x, T) \text{ else} \end{cases}$

Home Page

CONTENTS

◄

▶ |

GO BACK

CLOSE

Quit

List Functions: search2

Or even more conveniently

 $\begin{cases} search2 \ (x, []) &= false\\ search2 \ (x, h :: T) &= (x = h) \text{ or } search2 \ (x, T) \end{cases}$

Time Complexity??

CONTENTS

HOME PAGE	

 \blacktriangleright

Total Orderings

Definition 8.6 *Given a set* S *and a binary relation* \mathcal{R} *on* S*, i.e.* $\mathcal{R} \subseteq S \times S$ *,* **Irreflexivity.** \mathcal{R} *is* **irreflexive** *if* $(x, x) \notin \mathcal{R}$ *for any* $x \in S$.

- **Transitivity.** \mathcal{R} *is* **transitive** *if for all* $x, y, z \in S$, $(x, y) \in \mathcal{R}$ and $(y, z) \in \mathcal{R}$ *implies* $(x, z) \in \mathcal{R}$.
- **Total Ordering.** \mathcal{R} *is a* **total ordering** *on* S *if it is an irreflexive and transitive relation such that for any two elements* $x, y \in S$, $x \neq y$ *implies either* $(x, y) \in \mathcal{R}$ *or* $(y, x) \in \mathcal{R}$.
 - Often binary relations are used in *infix* form i.e. $(x, y) \in \mathcal{R}$ is usually written as $x\mathcal{R}y$.

CONTENTS

 \blacktriangleright

CLOSE

637 OF 887

T he simplest examples of irreflexive total orderings are the usual "less-than (<)" and the "greater-than" (>) relations on numbers. The ordering of words in a dictionary is another example of an irreflexive total ordering. Certain other irreflexive relations such as the "proper subset (\subset)" ordering on sets are not total since they do not obey the trichotomy law.

A basic fact underlying these irreflexive total orders is the following "trichotomy law".

Fact 8.7 If < is an irreflexive total ordering on S then for any $x, y \in S$ exactly one of the following holds.

x < y x = y y < x

Definition 8.8 Let $\mathcal{R} \subseteq S \times S$ be any binary relation on S. The converse of \mathcal{R} denoted \mathcal{R}^{-1} is defined as

$$\mathcal{R}^{-1} = \{(y, x) \mid (x, y) \in \mathcal{R}\}$$

From the fact below it easily follows that the converse of any irreflexive total order is also an irreflexive total order. The ">" relation on numbers is the converse of the "<" relation and vice-versa.

Fact 8.9

- 1. For any relation $\mathcal{R} \subseteq S \times S$, $\mathcal{R} = \mathcal{R}^{-1^{-1}}$.
- 2. The converse of an irreflexive relation is also irreflexive.
- 3. If an irreflexive relation is a total order then so is its converse.

In the above examples we have emphasised the irreflexive nature of these orderings. This is to distinguish them from the reflexive orderings such as the "less-than-or-equal-to (\leq)" and the "greater-than-or-equal-

Home Page	CONTENTS	44	•	►	**	Go Васк	FULL SCREEN	CLOSE	638 OF 887	QUIT

to (\geq) " orderings which are reflexive. In fact they are obtained from the corresponding irreflexive relations by a set union with the smallest reflexive relation on sets. See the definition below.

Definition 8.10 Let $\mathcal{I}_S = \{(x, x) \mid x \in S\}$ be the identity relation on *S*. Then for any irreflexive total ordering < on *S* we define its reflexive closure as the relation $\leq = \langle \cup \mathcal{I}_S \rangle$.

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	639 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

List Functions: $ordered \leq$

Definition 8.11 A list $L = [a_0, ..., a_{n-1}]$ is ordered by a relation \leq if consecutive elements are related by \leq , i.e $a_i \leq a_{i+1}$, for $0 \leq i < n-1$, where < is a total ordering on the type of elements that make up the list.

We may define this property of lists *inductively* on the structure of lists as follows:

$$\begin{cases} ordered_{\leq} []\\ ordered_{\leq} [h]\\ ordered_{\leq} (h_0 :: h_1 :: T) & \text{if } h_0 \leq h_1 \text{ and } ordered_{\leq}(h_1 :: T) \\ \text{Time Complexity??} \end{cases}$$

				-						-
Home Page	CONTENTS	44	•	►	>>	GO BACK	FULL SCREEN	CLOSE	640 OF 887	QUIT

List Functions: *insert*

Given an ordered list $L : \alpha$ List, insert an element $x : \alpha$ at an appropriate position

 $\begin{cases} insert \ (x, []) &= [x] \\ insert \ (x, h :: T) &= x :: (h :: T) & \text{if } x \le h \\ insert \ (x, h :: T) &= h :: (insert \ (x, T)) & \text{else} \end{cases}$

Theorem 8.12 For any list *L* of elements drawn from a set with a total ordering < and an element *x* from the same set, $ordered_{\leq}(L)$ implies $ordered_{\leq}(insert(x, L))$.

Proof: By induction on the structure of the ordered list *L*. Time Complexity: O(n)

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	641 OF 887	QUIT	

List Functions:merge

Merge two ordered lists |L| = l, |M| = m to produce an ordered list |N| = l + m containing exactly the elements of *L* and *M*. That is, if

L = [1, 3, 5, 9, 11]

and

M = [0, 3, 4, 4, 10]

then

 $merge(\mathbf{L}, M) = N$

where

N = [0, 1, 3, 3, 4, 4, 5, 9, 10, 11]

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	642 OF 887	QUIT

List Functions:merge

merge may be defined inductively as

 $\begin{cases} merge([], M) = M\\ merge(L, []) = L\\ merge(L, M) = a :: (merge(S, M)) & \text{if } a \leq b\\ merge(L, M) = b :: (merge(L, T)) & \text{else} \end{cases}$

where L = a :: S and M = b :: T.

Theorem 8.13 Let L, M, N be lists consisting of elements from a set S totally ordered by a relation < such that $ordered_{\leq}(L)$, $ordered_{\leq}(M)$ and N = merge(L, M). Then

1. $ordered_{\leq}(N)$ and

2. for each $a \in S$, #a(N) = #a(L) + #a(M), where #a(L) denotes the number of occurrences of a in L. *Proof:* ??

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	643 OF 887	Quit

ML: merge

Time Complexity??

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	644 OF 887	QUIT	

Sorting by Insertion

Given a list of elements to reorder them (i.e. with the same number of occurrences of each element as in the original list) to produce a new ordered list.

Hence sort[10, 8, 3, 6, 9, 7, 4, 8, 1] = [1, 3, 4, 6, 7, 8, 8, 9, 10]

$$\begin{cases} isort [] &= []\\ isort (h :: T) &= insert(h, (isort T)) \end{cases}$$

Time Complexity??

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	645 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Sorting by Merging

$$\begin{cases} msort [] = [] \\ msort [a] = [a] \\ msort L = merge ((msort M), \\ (msort N)) \end{cases}$$

where

(M, N) = split L

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	646 OF 887	QUIT	

Sorting by Merging

where

$$\begin{cases} split [] &= ([], []) \\ split [a] &= ([a], []) \\ split (a :: b :: P) &= (a :: Left, b :: Right) \end{cases}$$

where

(Left, Right) = split P

Time Complexity??

	1	L									
Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	647 OF 887	QUIT	

Functions as Data

list of functions

- Every function is unary. A function of many arguments may be thought of as a function of a single argument i.e. a tuple of appropriate type.
- Every function is a value of an appropriate type.
- Hence functions are also data.

HOME PAGE CONTENTS	•	•	►► Go	BACK FULL SCREEN	CLOSE	648 OF 887	Quit
--------------------	---	---	-------	------------------	-------	------------	------

9. Higher Order Functions & Structured Data

9.1. Higher Order Functions

- 1. Summary: Compound Data
- 2. List: Examples
- 3. Lists: Sorting
- 4. Higher Order Functions
- 5. An Example
- 6. Currying
- 7. Currying: Contd
- 8. Generalization
- 9. Generalization: 2
- 10. Applying a list
- 11. Trying it out
- 12. Associativity
- 13. Apply to a list
- 14. Sequences
- 15. Further Generalization
- 16. Further Generalization
- 17. Sequences
- 18. Efficient Generalization
- 19. Sequences: 2
- 20. More Generalizations

н	HOME PAGE	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	649 OF 887	QUIT	
---	-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

- 21. More Summations
- 22. Or Maybe ... Products
- 23. Or Some Other 🚫
- 24. Other 🚫
- 25. Examples of \otimes , e

HOME PAGE	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	650 OF 887	QUIT
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------

Summary: Compound Data

- Records and tuples
- Lists
 - Correctness
 - Examples

									_	
HOME PAGE	CONTENTS	44	•	►	••	GO BACK	FULL SCREEN	CLOSE	651 OF 887	QUIT

List: Examples

- Length of a list
- Searching a list
- Checking whether a list is ordered
- Reversing a list
- Sorting of lists

HOME PAGE	CONTENTS	44	•	•	••	GO ВАСК	FULL SCREEN	CLOSE	652 OF 887	QUIT

Lists: Sorting

- Sorting by insertion
- Sorting by Divide-and-Conquer

HOME PAGE	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	653 OF 887	QUIT
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------

Higher Order Functions

- Functions as data
- Higher order functions

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	654 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

An Example

List of functions

QUIT

- $add1 \ x = x + 1$
- $add2 \ x = x + 2$
- add3 x = x + 3

Suppose we needed to define a long list of length n, where the *i*-th element is the function that adds $i + \overline{1}$ to the argument.

	Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	655 OF 887	
--	-----------	----------	----	---	---	----	---------	-------------	-------	------------	--

Currying $addc \ y \ x = x + y$

ML's response :
val addc = fn :
 int -> (int -> int)

Contrast with ML's response

- op +; val it = fn : int * int -> int addc is the curried version of the binary operation +.

HOME PAGE	CONTENTS	44	4	►	••	Go Васк	F	ULL SCREEN	CLOSE	6	56 OF 887	QUIT	

Currying: Contd

 $f: (\alpha \star \beta \star \gamma) \to S \checkmark$ $f_c: \alpha \to \beta \to \gamma \to \delta \checkmark$ $f_{c}^{'}: (\alpha \star \beta) \longrightarrow \mathcal{T} \longrightarrow \mathcal{S} \checkmark$ $f_{c}^{2}: \alpha \longrightarrow (\beta \star \mathcal{T}) \longrightarrow \mathcal{S} \checkmark$

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	657 OF 887	QUIT

Generalization

Then

- $addc1 = (addc \ 1)$: int -> int
- $addc2 = (addc \ 2)$: int -> int
- addc3 = (addc 3): int -> int

and for any i,

is the required function.

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	658 OF 887	QUIT

Generalization: 2

 $list_adds n =$

$\left\{ \begin{matrix} || & \text{if } n \leq 0 \\ (list_adds(n-1))@[(addc n)] & \text{else} \end{matrix} \right.$

ML's response :

val list_adds = fn :
int -> (int -> int) list

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	659 OF 887	QUIT
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------

Applying a list

addall

$$\begin{cases} applyl \ [] x = [] \\ applyl \ (h :: T) x = (h x) :: (applyl \ T x) \end{cases}$$

ML's response:

val applyl = fn :
('a -> 'b) list ->
'a -> 'b list

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	660 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Trying it out

interval $x n = applyl x (list_adds n)$ ML's response:

```
val interval = fn :
    int -> int -> int list
- interval 53 5;
val it = [54,55,56,57,58]
: int list
```

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	661 OF 887	QUIT	

Associativity

• Application associates to the left.

$$f x y = ((f x) y)$$

• \rightarrow associates to the right.

$$\alpha \to \beta \to \gamma = \alpha \to (\beta \to \gamma)$$

If $f : \alpha \to \beta \to \gamma \to \delta$ then $f a : \beta \to \gamma \to \delta$ and $f a b : \gamma \to \delta$ and $f a b c : \delta$

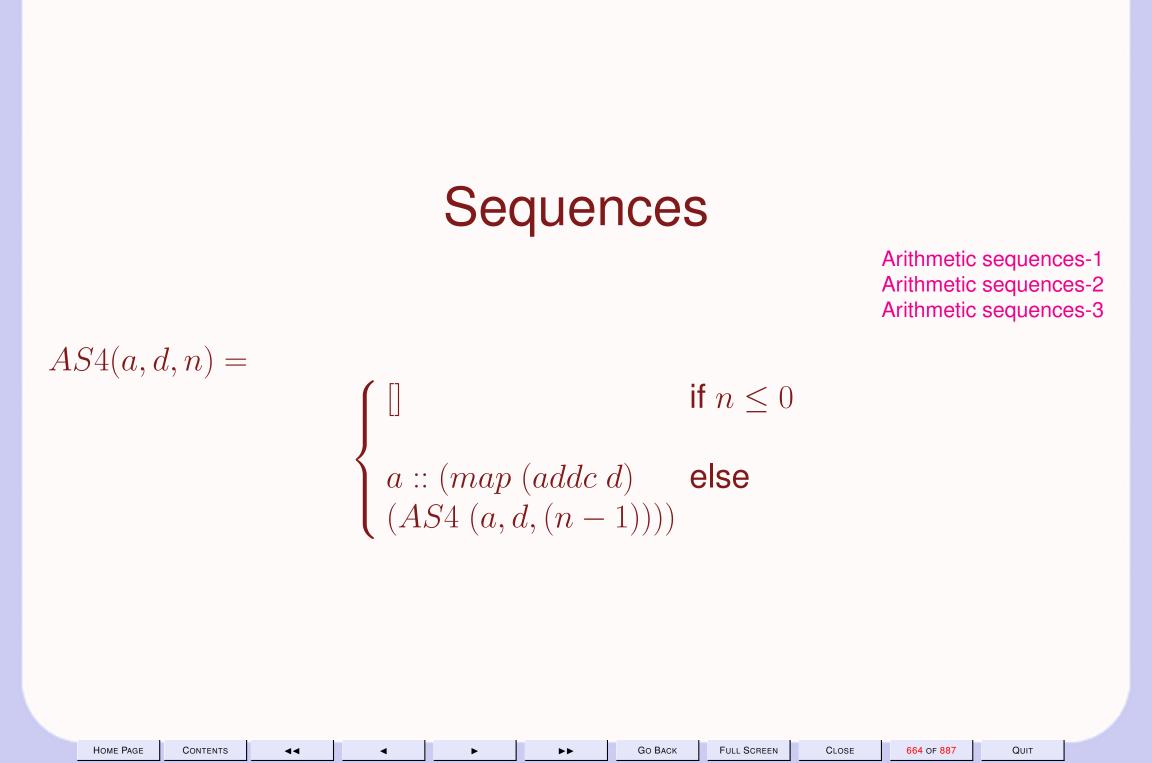
Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	662 OF 887	QUIT	

Apply to a list

Apply a list Transpose of a matrix

$$\begin{cases} map \ f \ [] = [] \\ map \ f \ (h :: T) = (f \ h) :: (map \ f \ T) \end{cases}$$

	Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	663 OF 887	QUIT	
--	-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--



Further Generalization

Given

 $f:\alpha*\alpha\to\alpha$

Then

 $curry2 \ f \ x \ y = f(x, y)$

and

 $(curry2\;f):\alpha\to(\alpha\to\alpha)$

and for any $d: \alpha$,

 $((curry2 \ f) \ d) : \alpha \to \alpha$

Home Page	CONTENTS	44		 Go BACK	FULL SCREEN	CLOSE	665 OF 997	OUIT	-
TIOME FAGE	CONTENTS	44	-	 Go Васк	T OLL SCREEN	CLOSE	005 UF 887	Quit	

if $n \leq 0$

Further Generalization

seq(f, a, d, n) =

is the sequence of length n generated with ((curry2 f) d), starting from $a_{ extsf{-}}$

Home Page	CONTENTS	44	4		b b	Go Васк	FULL SCREEN	CLOSE	666 OF 887	QUIT	6
TIONE THEE	Continue	• •		-		Cio Brien	I OLL CONLELI	01001		QUII	í –

Sequences

Arithmetic: AS5(a, d, n) = seq(op+, a, d, n)Geometric: GS1(a, r, n) = seq(op*, a, r, n)Harmonic: $HS1(a, d, n) = map \ reci \ (AS5(a, d, n))$

where

reci x = 1.0/(real x) gives the reciprocal of a (non-zero) integer.

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	667 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Efficient Generalization

Let's not use map repeatedly. seq2(f, g, a, d, n) =

 $\begin{cases} [] \text{ if } n \leq 0 \\ (f a) :: (seq2 \ (f, g(a, d), d, n - 1)) \text{ else} \end{cases}$

is the sequence of length n generated with a unary f, a binary g starting from f(a).

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	668 OF 887	QUIT	

Sequences: 2

- $\bullet \, AS6(a,d,n) = seq2(id,op+,a,d,n)$
- $\bullet \, GS2(a,r,n) = seq2(id,op*,a,r,n)$
- $\bullet \, HS2(a,d,n) = seq2(reci,op+,a,d,n)$

where id x = x is the identity function.

Home Page	CONTENTS	44	•	►	**	Go Васк	FULL SCREEN	CLOSE	669 OF 887	QUIT

More Generalizations

Often interested in some particular measure related to a sequence, rather than in the sequence itself, e.g. summations of

- arithmetic, geometric, harmonic sequences
- e^x , trigonometric functions upto some n-th term
- (Truncated) Taylor and Maclaurin series

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	670 OF 887	QUIT

More Summations

Wasteful to first generate the sequence and then compute the measure

 $\sum f(i)$

where the range [l, u] is defined by a unary *succ* function sum(f, succ, l, u) =

 $\begin{cases} 0 & \text{if } [l,u] = \emptyset \\ f(l) + sum(f,succ,succ(l),u) \text{ else} \end{cases}$

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	671 OF 887	QUIT

Ø

Or Maybe ... Products

Or may be interested in forming products of sequences.

$$\prod_{i=l}^{u} f(i)$$

Home Pag	CONTENTS	44	•	►	>	Go Васк	FULL SCREEN	CLOSE	672 OF 887	QUIT	
----------	----------	----	---	---	-------------	---------	-------------	-------	------------	------	--

Or Some Other \bigotimes

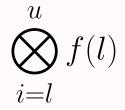
Or some other binary operation \otimes which has the following properties:

- $\bullet \otimes : (\alpha \ast \alpha) \to \alpha \text{ is closed}$
- $\bullet \otimes$ is associative i.e.

 $a\otimes (b\otimes c)=(a\otimes b)\otimes c$

• \otimes has an identity element <u>e i.e</u>

$$a \otimes e = a = e \otimes a$$



Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	673 OF 887	QUIT	

$\begin{array}{l} \textbf{Other} \bigotimes \\ \textbf{Then if } f, succ : \alpha \rightarrow \alpha \; ser(\otimes, f, succ, l, u) = \\ \begin{cases} e & \text{if } [l, u] = \emptyset \\ f(l) \otimes ser(\otimes, f, succ, succ(l), u) \; \textbf{else} \end{cases} \end{array}$

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	674 OF 887	QUIT

Examples of \otimes , *e*

- \bullet +, 0 on integers and reals
- concatenation and the empty string on strings
- andalso, true on booleans
- orelse, false on booleans
- \bullet +, 0 on vectors and matrices
- *, 1 on vectors and matrices

CONTENTS

CLOSE

9.2. Structured Data

- 1. Transpose of a Matrix
- 2. Transpose: 0
- 3. Transpose: 10
- 4. Transpose: 01
- 5. Transpose: 20
- 6. Transpose: 02
- 7. Transpose: 30
- 8. Transpose: 03
- **9**. *trans*
- **10.** *is*2*DMatrix*
- 11. User Defined Types
- 12. Enumeration Types
- 13. User Defined Structural Types
- 14. Functions vs. data
- 15. Data as 0-ary Functions
- 16. Data vs. Functions
- 17. Data vs. Functions: Recursion
- 18. Lists
- 19. Constructors
- 20. Shapes
- 21. Shapes: Triangle Inequality
- 22. Shapes: Area
- 23. Shapes: Area
- 24. ML: Try out

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	676 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

- 25. ML: Try out (contd.)
- 26. Enumeration Types
- 27. Recursive Data Types
- 28. Resistors: Datatype
- 29. Resistors: Equivalent
- 30. Resistors
- 31. Resistors: Example
- 32. Resistors: ML session

HOME PAGE	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	677 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Transpose of a Matrix

Мар

Assume a 2-D $r \times c$ matrix is represented by a list of lists of elements. Then

transpose L =

 $\begin{cases} trans \ L & \text{if } is2DMatrix(L) \\ \bot & \text{else} \end{cases}$

where

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	678 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

[Γ.
[11	12	13]	
[21	22	23]	
[31	32	33]	
[41	42	43]	
]]

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	679 OF 887	QUIT	

		[
12	13]	
22	23]	
32	33]	
42	43]	
]
	22 32	22 23] 32 33]

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	680 OF 887	QUIT

[ſ			
Ι	12	13]	[11	21	31	<mark>41</mark>]
I	22	23]				
[32	33]				
[42	43]				
]]			

Home Page	CONTENTS	44	•	▶	>	GO ВАСК	FULL SCREEN	CLOSE	681 OF 887	Quit	

[c			
[<mark>12</mark>	13]	[11	21	31	41]
[<mark>22</mark>	23]				
[<mark>32</mark>	33]				
[<mark>42</mark>	43]				
]			1			

Home Page	CONTENTS	44	•	►	••	GO ВАСК	FULL SCREEN	CLOSE	682 OF 887	QUIT	

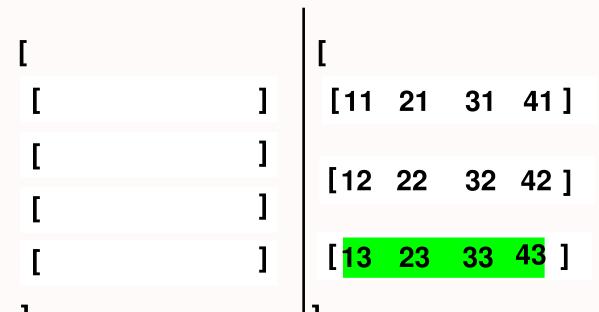
[[
[13]	[11	21	31	41]
[23]	[12	22	20	<mark>42</mark>]
[33]	L 1 2		JZ	7 2]
[43]				
]]			

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	683 OF 887	QUIT	

Computer Science & Engineering Introduction to Computer Science

[[
Ι	<mark>13</mark>]	[11	21	31	41]
[<mark>23</mark>]	[10	າງ	20	42]
[<mark>33</mark>]	[12	22	JZ	42 J
[<mark>43</mark>]				
1		1			

Home Page	CONTENTS	44	•	►	••	Go Back	FULL SCREEN	CLOSE	684 OF 887	Quit	



Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	685 OF 887	QUIT	

trans

$$\begin{cases} trans [] = [] \\ trans [] :: TL = [] \\ trans LL = (map \ hd \ LL) :: (trans \ (map \ tl \ LL)) \end{cases}$$

and

 $is 2DMatrix = \#1(dimensions \ L)$ where

Home Page	CONTENTS	44	•	►	F	Go Васк	FULL SCREEN	CLOSE	686 OF 887	QUIT
			-							

is2DMatrix $\begin{cases} dimensions [] = (true, 0, 0) \\ dimensions [H] = (true, 1, h) \\ dimensions (H :: TL) = (b and (h = c), r + 1, c) \end{cases}$

where dimensions TL = (b, r, c) and h = length H.

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	687 OF 887	QUIT	
-----------	----------	----	---	---	-----------------	---------	-------------	-------	------------	------	--

Home Page	CONTENTS	44	•	•	>>	Go Васк	FULL SCREEN	CLOSE	688 OF 887	QUIT	

9.3. Generalized Sorting Algorithms

Sorting

We have already seen two sorting algorithms on integers

- insertion sort
- merge sort

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	689 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Generalized Sorting

It is possible to generalize these algorithms so that they are both

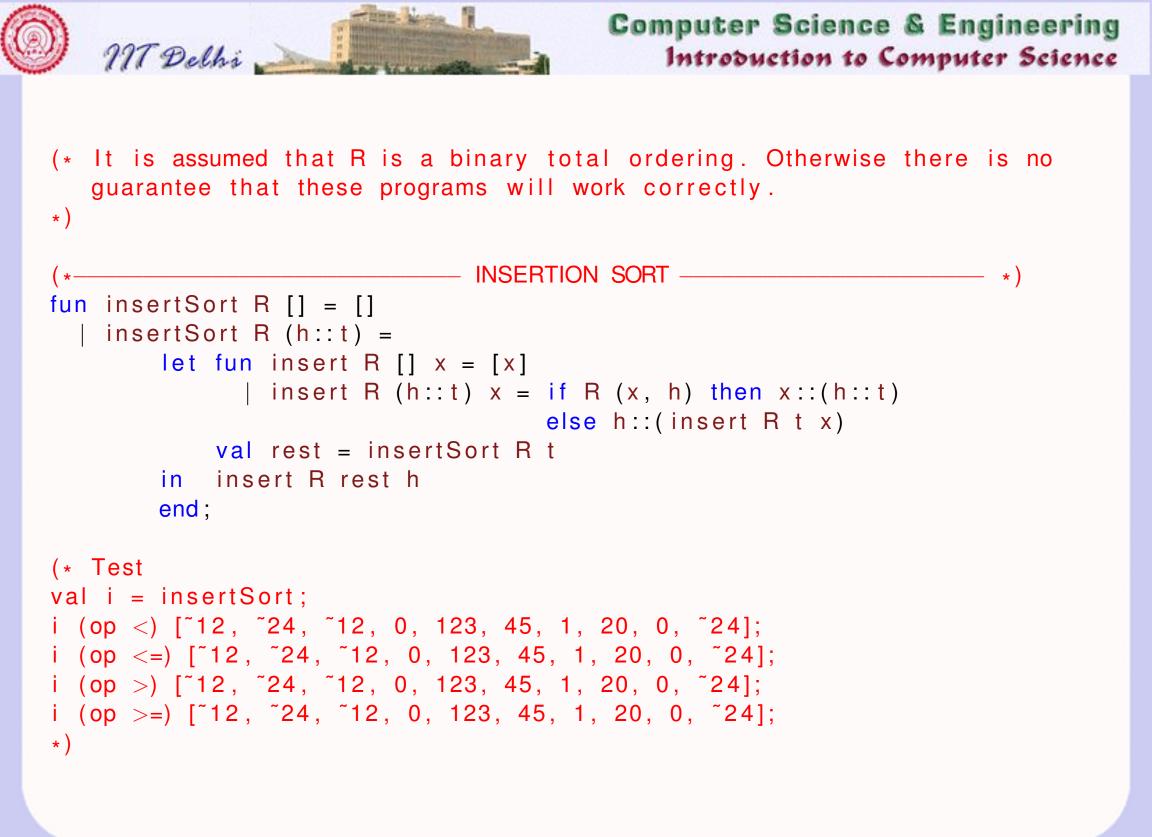
higher order. The ordering relation is an argument to the sort function.

polymorphic. They work on *any* data type on which a *reflexive total order* may be defined and

In particular *ascending* order and *descending* order may be obtained as the total order and its converse (e.g. the " \geq " relation is the converse of the " \leq " relation).

CONTENTS

 \blacktriangleright



Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	691 OF 887	Quit


```
------ MERGE SORT ------
( *
fun mergeSort R [] = []
    mergeSort R [h] = [h]
    mergeSort R L = (* can't split a list unless it has > 1 element *)
       let fun split [] = ([], [])
                split [h] = ([h], [])
              | split (h1::h2::t) =
                    let val (left, right) = split t;
                     in (h1::left, h2::right)
                    end:
           val (left, right) = split L;
           fun merge (R, [], []) = []
               merge (R, [], (L2 \text{ as } h2::t2)) = L2
               merge (R, (L1 \text{ as } h1::t1), []) = L1
               merge (R, (L1 as h1::t1), (L2 as h2::t2)) =
                       if R(h1, h2) then h1::(merge (R, t1, L2))
                       else h2::(merge(R, L1, t2));
           val sortedLeft = mergeSort R left;
           val sortedRight = mergeSort R right;
          merge (R, sortedLeft, sortedRight)
       in
       end;
```

CONTENTS

 \blacktriangleright

*)

(* Test val m = mergeSort; m (op <) [~12, ~24, ~12, 0, 123, 45, 1, 20, 0, ~24]; m (op <=) [~12, ~24, ~12, 0, 123, 45, 1, 20, 0, ~24]; m (op >) [~12, ~24, ~12, 0, 123, 45, 1, 20, 0, ~24]; m (op >=) [~12, ~24, ~12, 0, 123, 45, 1, 20, 0, ~24]; *)

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	693 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Sorting: Polymorphism

The same sort functions may be used to sort strings in "ASCIIbetical" order under a lexicographic ordering. The function which defines the lexicographic ordering on strings is shown.

CONTENTS

 \blacktriangleright

CLOSE

QUIT


```
(* Lexicographic ordering on strings *)
fun lexit (s, t) =
    let val Ls = explode (s);
         val Lt = explode (t);
         fun lstlexlt (_, []) = false
             lstlexIt ([], (b:char)::M) = true
             lstlexIt (a::L, b::M) =
                      if (a < b) then true
                      else if (a = b) then |st|ex|t (L, M)
                            else false
     in IstlexIt (Ls, Lt)
     end
fun lexleq (s, t) = (s = t) orelse lexit (s, t)
fun lexgt (s, t) = lexlt(t, s)
fun lexgeq (s, t) = (s = t) orelse lexgt (s, t)
(*
- val m = mergeSort;
val m = fn : ('a * 'a \rightarrow bool) \rightarrow 'a list \rightarrow 'a list
- m lexIt ["katrina", "SONAKSHI", "Katrina", "sonakshi", "Sonakshi", "KATRINA"];
val it = ["KATRINA", "Katrina", "SONAKSHI", "Sonakshi", "katrina", "sonakshi"]
  : string list
— *)
   HOME PAGE
           CONTENTS
                    ▲
                                                 GO BACK
                                                        FULL SCREEN
                                                                 CLOSE
                                                                        695 OF 887
                                                                                 QUIT
                                          \blacktriangleright
```


User Defined Types

Many languages allow user-defined data types.

- record types: Pinky and Billu
- Enumerations: aggregates of heterogeneous data.
- other structural constructions (if desperate!)

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	696 OF 887	QUIT	

Enumeration Types

Many languages allow user-defined data types.

- record types: Pinky and Billu
- Enumerations: aggregates of heterogeneous data.
 - -days of the week
 - colours
 - geometrical shapes
- other structural constructions (if desperate!)

HOME PAGE	Contents	44	•	►		••	Go Васк	FULL SCREEN	CLOSE	697 OF 887	QUIT	

User Defined Structural Types

Many languages allow user-defined data types.

- record types: Pinky and Billu
- Enumerations: aggregates of heterogeneous data.
- other structural constructions (if desperate!)
 - -trees
 - -graphs
 - symbolic expressions

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	698 OF 887	QUIT	

Functions vs. data

- Inspired by the list constructors, nil and cons
- Grand Unification of functions and data
 - Functions as data
 - Data as functions

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	699 OF 887	QUIT	

Data as o-ary Functions

• Every data element may be regarded as a function with 0 arguments

- Caution: A constant function f(x) = 5, for all $x : \alpha$

where

$$f:\alpha\to \texttt{int}$$

is not the same as a value

Their types are different.

		h				_		_			<u> </u>
HOME PAGE	CONTENTS	44	•	►	**	GO BACK	FULL SCREEN	CLOSE	700 OF 887	QUIT	

Data vs. Functions

Facilities	Functions	Data
primitive	operations	values
user-defined	functions	constructors
composition	application	alternative
recursion	recursion	recursion

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE

Data vs. Functions: Recursion

Recursion Basis naming composition induction

Home Page	CONTENTS	44	•	►	••	GO BACK	FULL SCREEN	CLOSE	702 OF 887	QUIT	

Lists as Structured Data

Every α *list* is either

```
nil:(Basis, name)
```

```
| : or (alternative)
```

cons: constructed inductively from an element of type ' a and another
list of type ' a list using the constructor cons

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	703 OF 887	QUIT	

Constructors

- Inspired by the list constructors
 - nil : α list
 - *cons*: $\alpha \times \alpha$ *list* $\rightarrow \alpha$ *list*
- combine heterogeneous types: α and $\alpha\ list$
- allows recursive definition by a form of induction
 Basis : nil
 Induction : cons

Номе Р	GE CONTENTS	TENTS	•	►	>>	Go Васк	FULL SCREEN	CLOSE	704 OF 887	QUIT	
--------	-------------	-------	---	---	-----------------	---------	-------------	-------	------------	------	--

Shapes

A non-recursive data type

```
datatype shape =
```

```
CIRCLE of real
RECTANGLE of real * real
TRIANGLE of
```

```
real * real * real
```

	Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	705 OF 887	QUIT	
--	-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Shapes: Triangle Inequality

```
fun isTriangle
  (TRIANGLE (a, b, c)) =
    (a+b>c) andalso
    (b+c>a) andalso
    (c+a>b)
  | isTriangle _ = false
```

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	706 OF 887	QUIT

QUIT

Shapes: Area

```
exception notShape;
```

	Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	707 OF 887	
--	-----------	----------	----	---	---	----	---------	-------------	-------	------------	--

Shapes: Area

```
if isTriangle (s) then
let val s = (a+b+c)/2.0
in Math.sqrt
        (s*(s-a)*(s-b)*(s-c))
end
```

else raise notShape;

Home Pag	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	708 OF 887	QUIT
----------	----------	----	---	---	----	---------	-------------	-------	------------	------

ML: Try out

- use "shapes.sml";
[opening shapes.sml]
datatype shape

- = CIRCLE of real
- | RECTANGLE of real * real
- | TRIANGLE of
 - real * real * real
- val isTriangle =

```
fn : shape -> bool
exception notShape
val area = fn : shape -> real
```

►

CLOSE

ML: Try out (contd.)

```
val it = () : unit
- area (TRIANGLE (2.0,1.0,3.0));
```

```
uncaught exception notShape
  raised at: shapes.sml:22.17-22.25
- area
```

```
(TRIANGLE (3.0, 4.0, 5.0));
```

```
val it = 6.0 : real
```

Back to User defined types

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	710 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Enumeration Types

- Enumeration types are non-recursive datatypes with
- 0-ary constructors

Back to User defined types

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	711 OF 887	QUIT	
-----------	----------	----	---	---	-----------------	---------	-------------	-------	------------	------	--

Recursive Data Types

• But the really interesting types are the recursive data types

Back to Lists

• As with lists proofs of correctness on recursive data types depend on a case-analysis of the structure (basis and inductive constructors)

Correctness on lists

Home Page Contents	• •	►► Go	CK FULL SCREEN	CLOSE	712 OF 887	QUIT	
--------------------	-----	-------	----------------	-------	------------	------	--

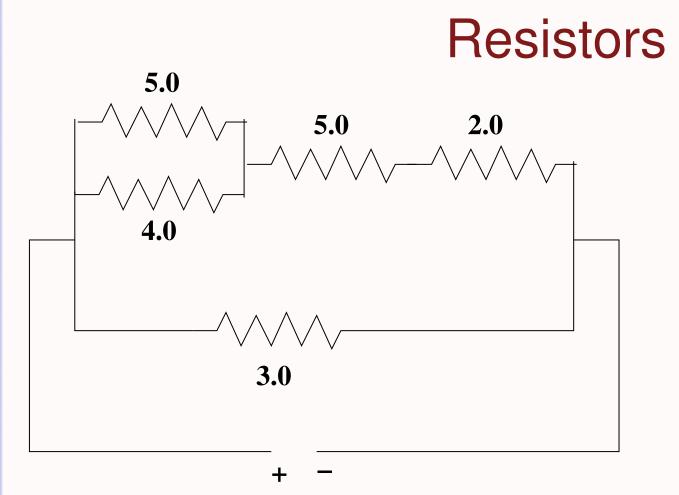
Resistors: Datatype

datatype resist =
 RES of real |
 SER of resist * resist |
 PAR of resist * resist

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	713 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Resistors: Equivalent

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	714 OF 887	QUIT
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------



Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	715 OF 887	QUIT


```
Resistors: Example
val R = PAR (
             SER (
                 PAR (
                     RES (5.0),
                      RES (4.0)
                     ),
                 SER (
                     RES (5.0),
                      RES (2.0)
                 ),
              RES(3.0)
             );
```

Home Page	CONTENTS	44	4	►	••	Go Васк	FULL SCREEN	CLOSE	716 OF 887	QUIT	

Resistors: ML session

Resistance Expressions

		L							_		
HOME PAGE	CONTENTS	••	•	►	••	GO BACK	FULL SCREEN	CLOSE	717 OF 887	QUIT	

9.4. User Defined Structured Data Types

- 1. User Defined Types
- 2. Resistors: Grouping
- 3. Resistors: In Pairs
- 4. Resistor: Values
- 5. Resistance Expressions
- 6. Resistance Expressions
- 7. Arithmetic Expressions
- 8. Arithmetic Expressions: 0
- 9. Arithmetic Expressions: 1
- 10. Arithmetic Expressions: 2
- 11. Arithmetic Expressions: 3
- 12. Arithmetic Expressions: 4
- 13. Arithmetic Expressions: 5
- 14. Arithmetic Expressions: 6
- 15. Arithmetic Expressions: 7
- 16. Arithmetic Expressions: 8
- 17. Binary Trees
- 18. Arithmetic Expressions: 0
- 19. Trees: Traversals
- 20. Recursive Data Types: Correctness
- 21. Data Types: Correctness

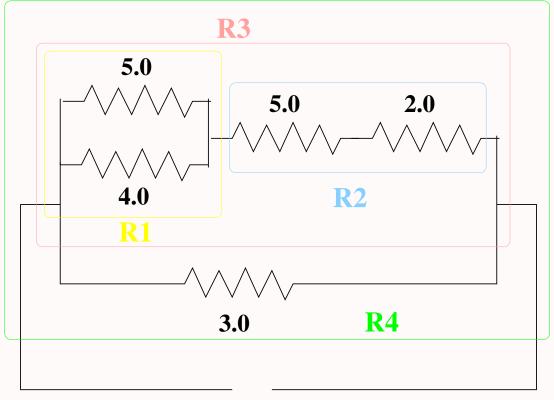
Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	718 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

User Defined Types

- Records
- Structural Types
 - Constructors
 - * Non-recursive
 - ***** Enumeration Types
 - Recursive datatypes
 - * Resistance circuits

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	719 OF 887	QUIT

Resistors: Grouping



+ -

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	720 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Resistors: In Pairs

val R1 = PAR (RES 5.0, RES 4.0) : resist
val R2 = SER (RES 5.0, RES 2.0) : resist
val R3 = SER (R1, R2);
val R4 = PAR (R3, RES(3.0));

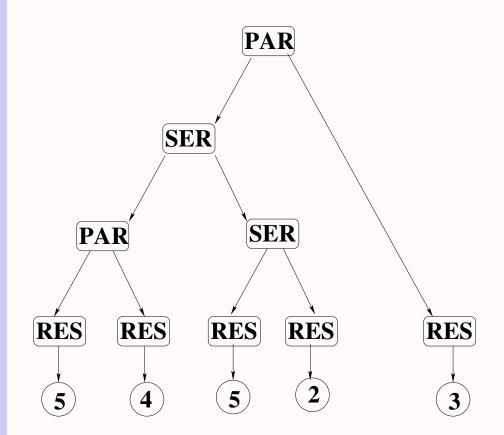
HOME PAGE	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	721 OF 887	QUIT
-----------	----------	----	---	---	-----------------	---------	-------------	-------	------------	------

Resistor: Values

	Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	722 OF 887	QUIT
--	-----------	----------	----	---	---	-----------------	---------	-------------	-------	------------	------

Resistance Expressions

A resistance expression

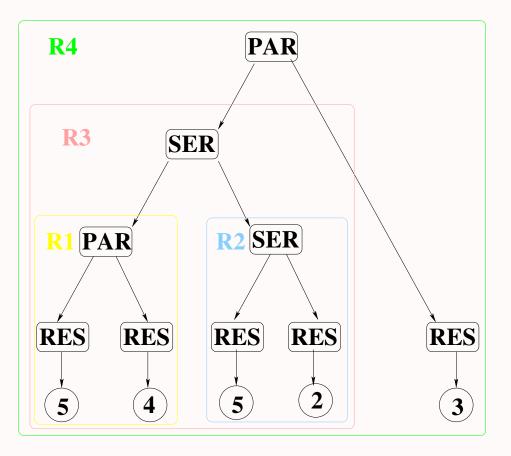


Circuit Diagram

Номе Раде Со		•	►	••	Go Васк	FULL SCREEN	CLOSE	723 OF 887	QUIT	
--------------	--	---	---	----	---------	-------------	-------	------------	------	--

Resistance Expressions

A resistance expression



Circuit Diagram

Home Page	CONTENTS	44	•	►	**	Go Васк	FULL SCREEN	CLOSE	724 OF 887	QUIT

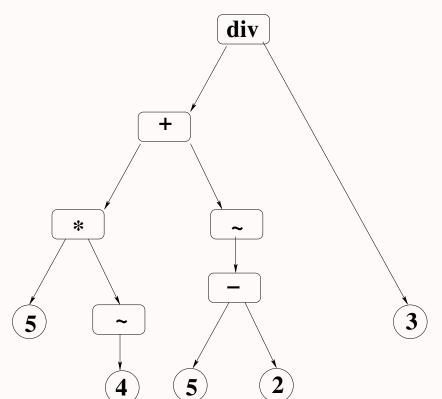
Arithmetic Expressions

ML arithmetic expressions:

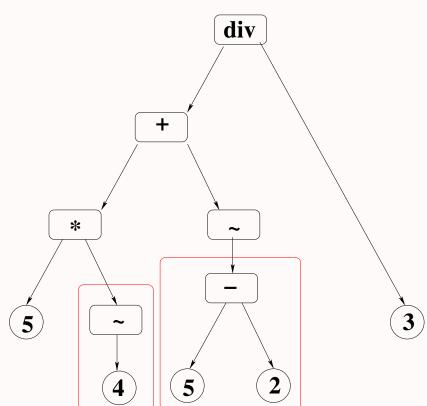
((5 * ~4) + ~(5 - 2)) div 3

are represented as trees

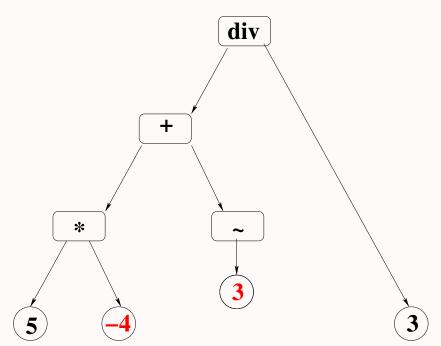
Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	725 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--



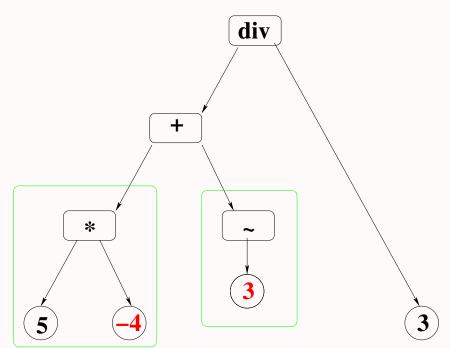
Home Page	CONTENTS	44	•	►	>	Go Back	FULL SCREEN	CLOSE	726 OF 887	QUIT



Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	727 OF 887	QUIT



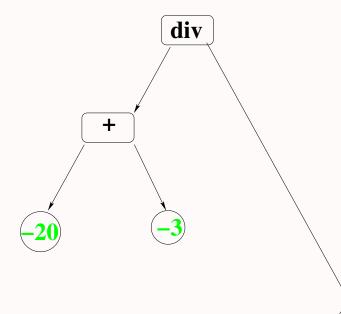
Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	728 OF 887	QUIT	



Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	729 OF 887	QUIT	

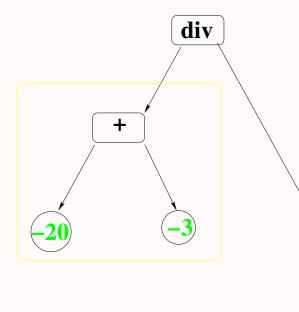
3

Computer Science & Engineering Introduction to Computer Science



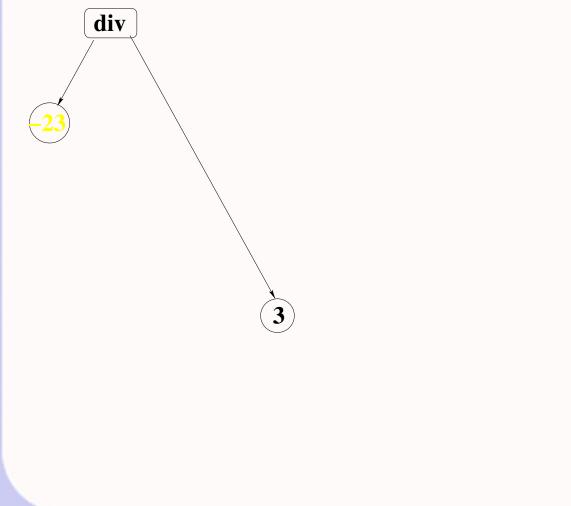
Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	730 OF 887	QUIT	

Arithmetic Expressions: 5

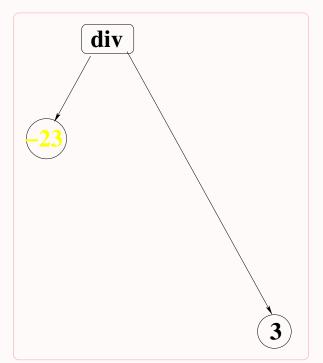


Home Page	CONTENTS	44	4	►	••	Go Васк	FULL SCREEN	CLOSE	731 OF 887	QUIT	

3



Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	732 OF 887	QUIT	



HOME PAGE	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	733 OF 887	QUIT

-8

Computer Science & Engineering Introduction to Computer Science

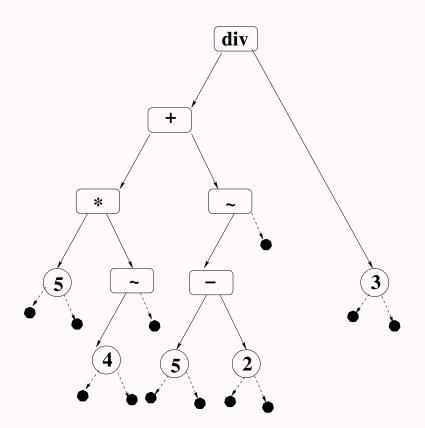
Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	734 OF 887	QUIT

Binary Trees

```
datatype 'a bintree =
   Empty |
   Node of 'a *
   'a bintree *
   'a bintree
```

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	735 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Arithmetic Expressions: 0



HOME PAGE	CONTENTS	44	•	►	••	Go Back	FULL SCREEN	CLOSE	736 OF 887	QUIT	

Trees: Traversals

- preorder
- inorder
- postorder

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	737 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Recursive Data Types: Correctness

Correctness on lists by cases

P is proved by case analysis.

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	738 OF 887	QUIT	
-----------	----------	----	---	---	-----------------	---------	-------------	-------	------------	------	--

Data Types: Correctness

Basis Prove P(c) for each non-recursive constructor c

Induction hypothesis (*IH*) Assume P(T) for all elements of the data type less than a certain depth

Induction Step Prove $P(r(T_1, \ldots, T_n))$ for each recursive constructor r

HOME PAGE CONTENTS - GO BACK FULL SCREEN	CLOSE	739 OF 887	QUIT
--	-------	------------	------

10. Imperative Programming: An Introduction

10.1. Introducing a Memory Model

- 1. Summary: Functional Model
- 2. CPU & Memory: Simplified
- 3. Resource Management
- 4. Shell: User Interface
- 5. GUI: User Interface
- 6. Memory Model: Simplified
- 7. Memory
- 8. The Imperative Model
- 9. State Changes: σ
- 10. State
- 11. State Changes
- 12. State Changes: σ
- 13. State Changes: σ_1
- 14. State Changes: σ_2
- 15. Languages
- 16. User Programs
- 17. Imperative Languages
- 18. Imperative vs Functional Variables
- 19. Assignment Commands
- 20. Assignment Commands
- 21. Assignment Commands
- 22. Assignment Commands

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	740 OF 887	QUIT	
-----------	----------	----	---	---	-----------------	---------	-------------	-------	------------	------	--

- 23. Assignment Commands
- 24. Assignment Commands: Swap
- 25. Swap
- 26. Swap
- 27. Swap

Home Page	CONTENTS	44	-		••	Go Васк	FULL SCREEN	CLOSE	741 OF 887	QUIT	
TIOME FAGE	CONTENTS			-		GO BACK	I ULL SCREEN	OLUSE	741 0F 007	QUIT	1

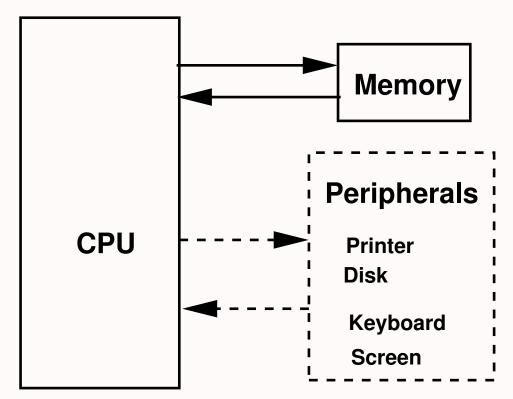
Summary: Functional Model

- Stateless (as is most mathematics)
- Notion of value is paramount
 - Integers, reals, booleans, strings and characters are all values
 - Every function is also a value
 - Every complex piece of data is also a value
- No concept of storage (except for space complexity calculations)

Home Page	CONTENTS	44	•	•	••	Go Васк

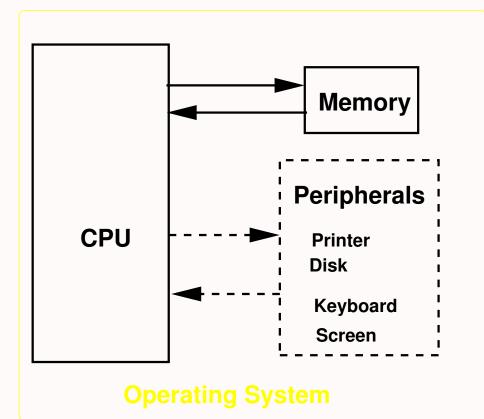
CLOSE

CPU & Memory: Simplified



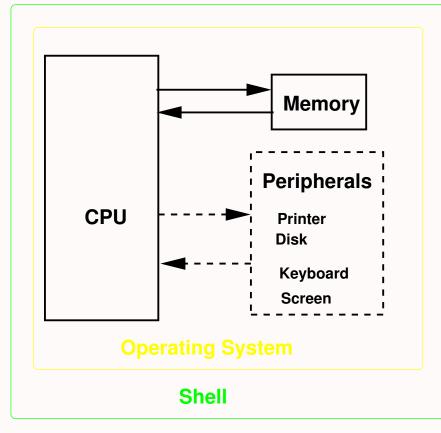
Home Page	CONTENTS	44	•	►	••	Go Back	FULL SCREEN	CLOSE	743 OF 887	QUIT

Resource Management



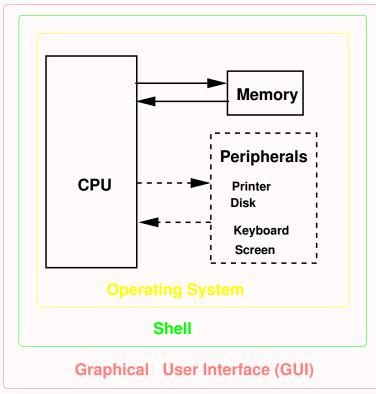
Home Page	CONTENTS	44	4	•	••	Go Васк	FULL SCREEN	CLOSE	744 OF 887	QUIT	

Shell: User Interface



Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	745 OF 887	QUIT

GUI: User Interface



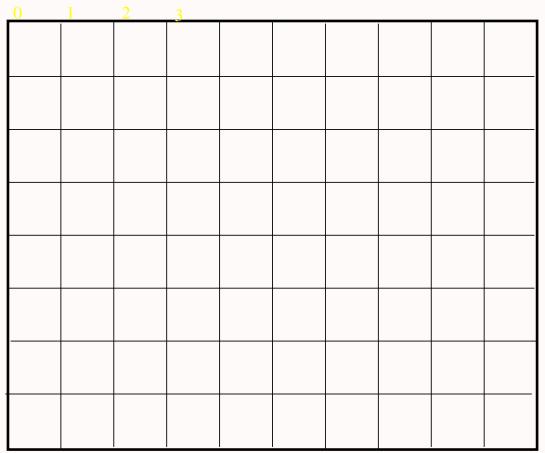
Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	746 OF 887	QUIT

Memory Model: Simplified

- 1. A sequence of storage cells
- 2. Each cell is a container of a single unit of information.
 - integer, real, boolean, character or string
- 3. Each cell has a unique name, called its address
- 4. The memory cell addresses range from 0 to (usually) $2^k 1$ (for some k)

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	747 OF 887	QUIT

Memory



32K-1

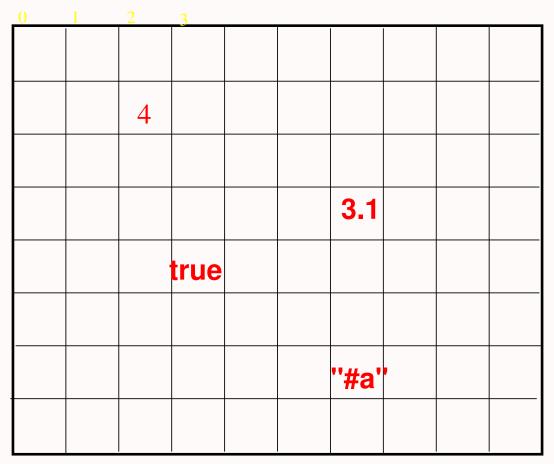
Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	748 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

The Imperative Model

- Memory or Storage made explicit
- Notion of state (of memory)
 - State is simply the value contained in each cell.
 - $-state: Addresses \rightarrow Values$
- State changes

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	749 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

State Changes: *σ*



Assume all other cells are filled with null

HOME PAGE	
TIONE FAGE	

CONTENTS

••

◄

CLOSE

State

The state σ

- $\sigma(12) = 4: int$
- $\bullet \, \sigma(20) = {\rm null}$
- $\bullet \, \sigma(36) = 3.1: real$
- $\bullet \ \sigma(43) = \mathsf{true} : \mathit{bool}$
- $\sigma(66) = "#a" : char$

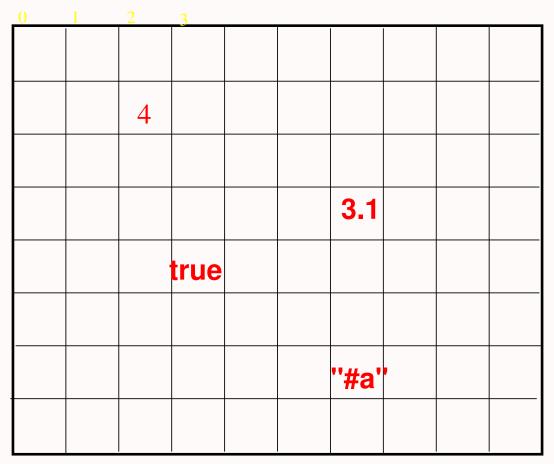
Home Page	CONTENTS	44	•	►	**	Go Васк	FULL SCREEN	CLOSE	751 OF 887	QUIT

State Changes

- A state change takes place when the value in some cell changes
- The contents of only one cell may be changed at a time.

HOME PAGE	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	752 OF 887	QUIT
-----------	----------	----	---	---	-----------------	---------	-------------	-------	------------	------

State Changes: *σ*



Assume all other cells are filled with null

U.S. D. S.	
HOME PAGE	

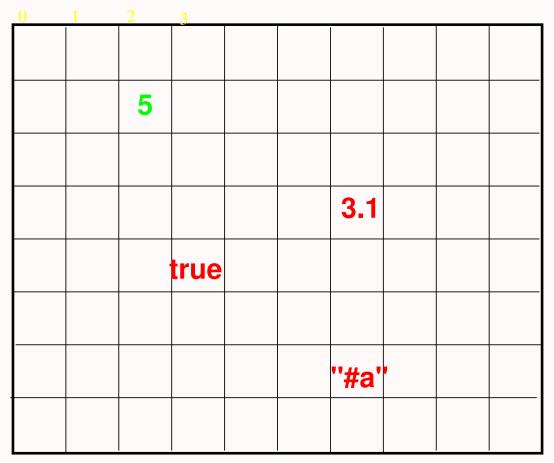
CONTENTS

44

◄

CLOSE

State Changes: σ_1

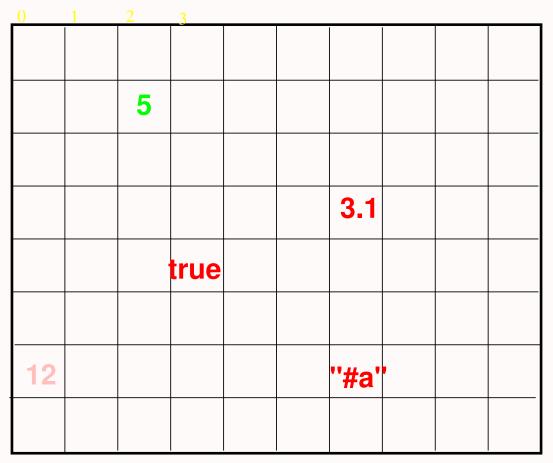


Assume all other cells are filled with null

Home Page	CONTENTS

◄

State Changes: σ_2



Assume all other cells are filled with null

CONTENTS

••

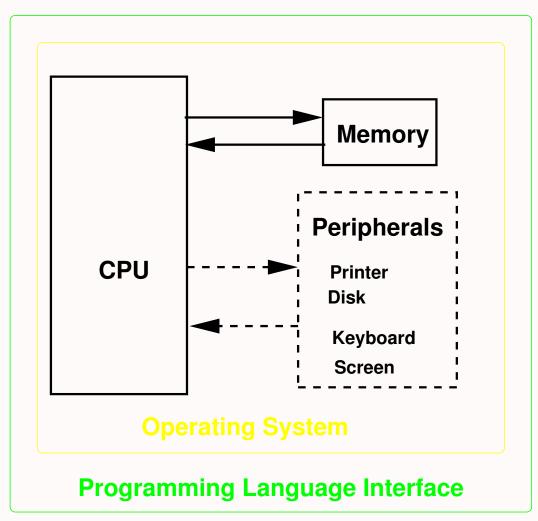
◄

•

 \blacktriangleright

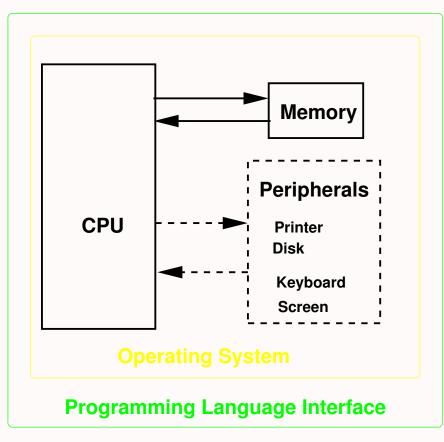
CLOSE

Languages



Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	756 OF 887	QUIT

User Programs



User Programs

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	757 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Imperative Languages

- How is the memory accessed?
 - Through system calls to the OS.
- How are memory cells identified?
 - Use Imperative variables.
 - Each such variable is a *name* mapped to an *address*.
- How are state changes accomplished?
 - By the assignment command.

Home Page	CONTENTS	44	•	▶	>>	GO BACK	FULL SCREEN	CLOSE	758 OF 887	QUIT	

QUIT

Imperative vs Functional Variables

Functional	Imperative
name of a value	name of an address
constant	could change with time

The value contained in an imperative variable x is denoted !x.

	Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	759 of 887	
--	-----------	----------	----	---	---	-----------------	---------	-------------	-------	------------	--

Assignment Commands

Let x and y be imperative variables. Consider the following commands. Assuming |x| = 1 and |y| = 2.

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	760 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Assignment Commands

Store the value 5 in x.

$$x := 5$$

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	761 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Assignment Commands

Copy the value contained in y into x.

x := y

x 2

			-						-	
Home Page	CONTENTS	44	•	•	>>	GO BACK	FULL SCREEN	CLOSE	762 OF 887	QUIT

Assignment Commands

x := !x + 1

Increment the value contained in x by 1.

X	3

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	763 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Assignment Commands

Store the product of the values in x and y in y. y := |x*|y|

x 3

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	764 OF 887	QUIT

Assignment Commands: Swap

Swap the values in x and y.

Swapping values implies trying to make <u>two</u> state changes simultaneously!

Requires a new memory cell t to temporarily store one of the values.

HOME PAGE	CONTENTS
-----------	----------

CLOSE

Swap

How does one get a new memory cell?

val t = ref 0

Then the rest is easy

```
val t = ref 0;
t := !x;
x := !y;
y := !t;
```

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	766 OF 887	QUIT	

Swap

Could be made simpler!

```
val t = ref (!x);
x := !y;
y := !t;
```

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	767 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Swap

Could use a temporary functional variable *t* instead of an imperative variable

```
val t = !x;
x := !y;
y := t;
```

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	768 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

10.2. Imperative Programming:

- 1. Imperative vs Functional
- 2. Features of the Store
- 3. References: Experiments
- 4. References: Experiments
- 5. References: Experiments
- 6. Aliases
- 7. References: Experiments
- 8. References: Aliases
- 9. References: Experiments
- 10. After Garbage Collection
- 11. Side Effects
- 12. Imperative ML
- 13. Imperative ML
- 14. Imperative ML
- 15. Imperative ML
- 16. Nasty Surprises
- 17. Imperative ML
- 18. Imperative ML
- 19. Common Errors
- 20. Aliasing & References
- 21. Dangling References
- 22. New Reference

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	769 OF 887	QUIT	
-----------	----------	----	---	---	-----------------	---------	-------------	-------	------------	------	--

- 23. Imperative Commands: Basic
- 24. Imperative Commands: Compound
- 25. Predefined Compound Commands

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	770 OF 887	QUIT	
-----------	----------	----	---	---	-----------------	---------	-------------	-------	------------	------	--

Imperative vs Functional

- Functional Model
- Memory/Store Model
- Imperative Model
- State Changes
- Accessing the store

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	771 OF 887	QUIT	l
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	---

Features of the Store

Memory is treated as a datatype with constructors

Allocation $ref : \alpha \to \alpha \ ref$

Dereferencing $! : \alpha \ ref \to \alpha$

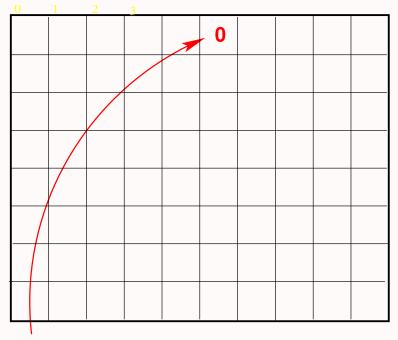
Updation :=: $\alpha \ ref * \alpha \rightarrow unit$

Deallocation of memory is automatic!

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	772 OF 887	QUIT	

References: Experiments

- val a = ref 0; val a = ref 0 : int ref

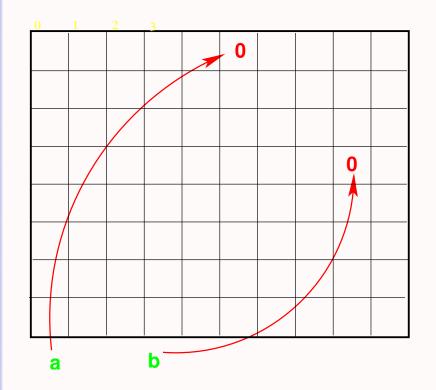


a

HOME PAGE CONTENTS 44 4 I I I I GO BACK FULL SCREEN CLOSE 7	773 OF 887 QUIT
---	-----------------

References: Experiments

- val b = ref 0; val b = ref 0 : int ref



HOME PAGE	CONTENTS	44	•	►	••	GO ВАСК	FULL SCREEN	CLOSE	774 OF 887	Quit

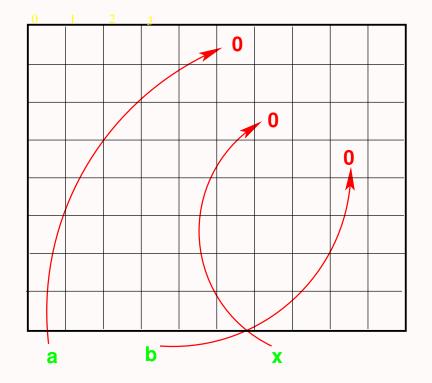
References: Experiments

- a = b; val it = false : bool - !a = !b; val it = true : bool

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	775 OF 887	QUIT

Aliases

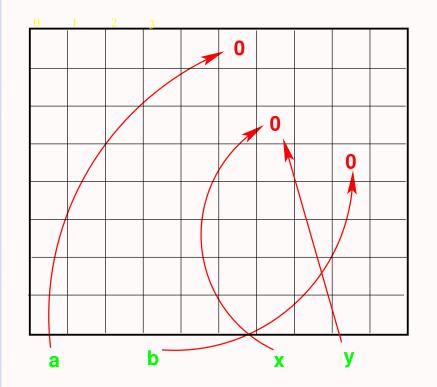
- val x = ref 0; val x = ref 0 : int ref



Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	776 OF 887	QUIT

References: Experiments

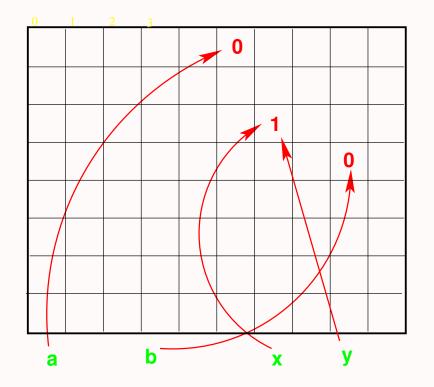
- val y = x; val y = ref 0 : int ref



Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	777 OF 887	QUIT

References: Aliases

- x := !x + 1; val it = () : unit



Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	778 OF 887	QUIT	

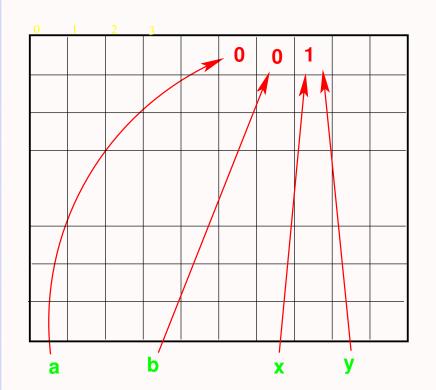
References: Experiments

```
- !y;
val it = 1 : int
- x = y;
val it = true : bool
```

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	779 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

After Garbage Collection

GC #0.0.0.2.45: (0 ms)



Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	780 OF 887	QUIT	

QUIT

Side Effects

- Assignment does not produce a value
- It produces only a state change (side effect)
- But side-effects are compatible with functional programming since it is provided as a new data type with constructors and destructors.

Но	IE PAGE	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	781 OF 887
----	---------	----------	----	---	---	----	---------	-------------	-------	------------

- Does not provide direct access to memory addresses
- Does not allow for uninitialized imperative variables
- Provides a type with every memory location
- Manages the memory completely automatically

Home Page	CONTENTS	44	•	Þ	••	GO BACK	FULL SCREEN	CLOSE	782 OF 887	QUIT

- Does not provide direct access to memory addresses
 - Prevents the use of memory addresses as integers that can be manipulated by the user program
- Does not allow for uninitialized imperative variables
- Provides a type with every memory location
- Manages the memory completely automatically

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	783 OF 887	QUIT

- Does not provide direct access to memory addresses
- Does not allow for uninitialized imperative variables
 - Most imperative languages keep declarations separate from initializations
- Provides a type with every memory cell
- Manages the memory completely automatically

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	784 OF 887	QUIT	

- Does not provide direct access to memory addresses
- Does not allow for uninitialized imperative variables
 - A frequent source of surprising results in most imperative language programs
- Provides a type with every memory cell
- Manages the memory completely automatically

Home Page	CONTENTS	44	•	►	>	Go Васк	FULL SCREEN	CLOSE	785 OF 887	QUIT

Nasty Surprises

Separation of declaration from initialization

- Uninitialized variables
- Execution time errors if not detected by compiler, since every memory location contains some data
- Might use a value stored previously in that location by some imperative variable that no longer exists.
- Errors due to type violations.

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	786 OF 887	QUIT	

QUIT

- Does not provide direct access to memory addresses
- Does not allow for uninitialized imperative variables
- Provides a type with every memory cell
- Manages the memory completely automatically and securely.

HOME PAGE	CONTENTS	44	•	•	>	Go Васк	FULL SCREEN	CLOSE	787 OF 887

QUIT

- Does not provide direct access to memory addresses
- Does not allow for uninitialized imperative variables
- Provides a type with every memory cell
- Manages the memory completely automatically and securely
 - Memory has to be managed by the user program in most languages
 - Prone to various errors

Home Page	CONTENTS	44	•	▶	••	Go Васк	FULL SCREEN	CLOSE	788 OF 887

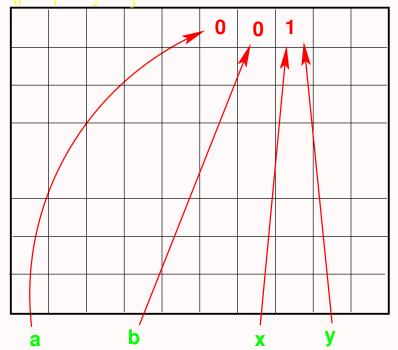
Common Errors

- Memory access errors due to integer arithmetic, especially in large structures (arrays)
- Dangling references on deallocation of aliased memory

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	789 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Aliasing & References

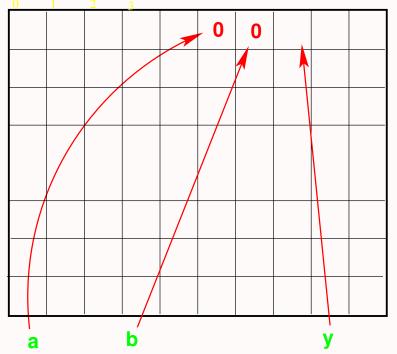
Before deallocation:



Home Page	CONTENTS	44	•	•	>>	Go Васк	FULL SCREEN	CLOSE	790 OF 887	QUIT	

Dangling References

Deallocate x through a system call

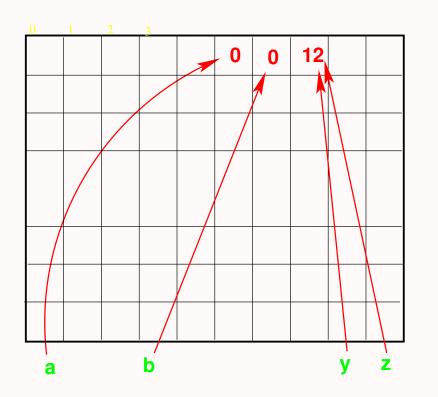


y is left dangling!

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	791 OF 887	Quit

New Reference

val z = ref 12;



By sheer coincidence y = 12

CONTENTS

HOME PAGE	
THO ME THOLE	

◄

Imperative Commands: Basic

A Command is an ML expression that creates a side effect and returns an empty tuple (() : unit).

Assignment

print

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	793 OF 887	QUIT	
-----------	----------	----	---	---	-----------------	---------	-------------	-------	------------	------	--

Imperative Commands: Compound

Any complex ML expression or function definition whose type is of the form $\alpha \rightarrow unit$ is a compound command.

- Predefined ML compound commands
- Could be user-defined. After all, everything is a value!

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	794 of 887	QUIT

Predefined Compound Commands

branching *if e then* c_1 *else* c_0 . **cases** *case e of* $p_1 \Rightarrow c_1 | \cdots | p_n \Rightarrow c_n$ **Sequencing** $(c_1; c_2; \ldots; c_n)$. Sequencing is associative **looping** *while e do* c_1 is defined recursively as

if e then $(c_1; while e \ do \ c_1) \ else$ ()

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	795 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

10.3. Arrays

- 1. Why Imperative
- 2. Arrays
- 3. Indexing Arrays
- 4. Indexing Arrays
- 5. Indexing Arrays
- 6. Physical Addressing
- 7. Arrays
- 8. 2D Arrays
- 9. 2D Arrays: Indexing
- 10. Ordering of indices
- 11. Arrays vs. Lists
- 12. Arrays: Physical
- 13. Lists: Physical

Home Page	CONTENTS	44	•	•	>>	Go Васк	FULL SCREEN	CLOSE	796 OF 887	QUIT	
-----------	----------	----	---	---	-----------------	---------	-------------	-------	------------	------	--

Why Imperative

- Historical reasons: Early machine instruction set.
- Programming evolved from the machine architecture.
- Legacy software:
 - numerical packages
 - operating systems
- Are there any real benefits of imperative programming?

HOME PAGE	CONTENTS	44	•	•	••	Go Васк	

797 OF 887

Arrays

An array of length n is a contiguous sequence of n memory cells

 $C_{0}, C_{1}, \dots, C_{n-1}$

Home Page	CONTENTS	44	4	►	••	Go Васк	FULL SCREEN	CLOSE	798 OF 887	QUIT

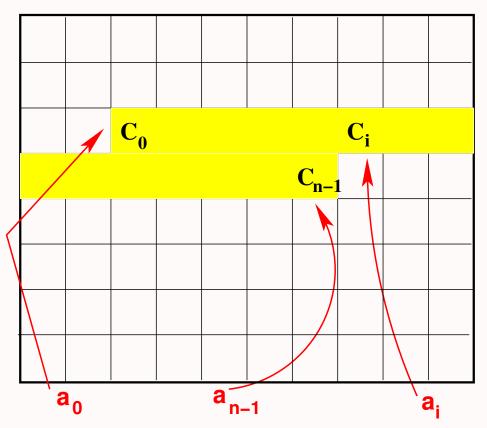
Indexing Arrays

For any array

- $i, 0 \leq i < n$ is the *index* of cell C_i .
- C_i is at a <u>distance</u> of *i* cells away from C_0

Home Page	CONTENTS	44	•	►	**	Go Васк	FULL SCREEN	CLOSE	799 OF 887	Quit

Indexing Arrays



HOME PAGE	CONTENTS	44	•	▶	>>	Go Васк	FULL SCREEN	CLOSE	800 OF 887	QUIT	

Indexing Arrays

- The *start* address of the array and the *address* of C_0 are the same (say a_0)
- The address a_i of cell C_i is

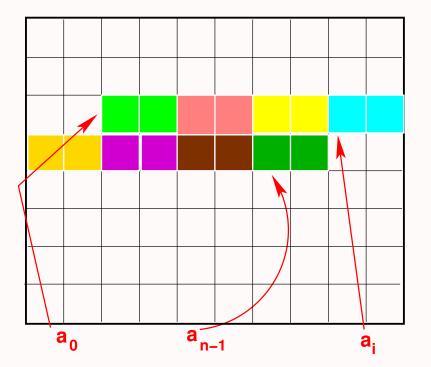
$$a_i = a_0 + i$$

Нс	OME PAGE	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	801 OF 887	QUIT	
----	----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Physical Addressing

If each element occupies *s physical* memory locations, then

 $a_i = a_0 + i \times s$



Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	802 OF 887	QUIT	

Arrays

A 2-dimensional array of

- r rows numbered 0 to r-1
- each row containing c elements numbered 0 to c-1

is also a contiguous sequence of *rc* memory cells

 $C_{0,0}, C_{0,1}, \ldots, C_{0,c-1}, C_{1,0}, \ldots, C_{r-1,c-1}$

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	803 OF 887

2D Arrays

A 2 dimensional-array is represented as an array of length $r \times c$, where

- a_{00} is the start address of the array, and
- the address of the (i, j)-th cell is given by

 $a_{ij} = a_{00} + (c \times i + j)$

• the physical address of the (i, j)-th cell is given by

 $a_{ij} = a_{00} + (c \times i + j) \times s$

			_	_	_	-	_		
HOME PAGE	CONTENTS	••	 ►	>>	GO BACK	FULL SCREEN	CLOSE	804 OF 887	Quit

2D Arrays: Indexing

- The index (i, j) of a 2D array may be thought of as being similar to a 2-digit number in base c
- The successor of index (i, j) is the successor of a number in base c i.e.

$$succ(i,j) = \begin{cases} (i+1,0) \text{ if } j = n-1\\ (i,j+1) \text{ else} \end{cases}$$

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	805 OF 887	QUIT	
-----------	----------	----	---	---	-----------------	---------	-------------	-------	------------	------	--

Ordering of indices

There is a natural "<" ordering on indices given by

$$\begin{array}{ll} (i,j) < (k,l) & \Longleftrightarrow \\ (i < k) & \text{ or } \\ (i = k & \text{ and } j < l) \end{array}$$

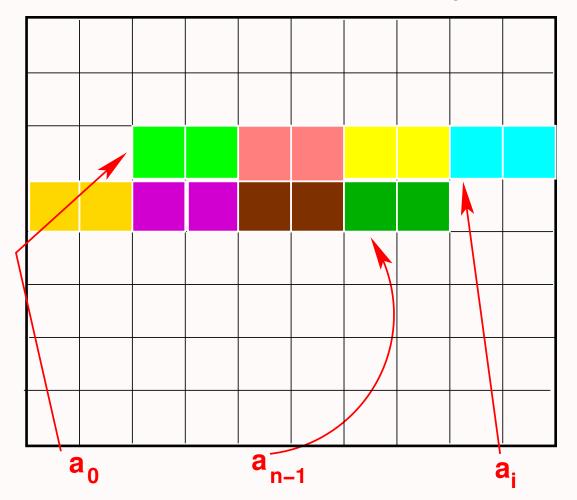
Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	806 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Arrays vs. Lists

Lists	Arrays
Unbounded lengths	Fixed length
Insertions possible	Very complex
Indirect access	Direct access

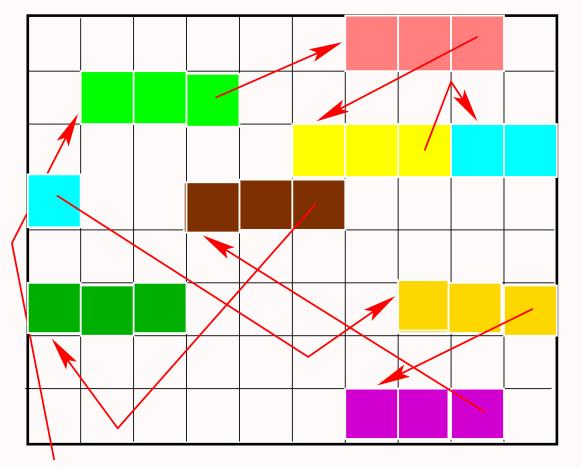
HOME PAGE	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	807 OF 887	QUIT	

Arrays: Physical



Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	808 OF 887	QUIT

Lists: Physical



Home Page	CONTENTS	44	•	•	>>	Go Васк	FULL SCREEN	CLOSE	809 OF 887	Quit	

11. A large Example: Tautology Checking

11.1. Large Example: Tautology Checking

- 1. Logical Arguments
- 2. Saintly and Rich
- 3. About Cats
- 4. About God
- 5. Russell's Argument
- 6. Russell's Argument
- 7. Russell's Argument
- 8. Russell's Argument
- 9. Propositions
- 10. Compound Propositions
- 11. Valuations
- 12. Valuations
- 13. Tautology
- 14. Properties
- 15. Negation Normal Form
- 16. Literals & Clauses
- 17. Conjunctive Normal Form
- 18. Validity
- 19. Logical Validity
- 20. Validity & Tautologies

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	810 OF 887	QUIT	
-----------	----------	----	---	---	-----------------	---------	-------------	-------	------------	------	--

- 21. Problem
- 22. Tautology Checking
- 23. Falsifying

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	811 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Logical Arguments

Examples.

- Saintly and Rich
- About cats
- About God
- Russell's argument

HOME PAGE CONTENTS 44 4 I I I I I I I I I I I I I I I I I

Saintly and Rich

hy1 The landed are rich.

hy2 One cannot be both saintly and rich.

conc The landed are not saintly

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	813 OF 887	QUIT
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------

About Cats

hy1 Tame cats are non-violent and vegetarian.

hy2 Non-violent cats would not kill mice.

hy3 Vegetarian cats are bottle-fed.

hy4 Cats eat meat.

conc Cats are not tame.

	Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	814 OF 887	QUIT	
--	-----------	----------	----	---	---	-----------------	---------	-------------	-------	------------	------	--

About God

hy1 God is omniscient and omnipotent.
hy2 An omniscient being would know there is evil.
hy3 An omnipotent being would prevent evil.
hy4 There is evil.
conc There is no God

	Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	815 OF 887	QUIT	
--	-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Russell's Argument

- hy1 If we can directly know that God exists, then we can know God exists by experience.
- **hy2** If we can indirectly know that God exists, then we can know God exists by logical inference from experience.
- hy3 If we can know that God exists, then we can directly know that God exists, or we can indirectly know that God exists.

	Home Page	CONTENTS	44	•	•	>>	Go Васк	FULL SCREEN	CLOSE	816 OF 887	QUIT
--	-----------	----------	----	---	---	-----------------	---------	-------------	-------	------------	------

QUIT

Russell's Argument

hy4 If we cannot know God empirically, then we cannot know God by experience and we cannot know God by logical inference from experience.

hy5 If we can know God empirically, then "God exists" is a scientific hypothesis and is empirically justifiable.

hy6 "God exists" is not empirically justifiable.

conc We cannot know that God exists.

				_						
HOME PAGE	CONTENTS	44	•	►	**	GO BACK	FULL SCREEN	CLOSE	817 OF 887	

Russell's Argument

- hy1 If we can directly know that God exists, then we can know God exists by experience.
- hy2 If we can indirectly know that God exists, then we can know God exists by logical inference from experience.
- hy3 lf we can know that God exists, then (we can directly know that God exists, or we can indirectly know that God exists).

	Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	818 OF 887	QUIT	
--	-----------	----------	----	---	---	-----------------	---------	-------------	-------	------------	------	--

Russell's Argument

hy4 If we cannot know God empirically, then (we cannot know God by experience and we cannot know God by logical inference from experience.)

hy5 If we can know God empirically, then ("God exists" is a scientific hypothesis and is empirically justifiable.)

hy6 "God exists" is not empirically justifiable.

conc We cannot know that God exists.

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	819 OF 887	QUIT

Propositions

A proposition is a sentence to which a truth value may be assigned.

In any real or imaginary world of facts a proposition has a truth value, true or false.

An atom is a simple proposition that has no propositions as components.

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	820 OF 887	QUIT

Compound Propositions

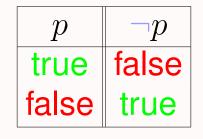
Compound propositions may be formed from atoms by using the following operators/constructors.

operator	symbol
not	
and	\wedge
or	\vee
ifthen	\Rightarrow
equivalent	\iff

Home Page	CONTENTS	44	•	►	••	GO ВАСК	FULL SCREEN	CLOSE	821 OF 887	QUIT

Valuations

Given truth values to individual atoms the truth values of compound propositions are evaluated as follows:



Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	822 OF 887	QUIT	

Valuations

p	q	$p \land q$	$p \lor q$	$p \Rightarrow q$	$p \Longleftrightarrow q$
	true				true
	false				false
false	true	false	true	true	false
false	false	false	false	true	true

Home Page	CONTENTS	44	•	►	••	GO BACK	FULL SCREEN	CLOSE	823 OF 887	QUIT

Tautology

A (compound) proposition is a tautology if it is true regardless of what truth values are assigned to its atoms.

Examples.

- $\bullet p {\vee} \neg p$
- ${}^{\bullet}\left(p{\wedge}q\right){\Rightarrow}p$
- $\bullet \left(p \wedge \neg p \right) {\Rightarrow} q$

HOME PAGE	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	824 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Properties

• Every proposition may be expressed in a logically equivalent form using only the operators \neg , \land and \lor

 $(p \longleftrightarrow q) = (p \Longrightarrow q) \land (q \Longrightarrow p)$ $(p \Longrightarrow q) = (\neg p \lor q)$

• De Morgan's laws may be applied to push - inward

 $\neg (p \land q) = \neg p \lor \neg q$ $\neg (p \lor q) = \neg p \land \neg q$

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	825 OF 887	QUIT	
											2

Negation Normal Form

- Double negations may be removed since
- Every proposition may be expressed in a form containing only \wedge and \vee with \neg appearing only in front of atoms.

 $\neg \neg p = p$

Home Page	CONTENTS	44	•	•	>>	Go Васк	FULL SCREEN	CLOSE	826 OF 887	QUIT

Literals & Clauses

- A literal is either an atom or applied to an atom
- ${\scriptstyle \bullet \lor}$ is commutative and associative
- A clause is of the form $\bigvee_{j=1}^{m} l_j$, where each l_j is a literal.

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	827 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Conjunctive Normal Form

• \lor may be distributed over \land

 $p \lor (q \land r) = (p \lor q) \land (p \lor r)$

- $\bullet \wedge$ is commutative and associative.
- Every proposition may be expressed in the form $\bigwedge_{i=1}^{n} q_i$, where each q_i is a clause.

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	828 OF 887	QUIT	
											4 1

Validity

- A logical argument consists of a number of hypotheses and a single conclusion $([h_1, \ldots, h_n]|c)$
- A logical argument is valid if the conclusion logically follows from the hypotheses.

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	829 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Logical Validity

The conclusion logically follows from the given hypotheses if for *any truth assignment* to the atoms,

either some hypothesis h_i is false

or whenever *every one* of the hypotheses is true the conclusion is also true

Ho	me Page	CONTENTS	44	4	•	••	Go Васк	FULL SCREEN	CLOSE	830 OF 887	QUIT	
----	---------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Validity & Tautologies

- A tautology is a valid argument in which there is a conclusion *without any* hypothesis.
- A logical argument $[h_1, \ldots, h_n]|c$, is valid if and only if

 $(h_1 \land \ldots \land h_n) \Rightarrow c$

is a tautology

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	831 OF 887	QUIT	
-----------	----------	----	---	---	-----------------	---------	-------------	-------	------------	------	--

Problem

Given an argument $[h_1, \ldots, h_n]|c$,

- determine whether $(h_1 \land \ldots \land h_n) \Rightarrow c$ is a tautology, and
- If it is not a tautology, to determine what truth assignments to the atoms make it false.

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	832 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Tautology Checking

A proposition in CNF ($\bigwedge_{i=1}^{n} p_i$)

- is a tautology if and only if every proposition p_i , $1 \leq i \leq m$, is a tautology.
- otherwise at least one clause p_i must be false
- Clause $p_i = \bigvee_{j=1}^m l_{ij}$ is false if and only if every literal l_{ij} , $1 \le j \le m$ is false

Home Page	CONTENTS	44	4		••	Go Васк	FULL SCREEN	CLOSE	833 OF 887	QUIT	-
TIOMETINGE	CONTENTS		•	-		de Brien	I SEE COMEEN	OLOGE		Gon	

Falsifying

For a proposition in CNF ($\bigwedge_{i=1}^{n} p_i$) that is not a tautology

- A clause $p_i = \bigvee_{j=1}^m l_{ij}$ for some *i*, $1 \le i \le n$ is false
- A clause $p_i = \bigvee_{j=1}^{m} l_{ij}$ is false if and only if every literal l_{ij} , for each j = 1, ..., m in p_i is false.
- A truth assignment that falsifies the argument
 - sets the atoms that occur negatively in p_i to true,
 - sets every other atom to false

HOME PAGE	CONTENTS	44	•	►	>>	GO BACK	FULL SCREEN	CLOSE	834 OF 887	QUIT	

11.2. Tautology Checking Contd.

- 1. Tautology Checking
- 2. Normal Forms
- 3. Top-down Development
- 4. The Signature
- 5. The Core subproblem
- 6. The datatype
- 7. Convert to CNF
- 8. Rewrite into NNF
- 9. \iff and \Rightarrow Elimination
- 10. Push ¬ inward
- 11. Push inward
- 12. conj_of_disj
- 13. Push \lor inward
- 14. Tautology & Falsification

					_					
Home Page	CONTENTS	••	<	►	••	GO BACK	FULL SCREEN	CLOSE	835 OF 887	QUIT

Tautology Checking

- Logical arguments
- Propositional forms
- Propositions
- Compound Propositions
- Truth table
- Tautologies

HOME PAGE	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	836 OF 887	Quit	

Normal Forms

- Properties
- Negation Normal Form
- Conjunctive Normal Forms
- Valid Propositional Arguments as tautologies
- The problem

Home Page	CONTENTS	44	•	•	**	Go Васк	FULL SCREEN	CLOSE	837 OF 887	QUIT

Top-down Development

- Transform the argument into a single proposition.
- Transfom the single proposition into one in CNF
- Check whether every clause is a tautology
- If any clause is not a tautology, find the truth assignment(s) that make it false

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	838 OF 887	QUIT	
											1

The Signature

```
signature PropLogic =
sig datatype Prop = ??
type Argument =
    Prop list * Prop
val falsifyArg :
Argument -> Prop list list
val Valid:
Argument -> bool *
    Prop list list
```

end;

	Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	839 OF 887	QUIT	
--	-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

The Core subproblem

- Representing propositions
- Transformation of propositions into CNF
 - Transform into Negation Normal Form (NNF)
 - Transform NNF into Conjunctive Normal Form (CNF)

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	840 OF 887	QUIT

The datatype

datatype Prop =
 ATOM of string
 NOT of Prop
 AND of Prop * Prop
 OR of Prop * Prop
 IMP of Prop * Prop
 EQL of Prop * Prop

Home Page	CONTENTS	44	4	►	••	Go Васк	FULL SCREEN	CLOSE	841 OF 887	QUIT	

Convert to CNF

Convert a given proposition into CNF

```
fun cnf (P) =
    conj_of_disj (
    nnf (rewrite (P)));
```

where

- rewrite eliminates \iff and \Rightarrow
- nnf converts into NNF
- conj_of_disj converts into CNF

Home Page	CONTENTS	44	
-----------	----------	----	--

Rewrite into NNF

- Eliminate \iff and <u>then</u> \Rightarrow
- Push ¬ inward using De Morgan's laws and eliminate double negations.

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	843 OF 887	QUIT	
-----------	----------	----	---	---	-----------------	---------	-------------	-------	------------	------	--

\iff and \Rightarrow Elimination

```
fun rewrite (ATOM a) = ATOM a
| rewrite (IMP (P, Q)) =
OR (NOT (rewrite(P)),
            rewrite(Q))
| rewrite (EQL (P, Q)) =
rewrite (AND (IMP(P, Q),
            IMP (Q, P)))
```

Proposition made up of only \neg , \land and \lor .

Home Page	CONTENTS	•

Push - inward

fun nnf (ATOM a) =

ATOM a

- nnf (NOT (ATOM a)) =
 - NOT (ATOM a)
- nnf (NOT (NOT (P))) =

nnf (P)

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	845 OF 887	QUIT	

Push - inward

Proposition made up of only \wedge and \vee applied to positive or negative literals.

	Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	846 OF 887	QUIT
--	-----------	----------	----	---	---	----	---------	-------------	-------	------------	------

conj_of_disj

```
fun conj_of_disj (AND (P, Q)) =
   AND (conj_of_disj (P),
        conj_of_disj (Q))
   conj_of_disj (OR (P, Q)) =
      distOR (conj_of_disj (P),
        conj_of_disj (Q))
   conj_of_disj (P) = P
```

where distOR is

							F 0				
HOME PAGE	CONTENTS	••	•	▶	••	GO BACK	FULL SCREEN	CLOSE	847 OF 887	QUIT	

Push v inward

Use distributivity of ∨ over ∧ fun distOR (P, AND (Q, R)) = AND (distOR (P, Q), distOR (P, R)) | distOR (AND (Q, R), P) = AND (distOR (Q, P), distOR (R, P)) | distOR (P, Q) = OR (P, Q)

Home Page

CONTENTS

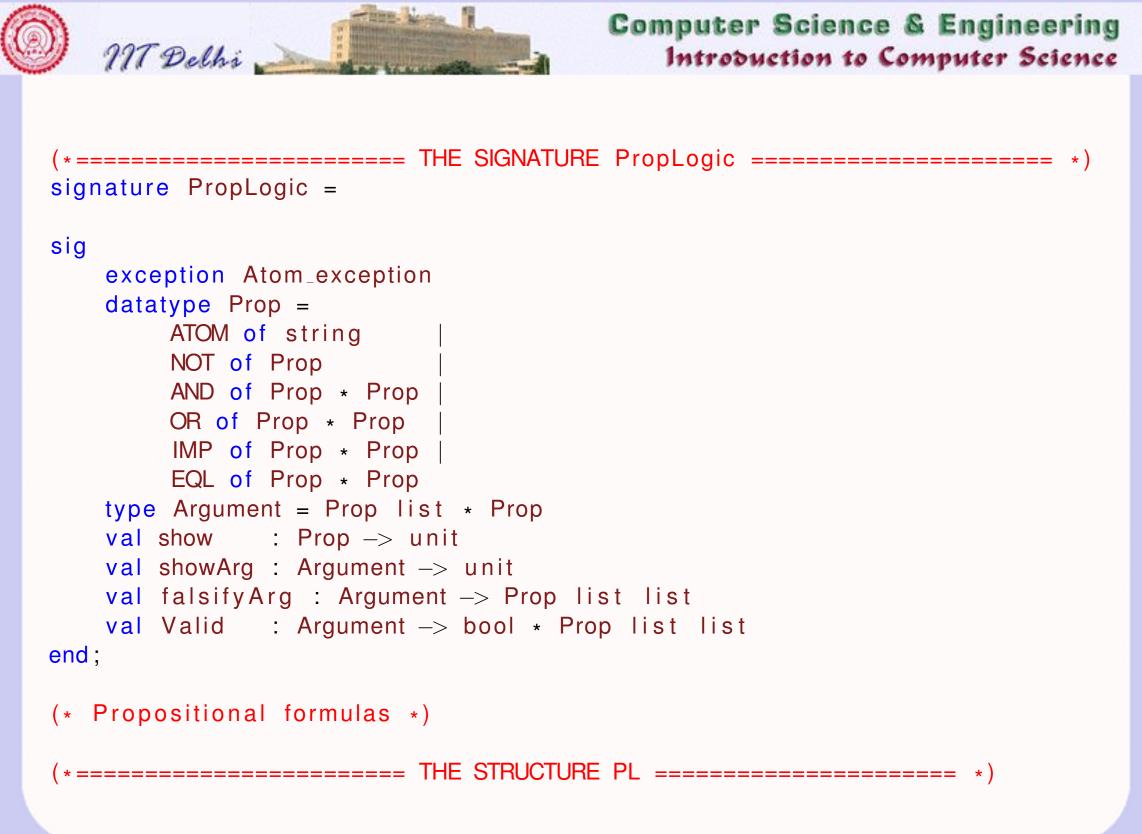
Tautology & Falsification

Falsifying a proposition

- A proposition Q in CNF is not a tautology *if and only if* at least one of the clauses can be made false, by a suitable truth assignment
- The list of atoms which are set true to falsify a clause is called a falsifier.
- A proposition is a tautology *if and only if* there is no falsifier!

CONTENTS

849 OF 887



Home Page	CONTENTS	44	•	•	>>	Go Васк	FULL SCREEN	CLOSE

QUIT


```
structure PL:PropLogic =
(* structure PL = *) (* This is for debugging purposes only *)
struct
```

```
datatype Prop =
   ATOM of string
   NOT of Prop
   AND of Prop * Prop
   OR of Prop * Prop
   IMP of Prop * Prop
   EQL of Prop * Prop
;
        *)
(*
exception Atom_exception;
fun newatom (s) = if s = "" then raise Atom_exception
                else (ATOM s);
fun drawChar (c, n) =
            if n>0 then (print(str(c)); drawChar(c, (n-1)))
            else ();
fun show (P) =
```

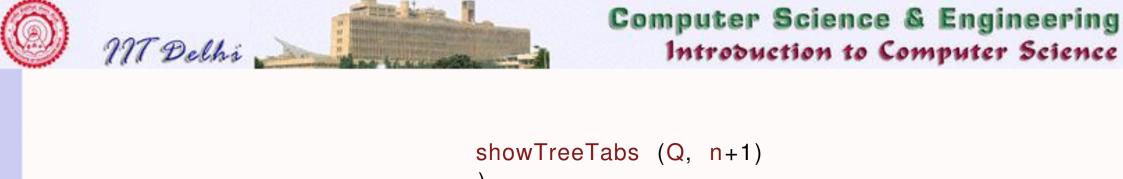
Home Page	CONTENTS	44	•	•	>>	GO ВАСК	FULL SCREEN	CLOSE	851 OF 887	QUIT


```
fun drawTabs (n) = drawChar (\#"\setminus t", n);
let
     fun showTreeTabs (ATOM a, n) = (drawTabs (n);
                                      print (a);
                                     print("\n")
         showTreeTabs (NOT (P), n) = (drawTabs(n); print ("NOT");
                                      showTreeTabs (P, n+1)
         showTreeTabs (AND (P, Q), n) =
                       (showTreeTabs (P, n+1);
                       drawTabs (n); print("AND\n");
                       showTreeTabs (Q, n+1)
         showTreeTabs (OR (P, Q), n) =
                       (showTreeTabs (P, n+1);
                       drawTabs (n); print("OR\n");
                       showTreeTabs (Q, n+1)
         showTreeTabs (IMP (P, Q), n) =
                       (showTreeTabs (P, n+1);
                       drawTabs (n); print("IMPLIES\n");
```

Номе

►

►► Go Back



```
    showTreeTabs (EQL (P, Q), n) =
        (showTreeTabs (P, n+1);
        drawTabs (n); print("IFF\n");
        showTreeTabs (Q, n+1)
        );
in (print ("\n"); showTreeTabs(P, 0); print ("\n"))
end
```

```
(* The function below evaluates a formula given a truth assignment.
The truth assignment is given as a list of atoms that are true
(all other atoms are false).
*)
```

```
fun lookup (x:Prop, []) = false
| lookup (x, h::L) = (x = h) orelse lookup (x, L)
```

HOME PAGE	CONTENTS
-----------	----------

;

••

◄

•

```
11T Delhi
```

```
;
fun eval (ATOM a, L) = lookup (ATOM a, L)
| eval (NOT (P), L) = if eval (P, L) then false else true
| eval (AND (P, Q), L) = eval (P, L) andalso eval (Q, L)
| eval (OR (P, Q), L) = eval (P, L) orelse eval (Q, L)
| eval (IMP (P, Q), L) = eval (OR (NOT (P), Q), L)
| eval (EQL (P, Q), L) = (eval (P, L) = eval (Q, L));
;
(* We could also write a tautology checker with out using truth
    assignments by first converting everything into a normal form.
```

```
*)
```

```
(* First rewrite implications and equivalences *)
```

fun	rewrite	(ATOM a)	= ATOM a
	rewrite	(NOT (P))	= NOT (rewrite (P))
	rewrite	(AND (P, Q))	<pre>= AND (rewrite(P), rewrite(Q))</pre>
	rewrite	(OR (P, Q))	= OR (rewrite(P), rewrite(Q))
	rewrite	(IMP (P, Q))	= OR (NOT (rewrite(P)), rewrite(Q))
	rewrite	(EQL (P, Q))	= rewrite $(AND (IMP(P, Q), IMP (Q, P)))$

Home Page	CONTENTS	44	•	•	>>	Go Васк	FULL SCREEN	CLOSE	854 OF 887	QUIT

(* Convert all formulas not containing IMP or EQL into Negation Normal Form.

```
*)
```

;

```
fun nnf (ATOM a) = ATOM a
   nnf (NOT (ATOM a)) = NOT (ATOM a)
   nnf (NOT (NOT (P))) = nnf (P)
   nnf (AND (P, Q)) = AND (nnf(P), nnf(Q))
   nnf (NOT (AND (P, Q))) = nnf (OR (NOT (P), NOT (Q)))
   nnf(OR(P, Q)) = OR(nnf(P), nnf(Q))
   nnf(NOT(OR(P, Q))) = nnf(AND(NOT(P), NOT(Q)))
(* Distribute OR over AND to get a NNF into CNF *)
fun distOR (P, AND (Q, R)) = AND (distOR (P, Q), distOR (P, R))
   distOR (AND (Q, R), P) = AND (distOR (Q, P), distOR (R, P))
   distOR (P, Q) = OR (P, Q)
(* Now the CNF can be easily computed *)
```

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	855 OF 887	QUIT

fun conj_of_disj (AND (P, Q)) = AND (conj_of_disj (P), conj_of_disj (Q))
| conj_of_disj (OR (P, Q)) = distOR (conj_of_disj (P), conj_of_disj (Q))
| conj_of_disj (P) = P
;
fun cnf (P) = conj_of_disj (nnf (rewrite (P)));

(* ------ Propositions to CNFs ----- *)

So we construct list of all the positive and negative atoms in every disjunct to check whether the lists are all equal. We need a binary

 \blacktriangleright

Home Page	
LIONE FAGE	

CONTENTS

◄


```
function on lists to determine whether two list are disjoint *)
```

```
fun isPresent (a, []) = false
    isPresent (a, b::L) = (a = b) orelse isPresent (a, L)
fun disjoint ([], M)
                                       = true
    disjoint (L, [])
                                       = true
    disjoint (L as a::LL, M as b::MM) =
        not(isPresent (a, M)) andalso
        not(isPresent(b, L)) andalso
        disjoint (LL, MM)
,
(* ABHISHEK : Defining a total ordering on atoms (lexicographic
   ordering on underlying strings), and extending it to a list of atoms.
*)
```

```
exception notAtom;
```

CONTENTS

```
fun atomLess (a, b) =
```

4

Home Page	

 \blacktriangleright

case (a, b) of (ATOM(x), ATOM(y)) => x<y | (_,_) => raise notAtom;

- fun listLess (a, b) =
 case (a, b) of
 (_, []) => false
 | ([], _) => true
 | (x::lx, y::ly) => if atomLess(x,y) then true
 else if atomLess(y,x) then false
 else listLess(lx,ly);
- (* ABHISHEK : Once we have a list of falsifiers, we would want to remove any duplication, firstly of atoms within a falsifier, and secondly of falsifiers themselves.

In order to do this, we maintain all lists in some sorted order. Instead of sorting a list with a possibly large number of duplicates, we check for duplicates while inserting, and omit insertion if a previous instance is detected.

Номе	DACE
TUNE	FAGE

*)

◄

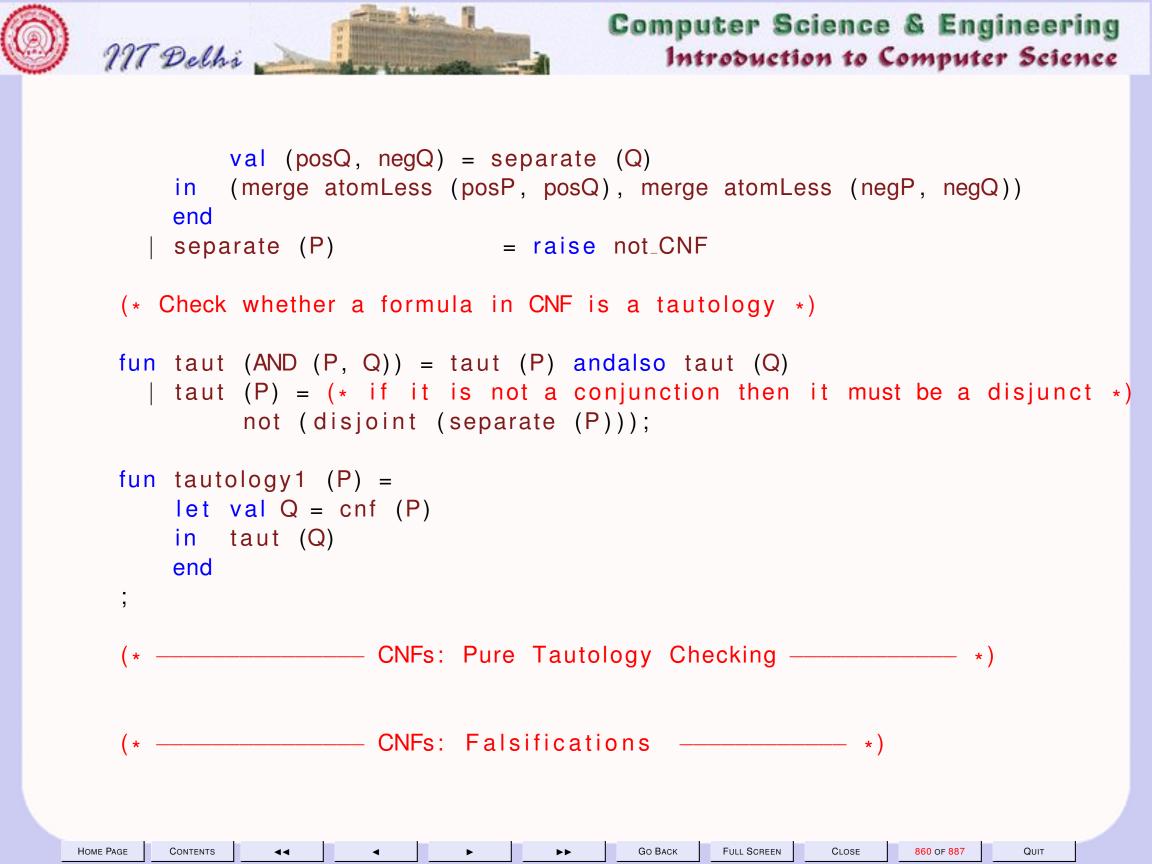
 \blacktriangleright

Go Васк

```
11T Delhi
```

```
fun merge less ([], 12) = 12
   merge less (|1,[]) = |1|
   merge less (x::|1, y::|2) =
    if less(x,y) then x::merge less (l1,y::l2)
    else if less(y,x) then y::merge less (x::11,12)
    else merge less (x::|1,|2);
(* ABHISHEK : Claim is that if all lists are built through the above
   function, then there is no need to sort or remove duplicates.
   Hence all '@' operations have been replaced by merge.
*)
(* To separate the positive from the negative literals in a clause *)
exception not_CNF;
fun separate (ATOM a) = ([ATOM a], [])
    separate (NOT (ATOM a)) = ([], [ATOM a])
    separate (OR (P, Q))
                            =
    let val (posP, negP) = separate (P);
```

Home Page	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	859 of 887	QUIT



- (* The main problem with the above is that it checks whether a given proposition is a tautology, but whenever it is not, it does not yield a falsifying truth assignment. We rectify this problem below.
- *)
- (* Assume Q is a proposition in CNF. Then it is only necessary to list out all the lists of truth assignments that can falsify P.

Suppose Q is in CNF, but not a tautology. Further let

 $Q = AND (D1, \ldots, Dn)$

where each Di is a disjunction of literals. Each Di = Pi + Ni where Pi and Ni are the lists of atoms denoting the positive and negative literals respectively.

If Pi and Ni are disjoint, then Ni is a truth assignment which falsifies the proposition Q. That is,

(i) if every atom in Ni is assigned TRUE, and(ii) (implicitly) every other atom is assigned the value FALSE,

HOME PAGE CONTENTS	44	4	►	••	Go Васк	FULL SCREEN	CLOSE	861 OF 887	QUIT

then the clause Di is FALSE and hence Q is FALSE.

```
We refer to Ni as a FALSIFIER of Q. Hence it is only necessary to list out all the FALSIFIERS of Q (if any)
```

*)

(* The following function assumes Q is in CNF and outputs a list of list of atoms that can falsify Q. If this list of list of atoms is empty then clearly Q cannot be falsified and is hence a tautology. *)

```
fun falsify (Q) =
    let fun list_Falsifiers (AND (A, B)) =
        merge listLess (list_Falsifiers (A), list_Falsifiers (B))
        l list_Falsifiers (A) = (* Assume A is a disjunct of literals *)
        let val (PLA, NLA) = separate (A)
        in if disjoint (PLA, NLA) then [NLA]
        else []
        end
```

HOME PAGE CONTENTS 44 4 D D GO BACK FULL SCREEN CLO	862 OF 887 QUIT
---	-----------------

HOME PAGE

CONTENTS

••

◄

►

Computer Science & Engineering Introduction to Computer Science

```
in list_Falsifiers (Q)
   end
,
fun tautology2 (P) =
   let val Q = cnf (P);
          val LL = falsify (Q)
          if null (LL) then (true, [])
   in
          else (false, LL)
   end
;
val tautology = tautology2;
     _____ * )
(*
      _____ Logical Arguments: Validity _____ *)
( *
type Argument = Prop list * Prop;
fun showArg (A: Argument) =
   let fun printArg (A:Argument as ([], c)) =
```

 \blacktriangleright

GO BACK

FULL SCREEN

CLOSE

863 OF 887


```
(drawChar (#"-", 80); print("\n");
             show (c); print ("\n\n")
            printArg (A:Argument as (p::plist, c)) =
             (show (p); print ("\n");
              printArg (plist, c)
    in (print ("\n\); printArg (A))
    end
;
fun leftReduce (F) =
    let exception emptylist;
           fun lr ([]) = raise emptylist
               lr([a]) = a
               Ir (a::L) = F (a, Ir (L))
    in
        l r
    end
;
```

```
val bigAND = leftReduce (AND);
```

CONTENTS

◄

 \blacktriangleright


```
fun Valid ((L, P):Argument) =
    if null (L) then tautology (P)
    else tautology (IMP (bigAND (L), P))
;
fun falsifyArg ((L, P): Argument) =
    if null (L) then falsify (cnf(P))
    else falsify (cnf (IMP (bigAND (L), P)))
;
end (* struct *);
(* open PL; *)
```

HOME PAGE	CONTENTS	44	•	•	••	Go Васк	FULL SCREEN	CLOSE	865 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Previous: Introduction to Computing

12. Lecture-wise Index to Slides

11T Delhi

Index	
Introduction to Computing	(3-8)
1. Introduction	
2. Computing tools	
3. Ruler and Compass	
4. Computing and Computers	
5. Primitives	
6. Algorithm	
7. Problem: Doubling a Square	
8. Solution: Doubling a Square	
9. Execution: Step 1	
10. Execution: Step 2	
11. Doubling a Square: Justified	
12. Refinement: Square Construction	
13. Refinement 2: Perpendicular at a point	
14. Solution: Perpendicular at a point	
15. Perpendicular at a point: Justification	
	Next: Our Computing Tool
Our Computing Tool	(9-33)

- 1. The Digital Computer: Our Computing Tool
- 2. Algorithms
- 3. Programming Language

TIOME FAGE CONTENTS TO CLOSE CONTENTS TO CLOSE CONTENTS TO CLOSE CONTENTS	HOME PAGE	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	866 OF 887	QUIT
---	-----------	----------	----	---	---	----	---------	-------------	-------	------------	------

4. Programs and Languages

11T Delhi _

- 5. Programs
- 6. Programming
- 7. Computing Models
- 8. Primitives
- 9. Primitive expressions
- 10. Methods of combination
- 11. Methods of abstraction
- 12. The Functional Model
- 13. Mathematical Notation 1: Factorial
- 14. Mathematical Notation 2: Factorial
- 15. Mathematical Notation 3: Factorial
- 16. A Functional Program: Factorial
- 17. A Computation: Factorial
- 18. A Computation: Factorial
- 19. A Computation: Factorial
- 20. A Computation: Factorial
- 21. A Computation: Factorial
- 22. A Computation: Factorial
- 23. A Computation: Factorial
- 24. Standard ML
- 25. SML: Important Features

Primitives: Integer & Real

Next: Primitives: Integer & Real

(34-60)

Previous: Primitives: Integer & Real

1. Algorithms & Programs

HOME PAGE CONTENTS <

2. SML: Primitive Integer Operations 1 3. SML: Primitive Integer Operations 1 4. SML: Primitive Integer Operations 1 5. SML: Primitive Integer Operations 1 6. SML: Primitive Integer Operations 1 7. SML: Primitive Integer Operations 1 8. SML: Primitive Integer Operations 2 9. SML: Primitive Integer Operations 2 10. SML: Primitive Integer Operations 2 11. SML: Primitive Integer Operations 2 12. SML: Primitive Integer Operations 2 13. SML: Primitive Integer Operations 3 14. SML: Primitive Integer Operations 3 15. SML: Primitive Integer Operations 3 16. SML: Primitive Integer Operations 3 17. SML: Primitive Integer Operations 3 18. Quotient & Remainder 19. SML: Primitive Real Operations 1 20. SML: Primitive Real Operations 1 21. SML: Primitive Real Operations 1 22. SML: Primitive Real Operations 2 23. SML: Primitive Real Operations 3 24. SML: Primitive Real Operations 4 25. SML: Precision 26. Fibonacci Numbers

117 Delhi

27. Euclidean Algorithm

Next: Technical Completeness & Algorithms

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	868 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

Technical Completeness & Algorithms

- 1. Recapitulation: Integers & Real
- 2. Recap: Integer Operations
- 3. Recapitulation: Real Operations
- 4. Recapitulation: Simple Algorithms
- 5. More Algorithms
- 6. Powering: Math
- 7. Powering: SML
- 8. Technical completeness
- 9. What SML says
- 10. Technical completeness
- 11. What SML says ... contd
- 12. Powering: Math 1
- 13. Powering: SML 1
- 14. Technical Completeness
- 15. What SML says
- 16. Powering: Integer Version
- 17. Exceptions: A new primitive
- 18. Integer Power: SML
- 19. Integer Square Root 1
- 20. Integer Square Root 2
- 21. An analysis
- 22. Algorithmic idea
- 23. Algorithm: isqrt
- 24. Algorithm: shrink
- 25. SML: shrink
- 26. SML: intsqrt

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	869 OF 887	QUIT

(61-92)

117 Delhi _

Computer Science & Engineering Introduction to Computer Science

27. Run it! 28. SML: Reorganizing Code 29. Intsqrt: Reorganized 30. shrink: Another algorithm 31. Shrink2: SML 32. Shrink2: SML ... contd Algorithm Refinement (93-122)1. Recap: More Algorithms 2. Recap: Power 3. Recap: Technical completeness 4. Recap: More Algorithms 5. Intsqrt: Reorganized 6. Intsqrt: Reorganized 7. Some More Algorithms 8. Combinations: Math 9. Combinations: Details 10. Combinations: SML 11. Perfect Numbers 12. Refinement 13. Perfect Numbers: SML **14.** $\sum_{l=1}^{u} ifdivisor(k)$ 15. SML: sum_divisors 16. *if divisor* and if divisor 17. SML: Assembly 1 18. SML: Assembly 2 19. Perfect Numbers ... contd. 20. Perfect Numbers ... contd.

Home Page	CONTENTS	44	•	►	>	Go Васк	FULL SCREEN	CLOSE	870 OF 887	QUIT	
											7

- 21. SML: Assembly 3
- 22. Perfect Numbers: Run
- 23. Perfect Numbers: Run
- 24. SML: Code variations
- 25. SML: Code variations
- 26. SML: Code variations
- 27. Summation: Generalizations

11T Delhi _

- 28. Algorithmic Improvements:
- 29. Algorithmic Variations
- 30. Algorithmic Variations

Variations: Algorithms & Code

- 1. Recap
- 2. Recap: Combinations
- 3. Combinations 1
- 4. Combinations 2
- 5. Combinations 3
- 6. Perfect 2
- 7. Power 2
- 8. A Faster Power
- 9. Power2: Complete
- 10. Power2: SML
- 11. Power2: SML
- 12. Computation: Issues
- 13. General Correctness
- 14. Code: Justification
- 15. Recall
- 16. Features: Definition before Use

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	871 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

(123-149)

- 17. Run ifdivisor
- 18. Diagnosis: Features of programs
- 19. Back to Math
- 20. Incorrectness
- 21. ifdivisor3
- 22. Run it!
- 23. Try it!
- 24. Hey! Wait a minute!
- 25. The n's
- 26. Scope
- 27. Scope Rules

Names, Scopes & Recursion

- 1. Disjoint Scopes
- 2. Nested Scopes
- 3. Overlapping Scopes
- 4. Spannning
- 5. Scope & Names
- 6. Names & References
- 7. Names & References
- 8. Names & References
- 9. Names & References
- 10. Names & References
- 11. Names & References
- 12. Names & References
- 13. Names & References
- 14. Names & References
- 15. Names & References

Home Page	CONTENTS	44	•	Þ	••	Go Васк	FULL SCREEN	CLOSE	872 OF 887	QUIT

(150-181)

16. Definition of Names

117 Delhi

- 17. Use of Names
- 18. local...in...end
- 19. local...in...end
- 20. local...in...end
- **21.**local...end
- 22. Scope & local
- 23. Computations: Simple
- 24. Simple computations
- 25. Computations: Composition
- 26. Composition: Alternative
- 27. Compositions: Compare
- 28. Compositions: Compare
- 29. Computations: Composition
- 30. Recursion
- 31. Recursion: Left
- 32. Recursion: Right

Floating Point

- 1. So Far-1: Computing
- 2. So Far-2: Algorithms & Programs
- 3. So far-3: Top-down Design
- 4. So Far-4: Algorithms to Programs
- 5. So far-5: Caveats
- 6. So Far-6: Algorithmic Variations
- 7. So Far-7: Computations
- 8. Floating Point
- 9. Real Operations

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	873 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

(182-201)

- 10. Real Arithmetic
- 11. Numerical Methods

117 Delhi _

- 12. Errors
- 13. Errors
- 14. Infinite Series
- 15. Truncation Errors
- 16. Equation Solving
- 17. Root Finding-1
- 18. Root Finding-2
- 19. Root Finding-3
- 20. Root Finding-4

Root Finding, Composition and Recursion

- 1. Root Finding: Newton's Method
- 2. Root Finding: Newton's Method
- 3. Root Finding: Newton's Method
- 4. Root Finding: Newton's Method
- 5. Root Finding: Newton's Method
- 6. Root Finding: Newton's Method
- 7. Newton's Method: Basis
- 8. Newton's Method: Basis
- 9. Newton' Method: Algorithm
- 10. What can go wrong!-1
- 11. What can go wrong!-2
- 12. What can go wrong!-2
- 13. What can go wrong!-3
- 14. What can go wrong!-4
- 15. Real Computations & Induction: 1

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	874 OF 887	QUIT	
											4

(202-229)

- 16. Real Computations & Induction: 2
- 17. What's it good for? 1
- 18. What's it good for? 2
- 19. newton: Computation
- 20. Generalized Composition
- **21.** Two Computations of h(1)
- **22.** Two Computations of h(-1)
- 23. Recursive Computations
- 24. Recursion: Left
- 25. Recursion: Right
- 26. Recursion: Nonlinear
- 27. Some Practical Questions
- 28. Some Practical Questions

Termination and Space Complexity

- 1. Recursion Revisited
- 2. Linear Recursion: Waxing
- 3. Recursion: Waning
- 4. Nonlinear Recursions
- 5. Fibonacci: contd
- 6. Recursion: Waxing & Waning
- 7. Unfolding Recursion
- 8. Non-termination
- 9. Termination
- 10. Proofs of termination
- 11. Proofs of termination: Induction
- 12. Proof of termination: Factorial
- 13. Proof of termination: Factorial

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	875 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

(230-266)

14. Fibonacci: Termination

117 Delhi _

- 15. GCD: Definition
- 16. GCD computations
- 17. Well-foundedness: GCD
- 18. Well-foundedness
- 19. Induction is Well-founded
- 20. Induction is Well-founded
- 21. Where it doesn't work
- 22. Well-foundedness is inductive
- 23. Well-foundedness is inductive
- 24. GCD: Well-foundedness
- 25. Newton: Well-foundedness
- 26. Newton: Well-foundedness
- 27. Example: Zero
- 28. Questions
- 29. The Collatz Problem
- 30. Questions
- 31. Space Complexity
- 32. Newton & Euclid: Absolute
- 33. Newton & Euclid: Relative
- 34. Deriving space requirements
- 35. GCD: Space
- 36. Factorial: Space
- 37. Fibonacci: Space
- 38. Fibonacci: Space

Efficiency Measures and Speed-ups

1. Recapitulation

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	876 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

- 2. Recapitulation
- 3. Time & Space Complexity

11T Delhi

- 4. *isqrt*: Space
- 5. Time Complexity
- 6. isqrt: Time Complexity
- 7. isqrt2: Time
- 8. *shrink* vs. *shrink*2: Times
- 9. Factorial: Time Complexity
- 10. Fibonacci: Time Complexity
- 11. Comparative Complexity
- 12. Comparisons
- 13. Comparisons
- 14. Efficiency Measures: Time
- 15. Efficiency Measures: Space
- 16. Speeding Up: 1
- 17. Speeding Up: 2
- 18. Factoring out calculations
- 19. Tail Recursion: 1
- 20. Tail Recursion: 2
- 21. Factorial: Tail Recursion
- 22. Factorial: Tail Recursion
- 23. A Computation
- 24. Factorial: Issues
- 25. Fibonacci: Tail Recursion
- 26. Fibonacci: Tail Recursion
- 27. fibTR: SML
- 28. State in Tail Recursion
- 29. Invariance

Home Page Contents	▶▶ Go Back	FULL SCREEN CLOSE	877 OF 887 QUIT
--------------------	------------	-------------------	-----------------

Invariance & Correctness

- 1. Recap
- 2. Recursion Transformation
- 3. Tail Recursion: Examples
- 4. Comparisons
- 5. Transformation Issues
- 6. Correctness Issues 1
- 7. Correctness Issues 2
- 8. Correctness Theorem
- 9. Invariants & Correctness 1
- 10. Invariants & Correctness 2
- **11. Invariance Lemma:** *factL_tr*
- 12. Invariance: Example
- 13. Invariance: Example
- 14. Proof
- **15.** Invariance Lemma: *fib_iter*
- 16. Proof
- 17. Correctness: Fibonacci
- 18. Variants & Invariants
- 19. Variants & Invariants
- 20. More Invariants
- 21. Fast Powering 1
- 22. Fast Powering 2
- 23. Root Finding: Bisection
- 24. Advantage Bisection

Tuples, Lists & the Generation of Primes

1. Recap: Tail Recursion

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	878 OF 887	QUIT	
-----------	----------	----	---	---	-----------------	---------	-------------	-------	------------	------	--

(296-319)

(320-341)

(342 - 367)

2. Examples: Invariants

117 Delhi

- 3. Tuples
- 4. Lists
- 5. New Lists
- 6. List Operations
- 7. List Operations: cons
- 8. Generating Primes upto n
- 9. More Properties
- 10. Composites
- 11. Odd Primes
- **12.** primesUpto(n)
- **13.** generateFrom(P, m, n, k)
- **14.** *generateFrom*
- **15.** primeWRT(m, P)
- **16.** primeWRT(m, P)
- **17.** *primeWRT*
- 18. Density of Primes
- 19. The Prime Number Theorem
- 20. The Prime Number Theorem
- 21. Complexity
- 22. Diagnosis

Compound Data & Lists

- 1. Compound Data
- 2. Recap: Tuples
- 3. Tuple: Formation
- 4. Tuples: Selection
- 5. Tuples: Equality

Home Page	CONTENTS	44	•	Þ	>>	Go Васк	FULL SCREEN	CLOSE	879 OF 887	QUIT	

(368 - 394)

6. Tuples: Equality errors

117 Delhi

- 7. Lists: Recap
- 8. Lists: Append
- 9. cons vs. @
- 10. Lists of Functions
- 11. Lists of Functions
- 12. Arithmetic Sequences
- 13. Tail Recursion
- 14. Tail Recursion Invariant
- 15. Tail Recursion
- 16. Another Tail Recursion: AS3
- 17. Another Tail Recursion: AS3_iter
- 18. AS3: Complexity
- 19. Generating Primes: 2
- **20.** primes2Upto(n)
- **21.** generate2From(P, m, n, k)
- **22.** generate2From
- **23.** prime2WRT(m, P)
- **24.** *prime*2*WRT*
- 25. *primes*2: Complexity
- 26. primes2: Diagnosis

Compound Data & List Algorithms

- 1. Compound Data: Summary
- 2. Records: Constructors
- 3. Records: Example 1
- 4. Records: Example 2
- 5. Records: Destructors

HOME PAGE CONTENTS 44 A I I I I I I CLOSE 880 OF 887 QUIT	HOME PAGE	Contents	•	►	>>	Go Васк	FULL SCREEN	CLOSE	880 OF 887	QUIT	
---	-----------	----------	---	---	-----------------	---------	-------------	-------	------------	------	--

- 6. Records: Equality
- 7. Tuples & Records
- 8. Back to Lists
- 9. Lists: Correctness
- 10. Lists: Case Analysis
- 11. Lists: Correctness by Cases

117 Delhi _

- **12.** List-functions: *length*
- 13. List Functions: *search*
- 14. List Functions: *search*2
- 15. List Functions: ordered
- 16. List Functions: *insert*
- 17. List Functions: *reverse*
- **18. List Functions:** *reverse*2
- **19.** List Functions:*merge*
- **20.** List Functions:*merge*
- 21. List Functions:merge contd.
- **22.** ML: *merge*
- 23. Sorting by Insertion
- 24. Sorting by Merging
- 25. Sorting by Merging
- 26. Functions as Data
- 27. Higher Order Functions

Higher Order Functions

- 1. Summary: Compound Data
- 2. List: Examples
- 3. Lists: Sorting
- 4. Higher Order Functions

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	881 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

(395-419)

- 5. An Example
- 6. Currying
- 7. Currying: Contd

117 Delhi

- 8. Generalization
- 9. Generalization: 2
- 10. Applying a list
- 11. Trying it out
- 12. Associativity
- 13. Apply to a list
- 14. Sequences
- 15. Further Generalization
- 16. Further Generalization
- 17. Sequences
- 18. Efficient Generalization
- 19. Sequences: 2
- 20. More Generalizations
- 21. More Summations
- 22. Or Maybe ... Products
- 23. Or Some Other \otimes
- 24. Other \otimes
- 25. Examples of \otimes , e

Structured Data

- 1. Transpose of a Matrix
- 2. Transpose: 0
- 3. Transpose: 10
- 4. Transpose: 01
- 5. Transpose: 20

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	882 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

(420-451)

- 6. Transpose: 02
- 7. Transpose: 30
- 8. Transpose: 03
- **9**. *trans*
- **10.** *is*2*DMatrix*
- 11. User Defined Types
- 12. Enumeration Types
- 13. User Defined Structural Types

117 Delhi _

- 14. Functions vs. data
- 15. Data as 0-ary Functions
- 16. Data vs. Functions
- 17. Data vs. Functions: Recursion
- 18. Lists
- 19. Constructors
- 20. Shapes
- 21. Shapes: Triangle Inequality
- 22. Shapes: Area
- 23. Shapes: Area
- 24. ML: Try out
- 25. ML: Try out (contd.)
- 26. Enumeration Types
- 27. Recursive Data Types
- 28. Resistors: Datatype
- 29. Resistors: Equivalent
- 30. Resistors
- 31. Resistors: Example
- 32. Resistors: ML session

User Defined Structured Data Types

(452-472)

HOME FAGE CONTENTS 44 P PP GO DACK FULL SCREEN GLOSE 005 OF 007 QUIT	Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	883 OF 887	QUIT
--	-----------	----------	----	---	---	----	---------	-------------	-------	------------	------

1. User Defined Types

117 Delhi _

- 2. Resistors: Grouping
- 3. Resistors: In Pairs
- 4. Resistor: Values
- 5. Resistance Expressions
- 6. Resistance Expressions
- 7. Arithmetic Expressions
- 8. Arithmetic Expressions: 0
- 9. Arithmetic Expressions: 1
- 10. Arithmetic Expressions: 2
- 11. Arithmetic Expressions: 3
- 12. Arithmetic Expressions: 4
- 13. Arithmetic Expressions: 5
- 14. Arithmetic Expressions: 6
- 15. Arithmetic Expressions: 7
- 16. Arithmetic Expressions: 8
- 17. Binary Trees
- 18. Arithmetic Expressions: 0
- 19. Trees: Traversals
- 20. Recursive Data Types: Correctness
- 21. Data Types: Correctness

Introducing a Memory Model

- 1. Summary: Functional Model
- 2. CPU & Memory: Simplified
- 3. Resource Management
- 4. Shell: User Interface
- 5. GUI: User Interface

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	884 OF 887	QUIT	
-----------	----------	----	---	---	-----------------	---------	-------------	-------	------------	------	--

(473-499)

6. Memory Model: Simplified

117 Delhi _

- 7. Memory
- 8. The Imperative Model
- 9. State Changes: σ
- 10. State
- 11. State Changes
- 12. State Changes: σ
- 13. State Changes: σ_1
- 14. State Changes: σ_2
- 15. Languages
- 16. User Programs
- 17. Imperative Languages
- 18. Imperative vs Functional Variables
- 19. Assignment Commands
- 20. Assignment Commands
- 21. Assignment Commands
- 22. Assignment Commands
- 23. Assignment Commands
- 24. Assignment Commands: Swap
- 25. Swap
- 26. Swap
- 27. Swap

Imperative Programming:

- 1. Imperative vs Functional
- 2. Features of the Store
- 3. References: Experiments
- 4. References: Experiments

Home Page	CONTENTS	44	•	►	••	Go Васк	FULL SCREEN	CLOSE	885 OF 887	QUIT	
-----------	----------	----	---	---	----	---------	-------------	-------	------------	------	--

(500-524)

5. References: Experiments

11T Delhi _

- 6. Aliases
- 7. References: Experiments
- 8. References: Aliases
- 9. References: Experiments
- 10. After Garbage Collection
- 11. Side Effects
- 12. Imperative ML
- 13. Imperative ML
- 14. Imperative ML
- 15. Imperative ML
- 16. Nasty Surprises
- 17. Imperative ML
- 18. Imperative ML
- 19. Common Errors
- 20. Aliasing & References
- 21. Dangling References
- 22. New Reference
- 23. Imperative Commands: Basic
- 24. Imperative Commands: Compound
- 25. Predefined Compound Commands

Arrays

- 1. Why Imperative
- 2. Arrays
- 3. Indexing Arrays
- 4. Indexing Arrays
- 5. Indexing Arrays

HOME PAGE	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	886 OF 887	QUIT	
-----------	----------	----	---	---	-----------------	---------	-------------	-------	------------	------	--

(525-537)

6. Physical Addressing

11T Delhi

- 7. Arrays
- 8. 2D Arrays
- 9. 2D Arrays: Indexing
- 10. Ordering of indices
- 11. Arrays vs. Lists
- 12. Arrays: Physical
- 13. Lists: Physical

Large Example: Tautology Checking

- 1. Logical Arguments
- 2. Saintly and Rich
- 3. About Cats
- 4. About God
- 5. Russell's Argument
- 6. Russell's Argument
- 7. Russell's Argument
- 8. Russell's Argument
- 9. Propositions
- 10. Compound Propositions
- 11. Valuations
- 12. Valuations
- 13. Tautology
- 14. Properties
- 15. Negation Normal Form
- 16. Literals & Clauses
- 17. Conjunctive Normal Form
- 18. Validity

Home Page	CONTENTS	44	•	►	>>	Go Васк	FULL SCREEN	CLOSE	887 OF 887	QUIT	
-----------	----------	----	---	---	-----------------	---------	-------------	-------	------------	------	--

(538-560)

- 19. Logical Validity
- 20. Validity & Tautologies

11T Delhi

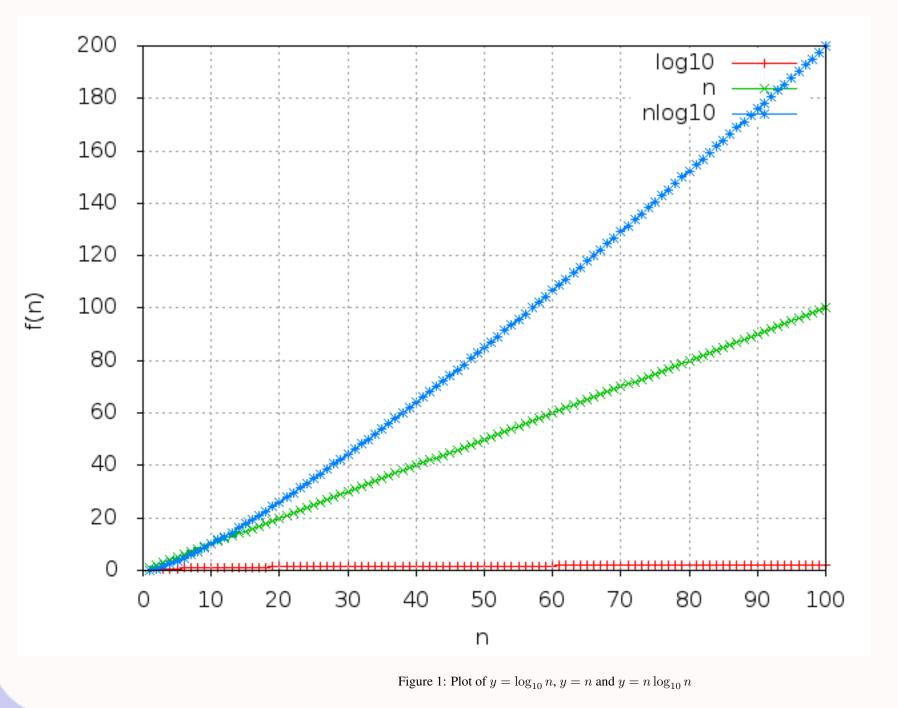
- 21. Problem
- 22. Tautology Checking
- 23. Falsifying

Tautology Checking Contd.

- 1. Tautology Checking
- 2. Normal Forms
- 3. Top-down Development
- 4. The Signature
- 5. The Core subproblem
- 6. The datatype
- 7. Convert to CNF
- 8. Rewrite into NNF
- 9. \iff and \Rightarrow Elimination
- 10. Push ¬ inward
- 11. Push inward
- 12. conj_of_disj
- 13. Push \lor inward
- 14. Tautology & Falsification

Home Page	CONTENTS	44	-	►	••	Go Васк	FULL SCREEN	CLOSE	888 OF 887	QUIT	

(561-574)



Home Page	CONTENTS	44		▶	••	Go Васк	FULL SCREEN	CLOSE	889 OF 887	QUIT	
			(/		(<u> </u>	()					1

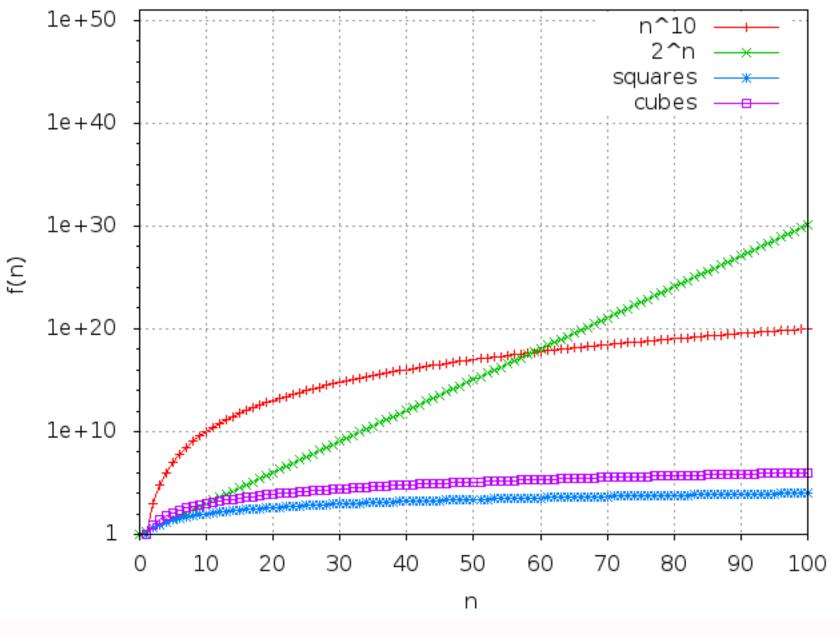


Figure 2: Plots of $y = n^2$, $y = n^3$, $y = n^{10}$ and $y = 2^n$

HOME PAGE CONTENTS 44 4 I I I I COURT COURT CONTENTS	890 OF 887 QUIT	
--	-----------------	--