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Colour Coding of text
• Black is normal foreground colour.
• Brown is the colour of slide headings.
• Various colours like brown, red and blue are used to provide emphasis
or to stand out from the usual text.

• The special colour magenta is used to denote a hyperlink. These hy-
perlinks are “mouse-clickable” and they take you to a different slide
often out of order. You may use the GO BACK button to return in the
reverse order of the traversal of hyperlinks.

• Blue type-writer font is used for SML keywords, system re-
sponses while running programs etc.
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Introduction
• This course is about computing
• Computing as a process is nearly as fundamental as arithmetic
• Computing as a mental process
• Computing may be done with a variety of tools which may or may not
assist the mind

http://www.cse.iitd.ac.in/~sak
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Computing tools
• Sticks and stones (counting)
• Paper and pencil (an aid to mental computing)
• Abacus (still used in Japan!)
• Slide rules (ask a retired engineer!)
• Straight-edge and compass

http://www.cse.iitd.ac.in/~sak
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Straight-edge and Compass
Actually it is a computing tool.
• Construct a length that is half of a given length
• Bisect an angle
• Construct a square that is twice the area of a given square
• Construct

√
10

http://www.cse.iitd.ac.in/~sak
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Straight-edge and Compass: Primitives
A more exact description of ruler and compass primitives
Straight-edge: Can specify lines, rays and line segments. Cannot really

specify lengths since the ruler is only supposed to be an unmarked
straight-edge.

Compass:
1. Can define arcs and circles,
2. Can specify only comparative non-zero lengths and not absolute

lengths.
Straight-edge and Compass: Can specify points of intersection.
Note that an unmarked straight-edge cannot be used to compare lengths.

http://www.cse.iitd.ac.in/~sak
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Problem: Doubling a Square
Consider an example from “Straight-edge and Compass Constructions”.
Given a square, construct another square of twice the area of the original
square.

A

B C

D

Note.
• Whatever lengths we assume in the solution have to be taken only as
symbolic and not absolute since with an unmarked straight-edge and
compass only relative comparisons are possible – no absolute lengths
are possible.

• The (symbolic) lengths we assume are necessary only in the justifica-
tion of correctness of the construction.

http://www.cse.iitd.ac.in/~sak
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Solution & Justification: Doubling a Square
Assume given a square �ABCD of side a > 0.
1. Draw the diagonal AC. AC =

√
2a

2. Complete the square �ACEF on side AC. Area of �ACEF = 2a2.
Note.

• Even though this is a simple 2-step algorithm, the steps may not all be primitive operations.

• The non-primitive operations need to be regarded as new problems which have to be solved. This is the
process of refinement of the algorithm.

• In this case Step 2 is a non-primitive operation which needs to be solved separately. One possible solution is
shown in the hyperlink target of step 2.

• Assuming that step 2 can be executed correctly the blue text provides the justification which proves the cor-
rectness of this algorithm for the given problem.

http://www.cse.iitd.ac.in/~sak
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Execution: Step 1
Step 1 is a primitive operation which may be executed using the straight-edge.

Draw the diagonal AC.
A

B C

D

http://www.cse.iitd.ac.in/~sak
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Execution: Step 2
Complete the square �ACEF on side AC.

A

B C

D

Step 2 is however not a primitive operation. So one regards it as a new problem to be solved by refinement.

http://www.cse.iitd.ac.in/~sak
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Refinement: Square
Given a line segment of length b > 0 construct a square of side b.
Assume given a line segment PQ of length b.
1. Construct two lines l1 and l2 perpendicular to PQ passing through P

and Q respectively
2. On the same side of PQ mark points R on l1 and S on l2 such that
PR = PQ = QS.

3. Draw RS. �PQSR is a square of side b

http://www.cse.iitd.ac.in/~sak
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Square on Segment: 0
Assume given a line segment PQ of length b.

P Q

http://www.cse.iitd.ac.in/~sak
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Square on Segment: 1
Construct two lines l1 and l2 perpendicular to PQ passing through P and
Q respectively

P Q

l1 l
2

http://www.cse.iitd.ac.in/~sak
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Square on Segment: 2
On the same side of PQ mark points R on l1 and S on l2 such that PR =
PQ = QS.

P Q

l1 l
2

R S

http://www.cse.iitd.ac.in/~sak
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Square on Segment: 3
Draw RS. �PQSR is a square of side b

P Q

l1 l
2

R S

Square Construction algorithm

http://www.cse.iitd.ac.in/~sak
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Refinement 2: Perpendicular at a point
Given a line, draw a perpendicular to it passing through a given point on
it.
Assume given a line l containing a point X.

X l

http://www.cse.iitd.ac.in/~sak
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Solution: Perpendicular at a point
1. Choose a length c > 0. With X as centre mark off points Y and Z on l

on either side of X, such that Y X = c = XZ. Y Z = 2c.
2. Draw Circles C1(Y, 2c) and C2(Z, 2c) respectively.
3. Join the points of intersection of the two circles.

http://www.cse.iitd.ac.in/~sak
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Perpendicular at a Point: 1
Choose a length c > 0. With X as centre mark off points Y and Z on l on
either side of X, such that Y X = c = XZ. Y Z = 2c.

X lY Z

http://www.cse.iitd.ac.in/~sak
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Perpendicular at a Point: 2
Draw Circles C1(Y, 2c) and C2(Z, 2c) respectively.

X lY Z

U

V

http://www.cse.iitd.ac.in/~sak
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Perpendicular at a Point: 3
Join the points of intersection of the two circles.

X lY Z

U

V

http://www.cse.iitd.ac.in/~sak
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Perpendicular at a point: Justification
1. The two circles intersect at points U and V on either side of line l.

2.
↔
UV is a perpendicular bisector of Y Z.

3. Since Y X = c = XZ and Y Z = 2c,
↔
UV is perpendicular to l and

passes through X.

Back to square 1

http://www.cse.iitd.ac.in/~sak
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The Computational Model
Every reasonable computational model such as the above must have the
following capabilities:
Primitive operations and expressions which represent the simplest objects

with which the model is concerned.
Methods of combination which specify how the primitive expressions and

objects can be combined with one another to obtain compound expres-
sions and compound objects.

Methods of abstraction which specify how compound expressions and ob-
jects can be named and manipulated as units.

http://www.cse.iitd.ac.in/~sak
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Methods of Abstraction
The Methods of abstraction in the construction were
1. Perpendicular at a point on a line, which was used to construct the

square of a given length.
2. Square Construction algorithm which was used to construct a square

on a line segment.

http://www.cse.iitd.ac.in/~sak
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The Use of Abstraction
Methods of abstraction are useful for
• specifying the method crisply and concisely in terms of problems
known to be solvable (e.g the two-step solution to the given problem).

• separating logical sub-problems (e.g. the problem of perpendicular at a
point on a line is a logically separate sub-problem of drawing a square
on a line segment).

• avoiding repetitions of copies of similar solutions (e.g. to construct a
square on a segment requires drawing two perpendiculars one at each
end point of the line-segment – each perpendicular is an instance of
the same algorithm viz. drawing a perpendicular to a line on a given
point)

http://www.cse.iitd.ac.in/~sak
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1.2. Long Multiplication

Consider the following example from school arithmetic which illustrates multiplication of large numbers by
a method called long multiplication.

5 7 8 3 9
× 9 6 4 7

4 0 4 8 7 3
2 3 1 3 5 6 0

3 4 7 0 3 4 0 0
5 2 0 5 5 1 0 0 0

5 5 7 9 7 2 8 3 3

Many schools and text-books however omit the zeroes (0) at the right end of each of the lines of interme-
diate products.

One could ask the following questions from a purely mathematical and algorithmic standpoint.

1. What is the algorithm behind this method? Can it be expressed in a general fashion without resorting
to examples?

http://www.cse.iitd.ac.in/~sak
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2. How does one guarantee that the method is correct? In other words, what is the mathematical justifi-
cation of this method?

3. How does this compare with other methods of multiplication (for e.g. multiplication by repeated addi-
tion)?

1.2.1. The algorithm

A good way to design algorithms is also to design their justification side by side. Let a and b be two
non-negative integers expressed in the usual decimal place-value notation. We use the notation (a)10 to
indicate that we are looking at the digits of a expressed as a sequence of digits am, . . . , a0 for some m ≥ 0,
where a0 is the least significant digit (units digit) of a and am is the most significant one. Similarly b may be
represented by the digits bn, . . . , b0 for some n ≥ 0. The place-value system1 of representation of numbers
gives us the identities a =

∑m
i=0 10iai and b =

∑n
j=0 10jbj.

Assuming without loss of generality that a is the multiplicand and b is the multiplier, we get (using the fact
that multiplication distributes over addition and that multiplication is commutative and associative)

a× b = a×
n∑
j=0

10jbj =

n∑
j=0

a× 10jbj =

n∑
j=0

10jabj = ab0 + ab1.10 + · · · + abn.10n (1)

1unlike some other system such as the Roman numerals
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Equation (1) is at the heart of the long multiplication method and justifies the method. Notice that when
n > 0, ab0 + ab1.10 + · · · + abn.10n = ab0 + (ab1 + · · · + abn.10n−1).10. For completeness, we should mention
that when n = 0 the method reduces to multiplying by a single digit number.

The method itself may be expressed in a technically complete fashion by the following algorithm. We use

“
.
− ” to denote the quotient of integer division and “ –. ” to denote the remainder of integer division.

longmult(a, b) =

{
ab0 if n = 0

ab0 + longmult(a, b′).10 if n > 0
(2)

where

b0 = b –. 10 and

b′ = b
.
− 10

b0 is the units digit of b and equals the remainder obtained by dividing b by 10. b′ on the other hand, is
the number obtained by “deleting the units digit” of b. More accurately, it is the quotient of b/10 and hence
b′ =

∑n
j=1 10jbj.

Of course, while performing long-multiplications, it is usually not necessary to count or know in advance
the number of digits in b. We further notice that the two conditions n = 0 and n > 0 may equally well be
replaced by the conditions b < 10 and b ≥ 10 respectively yielding another version of the same algorithm
wherein the dependence on n is removed.
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longmult(a, b) =

{
ab0 if b < 10

ab0 + longmult(a, b′).10 if b ≥ 10
(3)

where

b0 = b –. 10 and

b′ = b
.
− 10

1.2.2. Correctness

We prove the following fairly straightforward theorem, to illustrate how proofs of correctness by induction
may go.

Theorem 1.1 (The Correctness theorem). For all a > 0 and b ≥ 0, algorithm (2) computes the product of a
and b, i.e. longmult(a, b) = a× b = ab.

Proof: If b = 0 then clearly b0 = b = 0 and ab0 = 0 and there is nothing to prove. If b > 0 we proceed by
induction on n ≥ 0 such that 10n ≤ b < 10n+1 (i.e. n + 1 is the number of digits in b).

Basis When n = 0, b = b0 and longmult(a, b) = ab0 = ab and the result follows.

Induction hypothesis (IH) Assume longmult(a, c) = ac for all c which have less than n + 1 digits, i.e.
0 ≤ c < 10n.
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Induction Step Since n > 0 we have that b > 0. Then for b0 = b –. 10 and b′ = b
.
− 10 we have

b = 10b′ + b0 (4)

and hence
longmult(a, b) = ab0 + longmult(a, b′)

= ab0 + ab′.10 (IH)
= a(b0 + 10b′) (factoring out a)
= ab (by the identity (4))

The above proof does not really change whether we use algorithm (2) or algorithm (3), since we would
still be using the value of n as the induction variable.

1.2.3. The Effort of Long Multiplication

In trying to answer the last question we may ask ourselves what exactly is the time or effort involved in
executing the algorithm by say a typical primary school student to whom this method is taught. The tools
available with such a student are

• the ability to perform addition and

• the ability to perform single-digit multiplication

Therefore if a and b are numbers of m+1 digits and n+1 digits respectively, n+1 single digit multiplications
of a would have to be performed resulting in n+ 1 intermediate products to be summed up i.e. n addition
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operations would have to be performed.

1.2.4. Comparison

At the primary school, multiplication of numbers is usually introduced as “repeated addition”. In effect this
process could be described by the following algorithm.

repadd(a, b) =

{
0 if b = 0

a + repadd(a, b− 1) if b > 0
(5)

We leave the proof of correctness of this algorithm as an exercise for the interested reader and mention
only that it is easy to see that for b > 0 this algorithm would require b−1 addition operations of numbers that
are at least m+ 1 digits long, and is hence quite time-consuming for large values of b as compared to the
algorithm (3) which uses the advantages of the place-value system to yield an algorithm which requires
about log b additions and log b multiplications of a by a single digit. One wonders how the Romans ever
managed to multiply even numbers which are less than 10000. Imagine what “MMMMDCCCLXXXVIII ×
MMMDCCLXXIX” would work out to be!
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Computing and Computers
• Computing is much more fundamental
• Computing may be done without a computer too!
• But a Computer cannot do much besides computing.
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Primitives: Summary
• Each tool has a set of capabilities called primitive operations or primi-
tives
Straight-edge: Can specify lines, rays and line segments.
Compass: Can define arcs and circles. Can compare lengths along a

line.
Straight-edge and Compass: Can specify points of intersection.

• The primitives may be combined in various ways to perform a compu-
tation.

• Example Constructing a perpendicular bisector of a given line seg-
ment.
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Algorithm
Given a problem to be solved with a given tool, the attempt is to evolve a
combination of primitives of the tool in a certain order to solve the prob-
lem.
An explicit statement of this combination along with the order is an algo-
rithm.
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1.3. Our Computing Tool

Previous: Introduction to Computing
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2. Algorithms

3. Programming Language

4. Programs and Languages

5. Programs

6. Programming
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8. Primitives

9. Primitive expressions

10. Methods of combination

11. Methods of abstraction

12. The Functional Model

13. Mathematical Notation 1: Factorial

14. Mathematical Notation 2: Factorial

15. Mathematical Notation 3: Factorial

16. A Functional Program: Factorial

17. A Computation: Factorial

18. A Computation: Factorial

19. A Computation: Factorial

20. A Computation: Factorial
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21. A Computation: Factorial

22. A Computation: Factorial

23. A Computation: Factorial

24. Standard ML

25. SML: Important Features

Next: Primitives: Integer & Real
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The Digital Computer: Our Computing Tool
Algorithm: A finite specification of the solution to a given problem using
the primitives of the computing tool.
• It specifies a definite input and output
• It is unambiguous
• It specifies a solution as a finite process i.e. the number of steps in the
computation is finite
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Algorithms
An algorithm will be written in a mixture of English and standard mathe-
matical notation (usually called pseudo-code). Usually,
• algorithms written in a natural language are often ambiguous
• mathematical notation is not ambiguous, but still cannot be understood
by machine

• algorithms written by us use various mathematical properties. We
know them, but the machine doesn’t.

• Even mathematical notation is often not quite precise and certain in-
termediate objects or steps are left to the understanding of the reader
(e.g. the use of “· · ·” and “...”).
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Functional Pseudo-Code
• Functional pseudo-code avoids most such implicit assumptions and at-
tempts to make definitions more precise (e.g. the use of induction).

• Functional pseudo-code is still concise though more formal than standard
mathematical notation.

• However functional pseudo-code is not formal enough to be termed a
programming language (e.g. it does not satisfy strict grammatical rules
and neither is it linear as most formal languages are).

• But functional pseudo-code is precise enough to analyse the correctness
and complexity of an algorithm, whereas standard mathematical nota-
tion may mask many important details.
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Programming Language
• Require a way to communicate with a machine which has essentially
no intelligence or understanding.

• Translate the algorithm into a form that may be “understood” by a ma-
chine

• This “form” is usually a program
Program: An algorithm written in a programming language.
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Programs and Languages
• Every programming language has a well defined vocabulary and a well
defined grammar (called the syntax of the language).

• Each program has to be written following rigid grammatical rules (syn-
tactic rules).

• A programming language and the computer together form our single
computing tool

• Each program uses only the primitives of the computing tool
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Programs
Program: An algorithm written in the grammar of a programming lan-
guage.

A grammar is a set of rules for forming sentences in a language.

Each programming language also has its own vocabulary and grammar
just as in the case of natural languages.

We will learn the grammar of the language as we go along.
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Programming
The act of writing programs and testing them is programming

Even though most programming languages use essentially the same
computing primitives, each programming language needs to be learned.

Programming languages differ from each other in terms of the conve-
nience and facilities they offer even though they are all equally “powerful”
in terms of what they can actually compute.
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Computing Models
We consider mainly two models.
• Functional: A program is specified simply as a mathematical expres-
sion

• Imperative: A program is specified by a sequence of commands to be
executed.

Programming languages also come mainly in these two flavours. We will
often identify the computing model with the programming language.
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Primitives
Every programming language offers the following capabilities to define
and use:
• Primitive expressions and data
• Methods of combination of expressions and data
• Methods of abstraction of both expressions and data

The functional model
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Primitive expressions
The simplest objects and operations in the computing model. These in-
clude
• basic data elements: numbers, characters, truth values etc.
• basic operations on the data elements: addition, subtraction, multipli-
cation, division, boolean operations, string operations etc.

• a naming mechanism for various quantitities and expressions to be
used without repeating definitions

http://www.cse.iitd.ac.in/~sak


HOME PAGE CONTENTS JJ J I II GO BACK FULL SCREEN CLOSE 50 OF 887 QUIT

Methods of combination
Means of combining simple expressions and objects to obtain more com-
plex expressions and objects.

Examples: composition of functions, inductive definitions
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Methods of abstraction
Means of naming and using groups of objects and expressions as a sin-
gle unit

Examples: functions, data structures, modules, classes etc.
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The Functional Model
The functional model is very convenient and easy to use:
• Programs are written (more or less) in mathematical notation
• It is like using a hand-held calculator
• Interactive and so answers are immediately available
• The closeness to mathematics makes it convenient for developing,
testing, proving and analysing algorithms.

Standard ML
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Explanations and Remarks

There are several models of computation available even on a modern digital computer. This is what
makes the modern computer a universal computing mechanism. Most commonly available programming
languages include Basic, C, C++ and Java. These programming languages are called imperative pro-
gramming languages and have evolved mainly from the hardware of a modern digital computer. In many
ways these languages remain very close to the details of hardware of a modern computer.

At the other end of the spectrum are models and programming languages which have evolved from
mathematics and logic. Prominent among these are the functional programming languages. They may
be loosely described as being closer to the language of mathematics than of modern digital hardware.

As we will see later both models have their distinct uses. The imperative models are much closer to the
hardware facilities provided by modern digital computers. But a purely imperative model is too detailed
and can become quite cumbersome to analyse and reason about. On the other hand, a purely functional
model can become quite difficult to use with several existing hardware and software facilties especially
when it comes to handling files, disks and other peripheral units.

Besides the above models there are other computing models too such as declarative, object-oriented,
aspect-oriented models etc. which are outside the scope of discussion in this course.

We have preferred the functional model to other models mainly because this course is more about com-
puting than about computers per se, though of course we use a modern digital computer to do most of
the tasks in this course. Modern digital computers are tremendously complex objects – both in terms of
hardware and software – and contain far more detail than a single mind can cope with at any instant of
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time. As a result, any user of the computer at any instant pays attention to only some of the facets of
the computer. While writing documents a user only views the computer as a word processor, while using
a spread-sheet the user sees it as a spread-sheet calculator and nothing else. A programmer views it
simply as a language processing machine. The hardware and software together present an abstracted
view of the machine to the user, depending on the use that is being made of the computer.

Computing however, involves not simply writing programs for a given model but analysing the methods
employed and the properties of the methods and the programs as well. Our emphasis is on problem-
solving – developing, proving and analysing algorithms and programs. These tasks are perhaps per-
formed more rigorously and conveniently with the tools and the notation of mathematics available to us
and it therefore is easier to present them in a concise and succinct manner and reason about them in a
functional programming paradigm than through other paradigms. At the same time it is possible for the
reader to dirty her hands by designing and running the code on a modern digital computer.
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Mathematical Notation 1: Factorial
For simplicity we assume that n! = 1 for all integers less than 1. Then
informally we may write it as

n! =

{
1 if n < 1
1× 2× . . .× n otherwise
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Mathematical Notation 2: Factorial
Or more formally we use mathematical induction to define it as

n! =

{
1 if n < 1
n× (n− 1)! otherwise
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A Functional Program: Factorial

fun fact n = if n < 1 then 1 else n * fact (n-1)
Refer here for a more detailed explanation of the syntax of SML and how to understand its responses.
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Factorial in SML
If we were to start the SML system on a terminal and input the above line,
what we see is this
sml
Standard ML of New Jersey,
- fun fact n = if n < 1 then 1 else n * fact (n-1);
val fact = fn : int -> int
-
The lines starting with - are the response of the system to our input from
the keyboard. Here SML has recognized that we have defined a function
called fact which takes a single integer argument (formally referred to
as n in the definition).
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Evaluation: Factorial
If we were to give a further input fact 4; what we see on the terminal
is the following.
sml
Standard ML of New Jersey,
- fun fact n = if n < 1 then 1 else n * fact (n-1);
val fact = fn : int -> int
- fact 4;
val it = 24 : int
-
An evaluation has been performed viz. fact 4 whose result is an integer
value 24.
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Computations in General
A computation takes place by a process of simplification (called evaluation)
which may be understood as follows:
• Evaluation requires replacement of

simple variables by their values,
function names by their definitions,
argument names by the values of the actual arguments. In certain

cases actual arguments may have to be first evaluated
• Evaluation takes place from left to right unless bracketing and associ-
ation of operators dictate otherwise.

• Priority of operators is usually consistent with mathematical notation
but may vary from language to language.
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A Computation 1: Factorial
This process is akin to the way we compute in mathematics. For exam-
ple, going strictly by the definition we have given we have the following
computations for various values.

(−2)!
= 1

1!
= 1× (1− 1)!
= 1× 0!
= 1× 1
= 1
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A Computation 2: Factorial
3!

= 3× (3− 1)!
= 3× 2!
= 3× (2× (2− 1)!)
= 3× (2× 1!)
= 3× (2× (1× (1− 1)!))
= 3× (2× (1× 0!))
= 3× (2× (1× 1))
= 3× (2× 1)
= 3× 2
= 6

The bracketing and association shown above are followed by the ma-
chine.
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A Computation: Factorial
Computations performed by a machine are very similar to the way we
would compute except that it is done so mechanically that even asso-
ciative laws and commutative laws are not known to the machine. As a
result the bracketing that we see above is strictly to be followed.
However what we actually see displayed in the SML system for various
values of n is as follows:
- fact 3;
val it = 6 : int
- fact 8;
val it = 40320 : int
- fact 9;
val it = 362880 : int
-
The system does not show you the various steps of the computation.
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Mathematical Notation 3: Factorial
How about this definition?

n=

{
1 if n < 1
(n + 1)!/(n + 1) otherwise (6)

Mathematically correct since a definition implicitly defines a mathematical
equality or identity. But . . .
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Computationally Incorrect Definitions
The last definition is computationally incorrect! Since the system would
execute “blindly” by a process of replacing every occurrence of k! by the
right hand-side of the definition (in this case it would be (k + 1)!/(k + 1)).
So for 3! we would get

3!
= (3 + 1)!/(3 + 1)
= 4!/4
= ((4 + 1)!/(4 + 1))/4
= (5!/5)/4
= ...
= ...

which goes on forever!
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Algorithms & Nontermination
• An algorithm should guarantee that all its computations terminate. By
this criterion the definition given above is not an algorithm whereas the
one given previously is an algorithm.

• In fact for all our algorithmic definitions we would have to prove guar-
anteed termination.

• It is possible to write definitions in any programming language whose
computations do not terminate for some legally valid arguments.
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1.4. Some Simple Algorithmic Definitions

The functional model is very close to mathematics; hence functional algorithms are easy to analyze in
terms of correctness and efficiency. We will use the SML interactive environment to write and execute
functional programs. This will provide an interactive mode of development and testing of our early al-
gorithms. In the later chapters we will see how a functional algorithm can serve as a specification for
development of algorithms in other models of computation.

In the functional model of computation every problem is viewed as an evaluation of a function. The
solution to a given problem is specified by a complete and unambiguous functional description. Every
reasonable model of computation must have the following facilities:

Primitive expressions which represent the simplest objects with which the model is concerned.

Methods of combination which specify how the primitive expressions can be combined with one another
to obtain compound expressions.

Methods of abstraction which specify how compound objects can be named and manipulated as units.

In what follows we introduce the following features of our functional model:

1. The Primitive expressions.

2. Definition of one function in terms of another (substitution).
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3. Definition of functions using conditionals.

4. Inductive definition of functions.
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The Basic Sets
• N: The set of natural numbers i.e. the non-negative integers
• P: The set of positive integers
• R: The set of reals
• B: The set of booleans i.e. the truth values true and false
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The Primitive Expressions:1
• Primitive functions of the type f : Z × Z → Z and f : R × R → R
which we assume to be available in our functional model are addition
(+), subtraction (−), multiplication (∗).

• We will also assume the div and mod functions of the type f : N× P→
N. Note that if a ∈ N and b ∈ P and a = q ∗ b+ r for some integers q ∈ N
and 0 ≤ r < b then div(a, b) = q and mod(a, b) = r.

• The division function / : R×R→ R will be assumed to be valid only for
real numbers.
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The Primitive Relations
• All relations are expressed as boolean valued functions.
• The relations =, ≤, <, ≥, > and 6=. are functions of the type f : Z×Z→
B or f : R× R→ B depending on the context,

• In addition, relations may be combined using the functions ∧ : B×B→
B (and), ∨ : B× B→ B (or) and ¬ : B→ B (not).
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1.5. Substitution of functions

W e give a few examples of definitions of one function in terms of another and the evaluation of such
functions through substitution.
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Example: Square
Finding the square of a natural number.
We can directly specify the function square, which is of the type square :
N→ N in terms of the standard multiplication function ∗ : N× N→ N as

square(n) = n ∗ n

Here, we are assuming that we can substitute one function for another
provided they both return an item of the same type. To evaluate, say,
square(5), we have to thus evaluate 5 ∗ 5.
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Example 1: Substitution
We can build more complex functions from simpler ones. As an example,
let us define a function to compute x2 + y2.
We can define a function sum squares : N× N→ N as follows

sum squares(x, y) = square(x) + square(y)

The function sum squares is thus defined in terms of the functions + and
square.
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Example 2: Substitution
As another example, let us consider the following function f : N → N
defined as follows

f (n) = sum squares((n + 1), (n + 2))
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Example 1: The Conditional
We give a few examples of function definitions using conditionals. Finding
the absolute value of x. We define the function

abs : Z→ N

as

abs(x) =

 x if x > 0
0 if x = 0
−x if x < 0
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Example 2: The Conditional
Finding the larger of two numbers.

max : N× N→ N

max(a, b) =

{
a if a ≥ b
b otherwise
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W hile defining the functions abs and max, we have assumed that we can compare two natural numbers,
and determine which is larger. The basic primitive used in this case is if-then-else. Thus if a ≥ b, the
function max returns a as the output, else it returns b. Note that for every pair of natural numbers as its
input, max returns a unique number as the output.

In the case of abs, even though there seem to be three possible cases, the basic primitive used is still the
if-then-else which may be read as

abs(x) = x if x > 0,
otherwise abs(x) = 0 if x = 0

otherwise abs(x) = −x if x < 0

Equivalently we may read it as

if x > 0 then abs(x) = x

else if x = 0 then abs(x) = 0

else abs(x) = −x
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What is not an Algorithm?
Not all mathematically valid specifications of functions are algorithms. For
example,

sqrt(n) =

{
m if m ∗m = n
0 if 6 ∃m : m ∗m = n

is mathematically a perfectly valid description of a function of the type
sqrt : N→ N. However the mathematical description does not tell us how
to evaluate the function, and hence it is not an algorithm.
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Algorithmic Descriptions

An algorithmic description of the function may start with m = 1 and check if m ∗m = n for all subsequent
increments of m by 1 till either such an m is found or m ∗m > n. We will soon see how to describe such
functions as computational processes or algorithms such that the computational processes terminate in
finite time.

As another example of a mathematically valid specification of a function which is not an algorithm, con-
sider the following functional description of f : N→ N

f (n) =

{
0 if n = 0

f (n + 1)− 1 otherwise
(7)

The above specification has an infinite number of candidate solutions. For any constant k ∈ N, the
functions

fk(n) =

{
0 if n = 0

k + n otherwise
are all solutions that satisfy the given specification (7). However, the specifcation (7) is not a valid algo-
rithm because in order to evaluate f (1) we have to evaluate f (n + 1) for n = 1, 2, 3, . . . which leads to an
infinite computational process. One can rewrite the specification of the above function, in an inductive
form, as a function g : N→ N

g(n) =

{
0 if n = 0

g(n− 1) + 1 otherwise

Now this indeed defines a valid algorithm for computing f1(n). Mathematically the specifications for f1(n)
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and g(n) are equivalent in that they both define the same function. However, the specification for g(n)

constitutes a valid algorithm whereas that for f (n) does not. For successive values of n, g(n) can be
computed as

g(0) = 0

g(1) = g(0) + 1 = 1

g(2) = g(1) + 1 = g(0) + 1 + 1 = 2
...

Exercise 1.1

1. Prove that f1(n) = g(n) for all n ∈ N.

2. For each k ∈ N, give an algorithmic definition to compute the function fk.

Similarly, consider the definition
f (n) = f (n)

Every (unary) function is a solution to the above but it is computationally undefined.
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1.6. Functions as inductively defined computational processes

All the examples of algorithmic descriptions we have presented so far are of functions which can be
evaluated by substitutions or by evaluation of conditions. We give a few more examples of algorithms
which are defined by induction.

1.7. Algorithmic Definitions which are well-founded

W e give an example of an algorithm for computing the greatest common divisor (GCD) of two positive
integers. This algorithm is a variation of the one invented by Euclid and at first sight does not appear
to be inductive at all. But in fact it uses a generalization of mathematical induction called well-founded
induction.

Example 1.2 Computing the GCD of two positive integers. We know that the greatest common divisor is
a function which for any pair of non-negative integers, yields the greatest of all the common divisors of
the two numbers.

Assume a and b are non-negative integers.

gcd(a, b) =

{
m if a = 0 ∨ b = 0 ∨m = n

gcd(m− n, n) otherwise
(8)

where m = max(a, b) and n = min(a, b). Here and everywhere else in these notes ∨ stands for (inclusive)
“or” of conditions. Various questions arise regarding whether
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1. as an identity, equation (8) correctly defines a property of the greatest common divisor function for
non-negative integers.

2. whether the identity may be used as an algorithm which is guaranteed to terminate i.e. does it define
a finite computational process?

The following theorems could settle the two questions.

Theorem 1.3 Correctness of GCD identity. For any two non-negative integers a and b,

gcd(a, b) =

{
m if a = 0 ∨ b = 0 ∨m = n

gcd(m− n, n) otherwise

where m = max(a, b) and n = min(a, b).

Proof:

Case a = 0 ∨ b = 0 ∨m = n. Notice that a, b ≥ 0 and if one of them is 0 then the other is indeed the greatest
common divisor, since every integer is a divisor of 0. On the other hand, m = max(a, b) = n = min(a, b)

is possible if and only if a = b . Then again we have gcd(a, b) = a = b = m = n.

Case a 6= 0 6= b and m 6= n. In this case we have a, b > 0 and hence m > n > 0. Without loss of generality
we assume a > b > 0 (since the case b > a > 0 can be proven similarly). Then m = max(a, b) = a and
n = min(a, b) = b. Further m− n = a− b. We then prove the following claims.

1. Claim. Every common divisor of a and b is also a common divisor of a− b and b.
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Proof: Since a, b > 0, they have at least one positive common divisor since 1 is a divisor of every
non-negative integer. Let d ≥ 1 be a common divisor of a and b. Then there exist a′, b′ > 0 such that
a = da′ and b = db′. We then have a− b = d(a′ − b′). Hence d is a common divisor of a− b and b.

2. Claim. gcd(a, b) = gcd(a− b, b).
Proof: Let h = gcd(a, b) and let d > 0 be any common divisor of a and b. Clearly h ≥ d and by the
previous claim h is also a common divisor of a− b and b and indeed the greatest of them.

The above theorem justifies that equation (8) is a valid mathematical identity. The next theorem shows
that equation (8) does define a finite computational process.

Theorem 1.4 Equation (8) defines a finite computational process for non-negative integers.

Proof:

Case a = 0 ∨ b = 0 ∨m = n. In all cases when a = b or one of the two numbers is 0 it is clear that the first
condition of the identity immediately yields a result in one step.

Case a 6= 0 6= b and m 6= n. In this case a, b,m, n > 0 and we may define a measure given by m, and it is
easy to see that a > m−n > 0 whenever a > b and b > m−n > 0 whenever b > a. It is then clear that
max(a, b) > m − n ≥ 0 always and hence the computational process is bounded above by max(a, b)

and below by 0 and the larger of the two arguments in the computational process traverses down a
subset of elements from the strictly decreasing finite sequence m,m− 1,m− 2, . . . , 1, 0, and hence is
guaranteed to terminate in a finite number of steps.

gcd as defined by equation (8) is a function because for every pair of non-negative integers as arguments,
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it yields a non-negative integer. It is also a finite computational process, because given any two non-
negative integers as input, the description tells us, unambiguously, how to compute the solution and
the process terminates after a finite number of steps. For instance, for the specific case of computing
gcd(18, 12), we have

gcd(18, 12) = gcd(12, 6) = gcd(6, 6) = 6.

The larger of the two arguments in this computational process for instance goes through a subset of the
elements in the finite sequence

18, 17, . . . , 6, 5, 4, 3, 2, 1

.

Thus a specification of a function is an algorithm only if it actually defines a finite computational process to
evaluate it and this computational process may not always be inductive, though it must be well-founded
in order that the process terminates.
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Algorithmic Descriptions
Any of the following constitutes an algorithmic description:
1. It is directly specified in terms of a pre-defined function which is either

primitive or there exists an algorithm to compute it.
2. It is specified in terms of the evaluation of a condition.
3. It is inductively defined and the validity of its description can be es-

tablished through the Principle of Mathematical Induction or through
well-founded induction.

4. It is obtained through any finite number of combinations of the above
three steps using substitutions.
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1.8. Recursive processes

Complex functions can be algorithmically defined in terms of two main types of processes - recursive and
iterative.

Recursive computational processes are characterized by a chain of deferred operations. As an example,
we will consider an algorithm for computing the factorial of non-negative integer n.

Example 1.5

factorial : N→ N

factorial(n) =

{
1 if n = 0

n× factorial(n− 1) otherwise

It is instructive to examine the computational process underlying the above definition. The computational
process, in the special case of n = 5, looks as follows

factorial(5)

= (5× factorial(4))

= (5× (4× factorial(3)))

= (5× (4× (3× factorial(2))))

= (5× (4× (3× (2× factorial(1)))))

= (5× (4× (3× (2× (1× factorial(0))))))

= (5× (4× (3× (2× (1× 1)))))
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= (5× (4× (3× (2× 1))))

= (5× (4× (3× 2)))

= (5× (4× 6))

= (5× 24)

= 120

A computation such as this is characterized by a growing and shrinking process. In the growing phase
each “call” to the function is replaced by its “body” which in turn contains a “call” to the function with
different arguments. In order to compute according to the inductive definition, the actual multiplications
will have to be postponed till the base case of factorial(0) can be evaluated. This results in a growing
process. Once the base value is available, the actual multiplications can be carried out resulting in a
shrinking process. Computational processes which are characterized by such “deferred” computations
are called recursive. This is not to be confused with the notion of a recursive procedure which just refers
to the syntactic fact that the procedure is described in terms of itself.

Note that by a computational process we require that a machine, which has only the capabilities provided
by the computational model, be able to perform the computation. A human normally realizes that multi-
plication is commutative and associative and may exploit it so that he does not have to defer performing
the multiplications. However if the multiplication operation were to be replaced by a non-associative op-
eration then even the human would have to defer the operation. Thus it becomes necessary to perform
all recursive computations through deferred operations.

Exercise 1.2 Consider the following example of a function f : N→ Z defined just like factorial except that
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multiplication is replaced by subtraction which is not associative.

f (n) =

{
1 if n = 0

n− f (n− 1) otherwise

1. Unfold the computation, as in the example of factorial(5) above, to show that f (5) = 2.

2. What properties will you use as a human computer in order to avoid deferred computations?

1.9. Correctness

T he correctness of the functional algorithm defined in example 1.5 can be established by using the Princi-
ple of Mathematical Induction (PMI). The algorithm adheres to an inductive definition and, consequently,
can be proved correct by using PMI. Even though the proof of correctness may seem obvious in this
instance, we give the proof to emphasize and clarify the distinction between a mathematical specification
and an algorithm that implements it.

To show that: For all n ∈ N, factorial(n) = n! (i.e., the function factorial implements the factorial function
as defined below).

n! =

{
1 if n = 0

1× 2× . . .× n otherwise

Proof: By PMI on n.

Basis. When n = 0, factorial(n) = 1 = 0! by definitions of factorial and 0!.

Induction hypothesis. For k = n− 1, k ≥ 0, we have that factorial(k) = k!.
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Induction step. Consider factorial(n).

factorial(n) = n× factorial(n− 1)

= n× (n− 1)! by the induction hypothesis
= n! by the definition of n!

Hence the function factorial implements the factorial function n!.

Exercise 1.3 In the case of factorial we proved that the recursive definition of factorial equals a non-
recursive specification for all natural numbers n. Consider the function f defined in exercise 1.2.

1. What does the function f actually compute (give a non-recursive description)?

2. Prove that your non-recursive specification equals the recursive specification for all naturals n.
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1.10. Complexity

The other important aspect in the analysis of an algorithm is the issue of efficiency - both in terms of space
and time. The efficiency of an algorithm is usually measured in terms of the space and time required in
the execution of the algorithm (the space and time complexities). These are functions of the input size n.

A careful look at the above computational process makes it obvious that in order to compute factorial(n),
the n integers will have to be remembered (or stacked up) before the actual multiplications can begin.
Clearly, this leads to a space requirement of about n. We will call this the space complexity.

The time required to execute the above algorithm is directly proportional (at least as a first approximation)
to the number of multiplications that have to be carried out and the number of function calls required. We
can evaluate this in the following way. Let T (factorial(n)) be the number of multiplications required for a
problem of size n (when the input is n). Then, from the definition of the function factorial we get

T (factorial(n)) =

{
0 if n = 0

1 + T (factorial(n− 1)) otherwise
(9)

T (factorial(0)) is obviously 0, because no multiplications are required to output factorial(0) = 1 as the
result. For n > 0, the number of multiplications required is one more than that required for a problem
of size n − 1. This is a direct consequence of the recursive specification of the solution. We may solve
Equation 9 by telescoping, i.e.,

T (factorial(n)) = 1 + T (factorial(n− 1)) (10)
= 2 + T (factorial(n− 2))

...
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= n + T (factorial(0)) + n

= n

Thus n is the number of multiplications required to compute factorial(n) and this is the time complexity
of the problem.

To estimate the space complexity, we have to estimate the number of deferred operations which is about
the same as the number of times the function factorial is invoked.

Exercise 1.4 Show, in a similar way, that the number of invocations of factorial required to evaluate
factorial(n) is n + 1.

Equation 9 is called a recurrence equation and we will use such equations to analyze the time complex-
ities of various algorithms in these notes. Note that the measure of space and time given above are
independent of how fast a computing machine is. Rather, it is given in terms of the amount of space
required and the number of multiplications and function calls that are required. The measures are thus
independent of any computing machine.

1.11. Efficiency, Why and How?

Modern technological advances in silicon have seen processor sizes fall and computing power rise dra-
matically. The microchip one holds in the palm today packs more computing power – both processor
speed and memory size – than the monster monoliths that occupied whole rooms in the 50’s. A sceptic is
therefore quite entitled to ask: who cares about efficient algorithms anyway? If it runs too slow, just throw
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the processor away and get a larger one. If it runs out of space, just buy a bigger disk! Let’s perform
some simple back-of-the-envelope calculations to see if this scepticism is justified.

Consider the problem of computing the determinant of a matrix, a problem of fundamental importance in
numerical analysis. One method is to evaluate the determinant by the well known formula:

detA =
∑
σ

(−1)sgnσA1,σ(1) · A2,σ(2) · · ·An,σ(n).

Suppose you have implemented this algorithm on your laptop to run in 10−4×2n seconds when confronted
with any n×n matrix (it will actually be worse than this!). You can solve an instance of size 10 in 10−4× 210

seconds, i.e., about a tenth of a second. If you double the problem size, you need about a thousand times
as long, or, nearly 2 minutes. Not too bad. But to solve an instance of size 30 (not at all an unreasonable
size in practice), you require a thousand times as long again, i.e. even running your laptop the whole
day isn’t sufficient (the battery would run out long before that!). Looking at it another way, if you ran your
algorithm on your laptop for a whole year (!) without interruption, you would still only be able to compute
the detrminant of a 38× 38 matrix!

Well, let’s buy new hardware! Let’s go for a machine that’s a hundred times as fast – now this is getting
almost into supercomputing range and will cost you quite a fortune! What does it buy you in computing
power? The same algorithm now solves the problem in 10−6 × 2n seconds. If you run it for a whole year
non–stop (let’s not even think of the electricity bill!), you can’t even compute a 45 × 45 determinant! In
practice, we will routinely encounter much larger matrices. What a waste!

Exercise 1.5 In general, show that if you were previously able to compute n × n determinants in some
given time (say a year) on your laptop, the fancy new supercomputer will only solve instances of size
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n + log 100 or about n + 7 in the same time.

Suppose that you’ve taken this course and invest in algorithms instead. You discover the method of
Gaussian elimination (we will study it later in these notes) which, let us assume, can compute a n × n

determinant in time 10−2n3 on your laptop. To compute a 10×10 determinant now takes 10 seconds, and a
20× 20 determinant now requires between one and two minutes. But patience! It begins to pay off later: a
30×30 determinant takes only four and a half minutes and in a day you can handle 200×200 determinants.
In a years’s computation, you can do monster 1500× 1500 determinants.

1.12. Asymptotic analysis and Orders of growth

You may have noticed that there was something unsatisfactory about our way of doing things – the
calculation was tuned too closely to our machine. The figure of 10−4 × 2n seconds is a bit arbitrary –
the time to execute on one particular laptop – and has no other absolute significance for an analysis
on a different machine. We would like to remedy this situation so as to have a mode of analysis that is
applicable to any machine. It should tell us precisely how the problem scales – how does the resource
requirement grow as the size of the input increases – on any machine.

We now introduce one such machine independent measure of the resources required by a computational
process – the order of growth. If n is a parameter that measures the size of a problem then we can
measure the resources required by an algorithm as a function R(n). We say that the function R(n) has
an order of growth O(f (n)) (of order f (n)), if there exist constants K and n0 such that R(n) ≤ Kf (n)

whenever n ≥ n0.
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In our example of the computation of factorial(n), we found that the space required is n, whereas the
number of multiplications and function calls required are n and n+ 1 respectively. We see, that according
to our definition of order of growth, each of these are O(n). Thus, we can say that the space complexity
and the time complexity of the algorithm are both O(n). In the example of determinant computation,
regardless of the particular machine and the corresponding constants, the algorithm based on Gaussian
elimination has time complexity O(n3).

Order of growth is only a crude measure of the resources required. A process which requires n steps
and another which requires 1000n steps have both the same order of growth O(n). On the other hand, the
O(·) notation has the following advantages:

• It hides constants, thus it is robust across different machines.

• It gives fairly precise indication of how the algorithm scales as we increase the size of the input. For
example, if an algorithm has an order of growth O(n), then doubling the size of the input will very nearly
double the amount of resources required, whereas with a O(n2) algorithm will square the amount of
resources required.

• It tells us which of two competing algorithms will win out eventually in the long run: for example,
however large the constant K may be, it is always possible to find a break point above which Kn will
always be smaller than n2 or 2n giving us an indication of when an algorithm with the former complexity
will start working better than algorithms with the latter complexities.

• Finally the very fact that it is a crude analysis means that it is frequently much easier to perform than
an exact analysis! And we get all the advantages listed above.
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1.13. The Analysis of Algorithms: The Big “O” notation

A nalysis of an algorithm means analysing the resources required by the algorithm. The resources here
are primarily the amount of space required to store values (including intermediate ones) and the amount
of the time required to execute the algorithm, in terms of a number of “steps”. The notion of a step
requires some units as one machine’s step may be different from another machine’s step. We may even
consider for the puproses of asymptotic analysis, a large-ish step such as the number of invocations of a
function in order to simplify analysis.

There are other situations where other resources such as the band-width, the number of logic-gates or
the number of messages sent may be useful measures for analysing the resources required by a system.
However in the case of our algorithms our primary concern will be with the requirement of time and
storage space required in the worst case by the algorithm.

In general, both measures depend upon the value or length of the input. It is normal in most books on
Algorithms to launch into a rather long excursus on the machine model used to analyse the algorithm.
We will however dispense with such things since everybody who reads these notes probably has a fair
idea of the digital computer and anyway nobody reads that kind of trash.

Hence in our analysis we will primarily make use of functions f : N −→ R and try to analyse the running
time and the space requirements of algorithms in terms of these functions and compare the complexity
of different algorithms for the same problem in terms of the asymptotic behaviour of functions which
characterise their space requirements and/or running time as functions of the input size.

But we need to formalise these notions of asymptotic analysis. Asymptotic analysis involves determining
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the growth-rate of a function for large values. Such a growth rate could easily be determined by computing
the first derivative of the function if the function were continuously differentiable for large values. However,
since our functions depend upon the input size, they turn out to be functions whose domain is the set of
natural numbers rather than real numbers. Hence these “discrete” functions are not easily amenable to
the tools of differential and integral calculus.

In figures 1, 2 we show plots of some of these functions. Notice that the scale has been chosen to make
them look continuous and differentiable, but they are indeed discrete functions. Further note that the
y-axis in figure 2 is in logarithmic scale to accommodate the various functions.
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Asymptotically Non-negative Functions
Definition 1.6 A function f : N −→ R is said to be asymptotically non-
negative if for some k ≥ 0 and for all m ≥ k, f (m) ≥ 0.

That is, f : N −→ R is asymptotically non-negative if for all sufficiently
large values of n, f (n) is guaranteed to be non-negative.
Example 1.7 The function f (n) = n2− 100 is asymptotically non-negative
for all values of n ≥ k = 10.

Exercise 1.6 Is f (n) = sinn an asymptotically non-negative function?
What about g(n) = 1 + sinn and h(n) = 2 + cosn?

Let

Φ = {f : N −→ R | f is asymptotically non-negative}

be the set of all asymptotically non-negative functions.
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The Order Θ

Definition 1.8 For any given function g : N −→ R, that is asymptotically
non-negative, Θ(g(n)) ⊆ Φ is the class of functions such that

Θ(g(n)) = {f (n) | ∃c0, c1 ∈ R, n0 > 0 : ∀n ≥ n0 : 0 ≤ c0.g(n) ≤ f (n) ≤ c1.g(n)}

For any f (n) ∈ Θ(g(n)) we write (by abuse of notation) f (n) = Θ(g(n)).

If f (n) can be bounded from above and below by scalar multiples of g(n)
for all sufficiently large values of n then f (n) ∈ Θ(g(n)).

Exercise 1.7
1. Is 1 + sinn = Θ(1 + cosn)?
2. Is 2 + sinn = Θ(2 + cosn)
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Θ: Simple Examples: 1
Example 1.9 Given the function g(n) = 1 every constant function f (n) =
k ≥ 0 is a member of Θ(g(n)).

Example 1.10 Given a linear function g(n) = 3n + 2, every linear function
of n belongs to Θ(g(n)). For example for a linear function f (n) = 106n+105

there exist constants c0 = 1, c1 = 106 and an n0 = 1, such that for all
n ≥ n0, we have 0 ≤ c0.g(n) ≤ f (n) ≤ c1.g(n)
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Θ: Simple Examples: 2
Example 1.11 The function f (n) = 3n2 + 4n − 10 6∈ Θ(g(n3)) because
it is impossible to find some n0 which will guarantee for some c0 that
c0.g(n) ≤ f (n) holds for all n ≥ n0.

Example 1.12 For any function f (n) = 4n2 + 8n + 2 ∈ Θ(n2). However
f (n) 6∈ Θ(n) and f (n) 6∈ Θ(nk) for any constant k > 2.

The above example shows that lower-order terms become asymptotically
insignificant when n is large.

Exercise 1.8 Let f (n) = an2 + bn + c ∈ Φ for suitably chosen coefficients
a, b and c. Determine values of c0, c1 and n0 as functions of a, b and c
such that f (n) ∈ Θ(n2).
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Θ: The Polynomials
Example 1.13 Every polynomial (in n) of degree k ≥ 0 belongs to the
class Θ(nk).

Notice that in definition 1.8, it is necessary that g(n) be asymptotically
non-negative and every member of Θ(g(n)) is also asymptotically non-
negative.
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Θ: Some Simple Facts
Fact 1.14
1. Every asymptotically non-negative function g(n) is a member of

Θ(g(n)).
2. If f (n) ∈ Θ(g(n)) then g(n) ∈ Θ(f (n)).
3. If f (n) ∈ Θ(g(n)) and g(n) ∈ Θ(h(n)) then f (n) ∈ Θ(h(n))
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Operations
Theorem 1.15 Let d(n), e(n), f (n) and h(n) be asymptotically non-
negative functions.
1. If d(n) ∈ Θ(f (n)) then a.d(n) ∈ Θ(f (n)) for any real constant a.
2. If d(n), e(n) ∈ Θ(f (n)) then d(n) + e(n) ∈ Θ(f (n)).
3. If d(n) ∈ Θ(f (n)) and e(n) ∈ Θ(g(n)) then
(a) d(n) + e(n) ∈ Θ(f (n) + g(n))

(b) d(n).e(n) ∈ Θ(f (n).g(n))
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T he facts 1.14 and theorem 1.15 must convince us that there exists an equivalence relation on asymp-
totically non-negative functions of n which reflects the fact that for large values of n the various functions
separate out into various classes that do not intermingle, i.e. for example

1. all linear functions regardless of their coefficients remain in the same class and all quadratic functions
remain in the same class, and

2. linear functions of n do not mingle with quadratic functions of n and polynomials of degree k do not
mingle with those of degree k′ for k 6= k′.
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=Θ: An Equivalence
Definition 1.16 Let =Θ⊆ Φ × Φ be the binary relation such that
f (n) =Θ g(n) if and only if f (n) ∈ Θ(g(n)).

From facts 1.14 it follows easily that
Corollary 1.17
1. =Θ is reflexive i.e. f (n) =Θ f (n) for each f (n) ∈ Φ.
2. =Θ is symmetric i.e. for each f (n), g(n) ∈ Φ, f (n) =Θ g(n) if and only if
g(n) =Θ f (n).

3. =Θ is transitive i.e. for each f (n), g(n), h(n) ∈ Φ, f (n) =Θ g(n) and
g(n) =Θ h(n) implies f (n) =Θ h(n)

4. =Θ is an equivalence relation on Φ.
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I t will be fairly common for us now to incorporate Θ within our calculations. For example we may use
expressions like n2 + Θ(n) to mean n2 + f (n) where f (n) is a linear function of n whose exact expression
is either unknown or which is of no importance to us.
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Θ in Equations
We may then use Θ in “equations” as follows.

4n3 + 8n2 − 3n + 10 = 4n3 + Θ(n2)

= 4Θ(n3)

= Θ(n3)

where we actually mean

4n3 + 8n2 − 3n + 10 =Θ 4n3 + f (n) for any f (n) ∈ Θ(n2)

=Θ 4.g(n) for any g(n) ∈ Θ(n3)

=Θ h(n) for any h(n) ∈ Θ(n3)
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The Big O

While the Θ notation asymptotically bounds from both above and below,
we are often mostly interested in what might be called the “worst-case”
scenario in the analysis of an algorithm. We would like to simply give an
upper bound based on the “worst-case” input. Any Θ bound based on the
worst-case would not automatically bound all cases of input. It is simpler
to take the worst-case bound and only bound it from above rather than
below.
Definition 1.18 For any given function g : N −→ R, that is asymptotically
non-negative, O(g(n)) ⊆ Φ is the class of functions such that

O(g(n)) = {f (n) | ∃c ∈ R, n0 > 0 : ∀n ≥ n0 : 0 ≤ f (n) ≤ c.g(n)}

For any f (n) ∈ O(g(n)) we write (by abuse of notation) f (n) = O(g(n)).
The “O” notation provides an asymptotic way of saying that a function is
“less than or equal to” another function
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The Big O: Examples
Example 1.19 The combination of definition 1.18 and confusing notation
can yield the following strange looking facts.
1. n = O(n) but n 6= O(1)

2. n = O(n log n) but n 6= O(log n)

3. n = O(n2)

4. n = O(2n)
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The Big O and Θ

Fact 1.20
1. For any g(n) ∈ Φ, Θ(g(n)) ⊆ O(g(n)). Hence If f (n) ∈ Θ(g(n)) then
f (n) ∈ O(g(n)) for any f (n) ∈ Φ.

2. If f (n) = O(g(n)) then O(f (n)) ⊆ O(g(n)).
3. If f (n) = O(g(n)) and g(n) = O(f (n)) then f (n) = Θ(g(n)) and g(n) =

Θ(f (n)).
4. If f (n) = O(g(n)) but g(n) 6= O(f (n)) then O(f (n)) ⊂ O(g(n)).
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The Big O: More Facts
Theorem 1.21 Let d(n), e(n), f (n) and h(n) be asymptotically non-
negative functions.
1. If d(n) = O(f (n)) then a.d(n) = O(f (n)) for any real constant a.
2. If d(n) = O(f (n)) and e(n) = O(g(n)) then
(a) d(n).e(n) = O(f (n).g(n))

(b) d(n) + e(n) = O(f (n) + g(n))

3. If d(n) = O(f (n)) and f (n) = O(g(n)) then d(n) = O(g(n))
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The Relation ≤O
Compare fact 1.20(2) and fact 1.14(2).
Analogous to the equivalence relation =Θ we have

Definition 1.22
• For all functions f (n), g(n) ∈ Φ, f (n) ≤O g(n) if and only if f (n) ∈
O(g(n)). Further,

• f (n) <O g(n) if and only if f (n) ≤O g(n) and g(n) 6∈ O(f (n)).

While Θ defines an equivalence relation =Θ, O actually defines an order-
ing on functions. Just look at the strange facts and also look at the facts
1.20.
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≤O: A Quasi Order
Fact 1.23
1.≤O is reflexive i.e. f (n) ≤O g(n) for all f (n).
2. f (n) ≤O g(n) and g(n) ≤O f (n) implies f (n) =Θ g(n) for all f (n), g(n) ∈

Φ.
3.≤O is transitive i.e. f (n) ≤O g(n) and g(n) ≤O h(n) implies f (n) ≤O
h(n)

Fact 1.23(2) also relates =Θ and ≤O.
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Big O in Equations
In a fashion similar to whatever we did in the case of Θ we may also
incorporate “O” in our equations.

4n3 + 8n2 − 3n + 10 = 4n3 + O(n2)

= 4O(n3)

= O(n3)
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2. More examples of recursive algorithms

N ow that we have established methods for analyzing the correctness and efficiency of algorithms, let us
consider a few more examples of fundamental recursive algorithms.
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Example: Powering - Algorithm
Example 2.1 Computing xn: Given an integer or a real number x 6= 0,
compute xn, where n ≥ 0 is an integer.

power(x, n) =

{
1 if n = 0
x.power(x, n− 1) otherwise (11)
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Example: Powering - Correctness &
Complexity

Here again it is easily established (by induction on n) that
Correctness. power(x, n) = xn for all x 6= 0 and n ≥ 0.
Complexity The number of multiplications required is given by the recur-

rence

T (power(x, n)) =

{
0 if n = 0
1 + T (power(x, n− 1)) if n > 0

= n
= O(n)

and the space complexity assuming that S(power(x, 0)) = 1 (at
least one unit of space is required for the answer) is for n > 0,
S(power(x, n)) = 1 + S(power(x, n − 1)) = n + 1 = O(n). The num-
ber of invocations of power is given by the same recurrence as the
space complexity (i.e. there is at least one invocation of power).
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Example: Fast Powering
Example 2.2 A faster method of powering depends upon the following
correctness argument with the same conditions on x and n as in example
2.1.

xn =


1 if n = 0

(x2)n
.
− 2 if n > 0 is even

x.(x2)n
.
− 2 if n > 0 is odd

(12)

Note that an integer n is even if and only if n –. 2 = 0 and is odd
otherwise. We then obtain the following algorithm.

fastpower(x, n) =


1 if n = 0

fastpower(x.x, n
.
− 2) if n > 0 ∧ n –. 2 = 0

x.fastpower(x.x, n
.
− 2) otherwise

(13)
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Fast Powering: Correctness
We may then establish the following by induction on n.
It suffices to show by induction on n that the functions defined by equation
12 and algorithm 13 are the same for all values of n.
The computation of fastpower in the worst case (i.e. when the exponent
always remains odd till it reaches a value 1 at the k-th step), proceeds as
follows.
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Fast Powering: Worst-case Computation
fastpower(x0, n0)

 x0.fastpower(x1, n1)
 x0.(x1.fastpower(x2, n2))

...
 x0.(x1.(· · · (xk−2.fastpower(xk−1, nk−1)) · · ·))
 x0.(x1.(· · · (xk−2.xk−1.fastpower(xk, 0)) · · ·))
 x0.(x1.(· · · (xk−2.(xk−1.1) · · ·)))
 x0.(x1.(· · · .xk−1) · · ·)
 ...
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Fast Powering: Worst-case Computation

where x0 = x, n0 = n and for all i ≥ 1, xi+1 = x2
i , ni+1 = ni

.
− 2 and ni is

odd and finally nk−1 = 1. It is easy to see that

Fact 2.3 If n0 = 2k − 1 for some k > 0, then ni = ni−1
.
− 2 = 2(k−i) − 1

for each i, 0 < i ≤ k.
The above fact may be proven by induction on i and is left as an easy
exercise to the student.

Fact 2.4 Every positive integer n lies between two consecutive powers of
2. That is, for any n > 0, there exists a smallest non-negative integer k
such that n < 2k. Hence if k > 0 we also have 2k−1 ≤ n < 2k, which
implies k = dlog2 ne.
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Fast Powering: Running Time
The number of multiplications in the worst-case is given by

T (fastpower(x, n)) =


0 if n = 0

1 + T (fastpower(x2, n
.
− 2)) if n > 0 ∧ n –. 2 = 0

2 + T (fastpower(x2, n
.
− 2) otherwise

≤ 2 + 2 + · · · + 2︸ ︷︷ ︸
k times

where k = dlog2 ne

= 2k
= O(log2 n)

Since we are interested only in the number of multiplications required for
large values of n we may safely assume n� 0.
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Fast Powering: Space Requirement
The maximum amount of space required is therefore given by

S(fastpower(x0, n0))
= 1 + S(fastpower(x1, n1))

...
= (k − 1) + S(fastpower(xk−1, 1))
= k + S(fastpower(xk, 0))
= O(k)

and is proportional to the space required to store the k values
x0, . . . , xk−1, 1 and whatever space may be required for the expression
fastpower(xi, ni) which is a constant amount of space. Hence the space
complexity is also O(k) = O(log2 n).
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Improving Fast Powering
Example 2.5 It is possible to improve the space complexity of algorithm
13. Notice that in the typical worst-case computation shown for algorithm
13 no simplification of the product is actually performed for the first k
steps. This is because of the grouping of the multiplication operation in
the form

 x0.(x1.(· · · (xk−2.(xk−1.1) · · ·))) (14)

which defers the evaluation of the “.” till all invocations of fastpower are
completed. If we could arrange the computation to occur in such a man-
ner that whatever product operation that could be performed actually gets
evaluated and only the result is stored we could save on the space re-
quirement. Hence the individual products need to be grouped differently
so that the evaluation of the multiplication operation rather than being
deferred to the end is performed within each invocation of the function.
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Fast Powering 2
Let us call this new function fastpower2 which we define as follows.

fastpower2(x, n) =

{
1 if n = 0
fastpower tr(x, n, 1) if n > 0

(15)

where

fastpower tr(y,m, p) =


p if m = 0

fastpower tr(y2,m
.
− 2, p) if m > 0 ∧m –. 2 = 0

fastpower tr(y2,m
.
− 2, p.y) otherwise

(16)
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Fast Powering 2: Correctness
But this algorithm looks so different from the original problem of comput-
ing the power of a number that its correctness itself would be in serious
doubt. Hence before we prove any results about its space complexity we
need to prove that it indeed computes powers of numbers.
The proof of correctness of algorithm (15) is complicated by the use of an
auxiliary algorithm (16) on which the main function fastpower2 depends.
Hence a proof of correctness of the expected behaviour of fastpower tr
is required. The correctness of fastpower2 will then depend on this ex-
pected behaviour. We state a correctness lemma for fastpower tr before
we proceed with the proof of correctness of fastpower2.
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Fast Powering 2: Correctness Lemma
Lemma 2.6 For all real y, p > 0, and integer m ≥ 0,
fastpower tr(y,m, p) = p.ym
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Fast Powering 2: Proof of Lemma
Proof: We prove this by induction on m.
Basis m = 0. From the definition we get fastpower tr(y, 0, p) = p = p.y0.
Induction hypothesis (IH) For all real y, p > 0 and integer k, 0 ≤ k < m,
fastpower tr(y, k, p) = p.yk.

Induction Step Assume m > 0, then we have two cases to consider.
Case m is even, say m = 2j > 0. Then clearly 0 < j < m and

fastpower tr(y, 2j, p) = fastpower tr(y2, j, p)

since 2j
.
− 2 = j < m. By the induction hypothesis we know

fastpower tr(y2, j, p) = p.(y2)j = p.y2j = p.ym and the claim is proved.
Case m is odd, say m = 2j + 1 > 0. Then again we have 0 < j < m and

fastpower tr(y, 2j + 1, p) = fastpower tr(y2, j, p.y)

since (2j + 1)
.
− 2 = j < m. Again by the induction hypothesis we

have fastpower tr(y2, j, p.y) = p.y.(y2)j = p.y2j+1 = p.ym.
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Fast Powering 2: Correctness Final
Now using this lemma it is easy to see that for any real x > 0 and integer
n ≥ 0, by the definition of fastpower2 the two cases to consider are
Case n = 0. In this case, by definition fastpower2(x, 0) = 1 = x0.
Case n > 0. In this case, again by definition and the previous lemma we
get fastpower2(x, n) = fastpower tr(x, n, 1) = 1.xn = xn.
Hence the algorithm is indeed correct.
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Fast Powering 2: Analysis
A typical computation is as follows

fastpower2(x0, n0)
 fastpower tr(x0, n0, p0)
 fastpower tr(x1, n1, p1)

...
 fastpower tr(xk, 0, pk)
 pk

Corollary 2.7 (Invariant) For all i, 0 ≤ i ≤ k, the following (invariant)
property holds

x
n0
0 .p0 = x

ni
i .pi
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Fast Powering 2: Worst Case Running Time
In the worst case we have that each of n0, . . . , nk−1 = 1 is an odd number

and x0 > 1, n0 = 2k − 1 for some k > 0, each xi+1 = x2
i , ni+1 = ni

.
− 2 =

2k−(i+1)1− 1 pi =
∏i−1
j=0 xj for each i, 0 ≤ i < k. Notice that nk = 0, p0 = 1

Hence it is easily shown that the number of multiplications and division
by 2 that need to be performed is given by

T (fastpower2(x0, n0))
 T (fastpower tr(x0, n0, p0))
 2 + T (fastpower tr(x1, n1, p1))

...
 2k + T (fastpower tr(xk, 0, pk))
 O(k)
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Fast Powering 2: Worst Case Space
Requirement

and the space required is given by

S(fastpower2(x0, n0))
 S(fastpower tr(x0, n0, p0))
 S(fastpower tr(x1, n1, p1))

...
 S(fastpower tr(xk, 0, pk))
 O(1)
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3. introduction to SML

Standard ML
• Originated as part of a theorem-proving development project
• Runs on both Windows and UNIX environments
• Is free like many other programming language systems.
• http://www.smlnj.org
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SML: Important Features
• Has a small vocabulary of just a few short words
• Far more “intelligent” than currently available languages:

– automatically finds out what various names mean and
– their correct usage

• Haskell, Miranda and Caml are a few other such languages.
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3.1. Primitives: Integer & Real

Previous: Primitives: Integer & Real

1. Algorithms & Programs

2. SML: Primitive Integer Operations 1

3. SML: Primitive Integer Operations 1

4. SML: Primitive Integer Operations 1

5. SML: Primitive Integer Operations 1

6. SML: Primitive Integer Operations 1

7. SML: Primitive Integer Operations 1

8. SML: Primitive Integer Operations 2

9. SML: Primitive Integer Operations 2

10. SML: Primitive Integer Operations 2

11. SML: Primitive Integer Operations 2

12. SML: Primitive Integer Operations 2

13. SML: Primitive Integer Operations 3

14. SML: Primitive Integer Operations 3

15. SML: Primitive Integer Operations 3

16. SML: Primitive Integer Operations 3

17. SML: Primitive Integer Operations 3

18. Quotient & Remainder

19. SML: Primitive Real Operations 1

20. SML: Primitive Real Operations 1
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21. SML: Primitive Real Operations 1

22. SML: Primitive Real Operations 2

23. SML: Primitive Real Operations 3

24. SML: Primitive Real Operations 4

25. SML: Precision

26. Fibonacci Numbers

27. Euclidean Algorithm

Next: Technical Completeness & Algorithms
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Preamble: The Primitive Data types

We have mentioned that to solve a problem in a given computing model we need to evolve a combination
of the primitives of the model in a suitable order. An algorithm is simply an explicit statement of this
combination in an appropriate order. Further we require to express this in a clear, precise and unambigu-
ous fashion (preferably mathematically). It is then necessary to translate this into a program of a formal
programming language in order to be able to run it on a machine which has an implementation of the
programming language.

We have chosen Standard ML as our vehicle for programming and it is necessary now to get familiar with
the rudiments of the language. Most programming languages are fairly large and to formally learn the
grammar and grammatical constructions can be tedious and boring. However we do have the advantage
that (unlike natural languages), any errors we make in vocabulary (spelling) or grammar would be de-
tected by the compiler of the language and pointed out to us. In fact, unless the program gets compiled
without errors, it cannot be executed. We will use this feature to understand grammatical constructions
as we go along, after learning and understanding just a few of the basic primitives, words and names in
the language. This has the advantage that we very quickly start programming in the language without
actually mastering all of it.

Most programming language systems however, are also organised as a collection of modules or libraries.
With knowledge of only a few simple grammatical constructions and an understanding of some of the
primitives of the modules that we want to use, we may very quickly start constructing and running pro-
grams in the language. It is therefore important to understand at least some of the most useful primitives
in a module to be able to use them in the construction of programs.
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The modules of the SML system are classified in terms of data types. Each data type may be regarded
as a set of elements along with various operations and relations on the data type and between various
distinct data types.

The Integer data type consists of the set of integers along with various operations like addition, multi-
plication, subtraction and division, as well as various important relations like equality, less than, greater
than etc. The concept of a data type therefore may be understood to mean a set of elements along with
various operations and relations between elements of the set as well as operations and relations between
it and other data types in the system.

The Real data type similarly consists of the set of real numbers along with various operations and relations
on the reals. Some of the other data types that we will get familiar with are the data types of booleans,
strings, lists etc.

Perhaps the most basic computation need since the dawn of history is that of counting. With counting
came various operations on natural numbers such as addition and multiplication which finally led to the
theory of integers. So it is natural that we begin our programming journey with the integers.
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Algorithms & Programs
• Algorithm
• Need for a formal notation
• Programs
• Programming languages
• Programming
• Functional Programming
• Standard ML

Factorial
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SML: Primitive Integer Operations 1
Our foray into the SML system begins by first opening a text terminal and
typing the word “sml” followed by the ENTER key on the terminal.
sml
Standard ML of New Jersey, ...
-
The SML system responds with the line giving the version of SML that
the system currently supports and the SML prompt “-” which indicates
that the system is expecting further input from the user.

http://www.cse.iitd.ac.in/~sak


HOME PAGE CONTENTS JJ J I II GO BACK FULL SCREEN CLOSE 143 OF 887 QUIT

SML As Integer Calculator: 1
Initially we deal with simple integer expressions. So right now we use it
simply as a calculator for integer expressions. In each case we write the
user input in blue followed by the ML system response also in blue.
- 5;
val it = 5 : int
-

Here ML has simply recognised that the user has typed the integer 5.

Notice that each time the user has to terminate the input by a ; and hit
the ENTER key for ML to evaluate the input.
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SML As Integer Calculator: 2
We may add two integers, for example.
- 3+4;
val it = 7 : int
-
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SML As Integer Calculator: 3
We may subtract one integer from another.
- 5 - 7;
val it = ˜2 : int
-

Notice that ML uses the symbol “˜” instead of the usual minus sign “-”,
to denote negative numbers.
But the binary operation of subtraction is denoted using the minus sign.
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SML As Integer Calculator: 4
We may give fairly complex expressions.
- 2*8-4+6;
val it = 18 : int
-
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SML As Integer Calculator: 5
We may also give bracketed expressions using the parentheses sym-
bols “(” and “)” for grouping expressions. ML follows the usual operator
precedence conventions that we follow in mathematics (e.g. the so-called
“BODMAS” rule).
- 2*(8-4) + 6;
val it = 14 : int
- ((8-3)* (4+2)) * (9-3);
val it = 180 : int
-

However other bracketing symbols such as “[” and “]” and “{” and “}” are
reserved for other purposes and are not available for use in arithmetic
expressions.
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SML As Integer Calculator: 6
Integer division consists of two operations – “div” for the quotient and
“mod” for the remainder.
- ˜(5-9)*3 div 4;
val it = 3 : int
- ((8-3)* (4+2)) mod 7;
val it = 2 : int
-
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SML As Real Calculator: 1
Calculations with real numbers are similar
- 3.28 - 4.32/4.89+3.84;
val it = 6.23656441718 : real
- (3.28 - 4.32)/(4.89+3.84);
val it = ˜0.119129438717 : real
except that there is only division operator denoted by “/”.
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SML As Real Calculator: 2
However integers and reals cannot appear in the same calculation.
- 3.28 - 4.32/4.89 + 3;
stdIn:3.2-3.20 Error: operator and operand don’t agree [literal]
operator domain: real * real
operand: real * int
in expression:

3.28 - 4.32 / 4.89 + 3
The integer “3” is the culprit in this case.
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SML As Real Calculator: 3
Integers have to be first converted into reals in a real number computa-
tion. The previous expression can be calculated as follows:

- 3.28 - 4.32/4.89 + 3.0;
val it = 5.39656441718 : real
-
The representation “3.0” is the real number representation of the real
number 3.
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SML As Real Calculator: 4
Alternatively integers can be first converted into reals in a real number
computation. The previous expression therefore can be calculated as
follows:
- 3.28 - 4.32/4.89 + real (3);
val it = 5.39656441718 : real
-
The function “real” when applied to the integer “3” converts it into a real
number representation for 3.
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SML: Primitive Integer Operations 1
Suppose the user now types “val x = 5” and presses the ENTER key.

sml
Standard ML of New Jersey, ...
- val x = 5;

“val” is an SML keyword (part of SML’s vocabulary) indicating that a new
name is going to be defined. The new name in this case “x” is being
defined (indicated by the “=” symbol) to stand for the value “5”. The
expression is terminated by the semicolon (“;”).

http://www.cse.iitd.ac.in/~sak


HOME PAGE CONTENTS JJ J I II GO BACK FULL SCREEN CLOSE 154 OF 887 QUIT

Keywords in Programming Languages

Keywords form the main vocabulary of any programming language. For all practical purposes we may
regard the (single symbol) operators of the language e.g. +, *, ˜, - etc. also as keywords. Some of the
other keywords in SML that we shall come across are if, then, else, and, let, in, end etc. Normally
a keyword should not be used as the name of any entity defined by the programmer. Sometimes the
same keyword may take different meanings depending on the context in which it appears.

Besides keywords, values and programmer and language defined names, a typical programming lan-
guage also has operators, punctuation and grouping symbols (bracketing). We will encounter these as
we go along.
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SML: Primitive Integer Operations 1
SML responds as follows:

val x = 5 : int
-

to indicate that the name x has been defined to have the value 5 which
is an integer (indicated by the “: int”).

Note that it was not necessary to inform SML that the value 5 is an in-
teger. This is the simplest instance of SML’s type inference system. In
most cases SML will be able to classify the type to which values should
belong without being informed by the user.
From this point on, the name x may be used in other expressions in place
of the integer value 5. Now SML is ready with the prompt “-” on a new
line for further input from the user.
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SML: Primitive Integer Operations 1
Let us define another name “y” and give it a value “6”:
sml
Standard ML of New Jersey, ...
- val x = 5;
val x = 5 : int
- val y = 6;
val y = 6 : int
-
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SML: Primitive Integer Operations 1
Now let us find the value of the expression “x+y”.
sml
Standard ML of New Jersey, ...
- val x = 5;
val x = 5 : int
- val y = 6;
val y = 6 : int
- x+y;
val it = 11 : int
-
The word “it” is a special SML keyword which stands for the last value
computed by SML.
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SML: Primitive Integer Operations 1
Now let us compute other expressions say involving negative integers.
The symbol “˜” is used to indicate the negative of a number in SML.
However the (binary) operation of subtraction is represented by “-”.
sml
Standard ML of New Jersey, ...
- val x = 5;
val x = 5 : int
- val y = 6;
val y = 6 : int
- x+y;
val it = 11 : int
- x-y;
val it = ˜1 : int
-
Notice how the value of it keeps changing with each new calculation
that is performed. it may be thought of as a special container storing
the value of the last expression that was evaluated.
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SML: Primitive Integer Operations 1
Once it has a value, it may be used in other calculations too.
Standard ML of New Jersey, ...
- val x = 5;
val x = 5 : int
- val y = 6;
val y = 6 : int
- x+y;
val it = 11 : int
- x-y;
val it = ˜1 : int
- it + 5;
val it = 4 : int
-
In the last two expressions above notice how the value of “it” changes
from “˜1” to “4” after the addition of the integer “5”.

http://www.cse.iitd.ac.in/~sak


HOME PAGE CONTENTS JJ J I II GO BACK FULL SCREEN CLOSE 160 OF 887 QUIT

SML: Primitive Integer Operations 2
Multiplication of numbers is represented by “*”.
val x = 5 : int
- val y = 6;
val y = 6 : int
- x+y;
val it = 11 : int
- x-y;
val it = ˜1 : int
- it + 5;
val it = 4 : int- x * y;
val it = 30 : int
-
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SML: Primitive Integer Operations 2
Let’s define a few more names.
val y = 6 : int
- x+y;
val it = 11 : int
- x-y;
val it = ˜1 : int
- it + 5;
val it = 4 : int
- x * y;
val it = 30 : int
- val a = 25;
val a = 25 : int
-
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SML: Primitive Integer Operations 2
val it = 11 : int
- x-y;
val it = ˜1 : int
- it + 5;
val it = 4 : int
- x * y;
val it = 30 : int
- val a = 25;
val a = 25 : int
- val b = 7;
val b = 7 : int
-
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SML: Primitive Integer Operations 2
Integer division is represented by the SML keyword “div”.
val it = ˜1 : int
- it + 5;
val it = 4 : int
- x * y;
val it = 30 : int
- val a = 25;
val a = 25 : int
- val b = 7;
val b = 7 : int
- val q = a div b;
val q = 3 : int
-
Remember: Never divide by zero!
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SML: Primitive Integer Operations 2
The SML keyword “mod” represents the operation of finding the remain-
der obtained by dividing one integer by another non-zero integer.
- x * y;
val it = 30 : int
- val a = 25;
val a = 25 : int
- val b = 7;
val b = 7 : int
- val q = a div b;
val q = 3 : int
- val r = a mod b;
GC #0.0.0.0.2.45: (0 ms)
val r = 4 : int
-
The line containing the phrase “GC #0.0.0.0.2.45: (0 ms)” may
be safely ignored by a beginning programmer.
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SML: Primitive Integer Operations 3
One may want to check certain properties.
- val a = 25;
val a = 25 : int
- val b = 7;
val b = 7 : int
- val q = a div b;
val q = 3 : int
- val r = a mod b;
GC #0.0.0.0.2.45: (0 ms)
val r = 4 : int
- a = b*q + r;
val it = true : bool
-
The line “a = b*q + r;” is an expression asking SML to determine
whether the given statement is true. Note that the expression does not
begin with any SML keyword such as “val” and is therefore not a defini-
tion.
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SML: Primitive Integer Operations 3
Let us look at operations involving negative integers.
- val b = 7;
val b = 7 : int
- val q = a div b;
val q = 3 : int
- val r = a mod b;
GC #0.0.0.0.2.45: (0 ms)
val r = 4 : int
- a = b*q + r;
val it = true : bool
- val c = ˜7;
val c = ˜7 : int
-
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SML: Primitive Integer Operations 3
- val q = a div b;
val q = 3 : int
- val r = a mod b;
GC #0.0.0.0.2.45: (0 ms)
val r = 4 : int
- a = b*q + r;
val it = true : bool
- val c = ˜7;
val c = ˜7 : int
- val q1 = a div c;
val q1 = ˜4 : int
-
Notice that the result of dividing 21 by −7 seems to yield a quotient of −4.
Why do you think that happens?
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SML: Primitive Integer Operations 3
What would be the remainder of the same division?
- val r = a mod b;
GC #0.0.0.0.2.45: (0 ms)
val r = 4 : int
- a = b*q + r;
val it = true : bool
- val c = ˜7;
val c = ˜7 : int
- val q1 = a div c;
val q1 = ˜4 : int
- val r1 = a mod c;
val r1 = ˜3 : int
-
The remainder is −3. Hmm!
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SML: Primitive Integer Operations 3
Does our standard property relating the dividend, divisor, quotient and
remainder hold true for negative numbers too?
val r = 4 : int
- a = b*q + r;
val it = true : bool
- val c = ˜7;
val c = ˜7 : int
- val q1 = a div c;
val q1 = ˜4 : int
- val r1 = a mod c;
val r1 = ˜3 : int
- a = c*q1 + r1;
val it = true : bool
-
Yes, it seems to!
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Quotient & Remainder
For any two integers a and b with b 6= 0,the quotient q and remainder r are
uniquely determined to satisfy the identity

a = b× q + r

such that
• r is of the same sign as b and
• 0 ≤ |r| < |b| always holds.
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Remarks on Integers and Reals

It may be relevant at this point to note the following:

• Due to various representational issues only a finite subset of the integers is actually representable
directly on a machine. These issues mainly relate to the word length supported by the hardware for
storing in memory locations and registers. In general the set of integers supported on a word-length
of w ranges from −2w−1 to 2w−1 − 1. For more details the reader may refer to standard textbooks on
computer architecture.

• However it is possible to write programs which will extend the integers to be of arbitrarily large magni-
tude. In fact by about the middle of this course you should be able to do it in SML.

• Even though our school mathematics training equips us to regard the set of integers as a subset of
the set of reals, it unfortunately does not hold on a digital computer. This is mainly because of various
internal representation details which the reader may study from books on hardware and computer
architecture. Hence for all practical purposes in programming we may think of the integers and reals
as two distinct and independent data types with no apparent relation to each other. However there are
functions which convert integers to reals and vice-versa.

• As in the case of the integers, the word length constrains the reals too to only a finite subset. Moreover
all the reals that are represented in hardware are strictly speaking, only rational numbers due to the
constraint of a finite representation.

• Further the gaps between the reals represented in hardware are determined by certain precision
constraints which again depend on word-length.
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SML: Primitive Real Operations 1
One can go from integers to reals by explicitly converting an integer value

sml
Standard ML of New Jersey, ...
- val a = 25;
val a = 25 : int
- val real_a = real a;
val real_a = 25.0 : real
-
Here the word “real” occurring on the right hand side of the definition
of the name “real a” is actually a function from integers to reals which
yields the real value representation 25.0 of the integer 25.
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SML: Primitive Real Operations 1
sml
Standard ML of New Jersey, ...
- val real_a = real a;
val real_a = 25.0 : real
- val b = 7;
val b = 7 : int
- real_a + b;
stdIn:40.1-40.11 Error: operator and operand don’t agree [tycon mismatch]
operator domain: real * real
operand: real * int
in expression:

real_a + b
-
Notice that SML yields an error when an integer is added to a real num-
ber.
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SML: Primitive Real Operations 1
SML expects the second operand to be real since the the first one is real.

stdIn:40.1-40.11 Error: operator and operand don’t agree [tycon mismatch]
operator domain: real * real
operand: real * int
in expression:

real_a + b
- b + real_a;
stdIn:1.1-2.6 Error: operator and operand don’t agree [tycon mismatch]
operator domain: int * int
operand: int * real
in expression:

b + real_a
-
In the second case it expects the second operand to be an integer since
the first one is an integer.
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Overloading of operators

In the case of an operator such as “+” it is used to denote both integer addition as well as real addition even
though the underlying implementations may be different. Such operators are said to be overloaded. Some
of the other overloaded operators are those for subtraction (“-”) and multiplication (“*”). Overloading of
common arithmetic operators is deliberate in order to conform to standard mathematical notation. Usually
the surrounding context of the operator would make it clear whether an integer or real operation is meant
to be used. Where the context is not clear we say that it is ambiguous.

We may use these overloaded operators and continue our session as follows:

- val e = 2.71828182846;
val e = 2.71828182846 : real
- val pi = 3.14159265359;
val pi = 3.14159265359 : real
- pi+e;
val it = 5.85987448205 : real
- e+pi;
val it = 5.85987448205 : real
- e-pi;
val it = ˜0.42331082513 : real
- pi-e;
val it = 0.42331082513 : real
- pi*e;
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val it = 8.53973422268 : real
- e*pi;
val it = 8.53973422268 : real
-

Certain languages like C permit overloaded operators in ambiguous contexts. But then they do have
disambiguating rules which clearly specify what the interpretation should be. SML does not however
permit the use of such disambiguating rules. For instance in SML one cannot add an integer to a real
number, whereas in C this is permitted and rules of whether the addition should be regarded as integer
addition or real addition can be quite complex depending upon the context.
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SML: Primitive Real Operations 2
Real division is represented by the symbol “/”.
- val a = 25.0;
val a = 25.0 : real
- val b = 7.0;
val b = 7.0 : real
- a/b;
val it = 3.57142857143 : real
- a div b;
stdIn:49.3-49.6 Error: overloaded variable not defined at type
symbol: div
type: real

GC #0.0.0.0.3.98: (0 ms)
-
Note that the integer division operator “div” cannot be used with real
numbers.
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SML: Primitive Real Operations 3
- val c = a/b;
val c = 3.57142857143 : real
- trunc(c);
val it = 3 : int
- trunc (c + 0.5);
val it = 4 : int
- trunc ˜2.36;
val it = ˜2 : int
- trunc (˜2.36 - 0.5)
val it = ˜2 : int
- trunc (˜2.55 - 0.5);
val it = ˜3 : int
-
“trunc” is a function which “truncates” a real number to yield only its
integer portion. Notice that to round-off a positive real number to the
nearest integer we may truncate the result of adding 0.5 to it. Similarly to
round off a negative real number we subtract 0.5 and truncate the result.
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SML: Primitive Real Operations 4
We may define real numbers also using the mantissa-exponent notation.

- val d = 3.0E10;
val d = 30000000000.0 : real
- val pi = 0.314159265E1;
val pi = 3.14159265 : real
- d+pi;
val it = 30000000003.1 : real
- d-pi;
val it = 29999999996.9 : real
- pi + d;
val it = 30000000003.1 : real
-
Notice the loss of precision in calculating “d+pi” and “d-pi”.
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SML: Precision
The loss of precision gets worse as the difference between the relative
magnitudes of the numbers involved increases.
- pi + d*10.0;
val it = 300000000003.0 : real
- d*10.0 - pi;
val it = 299999999997.0 : real
- pi + d*100.0;
val it = 3E12 : real
- d*100.0 + pi;
val it = 3E12 : real
- d*100.0 -pi;
val it = 3E12 : real
-
So much so that there seems to be no difference between the values of
“d*100.0 + pi” and “d*100.0 - pi”
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Precision of real arithmetic

Real arithmetic on modern computers is handled by the so-called floating point processor. Since this is
also fixed precision arithmetic, various round-off procedures are adopted in most calculations. So real
arithmetic for this reason is always approximate and seldom guaranteed to be accurate.

These practical concerns also affect various basic properties that we expect from real numbers. For one
addition and multiplication may not be associative operations i.e. it is not guaranteed that (a + b) + c =

a + (b + c). Even the commutativity and distributive properties of operations on real numbers are not
guaranteed. Certain implementations may be quite smart. For example, look at this continuation of
the previous SML session. As we have already seen there seems to be no difference in the values of
“d*100.0 + pi” and “d*100.0 - pi”. However consider the following fragment

- (d*100.0 + pi)- (d*100.0 - pi);
val it = 6.283203125 : real
- (d*1000.0 + pi)- (d*1000.0 - pi);
val it = 6.28125 : real
- (d*10000.0 + pi) - (d*10000.0 -pi);
val it = 6.25 : real
-

In each of the above cases look carefully at the approximations to 2π that have been obtained. The
reason non-zero values have been obtained is simply because the underlying software and hardware
have carefully isolated computations of numbers of greatly different magnitudes so as to give reason-
able approximate answers. The approximations get less precise as the relative difference in magnitudes
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increases greatly.
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Comparing reals

The nature of representations and floating point algorithms on those representations makes it impossible
to check for equality of two real numbers, since they may firstly have different representations, and sec-
ondly equality checking requires both of them be converted to the same representation for comparison.
But this conversion itself may involve a loss of precision and thus the equality checking procedure itself
becomes one of doubtful utility.

Hence the designers of SML have decided that real numbers may be compared for other relations, such
as whether one real is less than another or greater than another but not for equality. The following
continuation of the last session drives home the point. Study it carefully.

- (d*1000.0 + pi)- (d*1000.0 - pi) > (d*10000.0 + pi) - (d*10000.0 -pi);
val it = true : bool
- (d*1000.0 + pi)- (d*1000.0 - pi) >= (d*10000.0 + pi) - (d*10000.0 -pi);
val it = true : bool
-

The above statements are true simply because 6.28125 > 6.25. But the results are clearly counter-intuitive
from the stand-point of mathematics.

Now look at the following.

- (d*1000.0 + pi)- (d*1000.0 - pi) = (d*10000.0 + pi) - (d*10000.0 -pi);
stdIn:29.1-29.70 Error: operator and operand don’t agree [equality type required]
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operator domain: ’’Z * ’’Z
operand: real * real
in expression:

d * 1000.0 + pi - (d * 1000.0 - pi) =
d * 10000.0 + pi - (d * 10000.0 - pi)

-

Study the last error message clearly prohibiting equality checking. This happens even if we actually give
it identical values as in the following.

- 3.0 = 3.0;
stdIn:1.1-14.2 Error: operator and operand don’t agree [equality type required]

operator domain: ’’Z * ’’Z
operand: real * real
in expression:

3.0 = 3.0
-
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3.2. Primitives: Booleans

1. Boolean Conditions

2. Booleans in SML

3. Booleans in SML

4. ∧ vs. andalso

5. ∨ vs. orelse

6. SML: orelse

7. SML: andalso

8. and, andalso, ⊥

9. or, orelse, ⊥

10. Complex Boolean Conditions
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Boolean Conditions
• Two (truth) value set : {true, false}
• Boolean conditions are those statements or names which can take only
truth values.
Examples: n < 0, true, false

• Negation operator: not
Examples: not (n < 0), not true, not false
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Booleans in SML
Standard ML of New Jersey,
- val tt = true;
val tt = true : bool
- not(tt);
val it = false : bool
- val n = 10;
val n = 10 : int
- n < 10;
val it = false : bool
- not (n<10);
val it = true : bool
-
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3.3. The Conditional

The conditional in SML

Many functions are defined using a conditional construct. That is, depending upon certain conditions
being satisfied the function yields one value and otherwise some other value. The simplest example of
this from school mathematics perhaps is the absolute value function on the integers or the reals.

|x| =
{

x if x ≥ 0

−x otherwise
(17)

or equivalently as

|x| =
{

x if x ≥ 0

−x if x < 0

Here “x ≥ 0” and “x < 0” are the two conditions. Note that they are expressions which can only be either
true or false for a given value of x.

Such conditional definitions of the form (17) may be written in SML using the conditional expression

if condition then truevalue else falsevalue

The words if, then and else are all SML Keywords. The three words always appear in this order
with the condition (a boolean expression) appearing between if and then. truevalue and falsevalue are
referred to as the two arms or clauses of this conditional and are always separated by else. truevalue is
the then-clause and falsevalue is the else-clause of the conditional.
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Definition (17) is written in SML as
fun abs x = if x >= 0 then x

else ˜x

Conditionals with more than two arms are also possible as in the case of the signum function

signum(x) =


1 if x > 0

0 if x = 0

−1 if x < 0

(18)

which may be rendered in SML as

fun signum x = if x > 0 then 1
else if x = 0 then 0

else ˜1

Here it is important to note that the SML version is obtained by nesting two conditionals in the form

if condition1 then truevalue1 else (if condition2 then truevalue2 else falsevalue)

i.e. the second conditional appears as the else-clause of the first conditional. Notice also how this is
made evident in the SML code by using indentation which aligns each else with the corresponding if.
When the conditions are complex, we would write the then-clause in a separate line with the keyword
then aligned with the keyword if. Such indentation makes code clearer to read though it does not affect
compilation or running of the code.

There are two important points to note about conditional definitions.

http://www.cse.iitd.ac.in/~sak


HOME PAGE CONTENTS JJ J I II GO BACK FULL SCREEN CLOSE 190 OF 887 QUIT

Totality. For any given values of names used in the conditions, at least one of the conditions should be
true. For example, the following is a definition which is not total

|x| =
{

x if x > 0

−x if x < 0

since it does not specify the value of |0|.

Mutual Exclusivity. The different conditions are all mutually exclusive in the sense that for any given value
of the names occurring in the conditions, exactly one condition would be true. In the above example
for any real or integer x only one of the two conditions can be true – both cannot be true for the same
value of x. However in the case of the absolute value function the following could be considered a
perfectly correct definition of |x|.

|x| =
{

x if x ≥ 0

−x if x ≤ 0

since both conditions yield the same unique value for each value of x including for x = 0 even though
the conditions are not mutually exclusive. However all programming languages with this conditional
construct implicitly assume exclusivity.

The conditional is one of the most frequently used constructs in most programming languages. Even all
inductive definitions depend upon separating the basis of the induction from the induction hypothesis and
the conditional is a most useful way of doing this.
A convenient way to think about the conditional is as a ternary operator (made up of three keywords if,
then and else) whose operands appear between the keywords of the operator. Actually every construct
in every programming language may be thought of as an operator of appropriate arity. The conditional
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is a 3-ary operator (or an operator of arity 3) in very much the same way as addition and subtraction are
binary operators (i.e. 2-ary operators or operators of arity 2).
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The Conditional: Example: 1
Given any integer y denoting a year in the Christian calendar, we would
like to determine whether it is a leap year. A leap year is one which is
divisible by 4. Also not all years divisible by 4 are leap years. Century
years are leap only if they are divisible by 400. So we define a boolean
function leap which yields a value “true” if the year y is a leap year and
false otherwise.

leap y =

 true if 400 | y
true if 100 6 | y and 4 | y
false otherwise

(19)

where a|b stands for “b is divisible by a” and a 6 | b for “b is not divisible by
a”.
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The Conditional: Example: 2
But divisibility checking is not primitive in SML. However, a|b for a 6= 0 if
and only if b mod a = 0 where mod denotes the remainder obtained on
division.
Definition (19) may be rewritten using mod.

leap y =

 true if y mod 400 = 0
true if y mod 100 6= 0 and y mod 4 = 0
false otherwise

(20)

Notice how the conditions in this definition are mutually exclusive and total.
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The Conditional: Example: 3
In SML the definition may be written as
fun leap y = if y mod 400 = 0 then true

else if y mod 100 = 0
then false
else if y mod 4 = 0

then true
else false

Notice how the code has been indented to make clear the nesting struc-
ture and and how each else-clause has been aligned with its matching
if.
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The Conditional: Identities

Notice that the function leap yields a boolean value on an integer argument. Also notice how the condi-
tions are nested within one another.

Conditions can get pretty complicated and nesting levels would often reflect this complexity and therefore
affect the readability of the code. There are many ways to tackle these problems.

Indentation Use a good indentation-style by aligning the keywords of a compound operator so that the
code becomes readable. Remember that a programming language notation is a highly formalised
mathematical notation. Though in general, it is to be compiled and run by a machine, it should also be
readable and comprehensible so that one may easily identify errors and correct them. However good
indentation alone does not solve the problem.

Simplifications using algebraic identities There are many algebraic identities that hold. The use of these
identities can greatly simplify the code and shorten it and make it easier to read and understand and
therefore ensure its correctness. In the case of the above example since both the conditions and the
results are boolean one may effectively use some obvious identities to eliminate some occurrences of
the constants true and false. We use ≡ as an equality relation between different SML expressions.
We interpret it as an equality relation between SML expressions. So it is possible to substitute one side
of the identity by the other in any SML expression without changing the meaning of the expression.
The principle of substitutivity (viz. that equals may be substituted for equals in all contexts) is an
important principle in all of mathematics. Throughout your mathematics education you have probably
used it unconsciously. This is an important consequence of using the pure functional programming
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model.
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Using Identities
We use ≡ as an equality relation between different SML expressions.
The simplest identity is the following:

if condition
condition ≡ then true

else false

This identity (used from right to left) may be used to simplify the code of
leap.
fun leap y = if y mod 400 = 0 then true

else if y mod 100 = 0
then false
else y mod 4 = 0
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Some More Identities
Some simple and obvious identities are

if true
truevalue ≡ then truevalue

else falsevalue

if false
falsevalue ≡ then truevalue

else falsevalue
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Other useful Identities
Another useful identity is the following.

if condition
not (condition) ≡ then false

else true

A fairly general identity.
if condition if not (condition)
then truevalue ≡ then falsevalue
else falsevalue else truevalue

where truevalue and falsevalue may themselves be conditional expres-
sions.
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Structuring As conditions become even more complex and harder to understand, simplifications and ap-
propriate indentation may still leave definitions complicated and hard to understand. In such situations
a structuring mechanism which clearly isolates logically distinct concepts is then necessary. For ex-
ample, even in the case of the leap year example we could divide the cases of the definition into those
involving century years and others. So we isolate the century years from other years by defining aux-
iliary functions which capture the intuitive concept we are trying to program. Here is a definition which
uses an auxiliary definition and also removes some redundant uses of the constants true and false.
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Structural Simplifications
century x = (x mod 100 = 0)

leap y =

{
(y mod 400 = 0) if century(y)
(y mod 4 = 0) otherwise

In SML the above definitions become
fun century x = (x mod 100 = 0);
fun leap y = if (century y)

then (y mod 400 = 0)
else y mod 4 = 0

Another example of a conditional is the number of days in any month of
the year. Try defining this as a function of month number (1 to 12).
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3.4. The Binary Boolean Operators

Binary Boolean Operators in SML
The two SML operators corresponding to “and” and “or” are the keywords
andalso and orelse.
Examples:
- val n = 10;
val n = 10 : int
- (n >= 10) andalso (n=10);
val it = true : bool
- n < 0 orelse n >= 10;
val it = true : bool
- not ((n >= 10) andalso (n=10)) orelse n < 0;
val it = false : bool
-
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∧ vs. andalso
The meanings of the two boolean operators may be defined using truth
tables as we usually do in boolean algebra. For any two boolean condi-
tions p and q we have the following truth table for the boolean operators
∧ and the SML operator andalso.

p q p ∧ q p andalso q
true true true true
true false false false
false true false false
false false false false
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∨ vs. orelse
Similarly the meanings of ∨ and the SML operator orelse may be de-
fined by the following truth table.

p q p∨q p orelse q
true true true true
true false true true
false true true true
false false false false
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Boolean operators and The Conditional
The boolean operators may also be expressed in terms of the conditional
and the truth values as the following simple identities show.

p andalso q ≡ if p then q else false (21)

p orelse q ≡ if p then true else q (22)
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3.5. Nontermination and Boolean Operators

T he operators andalso and orelse differ from their Boolean algebra counterparts ∧ and ∨ in one
important aspect. This is best explained in the presence of nontermination. An example of a non-
terminating function definition was that of the alternative definition of factorial given in definition (6) We
have already seen examples of leap and century. We have also seen that such functions may be used in
conditionals. It is quite possible to define boolean functions in SML which may not terminate on certain
inputs.

One example is the following inductively defined function on the integers

gtz(n) =

{
true if n = 1

gtz(n− 1) otherwise

Notice that this function will never terminate for non-positive integer values of n. Now consider forming a
complex boolean condition using such a function.
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SML: orelse
Standard ML of New Jersey,
- val tt = true;
val tt = true : bool
- fun gtz n = if n=1 then true else gtz (n-1);
val gtz = fn : int -> bool
- tt orelse (gtz 0);
val it = true : bool
- (gtz 0) orelse tt;

The result of the last expression is never obtained!
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Computation: 1
The computation of tt orelse (gtz 0) goes as follows — essentially
a left to right evaluation of the expression unless bracketing associates
the sub-expressions differently.

tt orelse (gtz 0)
≡ true orelse (gtz 0)
≡ if true then true orelse (gtz 0)
≡ true
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Computation: 2
The computation of (gtz 0) orelse tt on the other hand goes as
follows (again left to right simplification and evaluation unless dictated
otherwise by the bracketing):

(gtz 0) orelse tt
≡ (if 0=1 then true else gtz (0-1)) orelse tt
≡ (gtz ˜1) orelse tt
≡ ((if ˜1=1 then true else gtz (˜1-1)) orelse tt
≡ (gtz ˜2) orelse tt
≡ ((if ˜2=1 then true else gtz (˜2-1)) orelse tt
≡ (gtz ˜3) orelse tt
≡ ...

and so on forever.
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The Effect of Nontermination: 1
Since the evaluation of (gtz 0) does not terminate, no result will be ob-
tained for the expression (gtz 0) orelse tt, whereas tt orelse
(gtz 0) will always yield the value true since by the identities, the
condition (gtz 0) is never evaluated and

tt orelse (gtz 0)
≡ if tt then true else (gtz 0)
≡ true

Hence
tt orelse (gtz 0) 6≡ (gtz 0) orelse tt
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SML: andalso
- val ff = false;
val ff = false : bool
- ff andalso (gtz 0);
val it = false : bool
- (gtz 0) andalso ff;

Similarly we have
ff andalso (gtz 0) 6≡ (gtz 0) andalso ff
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∧, andalso with ⊥
Let us denote nontermination by ⊥. We then have a modified truth table
as follows.

p q p∧q p andalso q
true true true true
true false false false
false true false false
false false false false
⊥ ⊥ ⊥ ⊥

true ⊥ ⊥ ⊥
⊥ true ⊥ ⊥

false ⊥ false false
⊥ false false ⊥

∧ is commutative whereas andalso is not (from the last two lines).
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or, orelse, ⊥
p q p∨q p orelse q

true true true true
true false true true
false true true true
false false false false
⊥ ⊥ ⊥ ⊥

true ⊥ true true
⊥ true true ⊥

false ⊥ ⊥ ⊥
⊥ false ⊥ ⊥

∨ is commutative whereas orelse is not (as is clear from the last two
lines of the table).
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Conclusions
• The boolean operators andalso and orelse differ from their corre-
sponding analogues in mathematics.

• Under all circumstances however, andalso and orelse satisfy the
identities relating them to the conditional

• The boolean operators ∧ and ∨ are commutative whereas andalso
and orelse are not.

• The boolean operators ∧ and ∨ are also associative. Are andalso
and orelse associative? Prove using the conditional identitites or find
a counterexample to show that they are not.

• How does negation interact with nontermination? Write a new truth
table for not. Does it differ in behaviour from the usual boolean ¬?
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Exercises

1. Write down the full truth table for the not operator.

2. Prove that both andalso and orelse are both associative. That is

(a) p andalso (q andalso r) ≡ (p andalso q) andalso r

(b) p orelse (q orelse r) ≡ (p orelse q) orelse r

Hint: Do a case analysis on the three possible values of p.

3. Prove that andalso and orelse also satisfy the DeMorgan laws.

(a) not (p andalso q) ≡ (not p) orelse (not q)

(b) not (p orelse q) ≡ (not p) andalso (not q)

http://www.cse.iitd.ac.in/~sak


HOME PAGE CONTENTS JJ J I II GO BACK FULL SCREEN CLOSE 217 OF 887 QUIT

3.6. Example: Fibonacci

1. Fibonacci Numbers: 1

2. Fibonacci Numbers: 2

3. Fibonacci Numbers: 3

4. Fibonacci Numbers: 4

5. Fibonacci Numbers: 5

6. Is Fa(n, 1, 1) = F (n)?

7. Trial & Error

8. Generalization

9. Proof

10. Another Generalization

11. Try Proving it!

12. Another Generalization

13. Try Proving it!

14. Complexity

15. Complexity

16. Time Complexity: R

17. Time Complexity

18. Time Complexity: R

19. Bound on R

20. Other Bounds: CF

21. Other Bounds: AF
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A Detailed Example

As a precursor of the various aspects involved in computing, we choose a rather simple example and
study it thoroughly for the various properties. We start with a simple mathematical definition and prooceed
to subject it to rigorous analysis and transformations. It is our aim to introduce the tools of the trade of
computing by means of this example. The tools include the following.

1. A more or less direct translation of the definition into a functional program. There is a certain sense in
which it would be quite obvious that this program exactly captures the definition of the function.

2. Alternative definitions which in a certain sense generalise the first one, leading to other functional
programs which implement the same function.

3. Proofs of correctness which show that the new definitions indeed entirely capture all the properties of
the first definition.

4. An analysis of the two definitions for what they mean in terms of computational complexity. Most of
this requires no knowledge of digital computers and should be quite intuitive.

As our example we have chosen the function which generates the fibonacci numbers. The fibonacci
number sequence is the sequence given by

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . . (23)

where except for the starting two numbers, every number in the sequence may be obtained as the sum of
the two preceding numbers in the sequence. Sequences expressed as functions of the position (starting
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from a position 0) are fairly common and the fibonacci sequence is no exception. It may be generated by
the following function

F (n) =


0 if n = 0

1 if n = 1

F (n− 1) + F (n− 2) if n > 1

(24)

The Fibonacci numbers have many interesting mathematical properties, and these properties could also
be used to define algorithms for generating them. However, at this stage we use only the definition to
study the relationships between mathematical definitions, algorithms obtained directly from the definitions,
their correctness and their complexity.

Since we use several possible definitions for the generation of fibonacci numbers we subscript each new
definition as we go along so that we can keep track of the various definitions we give. So we begin with
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Fibonacci Numbers: 1

F1(n) =

 0 if n = 0
1 if n = 1
F1(n− 1) + F1(n− 2) if n > 1

A slightly shorter but equivalent definition is as follows:

F2(n) =

{
n if 0 ≤ n ≤ 1
F2(n− 1) + F2(n− 2) if n > 1

It is easy to see that these definitions generate the fibonacci sequence
(23).
The function F1 (and F2) is a typical example of a function that is in-
ductively defined. Our previous encounter with an inductively defined
function was the factorial function.
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Fibonacci Numbers: 2

F1(n) =

 0 if n = 0
1 if n = 1
F1(n− 1) + F1(n− 2) if n > 1

This function may be directly translated into SML as follows:

fun fib1 (n) =
if (n = 0) then 0
else if (n = 1) then 1
else fib1 (n-1) + fib1 (n-2);
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Fibonacci Numbers: 3
F2(n) =

{
n if 0 ≤ n ≤ 1
F2(n− 1) + F2(n− 2) if n > 1

This definition may be translated into SML as either

fun fib2 (n) =
if (0 <= n) andalso (n <= 1)then n
else fib2 (n-1) + fib2 (n-2);

or as

fun fib2’ (n) =
if (n = 0) orelse (n = 1) then n
else fib2’ (n-1) + fib2’ (n-2);
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Fibonacci Numbers: 4
One could give other alternative definitions as well. For example, con-
sider the following function F3 defined in terms of another function Fa.
Let

Fa(n, a, b) =

 a if n = 0
b if n = 1
Fa(n− 1, b, a + b) if n > 1

and then define
F3(n) = Fa(n, 0, 1)
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Fibonacci Numbers: 5
The two functions Fa and F3 may then be translated into SML as
fun fib_a (n, a, b) =

if (n = 0) then a
else if (n = 1) then b
else fib_a (n-1, b, a+b);

fun fib3 (n) = fib_a (n, 0, 1);
respectively.
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Is it Correct?
In the first two cases it was more or less “obvious” that the two definitions
were indeed equivalent, i.e. that they defined the same function.
But as we find more and more complex ways of defining F , the question
arises as to whether the new definitions are equivalent to the old ones.
Intuition. Fa looks like a generalization of F .
Question 1. What does it actually generalize to?
Question 2. Does the generalization have a “closed” form i.e. can Fa be

expressed in some way other than by using Fa itself?
Question 3. Can one prove that F3 is exactly the same function as F1 (and
F2)?

Question 4. How does one go about proving such a thing?
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A Direct Approach
Our intuition suggests that since

Fa(0, 0, 1) = 0
Fa(1, 0, 1) = 1
Fa(2, 0, 1) = 1
Fa(3, 0, 1) = 2 and
F3(n) = Fa(n, 0, 1)

F may be obtained from Fa by simply setting a = 0 and b = 1. So we
might try to prove a direct theorem relating F with this special case of Fa.

Theorem 3.1 For all integers n > 1,
Fa(n, 0, 1) = F (n)

Since the definitions are all inductive it is natural to first try a proof by
mathematical induction. So let’s have a go at it.
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Try Proving it!
Proof: By induction on n > 1.
Basis For n = 0, Fa(0, 0, 1) = 0 = F (0) and for n = 1, Fa(1, 0, 1) = 1 = F (1)

Induction hypothesis (IH) Assume Fa(k, 0, 1) = F (k), for some k ≥ 1
Induction Step

Fa(k + 1, 0, 1)
{By definition of Fa} = Fa(k, 1, 1)
{Induction Hypothesis} = ? ? ?

STUCK!
So that does not work and we have to think of something else.
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Trial & Error
Could one use trial and error to gather more intuition and understanding
about the relationship between Fa and F?

Fa(0, a, b) = a
Fa(1, a, b) = b
Fa(2, a, b) = a + b = aF (1) + bF (2)
Fa(3, a, b) = Fa(2, b, a + b)

= a + 2b = aF (2) + bF (3)
Fa(4, a, b) = Fa(3, b, a + b)

= Fa(2, a + b, a + 2b)
= 2a + 3b = aF (3) + bF (4)

Fa(5, a, b) = Fa(2, a + 2b, 2a + 3b)
= 3a + 5b = aF (4) + bF (5)

The patterns suggest the following.
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Generalization
• Fa(0, a, b) = a

• Fa(1, a, b) = b

• Fa(n, a, b) = aF (n− 1) + bF (n) for n > 1.

Theorem 3.2 For all integers a, b and n > 1,

Fa(n, a, b) = aF (n− 1) + bF (n)

If this theorem holds then a corollary of this theorem is the direct one (viz.
Fa(n, 0, 1) = F (n)) that we tried and failed to prove.
Now let’s try to prove this theorem.
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Proof by Induction on n > 1

Proof:

Basis For n = 2, Fa(2, a, b) = a + b = aF (1) + bF (2)

Induction hypothesis (IH) Assume Fa(k, a, b) = aF (k−1)+bF (k), for some
k > 1 and all integers a, b.

Induction Step

Fa(k + 1, a, b)
{ Definition of Fa} = Fa(k, b, a + b)
{ Induction Hypothesis} = bF (k − 1) + (a + b)F (k)

= aF (k) + b(F (k − 1) + F (k))
{ Definition of F} = aF (k) + bF (k + 1)

Aha! So that certainly worked!
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Another Generalization
Intuition. If a and b are successive fibonacci numbers (say for some
j ≥ 1, a = F (j − 1) and b = F (j)) then Fa(1, a, b) = b and Fa(2, a, b) =
Fa(1, F (j), F (j−1)+F (j)) = F (j+1) and then Fa(n, a, b) is n steps ahead
of a in the fibonacci sequence (23).
Here is a more direct theorem
Theorem 3.3 For all integers n ≥ 1 and j ≥ 1,

Fa(n, F (j − 1), F (j)) = F (n + j − 1)

Proof: By induction on n ≥ 1, for all values of j ≥ 1.
Again a corollary of the above theorem is the direct theorem which we
failed to prove earlier.
Corollary 3.4 For all integers n ≥ 1,

Fa(n, F (0), F (1)) = Fa(n, 0, 1) = F (n)

http://www.cse.iitd.ac.in/~sak


HOME PAGE CONTENTS JJ J I II GO BACK FULL SCREEN CLOSE 232 OF 887 QUIT

Try Proving it!
Proof:

Basis For n = 1, Fa(1, F (j − 1), F (j)) = F (j)

Induction hypothesis (IH) For some k > 1 and all j ≥ 1,
Fa(k, F (j − 1), F (j)) = F (k + j − 1)

Induction Step We need to prove Fa(k + 1, F (j − 1), F (j)) = F (k + j).

Fa(k + 1, F (j − 1), F (j))
= Fa(k, F (j), F (j − 1) + F (j))
= Fa(k, F (j), F (j + 1))

{ Induction Hypothesis} = Fa(k + j)

Well that also worked satisfactorily!
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Lessons learned

We have shown the first non-obvious proof of correctness of an algorithm viz. that F3 does generate the
fibonacci sequence (23).

Our attempts to prove the correctness show that

1. Certain obvious and direct approaches may not always work,

2. An algorithm may have subtle generalizations (or even properties) which may need to be established
before we attempt to prove correctness.

3. Coming up with such a generalised theorem is crucial to justify the correctness of the algorithm.
Getting the right generalizations requires hard work and intuition about the algorithm.

In certain cases designing a new algorithm often requires studying the properties and proving fresh
theorems based on properties. We will encounter this in several examples. In each case the only way to
convince ourselves about the correctness of our algorithm is to prove it as we do in mathematics.
The process of coming up with alternative algorithms and also proving their correctness requires a degree
of creativity higher than that in the standard school mathematics curriculum in India. Most exercises in
school mathematics which involve proofs are such that the student is merely asked to prove a given
statement. The student is seldom called upon to come up with a new (non-obvious) statement and also
prove it right. Herein lies the creative element in correct algorithm design.
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Time Complexity
• Time complexity:

– No of additions: AF (n)

– No of comparisons: CF (n)

– No of recursive calls to F : RF (n)

• Space complexity:
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Space Complexity
• Time complexity:
• Space complexity:

– left-to-right evaluation: LRF (n)

– arbitrary evaluation: UF (n)
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Time Complexity: R
• Hardware operations like addition and comparisons are usually very
fast compared to software operations like recursion unfolding

• The number of recursion unfoldings also includes comparisons and
additions.
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Time Complexity
• It is enough to put bounds on the number of recursion unfoldings and
not worry about individual hardware operations.

• Similar theorems may be proved for any operation by counting and
induction.

So we concentrate on R.
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Time Complexity: R
•RF (0) = RF (1) = 0

•RF (n) = 2 +RF (n− 1) +RF (n− 2) for n > 1

To solve the equation as an initial value problem and obtain an upper
bound we guess the following theorem.
Theorem 3.5RF (n) ≤ 2n−1 for all n > 2

Proof: By induction on n > 2.
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Bound on R
Basis n = 3. RF (3) = 2 + 2 + 0 ≤ 23−1

Induction hypothesis (IH) For some k > 2, RF (k) ≤ 2k−1

Induction Step If n = k + 1 then n > 3

RF (n)
= 2 +RF (n− 2) +RF (n− 1)

≤ 2 + 2n−3 + 2n−2 (IH)
≤ 2.2n−3 + 2n−2 for n > 3, 2n−3 ≥ 2

= 2n−2 + 2n−2

= 2n−1

http://www.cse.iitd.ac.in/~sak


HOME PAGE CONTENTS JJ J I II GO BACK FULL SCREEN CLOSE 240 OF 887 QUIT

Other Bounds: CF
One comparison for each call.
• CF (0) = CF (1) = 1

• CF (n) = 1 + CF (n− 1) + CF (n− 2) for n > 1

Theorem 3.6 CF (n) ≤ 2n for all n ≥ 0.
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Other Bounds: AF
No additions for the basis and one addition in each call.
•AF (0) = AF (1) = 0

•AF (n) = 1 +AF (n− 1) +AF (n− 2) for n > 1

Theorem 3.7AF (n) ≤ 2n−1 for all n > 0.
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3.7. Fibonacci Numbers and the Golden Ratio

The Fibonacci numbers are related to the golden ratio φ = (1 +
√

5)/2 = 1.61803 . . . which is one of the
solutions of the quadratic equation

x2 = 1 + x (25)

The other solution ψ = (1 −
√

5)/2 = −0.61803 . . . is the conjugate of φ. Since φ and ψ are both solutions
of equation (25) it follows that

φ2 = φ + 1 (26)
ψ2 = ψ + 1 (27)

It is easy to prove by induction on n that

Fn =
φn − ψn√

5
(28)

Proof: It is clear that F0 = 0. We then proceed by induction on n.

Basis.(n = 1) Trivial.

Induction hypothesis. For all k ≥ 1, k < n, Fk =
φk − ψk√

5
.
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Induction Step. Assume n ≥ 2. We have

Fn = Fn−1 + Fn−2

=
φn−1 − ψn−1√

5
+
φn−2 − ψn−2√

5
By induction hypothesis

=
φn−2(φ + 1)− ψn−2(ψ + 1)√

5

=
φn − ψn√

5
By the identities (26) and (27)

In fact notice that since |ψ| < 1 and
√

5 > 2 we have that for all n > 1, |ψn|/
√

5 < 1/
√

5 < 1/2. Hence

Fn =

⌊
φn√

5
+

1

2

⌋
.
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4. Algorithms: Design & Refinement

4.1. Technical Completeness & Algorithms

1. Recapitulation: Integers & Real

2. Recap: Integer Operations

3. Recapitulation: Real Operations

4. Recapitulation: Simple Algorithms

5. More Algorithms

6. Powering: Math

7. Powering: SML

8. Technical completeness

9. What SML says

10. Technical completeness

11. What SML says ... contd

12. Powering: Math 1

13. Powering: SML 1

14. Technical Completeness

15. What SML says

16. Powering: Integer Version

17. Exceptions: A new primitive

18. Integer Power: SML

19. Integer Square Root 1

20. Integer Square Root 2

21. An analysis

22. Algorithmic idea
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23. Algorithm: isqrt

24. Algorithm: shrink

25. SML: shrink

26. SML: intsqrt

27. Run it!

28. SML: Reorganizing Code

29. Intsqrt: Reorganized

30. shrink: Another algorithm

31. Shrink2: SML

32. Shrink2: SML ... contd
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Recapitulation: Integers & Real
• Primitive Integer Operations
• Primitive Real Operations
• Some algorithms

Forward
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Recap: Integer Operations
• Primitive Integer Operations

– Naming, +, −, ∼
– Multiplication, division
– Quotient & remainder

• Primitive Real Operations
• Some algorithms

Back
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Recapitulation: Real Operations
• Primitive Integer Operations
• Primitive Real Operations

– Integer to Real
– Real to Integer
– Real addition & subtraction
– Real division
– Real Precision

• Some algorithms
Back
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Recapitulation: Simple Algorithms
• Primitive Integer Operations
• Primitive Real Operations
• Some algorithms

– Factorial
– Fibonacci
– Euclidean GCD

Back
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More Algorithms
• Powering
• Integer square root
• Combinations nCk
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Powering: Math
For any integer or real number x 6= 0 and non-negative integer n

xn = x× x× · · · × x︸ ︷︷ ︸
n times

Noting that x0 = 1 we give an inductive definition:

xn =

{
1 if n = 0

xn−1 × x otherwise
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Powering: SML
fun power (x:real, n) =

if n = 0
then 1.0
else power (x, n-1) * x

Is it technically complete?
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Technical completeness
Can it be always guaranteed that
• x will be real?
• n will be integer?
• n will be non-negative?
• x 6= 0?

If x = 0 what is 0.00?
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What SML says
sml
Standard ML of New Jersey
- use "/tmp/power.sml";
[opening /tmp/power.sml]
val power = fn : real * int ->

real
val it = () : unit

Can it be always guaranteed that
• x will be real? YES
• n will be integer? YES
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Technical completeness
Can it be always guaranteed that
• n will be non-negative? NO
• x 6= 0? NO

If x = 0 what is 0.00?

- power(0.0, 0);
val it = 1.0 : real
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What SML says ... contd
sml
Standard ML of New Jersey
val power = fn : real * int -> real
val it = () : unit
- power(˜2.5, 0);
val it = 1.0 : real
- power (0.0, 3);
val it = 0.0 : real
- power (2.5, ˜3)

Goes on forever!
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Powering: Math 1
For any real number x and integer n

xn =


1.0/x−n if n < 0
1 if n = 0

xn−1 × x otherwise
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Powering: SML 1
fun power (x, n) =

if n < 0
then 1.0/power(x, ˜n)
else if n = 0
then 1.0
else power (x, n-1) * x

Is this definition technically complete?
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Technical Completeness
• 0.00 = 1.0 whereas 0.0n = 0 for positive n
• What if x = 0.0 and n = −m < 0? Then

0.0n

= 1.0/(0.0m)
= 1.0/0.0

Division by zero!
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What SML says
- power (2.5, ˜2);
val it = 0.16 : real
- power (˜2.5, ˜2);
val it = 0.16 : real
- power (0.0, 2);
val it = 0.0 : real
- power (0.0, ˜2);
val it = inf : real
-

SML is somewhat more understanding than most languages
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The following is a faster powering method. See if you can figure it out!

fun power2 ( x , n ) =
i f n < 0
then 1 . 0 / power2 ( x , ˜ n )
e lse i f n = 0
then 1.0
e lse

l e t fun even m = (m mod 2 = 0 ) ;
fun square y = y * y ;
va l pwr n by 2 = power2 ( x , n d i v 2 ) ;
va l sq pwr n by 2 = square ( pwr n by 2 )

i n i f even ( n )
then sq pwr n by 2
else x * sq pwr n by 2

end
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Powering: Integer Version

xn =


undefined if n < 0
undefined if x = 0&n = 0
1 if x 6= 0&n = 0

xn−1 × x otherwise

Technical completeness requires us to consider the case n < 0. Other-
wise, the computation can go on forever
Notation: ⊥ denotes the undefined
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Exceptions: A new primitive
exception negExponent;
exception zeroPowerZero;
fun intpower (x, n) =

if n < 0
then raise negExponent
else if n = 0
then if x=0

then raise zeroPowerZero
else 1

else intpower (x, n-1) * x
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Integer Power: SML
- intpower(3, 4);
val it = 81 : int
- intpower(˜3, 5);
val it = ˜243 : int
- intpower(3, ˜4);

uncaught exception negExponent
raised at: intpower.sml:4.16-4.32

- intpower (0, 0);

uncaught exception zeroPowerZero
raised at: stdIn:24.26-24.39

Back to More Algos
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Integer Square Root 1

isqrt(n) = b
√
nc

- fun isqrt n =
trunc (Real.Math.sqrt

(real (n)));
val isqrt = fn : int -> int
- isqrt (38);
val it = 6 : int
- isqrt (˜38);
uncaught exception domain error
raised at: boot/real64.sml:89.32-89.46

-
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Integer Square Root 2
Suppose Real.Math.sqrt were not available to us!
isqrt(n) of a non-negative integer n is the integer k ≥ 0 such that k2 ≤
n < (k + 1)2

That is,

isqrt(n) =

{
⊥ if n < 0
k otherwise

where 0 ≤ k2 ≤ n < (k + 1)2.
This value of k is unique!
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An analysis
0 ≤ k2 ≤ n < (k + 1)2

⇒ 0 ≤ k ≤
√
n < k + 1

⇒ 0 ≤ k ≤ n

Strategy. Use this fact to close in on the value of k. Start with the interval
[l, u] = [0, n] and try to shrink it till it collapses to the interval [k, k] which
contains a single value.
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Algorithmic idea
If n = 0 then isqrt(n) = 0.
Otherwise with [l, u] = [0, n] and

l2 ≤ n < u2

use one or both of the following to shrink the interval [l, u].
• if (l + 1)2 ≤ n then try [l + 1, u]
otherwise l2 ≤ n < (l + 1)2 and k = l

• if u2 > n then try [l, u− 1]
otherwise (u− 1)2 ≤ n < u2 and k = u− 1
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Algorithm: isqrt

isqrt(n) =

⊥ if n < 0
0 if n = 0
shrink(n, 0, n) if n > 0

where
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Algorithm: shrink
shrink(n, l, u) = 

l if l = u
shrink(n, l + 1, u) if l < u

and (l + 1)2 ≤ n

l if (l + 1)2 > n
shrink(n, l, u− 1) if l < u

and u2 > n
u− 1 if l < u

and (u− 1)2 ≤ n
⊥ if l > u
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SML: shrink
exception intervalError;
fun shrink (n, l, u) =

if l>u orelse
l*l > n orelse
u*u < n

then raise intervalError
else if (l+1)*(l+1) <= n
then shrink (n, l+1, u)
else l;

intsqrt
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SML: intsqrt
exception negError;
fun intsqrt n =

if n<0
then raise negError
else if n=0
then 0
else shrink (n, 0, n)

shrink
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Run it!
exception intervalError
val shrink =
fn : int * int * int -> int
exception negError
val intsqrt = fn : int -> int
val it = () : unit
- intsqrt 8;
val it = 2 : int
- intsqrt 16;
val it = 4 : int
- intsqrt 99;
val it = 9 : int
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SML: Reorganizing Code
• shrink was used to develop intsqrt

• Is shrink general-purpose enough to be kept separate?
• Shouldn’t shrink be placed within intsqrt?
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Intsqrt: Reorganized
exception negError;
fun intsqrt n =

let fun shrink (n, l, u) = ...
in if n<0

then raise negError
else if n=0
then 0
else shrink (n, 0, n)

end
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shrink: Another algorithm
Shrink

shrink2(n, l, u) =

l if l = u or u = l + 1
shrink2(n,m, u) if l < u

and m2 ≤ n
shrink2(n, l,m) if l < u

and m2 > n
⊥ if l > u

where m = (l + u) div 2
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Shrink2: SML
fun shrink2 (n, l, u) =

if l>u orelse
l*l > n orelse
u*u < n

then raise intervalError
else if l = u
then l
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Shrink2: SML ... contd
else
let val m = (l+u) div 2;

val msqr = m*m
in if msqr <= n

then shrink (n, m, u)
else shrink (n, l, m)

end;

Back to More Algos
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4.2. Algorithm Refinement

1. Recap: More Algorithms

2. Recap: Power

3. Recap: Technical completeness

4. Recap: More Algorithms

5. Intsqrt: Reorganized

6. Intsqrt: Reorganized

7. Some More Algorithms

8. Combinations: Math

9. Combinations: Details

10. Combinations: SML

11. Perfect Numbers

12. Refinement

13. Perfect Numbers: SML

14.
∑u

l ifdivisor(k)

15. SML: sum divisors

16. ifdivisor and ifdivisor

17. SML: Assembly 1

18. SML: Assembly 2

19. Perfect Numbers . . . contd.

20. Perfect Numbers . . . contd.

21. SML: Assembly 3

22. Perfect Numbers: Run
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23. Perfect Numbers: Run

24. SML: Code variations

25. SML: Code variations

26. SML: Code variations

27. Summation: Generalizations

28. Algorithmic Improvements:

29. Algorithmic Variations

30. Algorithmic Variations
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Recap: More Algorithms
• xn for real and integer x
• Integer square root

Forward
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Recap: Power
• xn for real and integer x

– Technical Completeness

* Undefinedness

* Termination
– More complete definition for real x
– Power of an integer
–⊥ and exceptions

• Integer square root
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Recap: Technical completeness
Can it be always guaranteed that
• x will be real? YES
• n will be integer? YES
• n will be non-negative? NO
• x 6= 0? NO

If x = 0 what is 0.00?

INFINITE COMPUTATION
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Recap: More Algorithms
• xn for real and integer x
• Integer square root

– Analysis
– Algorithmic idea
– Algorithm
– where
– and let ...in ...end
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Intsqrt: Reorganized
exception negError;
exception intervalError;
fun intsqrt n =
let fun shrink (n, l, u) =

if l>u orelse
l*l > n orelse
u*u < n

then raise intervalError
else if (l+1)*(l+1) <= n
then shrink (n, l+1, u)
else l;
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Intsqrt: Reorganized
in if n<0

then raise negError
else if n=0
then 0
else shrink (n, 0, n)

end

Back
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Some More Algorithms
• Combinations
• Perfect Numbers
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Combinations: Math
nCk = n!

(n−k)!k!

=
n(n−1)···(n−k+1)

k!

=
n(n−1)···(k+1)

(n−k)!

= n−1Ck−1 + n−1Ck

Since we already have the function fact, we may program nCk using
any of the above identities. Let’s program it using the last one.
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Combinations: Details
Given a set of n ≥ 0 elements, find the number of subsets of k elements,
where 0 ≤ k ≤ n

nCk =



⊥ if n < 0 or
k < 0 or
k > n

1 if n = 0 or
k = 0 or
k = n

n−1Ck−1 + n−1Ck otherwise
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Combinations: SML
exception invalid_arg;
fun comb (n, k) =

if n < 0 orelse
k < 0 orelse
k > n

then raise invalid_arg
else if n = 0 orelse

k = 0 orelse
n = k

then 1
else comb (n-1, k-1) +

comb (n-1, k);

Back to Some More Algorithms
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Perfect Numbers
An integer n > 0 is perfect if it equals the sum of all its proper divisors.
A divisor k|n is proper if 0 < k < n

k|n ⇐⇒ n mod k = 0

perfect(n)

⇐⇒ n =
∑
{k : 0 < k < n, k|n}

⇐⇒ n =
∑n−1
k=1 ifdivisor(k)

where

http://www.cse.iitd.ac.in/~sak


HOME PAGE CONTENTS JJ J I II GO BACK FULL SCREEN CLOSE 292 OF 887 QUIT

Refinement
1. ifdivisor(k) needs to be defined

2.
∑n−1
k=1 ifdivisor(k) needs to be defined algorithmically.
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Perfect Numbers: SML
exception nonpositive;
fun perfect (n) =
if n <= 0
then raise nonpositive
else

n = sum_divisors (1, n-1)

where sum divisors needs to be defined
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∑u

l
ifdivisor(k)∑u

k=l ifdivisor(k) =
0 if l > u

ifdivisor(l)+ otherwise∑n−1
k=l+1 ifdivisor(k)

where ifdivisor(k) needs to be defined
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SML: sum divisors
From the algorithmic definition of

∑u
k=l ifdivisor(k)

fun sum_divisors (l, u) =
if l > u
then 0
else ifdivisor (l) +

sum_divisors (l+1, u)

where ifdivisor(k) still needs to be defined
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ifdivisor and ifdivisor

ifdivisor(k) =

{
k if k|n
0 otherwise

fun ifdivisor (k) =
if n mod k = 0
then k
else 0

Not technically complete!
However . . .
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SML: Assembly 1
fun sum_divisors (l, u) =
if l > u then 0
else

let fun ifdivisor (k) =
if n mod k = 0
then k
else 0

in ifdivisor (l) +
sum_divisors (l+1, u)

end

Clearly k ∈ [l, u]
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SML: Assembly 2
exception nonpositive;
fun perfect (n) =
if n <= 0
then raise nonpositive
else
let fun sum_divisors (l, u) =

...
in n = sum_divisors (1, n-1)
end

Clearly k ∈ [l, u] = [1, n− 1] whenever n > 0.
Technically complete!
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Perfect Numbers . . . contd.
Clearly for all k, n/2 < k < n, ifdivisor(k) = 0.

bn/2c = n div 2 < n/2

Hence
n−1∑
k=1

ifdivisor(k) =

n div 2∑
k=1

ifdivisor(k)
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Perfect Numbers . . . contd.
Hence

perfect(n)

⇐⇒ n =
∑n−1
k=1 ifdivisor(k)

⇐⇒ n =
∑n div 2
k−1 ifdivisor(k)

where
ifdivisor(k) =

{
k if k|n
0 otherwise
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SML: Assembly 3
exception nonpositive;
fun perfect (n) =

if n <= 0
then raise nonpositive
else
let fun sum_divisors (l, u) =

...
in n = sum_divisors (1, n div 2)
end

Clearly k ∈ [l, u] = [1, n div2] whenever n > 0.
Technically complete!
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Perfect Numbers: Run
exception nonpositive
val perfect = fn : int -> bool
val it = () : unit
- perfect ˜8;
uncaught exception nonpositive
raised at: perfect.sml:4.16-4.27

- perfect 5;
val it = false : bool
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Perfect Numbers: Run
- perfect 6;
val it = true : bool
- perfect 23;
val it = false : bool
- perfect 28;
GC #0.0.0.1.3.88: (1 ms)
val it = true : bool
- perfect 30;
val it = false : bool
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SML: Code variations
exception nonpositive;
fun perfect (n) =
if n <= 0
then raise nonpositive
else

let
fun ifdivisor (k) = ...;
fun sum_divisors (l, u) = ...

in
n=sum_divisors (1, n div 2)

end

Technically complete though ifdivisor, by itself is not!
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SML: Code variations
What about this?
exception nonpositive;
fun perfect (n) =
let

fun ifdivisor (k) = ...;
fun sum_divisors (l, u) = ...

in if n <= 0
then raise nonpositive
else

n=sum_divisors (1, n div 2)
end
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SML: Code variations
What about this?
exception nonpositive;
fun ifdivisor (k) = ...;
fun sum_divisors (l, u) = ...;
fun perfect (n) =

if n <= 0
then raise nonpositive
else
n=sum_divisors (1, n div 2)

Technically incomplete!
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Summation: Generalizations
Need a method to compute summations in general.
For any function f : Z→ Z and integers l and u,

u∑
i=l

f (i) =


0 if l > u

f (l)+ otherwise∑u
i=l+1 f (i)
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Algorithmic Improvements:
1. perfect2
2. shrink2
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Algorithmic Variations
1. For any k|n, m = n div k is also a divisor of n
2. 1 is a divisor of every positive number
3. For n > 4, b

√
nc < n div 2

4. It is easy to see by inspection that the first perfect number has to be
greater than 4.

5. Hence
∑n div 2
k=1 ifdivisor(k) =

1 +

b
√
nc∑

k=2

ifdivisor2(k)
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Algorithmic Variations
perfect(n)

⇐⇒ (n > 4) ∧ (n = 1 +
∑b√nc
k=2 ifdivisor2(k))

where

ifdivisor2(k) =

 k+
(n div k) if k|n
0 otherwise

Are there any glitches? Is it technically correct and complete?
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Glitch
Question. What if for some value of k, k = n div k?
Question. Can a perfect number be a perfect square?

skip
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4.3. Variations: Algorithms & Code
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Recap
• Combinations
• Perfect Numbers
• Code Variations
• Algorithmic Variations

forward
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Recap: Combinations
nCk = n!

(n−k)!k!

=
n(n−1)···(n−k+1)

k!

=
n(n−1)···(k+1)

(n−k)!

= n−1Ck−1 + n−1Ck
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Combinations 1
use "fact.sml";
exception invalid_arg;
fun comb_wf (n, k) =
if n < 0 orelse

k < 0 orelse
k > n

then raise invalid_arg
else fact (n) div

(fact(n-k) * fact(k));
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Combinations 2
exception invalid_arg;
fun comb (n, k) =

if n < 0 orelse
k < 0 orelse
k > n

then raise invalid_arg
else if n = 0 orelse

k = 0 orelse
n = k

then 1
else (* 0<k<n *)
prod (n, n-k+1) div
fact (k)
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Combinations 3
exception invalid_arg;
fun comb (n, k) =

if n < 0 orelse
k < 0 orelse
k > n

then raise invalid_arg
else if n = 0 orelse

k = 0 orelse
n = k

then 1
else (* 0<k<n *)
prod (n, k+1) div
fact (n-k)
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Perfect 2
perfect(n)

⇐⇒ (n > 4) ∧ (n = 1 +
∑b√nc
k=2 ifdivisor2(k))

⇐⇒ (n > 4) ∧ (2n =
∑b√nc
k=1 ifdivisor2(k))

where
ifdivisor2(k) =  k + m if k|n and k 6= m

k if k|n and k = m
0 otherwise

where m = (n div k)
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l o c a l
except ion i n v a l i d A r g ;

fun i f d i v i s o r 2 ( n , k ) =
i f n <= 0 ore lse

k <= 0 ore lse
n < k

then ra i se i n v a l i d A r g
e lse i f n mod k = 0
then i f k = n d iv k

then k
else k + ( n d iv k )

e lse 0 ;

fun sum div2 ( n , l , u ) =
i f n <= 0 ore lse

l <= 0 ore lse
l > n ore lse
u <= 0 ore lse
u > n
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then ra i se i n v a l i d A r g
e lse i f l > u
then 0
else i f d i v i s o r 2 ( n , l ) + sum div2 ( n , l +1 , u )

i n
fun p e r f e c t n =

i f n <= 0
then ra i se i n v a l i d A r g
e lse i f n <= 4 then f a l s e
e lse l e t va l s q r t n = Real . t runc ( Real . Math . s q r t ( r e a l n ) )

i n 2*n = sum div2 ( n , 1 , s q r t n )
end

end

except ion LessThan5
fun genAl lPer fec tUpto (m) =

i f m < 5 then ra i se LessThan5
else

l e t fun genFromTo ( l , u , P) =
i f l > u then P
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else i f ( p e r f e c t l )
then ( p r i n t ( ( I n t . t o S t r i n g l ) ˆ"\n" ) ;

genFromTo ( l +1 , u , l : : P)
)

e lse genFromTo ( l +1 , u , P)
i n genFromTo (5 , m, [ ] )
end

( * 6 , 28 , 496 , 8128 , 33550336, 8589869056, 137438691328
are the f i r s t seven p e r f e c t numbers according to Wik ipedia

* )
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Power 2
power

The previous inductive definition used

xn = (x× x× · · · × x)︸ ︷︷ ︸
n−1 times

×x

We could associate the product differently
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A Faster Power
xn = (x× x× · · · × x)︸ ︷︷ ︸

n/2 times
× (x× x× · · · × x)︸ ︷︷ ︸

n/2 times

when n is even and
xn = (x× x× · · · × x)︸ ︷︷ ︸

bn/2c times
× (x× x× · · · × x)︸ ︷︷ ︸

bn/2c times
× x

when n is odd
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Power2: Complete
power2(x, n) = 

1.0/power2(x, n) if n < 0
1.0 if n = 0

(power2(x, bn/2c))2 if even(n)

(power2(x, bn/2c))2 × x otherwise

where even(n) ⇐⇒ n mod 2 = 0.
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Power2: SML
fun power2 (x, n) =
if n < 0
then 1.0/power2 (x, ˜n)
else if n = 0
then 1.0
else
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Power2: SML
let fun even m =

(m mod 2 = 0);
fun square y = y * y;
val pwr_n_by_2 =

power2 (x, n div 2);
val sq_pwr_n_by_2 =

square (pwr_n_by_2)
in if even (n)

then sq_pwr_n_by_2
else x * sq_pwr_n_by_2

end
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Computation: Issues
1. Correctness
(a) General correctness
(b) Technical Completeness
(c) Termination
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General Correctness
1. Mathematical correctness should be established for all algorithmic vari-

ations.
2. Program Correctness: Mathematically developed code should not be

moved around arbitrarily.
• Code variations should also be mathematically proven
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Code: Justification
• How does one justify the correctness of

– this version and
– this version?

• Can one correct this version?
• But first of all, what is incorrect about this version?

incorrectness
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Recall
• A program is an

– explicit,
– unambiguous and
– technically complete
translation of an algorithm written in mathematical notation.

• Moreover, mathematical notation is more concise than a program.
• Hence mathematical notation is easier to analyse and diagnose.
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Features: Definition before Use
incorrect version

Definition of a name before use:
• ifdivisor(k) is defined first.
• idivisor(k) uses the name n without defining it.
• k has been defined (as an argument of ifdivisor(k)) before being used.

http://www.cse.iitd.ac.in/~sak


HOME PAGE CONTENTS JJ J I II GO BACK FULL SCREEN CLOSE 332 OF 887 QUIT

Run ifdivisor
Standard ML of New Jersey,
- fun ifdivisor(k) =
= if n mod k = 0
= then k
= else 0
;
stdIn:18.8 Error:
unbound variable
or constructor: n
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Diagnosis: Features of programs
incorrect version

• So both sum divisors(l, u) and perfect(n) may use ifdivisor(k).
• sum divisors(l, u) is defined before perfect(n).
• So perfect(n) may use both ifdivisor(k) and sum divisors(l, u)
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Back to Math
incorrect version

Let
ifdivisor(k) =

{
k if k|n
0 otherwise

and sum divisors(l, u) = 0 if l > u
ifdivisor(l)+ otherwise
sum divisors(l + 1, u)

and perfect(n) ⇐⇒

n = sum divisors(1, bn/2c)
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Incorrectness
incorrect version

• ifdivisor(k) has a single argument k
• But it actually depends upon n too!
• But that is not made explicit in its definition.

Let’s make it explicit!
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ifdivisor3
Let

ifdivisor3(n, k) =

{
k if k|n
0 otherwise

and sum divisors(l, u) = 0 if l > u
ifdivisor3(n, l)+ otherwise
sum divisors(l + 1, u)

and perfect(n) ⇐⇒

n = sum divisors(1, bn/2c)
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Run it!
Standard ML of New Jersey
- fun ifdivisor3 (n, k)
= = if (n mod k = 0)
= then k
= else 0;
val ifdivisor3 =
fn : int * int -> int
-
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Try it!
- fun sum_divisors (l, u) =
= if l > u
= then 0
= else ifdivisor3 (n, l)+
= sum_divisors (l+1, u);
stdIn:40.18 Error: unbound
variable or constructor: n-

Now sum divisors also depends on n!

http://www.cse.iitd.ac.in/~sak


HOME PAGE CONTENTS JJ J I II GO BACK FULL SCREEN CLOSE 339 OF 887 QUIT

Hey! Wait a minute!
But n was defined in ifdivisor3 (n, k)!

So then where is the problem?

Let’s ignore it for the moment and come back to it later
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The n’s
Let

ifdivisor3(n, k) =

{
k if k|n
0 otherwise

and sum divisors2(n, l, u) = 0 if l > u
ifdivisor3(n, l)+ otherwise
sum divisors(l + 1, u)

and perfect(n) ⇐⇒

n = sum divisors2(n, 1, bn/2c)
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Scope
• The scope of a name begins from its definition and ends where the
corresponding scope ends

• Scopes end with definitions of functions
• Scopes end with the keyword end in any let ... in ...end
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Scope Rules
• Scopes may be disjoint
• Scopes may be nested one completely within another
• A scope cannot span two disjoint scopes
• Two scopes cannot (partly) overlap

forward
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4.4. Names, Scopes & Recursion

1. Disjoint Scopes

2. Nested Scopes

3. Overlapping Scopes

4. Spannning

5. Scope & Names

6. Names & References

7. Names & References

8. Names & References

9. Names & References

10. Names & References

11. Names & References

12. Names & References

13. Names & References

14. Names & References

15. Names & References

16. Definition of Names

17. Use of Names

18. local...in...end

19. local...in...end

20. local...in...end

21. local...in...end

22. Scope & local
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23. Computations: Simple

24. Simple computations

25. Computations: Composition

26. Composition: Alternative

27. Compositions: Compare

28. Compositions: Compare

29. Computations: Composition

30. Recursion

31. Recursion: Left

32. Recursion: Right
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Disjoint Scopes
let

in

end

val x = 10;
fun fun1  y =

let
...

in
...

end

fun fun2  z =
let ...
in ...
end

fun1 (fun2 x)
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Nested Scopes
let

in

end

fun1 x

val x = 10;
fun fun1  y =

let

val x = 15

in
x + y

end

http://www.cse.iitd.ac.in/~sak


HOME PAGE CONTENTS JJ J I II GO BACK FULL SCREEN CLOSE 347 OF 887 QUIT

Overlapping Scopes
let

in

end

val x = 10;
fun fun1  y =

...

...

...

...

fun1 (fun2 x)
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Spannning
let

in

end

val x = 10;
fun fun1  y =

...

...

fun fun2  z =

...

...

fun1 (fun2 x)
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Scope & Names
• A name may occur either as being defined or as a use of a previously
defined name

• The same name may be used to refer to different objects.
• The use of a name refers to the textually most recent definition in the
innermost enclosing scope

diagram
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Names & References
let

in

end

fun1 x

val x = 10;
fun fun1  y =

let

val x = 15

in
x + y

end

val z = 5;

* z

Back to scope names
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Names & References
let

in

end

fun1 x

val x = 10;
fun fun1  y =

let

val x = 15

in
x + y

end

val z = 5;

* z

Back to scope names
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Names & References
let

in

end

fun1 x

val x = 10;
fun fun1  y =

let

val x = 15

in
x + y

end

val z = 5;

* z

Back to scope names
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Names & References
let

in

end

fun1 x

val x = 10;
fun fun1  y =

let

val x = 15

in
x + y

end

val z = 5;

* z

Back to scope names
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Names & References
let

in

end

fun1 x

val x = 10;
fun fun1  y =

let

val x = 15

in
x + y

end

val z = 5;

* z

Back to scope names
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Names & References
let

in

end

fun1 x

val x = 10;
fun fun1  y =

let

val x = 15

in
x + y

end

val z = 5;

* z

Back to scope names
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Names & References
let

in

end

fun1 x

val x = 10;
fun fun1  y =

let

val x = 15

in
x + y

end

val z = 5;

* z

Back to scope names
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Names & References
let

end

val x = 10;
fun fun1  y =

let
...

in
...

end

fun fun2  z =
let ...
in ...
end

fun1 (fun2 x)

val x = x − 5;

in

Back to scope names
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Names & References
let

end

val x = 10;
fun fun1  y =

let
...

in
...

end

fun fun2  z =
let ...
in ...
end

fun1 (fun2 x)

val x = x − 5;

in

Back to scope names
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Names & References
let

end

val x = 10;
fun fun1  y =

let
...

in
...

end

fun fun2  z =
let ...
in ...
end

fun1 (fun2 x)

val x = x − 5;

in

Back to scope names
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Definition of Names
Definitions are of the form
qualifier name . . . = body

• val name =
• fun name ( argnames ) =
• local definitions
in definition
end
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Use of Names
Names are used in expressions.
Expressions may occur

• by themselves – to be evaluated
• as the body of a definition
• as the body of a let-expression
let definitions
in expression
end

use of local
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local...in...end
perfect

local
exception invalidArg;

fun ifdivisor3 (n, k) =
if n <= 0 orelse

k <= 0 orelse
n < k

then raise invalidArg
else if n mod k = 0
then k
else 0;
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local...in...end
perfect

fun sum_div2 (n, l, u) =
if n <= 0 orelse

l <= 0 orelse
l > n orelse
u <= 0 orelse
u > n

then raise invalidArg
else if l > u
then 0
else ifdivisor3 (n, l)

+ sum_div2 (n, l+1, u)
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local...in...end
perfect

in
fun perfect n =

if n <= 0
then raise invalidArg
else
let
val nby2 = n div 2

in
n = sum_div2 (n, 1, nby2)
end

end
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local...in...end
perfect

Standard ML of New Jersey,
- use "perfect2.sml";
[opening perfect2.sml]
GC #0.0.0.0.1.10: (1 ms)
val perfect = fn : int -> bool
val it = () : unit
- perfect 28;
val it = true : bool
- perfect 6;
val it = true : bool
- perfect 8128;
val it = true : bool

http://www.cse.iitd.ac.in/~sak


HOME PAGE CONTENTS JJ J I II GO BACK FULL SCREEN CLOSE 366 OF 887 QUIT

Scope & local

end

local
fun fun1  y =

fun fun2  z =

in
fun fun3 x  =

...

fun2 ...
fun1 ...

...

...
fun1
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Computations: Simple
For most simple expressions it is
• left to right, and
• top to bottom

except when
• presence of brackets
• precedence of operators

determine otherwise.
Hence
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Simple computations
4 + 6− (4 + 6) div 2

= 10− (4 + 6) div 2
= 10− 10 div 2
= 10− 5
= 5
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Computations: Composition

f (x) = x2 + 1

g(x) = 3 ∗ x + 2

Then for any value a = 4
f (g(a))

= f (3 ∗ 4 + 2)
= f (14)

= 142 + 1
= 196 + 1
= 197
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Composition: Alternative

f (x) = x2 + 1

g(x) = 3 ∗ x + 2

Why not
f (g(a))

= g(4)2 + 1

= (3 ∗ 4 + 2)2 + 1

= (12 + 2)2 + 1

= 142 + 1
= 196 + 1
= 197
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Compositions: Compare
f (g(a)) f (g(a))

= f (3 ∗ 4 + 2) = g(4)2 + 1

= f (14) = (3 ∗ 4 + 2)2 + 1

= = (12 + 2)2 + 1

= 142 + 1 = 142 + 1
= 196 + 1 = 196 + 1
= 197 = 197
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Compositions: Compare
Question 1: Which is more correct? Why?
Question 2: Which is easier to implement?
Question 3: Which is more efficient?
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Computations: Composition
A computation of f (g(a)) proceeds thus:
• g(a) is evaluated to some value, say b
• f (b) is next evaluated
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Recursion
factL(n) =

{
1 if n = 0
factL(n− 1) ∗ n otherwise

factR(n) =

{
1 if n = 0
n ∗ factR(n− 1) otherwise
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Recursion: Left
factL(4)

= (factL(4− 1) ∗ 4)
= (factL(3) ∗ 4)
= ((factL(3− 1) ∗ 3) ∗ 4)
= ((factL(2) ∗ 3) ∗ 4)
= (((factL(2− 1) ∗ 2) ∗ 3) ∗ 4)
= · · ·
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Recursion: Right
factR(4)

= (4 ∗ factR(4− 1))
= (4 ∗ factR(3))
= (4 ∗ (3 ∗ factR(3− 1)))
= (4 ∗ (3 ∗ factR(2)))
= (4 ∗ (3 ∗ (2 ∗ factR(2− 1))))
= · · ·
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5. Fermat’s Factorization Method

Fermat Factorization
A beautiful method devised by Fermat for factoring a positive integer n
into a pair of factors. The main virtue of the method is that
• it does not require knowing all the primes less than

√
n to find a factor

or to discover that n is a prime.
• the algorithm may be recursively applied to each of the pair of factors
to obtain all the prime factors.
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Fermat: Initial Refinement
Given any integer n > 0, Fermat’s method
1. yields the pair (2, n/2) if n is even,
2. otherwise (if n is odd) it attempts to find two factors m and j where
n = m.j,

√
n ≤ m ≤ n and 1 ≤ j ≤

√
n.

fermat0(n) =

{
(2, n/2) if n –. 2 = 0
fermat1(n) otherwise

(29)
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Fermat: Factors of n
Fact 5.1 The positive factors of n > 0 may be divided into two equal
classes D(n) and E(n) such that

D(n) = {d | 1 ≤ d ≤
√
n, d|n} (30)

E(n) = {e |
√
n ≤ e ≤ n, e|n} (31)

and
1. For every d ∈ D(n) there is a unique e = n/d ∈ E(n),
2. For every e ∈ E(n) there is a unique d = n/e ∈ D(n),
3. n is a perfect square if and only if

√
n ∈ D(n) ∩ E(n) and

4. 1 ≤ minD(n) ≤ maxD(n) ≤
√
n ≤ minE(n) ≤ maxE(n) = n.
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Fermat: n is odd
Fact 5.2 Assume n is odd. Now consider the smallest factor m =
minE(n).
Case n is a prime. Then m = n.
Case n is a perfect square. Then m =

√
n = d

√
ne = b

√
nc.

Case n is composite but not a perfect square. Then d
√
ne ≤ m <

maxE(n) ≤ (n + 1)/2.
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Fermat: Refinement 1
fermat0

1. If n is a perfect square then it yields (
√
n,
√
n).

2. If n is an odd composite but not a perfect square, then it tries to find the
smallest factorm such that d

√
ne ≤ m < n and yields the pair (m,n/m).

Notice n cannot have any proper factor greater than (n + 1)/2. Hence
d
√
ne ≤ m < (n + 1)/2.

3. If n is an odd prime then n is not a perfect square and the smallest
factor m such that

√
n ≤ m ≤ n is n itself and it yields the pair (n, 1).

The above steps may be formalized by the following functional pseudo-
code

fermat1(n) =

{
(k, k) if odd(n) ∧ n = k2

findfactors(n, k, (n + 1)/2) if odd(n) ∧ k = d
√
ne

(32)
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Fermat: Finding Factors
Since we know 3 is a prime, 4 is a perfect square and 5 is a prime, we
assume n > 5.
Fact 5.3 Assume n > 5 is odd and is not a perfect square. Then
1.
√
n < bn/2c.

2. If n = a.b, with a 6= b, 2 < a, b < n, then
(a) Both a and b are odd.
(b) Without loss of generality, 1 ≤ b <

√
n < a ≤ n.

(c) Both a + b and a− b are even.
(d) Every odd composite number is expressible as a difference of perfect

squares.

n = [(a + b)/2]2 − [(a− b)/2]2 = x2 − y2 = (x + y).(x− y) (33)

(e) If n is an odd prime then a = n and b = 1 and hence x = (n + 1)/2
and y = (n− 1)/2.
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Fermat: Finding Factors 2
1. Hence one tries to solve the equation

x2 − n = y2 (34)

and takes the factors to be (x + y) and (x− y).
2. Notice that x = (n + 1)/2 and y = (n − 1)/2 satisfies the above identity

for all odd n. However we would then have x + y = n and x − y = 1.
If x = (n + 1)/2 is the least value of x which solves equation (34) then
there would be no divisors other than n and 1 which implies that n is a
prime.
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Fermat: Finding Factors 3
We have for any positive x, y which solve the equation (34)
• x2 ≥ n

• x > y > 0 since x2 − y2 = n > 0,
• x >

√
n since x2 − y2 = n > 0,

• x− y <
√
n < x+ y < n since both (x+ y) and (x− y) are divisors of n,
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Fermat: Finding Factors 4
fermat1

Assume n is odd and not a perfect square. Then let k = d
√
ne. Find the

smallest m in the range [k, (n + 1)/2] such that p = m2 − n is a perfect
square. Then the two factors are m +

√
p and m−√p.

findfactors(n,m, q) =

 (m + b√pc,m− b√pc) if p = b√pc2
findfactors(n,m + 1, q) if p 6= b√pc2 ∧m < q
(n, 1) otherwise

(35)
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Fermat: The Complete Algorithm
fermat0 fermat1 findfactors

fermat0(n) =

{
(2, n/2) if n –. 2 = 0
fermat1(n) otherwise

where

fermat1(n) =

{
(k, k) if odd(n) ∧ n = k2

findfactors(n, k, (n + 1)/2) if odd(n) ∧ k = d
√
ne

where

findfactors(n,m, q) =

 (m + b√pc,m− b√pc) if p = b√pc2
findfactors(n,m + 1, q) if p 6= b√pc2 ∧m < q
(n, 1) otherwise
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fun odd n = ( n mod 2 = 1)
fun even n = not ( odd n )
fun sqr n = n*n
fun i s q r t c e i l n = c e i l ( Math . s q r t ( r e a l n ) )
l o c a l

fun f i n d f a c t o r s ( n , m, q ) = ( * fermat ’ s method * )
l e t va l p = sqr (m) − n

va l i s q r t f l o o r p = f l o o r ( Math . s q r t ( r e a l p ) )
i n i f p = sqr ( i s q r t f l o o r p )

then (m + i s q r t f l o o r p , m − i s q r t f l o o r p )
e lse i f m < q
then f i n d f a c t o r s ( n , m+1 , q )
e lse ( n , 1)

end
fun fermat1 n =

l e t va l k = i s q r t c e i l n
i n i f n = k * k then ( k , k )

e lse f i n d f a c t o r s ( n , k , ( n+1) d i v 2)
end

i n fun fermat0 n = i f ( even n ) then (2 , n d iv 2) e lse fermat1 n
end

http://www.cse.iitd.ac.in/~sak


HOME PAGE CONTENTS JJ J I II GO BACK FULL SCREEN CLOSE 390 OF 887 QUIT

6. Introducing Reals

6.1. Floating Point

1. So Far-1: Computing

2. So Far-2: Algorithms & Programs

3. So far-3: Top-down Design

4. So Far-4: Algorithms to Programs

5. So far-5: Caveats

6. So Far-6: Algorithmic Variations

7. So Far-7: Computations

8. Floating Point

9. Real Operations

10. Real Arithmetic

11. Numerical Methods

12. Errors

13. Errors

14. Infinite Series

15. Truncation Errors

16. Equation Solving

17. Root Finding-1

18. Root Finding-2

19. Root Finding-3

20. Root Finding-4
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So Far-1: Computing
• The general nature of computation
• The notion of primitives, composition & induction
• The notion of an algorithm
• The digital computer & programming language
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So Far-2: Algorithms & Programs
• Algorithms: Finite mathematical processes
• Programs: Precise, unambiguous explications of algorithms
• Standard ML: Its primitives
• Writing technically complete specifications
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So far-3: Top-down Design
integer Square Root

• Begin with the function you need to design
• Write a

– small compact technically complete definition of the function
– perhaps using other functions that have not yet been defined

• Each function in turn is defined in a top-down manner
Perfect Numbers
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So Far-4: Algorithms to Programs
• Perform top development till you require only the available primitives
• Directly translate the algorithm into a Program
• Use scope rules to localize or generalize

SML code for perfect
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So far-5: Caveats

• Don’t arbitrarily vary code from your algorithmic development
– It might work or
– It might not work
– unless properly justified

• May destroy technical completeness
• May create scope violations.
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So Far-6: Algorithmic Variations
Algorithmic Variations
• Are safe if developed from first principles. Thus ensuring their

– mathematical correctness
– technical completeness
– termination properties
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So Far-7: Computations
• Work within the notion of mathematical equality

– Simple expressions
– Composition of functions
– Recursive computations

• But are generally irreversible
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Floating Point
• Each real number 3E11 is represented by a pair of integers
1. Mantissa: 3 or 30 or 300 or . . .
2. Exponent: the power of 10 which the mantissa has to be multiplied

by
• What is displayed is not necessarily the same as the internal represen-
tation.

• There is no unique representation of a real number
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Real Operations
Depending upon the operations involved
• Each real number is first converted into a suitable representation
• The operation is performed
• The result is converted into a suitable representation for display.

skip to Numerical methods
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Real Arithmetic
• for addition and subtraction the two numbers should have the same
exponent for ease of integer operations to be performed

• the conversion may involve loss of precision
• for multiplication and division the exponents may have to be adjusted
so as not to cause an integer overflow or underflow.

back

http://www.cse.iitd.ac.in/~sak


HOME PAGE CONTENTS JJ J I II GO BACK FULL SCREEN CLOSE 401 OF 887 QUIT

Numerical Methods
• Finite (limited) precision
• Accuracy depends upon available precision
• Whereas integer arithmetic is exact, real arithmetic is not.
• Numerical solutions are a finite approximation of the result

http://www.cse.iitd.ac.in/~sak


HOME PAGE CONTENTS JJ J I II GO BACK FULL SCREEN CLOSE 402 OF 887 QUIT

Errors
• Hence an estimate of the error is necessary.
• If a is the “correct” value and a∗ is the computed value,

absolute error = a∗ − a
relative error = a∗−a

a
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Errors
Errors in floating point computations are mainly due
finite precision Round-off errors
fnite process It is impossible to compute the value of a (convergent) infinite

series because computations are themselves finite processes. Infinite
series

http://www.cse.iitd.ac.in/~sak


HOME PAGE CONTENTS JJ J I II GO BACK FULL SCREEN CLOSE 404 OF 887 QUIT

Infinite Series
cannot be computed to∞

ex =

∞∑
m=0

xm

m!

cosx =

∞∑
m=0

(−1)mx2m

(2m)!

sinx =

∞∑
m=0

(−1)mx2m+1

(2m + 1)!

Truncation
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Truncation Errors
and hopefully it is good enough to restrict it to appropriate values of n

ex ≈
n∑

m=0

xm

m!

cosx ≈
n∑

m=0

(−1)mx2m

(2m)!

sinx ≈
n∑

m=0

(−1)mx2m+1

(2m + 1)!

back to Errors
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Equation Solving
• The fifth most basic operation
• Root finding: A particular form of equation solving

f (x) = 0
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Root Finding-1

b

a

f(b)

x0

f(a)
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Root Finding-2

b

a

f(b)

x0

f(a)
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Root Finding-3

b

a

f(b)

x0

f(a)
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Root Finding-4
Rather steep isn’t it?

b

a

f(b)

x0

f(a)

ε
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Root Finding-5
Continuous functions which are not smooth?

b

a

f(b)

x0

f(a)
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The Bisection Method
• Given that

– f : R −→ R is continuous
– a and b (a < b) are real values such that f (a) and f (b) have different

signs
• f (x) = 0 does have one (or more) solution(s) in the interval [a, b].

One may take inspiration from shrink2 to find a root of the equation
f (x) = 0, by bisecting the interval [a, b].

http://www.cse.iitd.ac.in/~sak


HOME PAGE CONTENTS JJ J I II GO BACK FULL SCREEN CLOSE 413 OF 887 QUIT

Root Finding: Bisection
Choose a sufficiently small value ε > 0. We try to find an approximation
to the root as follows:

root bisect(a, b) =


a if |f (a)| ≤ ε
b if |f (b)| ≤ ε
root bisect(a,m) else if sgn(f (m)) = sgn(f (b))
root bisect(m, b) else if sgn(f (m)) = sgn(f (a))

where m = (a + b)/2.0.
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Bisection Method: Cases
1. Eventually obtain an approximation in case 1
2. Eventually obtain an approximation to one of the roots in case 2
3. May never find one if it is not continuous as in case 3
4. May go on forever if the curve is too steep as in case 4
5. But works even with continuous functions that are not everywhere dif-

ferentiable within the interval
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6.2. Root Finding, Composition and Recursion

1. Root Finding: Newton’s Method

2. Root Finding: Newton’s Method

3. Root Finding: Newton’s Method

4. Root Finding: Newton’s Method

5. Root Finding: Newton’s Method

6. Root Finding: Newton’s Method

7. Newton’s Method: Basis

8. Newton’s Method: Basis

9. Newton’ Method: Algorithm

10. What can go wrong!-1

11. What can go wrong!-2

12. What can go wrong!-2

13. What can go wrong!-3

14. What can go wrong!-4

15. Real Computations & Induction: 1

16. Real Computations & Induction: 2

17. What’s it good for? 1

18. What’s it good for? 2

19. newton: Computation

20. Generalized Composition

21. Two Computations of h(1)

22. Two Computations of h(−1)
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23. Recursive Computations

24. Recursion: Left

25. Recursion: Right

26. Recursion: Nonlinear

27. Some Practical Questions

28. Some Practical Questions
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Root Finding: Newton’s Method
Consider a function f (x)

• smooth and continuously differentiable over [a, b]

• with a non-zero derivative f ′(x) everywhere in [a, b]

• the signs of f (a) and f (b) are different
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Root Finding: Newton’s Method
f(b)

a

f(a)

b
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Root Finding: Newton’s Method
f(b)

a

f(a)

b

xi
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Root Finding: Newton’s Method
f(b)

a

f(a)

b

αi
xi+1 xi
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Root Finding: Newton’s Method
f(b)

a

f(a)

b

αi
xi+1 xi
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Root Finding: Newton’s Method
f(b)

a

f(a)

b

αi
xi+1 xi

xi+2
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Newton’s Method: Basis
tanαi = f ′(xi) =

f (xi)
xi−xi+1

whence
xi+1 = xi −

f (xi)
f ′(xi)

Starting from an initial value x0 ∈ [a, b], if the sequence f (xi) converges
to 0 i.e

f (x0), f (x1), f (x2), · · · → 0
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Newton’s Method: Basis
i.e. lim

n→∞
|f (xn)| = 0

i.e.∀ε > 0 : ∃N ≥ 0 : ∀n > N :

|f (xn)| < ε

then the sequence
x0, x1, x2, · · ·

converges to a root of f .
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Newton’s Method: Algorithm
Select a small enough ε > 0 and x0. Then
newton(f, f ′, a, b, ε, xi) ={

xi if |f (xi)| < ε
newton(f, f ′, a, b, ε, xi+1) otherwise

where
x0 ∈ [a, b]

and
xi+1 = xi −

f (xi)

f ′(xi)
∈ [a, b]
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What can go wrong!-1
Oscillations!

f(b)

a

f(a)

b

αi
xi+1 xi

xi+2
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What can go wrong!-2
An intermediate point may lie outside [a, b]! The function may not satisfy
all the assumptions outside [a, b]. There are then no guarantees about
the behaviour of the function.
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What can go wrong!-2
Interval bounds error!

f(b)

a

f(a)

b

αi
xi+1 xi

i+2x
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What can go wrong!-3
The function may be too steep

b

a

f(b)

x0

f(a)

ε

for the available precision.
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What can go wrong!-4
Or too shallow!

b

a

x0

f(a)

f(b)
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Real Computations & Induction: 1
Newton’s method (when it does work!) computes a sequence

x0, x1, x2, . . . xn

of essentially discrete values such that even if the sequence is not totally
ordered, there is some discrete convergence measure viz.

|f (xi)− 0|
which is well-founded.
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Real Computations & Induction: 2
That is, for some decreasing sequence of integers ki ≥ 0,

k0 > k1 > k2 > · · · > kn = 0

we have
kiε ≤ |f (xi)− 0| < (ki + 1)ε

and therefore inductive on integer multiples of ε
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What’s it good for? 1
Finding the positive n-th root n

√
c of a c > 0 and n > 1 amounts to solving

the equation
xn = c

which is equivalent to finding the root of f (x) with

f (x) = xn − c
f ′(x) = nxn−1

with [a, b] = [0, c] or [0,
√
c] and an appropriately chosen ε.
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What’s it good for? 2
Finding roots of polynomials.

f (x) =

n∑
i=0

cix
i

f ′(x) =

n∑
i=1

icix
i−1

and
• an appropriately chosen ε,
• an appropriately chosen [a, b] with one of the limits possibly being c0.
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newton: Computation
newton(f, f ′, a, b, ε, x0)

 newton(f, f ′, a, b, ε, x1)
 newton(f, f ′, a, b, ε, x2)
 newton(f, f ′, a, b, ε, x3)
... ... ...
 newton(f, f ′, a, b, ε, xn)
 xn
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except ion Negat i ve to le rance
except ion Empty in te rva l
except ion Out of bounds
fun newton ( f , f ’ , a , b , e , x : r e a l ) =

l e t va l y = f ( x ) ;
va l y ’ = f ’ ( x ) ;

i n i f e < 0.0 then ra i se Negat i ve to le rance
else i f a >= b then ra i se Empty in te rva l
e lse i f x < a ore lse x > b then ra i se Out of bounds
else i f Real . abs ( y ) < e
then x
else newton ( f , f ’ , a , b , e , x − y / y ’ )

end ;

( * Try i t out * )

use "ics/fastpower.sml" ;

fun f1 ( x ) = power2 ( x , 6) − x −1.0
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fun f1 ’ ( x ) = 6 .0* power2 ( x , 5) −1.0

( *
newton ( f1 , f1 ’ , 1 .0 , 2 .0 , 0.00005 , 1 . 5 ) ;
va l i t = 1.13472414532 : r e a l

* )

( * We could a lso count the number o f i t e r a t i o n s * )

fun newton2 ( f , f ’ , a , b , e , x : rea l , c ) =
l e t va l y = f ( x ) ;

va l y ’ = f ’ ( x ) ;
i n ( p r i n t ( I n t . t o S t r i n g ( c ) ˆ". " ˆ Real . t o S t r i n g ( x ) ˆ"\n" ) ;

i f e < 0.0 then ra i se Negat i ve to le rance
else i f a >= b then ra i se Empty in te rva l
e lse i f x < a ore lse x > b then ra i se Out of bounds
else i f Real . abs ( y ) < e then x
else newton2 ( f , f ’ , a , b , e , x − y / y ’ , c+1)

)
end
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( * Try i t out * )
( *
− newton2 ( f1 , f1 ’ , 1 .0 , 2 .0 , 0.00005 , 1 .5 , 0 ) ;
0 . 1.5
1 . 1.30049088359
2. 1.1814804164
3. 1.13945559028
4. 1.13477762524
5. 1.13472414532
va l i t = 1.13472414532 : r e a l

We may v e r i f y the r e s u l t

− f1 ( i t ) ;
va l i t = 7.11358523198E˜08 : r e a l

* )

fun f2 x = 2 .0* Math . s in ( x ) − x

fun f2 ’ x = 2 .0* Math . cos ( x ) −1.0
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( * We get

− f2 ( 0 . 5 * Math . p i ) ;
va l i t = 0.429203673205 : r e a l
− f2 ( Math . p i ) ;
va l i t = ˜3.14159265359 : r e a l

Therefore there i s roo t i n the i n t e r v a l [ 0 . 5 * Math . p i , Math . p i ] besides the
obvious roo t a t 0.0

* )
( *
− newton2 ( f2 , f2 ’ , 0 .5* Math . p i , Math . p i , 0.00001 , 0.75* Math . p i , 0 ) ;
0 . 2.35619449019
1. 1.96601321439
2. 1.89811156854
3. 1.8954982162
va l i t = 1.8954982162 : r e a l

* )
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Generalized Composition
Computations

h(x) = f (x, g(x))
where

f (x, y) =

{
0 if x < 0
y otherwise

g(x) =

{
0 if x = 0
g(x− 1) + 1 otherwise
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Two Computations of h(1)

h(1) | h(1)
 f (1, g(1)) | f (1, g(1))
 g(1) | f (1, (g(0) + 1))
 g(0) + 1 | f (1, (0 + 1)
 0 + 1 | f (1, 1)
 1 | 1
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Two Computations of h(−1)

h(−1) | h(−1)
 f (−1, g(−1)) | f (−1, g(−1))
 0 | f (−1, (g(−2) + 1))

DONE! | f (−1, ((g(−3) + 1) + 1
| . . .
| FOREVER!
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Recursive Computations

• Newton’s method
• Factorial

– factL
– factR

skip to nonlinear recursion
skip to Recursion Revisited
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Recursion: Left
factL(4)

 (factL(4− 1) ∗ 4)
 (factL(3) ∗ 4)
 ((factL(3− 1) ∗ 3) ∗ 4)
 ((factL(2) ∗ 3) ∗ 4)
 (((factL(2− 1) ∗ 2) ∗ 3) ∗ 4)
 · · ·
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Recursion: Right
factR(4)

 (4 ∗ factR(4− 1))
 (4 ∗ factR(3))
 (4 ∗ (3 ∗ factR(3− 1)))
 (4 ∗ (3 ∗ factR(2)))
 (4 ∗ (3 ∗ (2 ∗ factR(2− 1))))
 · · ·
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Recursion: Nonlinear
Fibonacci

fib(5)
 fib(4) + fib(3)
 (fib(3) + fib(2)) + fib(3)
 ((fib(2) + fib(1)) + fib(2)) + fib(3)
 (((fib(1) + fib(0)) + fib(1)) + fib(2)) + fib(3)
 (((1 + fib(0)) + fib(1)) + fib(2)) + fib(3)
 · · ·

contd ...
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Some Practical Questions
• What is the essential difference between the computations of newton
and the two factorial programs?
Answer: Constant space vs. Linear space

• What is the essential similarity between the computations of factL and
factR? Answer

• Why can’t we calculate beyond fib(43) using the definition Fibonacci,
on ccsun50 or a P-IV? Answer
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Some Practical Questions
• What does a computation of Fibonacci look like?
• What is the essential difference between the computations of Fibonacci
and newton or factL or factR?
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7. Correctness, Termination & Complexity

7.1. Termination and Space Complexity

1. Recursion Revisited

2. Linear Recursion: Waxing

3. Recursion: Waning

4. Nonlinear Recursions

5. Fibonacci: contd

6. Recursion: Waxing & Waning

7. Unfolding Recursion

8. Non-termination

9. Termination

10. Proofs of termination

11. Proofs of termination: Induction

12. Proof of termination: Factorial

13. Proof of termination: Factorial

14. Fibonacci: Termination

15. GCD: Definition

16. GCD computations

17. Well-foundedness: GCD

18. Well-foundedness

19. Induction is Well-founded

20. Induction is Well-founded

21. Where it doesn’t work

22. Well-foundedness is inductive
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23. Well-foundedness is inductive

24. GCD: Well-foundedness

25. Newton: Well-foundedness

26. Newton: Well-foundedness

27. Example: Zero

28. Questions

29. The Collatz Problem

30. Questions

31. Space Complexity

32. Newton & Euclid: Absolute

33. Newton & Euclid: Relative

34. Deriving space requirements

35. GCD: Space

36. Factorial: Space

37. Fibonacci: Space

38. Fibonacci: Space
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Recursion Revisited
• Linear recursions

– Waxing
– Waning

• Non-linear recursion
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Linear Recursion: Waxing
factL(4)

 (factL(3) ∗ 4)
 ((factL(2) ∗ 3) ∗ 4)
 (((factL(1) ∗ 2) ∗ 3) ∗ 4)
 ((((factL(0) ∗ 1) ∗ 2) ∗ 3) ∗ 4)

contrast with newton
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Recursion: Waning
 ((((1 ∗ 1) ∗ 2) ∗ 3) ∗ 4)
 (((1 ∗ 2) ∗ 3) ∗ 4)
 ((2 ∗ 3) ∗ 4)
 (6 ∗ 4)
 24

contrast with newton
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Nonlinear Recursions
Fibonacci

• Each computation of fib has its own waxing and waning
• There is still an “envelope” which shows waxing and waning.
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Fibonacci: contd
 (((1 + 1) + F2(1)) + F2(2)) + F2(3)
 (2 + F2(1)) + F2(2)) + F2(3)
 ((2 + 1) + F2(2)) + F2(3)
 · · ·
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Recursion: Waxing & Waning
• Waning: Occurs when an expression is simplified without requiring re-
placement of names by definitions.

• Waxing: Occurs when a name is replaced by its definition.
– name by value replacements
– occurs in generalized composition but just once if it is not recursively

defined
– Unfolding recursion
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Unfolding Recursion
• may occur several times (terminating), or
• even an infinite number of times leading to nontermination
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Non-termination
Algorithm

• Simple expressions never lead to nontermination
• (Generalized) composition never leads to nontermination
• Recursion may lead to non-termination or infinite computations, unless
proved otherwise
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Termination
Since recursion may lead to nontermination
• Termination needs to be proved for recursive definitions, and
• for expressions and definitions that use recursively defined names as
components.
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Proofs of termination
A recursive definition guarantees termination
• if it is inductive, or
• it is well-founded
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Proofs of termination: Induction
A recursive definition guarantees termination
• if it is inductive,
Examples:
– Factorial
– Fibonacci

• it is well-founded, though not obviously inductive
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Proof of termination: Factorial
Factorial

Consider factL defined only for non-negative integers. We prove that it
is an algorithm i.e. that it terminates
Basis : For n = 0, factL(n) = 1 which is not a recursive definition. Hence

it does indeed terminate in a single step.
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Proof of termination: Factorial
Induction hypothesis . For some n > 0, ∀k : 0 ≤ k ≤ n : factL(k) termi-

nates in ∝ k steps.
Induction step . Then factL(n + 1) = factL(n) ∗ (n + 1) is guaranteed to

terminate in ∝ (n + 1) steps, since factL(n) does so in ∝ n steps.
back
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Fibonacci: Termination
Fibonacci

The proof is similar to that of factL.
Basis For n = 0 or n = 1 F2(n) = 1.
Induction hypothesis For some n > 0, ∀k : 0 ≤ k ≤ n : F2(k) terminates in
∝ f (k) steps

Induction Step Then since each of F2(n) and F2(n − 1) is guaranteed to
terminate in ∝ f (n) and ∝ f (n− 1) steps F2(n + 1) = F2(n) + F2(n− 1)
is also guaranteed to terminate in f (n + 1) ∝ f (n) + f (n− 1) steps.
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GCD: Definition
Assume a and b are non-negative integers.

gcd(a, b) =

{
m if a = 0 ∨ b = 0 ∨m = n
gcd(m− n, n) otherwise

where m = max(a, b) and n = min(a, b).
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GCD computations
GCD

gcd(12, 64)
 gcd(12, 52)
 gcd(12, 40)
 gcd(12, 28)
 gcd(12, 16)
 gcd(12, 4)
 gcd(8, 4)
 gcd(4, 4)
 4
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Well-foundedness: GCD
GCD

The sequence of maximum of the arguments obtained in the computation
is well-founded i.e.
• it is a sequence of non-negative integers, and
• it is strictly decreasing sequence bounded below by 0.

m1 > m2 > · · · > mk−1 > mk ≥ 0

where m1 = max(a, b) and if n1 = min(a, b) then for each i, k > i > 1 we
have mi > mi+1 = max(mi − ni, ni).
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Well-foundedness
A definition is well-founded if it is possible to define a measure (i.e. a
function w of its arguments) called the well-founded function such that
1. the well-founded function takes only non-negative integer values
2. with each successive recursive call the value of the well-founded func-

tion is guaranteed to decrease by at least 1.
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Induction is Well-founded
The well-founded function usually is a measure of the number of compu-
tation steps that the algorithm will take to terminate

• Factorial w(n) ∝ n

• Fibonacci w(n) ∝ f (n)

Then
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Induction is Well-founded
•w(n) is always non-negative if factL and F2 are defined only for non-
negative integers

• The argument to factL and F2 in each recursive unfolding is strictly
decreasing.
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Euclidean GCD
The original algorithm by Euclid went as follows:

eugcd(a, b) =

{
m if a = 0 ∨ b = 0 ∨m = n
eugcd(m%n, n) otherwise

where m = max(a, b), n = min(a, b) and m%n is the remainder obtained
on dividing m by n. Notice that in this case

m ≥ n > m%n ≥ 0

is guaranteed. We may argue that the sequence of remainders obtained
is always well-founded.
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Where it doesn’t work
Such proofs do not work when
• fact arbitrarily extended to include negative integers. (since w(n) no
longer strictly non-negative)

• fact(n) = fact(n + 1) div (n + 1), even if n is non-negative (since w(n)
is no longer decreasing)

since the function is no longer well-founded.
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Well-foundedness is inductive
But the induction variable is
• hidden or
• too complex to worry about, or
• it serves no useful purpose for the algorithm, except as a counter.
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Well-foundedness is inductive
Given any well-founded function w(~x) whose values form a decreasing
sequence in some algorithm

y0 > y1 > · · · > yn−1 > yn ≥ 0

it is possible to put this sequence in 1-1 correspondence with the set
{0, . . . , n} via a function ind such that

ind(w(~x)) = n− i
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GCD: Well-foundedness
GCD

Well-founded function for gcd

w(a, b) = b
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Newton: Well-foundedness
Newton’s Method

Convergence condition

f (x0), f (x1), f (x2), · · · → 0

Compute the discrete value sequence

x0, x1, x2, . . . xn

such that
k0 > k1 > k2 > · · · > kn = 0

where
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Newton: Well-foundedness
Newton’s Method

kiε ≤ |f (xi)− 0| < (ki + 1)ε

and therefore inductive on integer multiples of ε Hence

w(x) = b|f (x)|
ε
c
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Example: Zero
A peculiar way to define the zero function
zero(x) =  zero(x + 1.0) if x ≤ −1.0

0.0 if −1.0 < x < 1.0
zero(x− 1.0) if x ≥ 1.0

w(x) = d|x|e is the well-founded function
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Questions
Q: Is it always possible to find a well-founded function for each algorithm?

A: Unfortunately not! However if we can’t then we cannot call it an al-
gorithm!. But if we can then we are guaranteed that the algorithm will
terminate.

The Collatz Problem
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The Collatz Problem
Is the following definition an algorithm?

collatz(m) =

 1 if m ≤ 1
collatz(m div 2) if m is even
collatz(3 ∗m + 1) otherwise

Unproven Claim. collatz(m) 1 for all m.
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Questions
Q: what other uses can well-founded functions be put to?
A: They can be used to estimate the complexity of your algorithm in
order of magnitude terms.
Space Complexity : The amount of memory space required, as a function

of the input
Time Complexity : The amount of time (number of computation steps) as

a function of the input
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Space Complexity
What is the space complexity of
• Newton’s method
• Euclidean GCD
• Factorial
• Fibonacci
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Newton & Euclid: Absolute
Newton’s Method

Computation

Newton’s method (wherever and whenever it works well) requires space
to compute
• the value of f at each point xi
• the value of f ′ at each point xi
• the value of xi+1 from the above

Their absolute space requirements could be different. But . . .
Euclidean GCD

Computation
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Newton & Euclid: Relative
Newton’s Method

Computation

GCD and Newton’s method (wherever and whenever it works well) re-
quire the same amount of space for each recursive unfolding since each
fresh unfolding can reuse the space used by the previous one.

Euclidean GCD
Computation
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Deriving space requirements
We may use the algorithm itself to derive the space required as follows:

Assume that memory proportional to calculating and outputting the an-
swer is a unit. Then space as a function of the input is given by
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GCD: Space

Sgcd(a,b) =

{
1 if b = 0
Sgcd(b,a mod b) otherwise

This implies (from well-foundedness) that the entire computation ends
with the space of a unit.

Sgcd(a,b) ∝ 1

A similar analysis and result holds for newton
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Factorial: Space
factL

SfactL(n) =

{
1 if n = 0
SfactL(n−1)+1 otherwise

The 1 is for output and the +1 is because one needs to store space pro-
portional to remembering “multiply by n”.

SfactL(n) ∝ n.

A similar analysis and result holds for factR.
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Fibonacci: Space
Fibonacci

When n > 1 there are two evaluations of F2 with arguments n − 1 and
n − 2 respectively. However assuming the second evaluation proceeds
only after the first evaluation is done we may write the space requirement
as

SF2(n) =

{
1 if 0 ≤ n ≤ 1
1 + max(SF2(n−1),SF2(n−2)) if n > 1

For large values of n and since we are only interested in orders of mag-
nitude rather than exact space calculations we conclude that

SF2(n) ≤ 1 + SF2(n−1) ∝ n
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7.2. Efficiency Measures and Speed-ups

1. Recapitulation

2. Recapitulation

3. Time & Space Complexity

4. isqrt: Space

5. Time Complexity

6. isqrt: Time Complexity

7. isqrt2: Time

8. shrink vs. shrink2: Times

9. Factorial: Time Complexity

10. Fibonacci: Time Complexity

11. Comparative Complexity

12. Comparisons

13. Comparisons

14. Efficiency Measures: Time

15. Efficiency Measures: Space

16. Speeding Up: 1

17. Speeding Up: 2

18. Factoring out calculations

19. Tail Recursion: 1

20. Tail Recursion: 2

21. Factorial: Tail Recursion

22. Factorial: Tail Recursion
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23. A Computation

24. Factorial: Issues

25. Fibonacci: Tail Recursion

26. Fibonacci: Tail Recursion

27. fibTR: SML

28. State in Tail Recursion

29. Invariance
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Recapitulation
• Recursion & nontermination
• Termination & well-foundedness
• Well-foundedness proofs
• Well-foundedness & Complexity
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Recapitulation
• Recursion & nontermination
• Termination & well-foundedness
• Well-foundedness proofs

– By induction
– well-founded functions
– By well-founded functions
– induction as well-foundedness
– Well-foundedness as induction

• Well-foundedness & Complexity
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Time & Space Complexity
Questions

An order of magnitude estimate of the time or space (memory) required
(in terms of some large computation steps).

• Newton & Euclid’s GCD
• Deriving space requirements

– Integer Sqrt
– Factorial
– Fibonacci
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isqrt: Space
Integer Sqrt shrink

Sisqrt(n) = Sshrink(n,0,n) for large n.
Sshrink(n,l,u) = 

1 if l = u
Sshrink(n,l+1,u) if l < u . . .

Sshrink(n,l,u−1) if l < u . . .

Assuming 1 unit of space for output. By induction on |[l, u]|
Sisqrt(n) = Sshrink(n,0,n) ∝ 1
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Time Complexity
As in the case of space we may use the algorithm itself to derive the time
complexity.
• Integer sqrt
• Factorial
• Fibonacci

forward
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isqrt: Time Complexity
Integer Sqrt

shrink

Assume condition-checking (along with +1 or −1) takes a unit of time.
Then Tshrink(n,l,u) =

0 if l = u
1 + Tshrink(n,l+1,u) if l < u . . .

1 + Tshrink(n,l,u−1) if l < u . . .

Then Tshrink(n,l,u) ∝ |[l, u]| − 1 and
Tisqrt(n) = Tshrink(n,0,n) ∝ n
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isqrt2: Time
shrink2

Assume condition-checking (along with (l + u) div 2) takes a unit of time.
Then Tshrink2(n,l,u) =

0 if u ≤ l ≤ u

1 + Tshrink2(n,m,u) if m2 ≤ n . . .

1 + Tshrink2(n,l,u−1) if m2 > n

If 2k−1 ≤ |[l, u]| − 1 < 2k then the algorithm terminates in at most k steps.
Since k = dlog2 |[l, u]| − 1e,

Tshrink2(n,l,u) ∝ dlog2 |[l, u]| − 1e
Tisqrt2(n) ∝ dlog2 ne
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shrink vs. shrink2: Times
shrink shrink2

1. The time units are different,
2. But they differ by a constant factor at most.
3. So clearly, for large n, shrink2 is faster than shrink
4. But for small n, it depends on the constant factor.
5. Implicitly assume that the actual unit of time includes the time required

to unfold the recursion.
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Factorial: Time Complexity
factL

Here we assume multiplication takes unit time.

TfactL(n) =

{
0 if n = 0
TfactL(n−1)+1 otherwise

Then
TfactL(n) ∝ n
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Fibonacci: Time Complexity
Fibonacci

Assuming addition and condition-checking together take a unit of time,
we have

TF1(n) =

{
0 if n ≤ 1
TF1(n−1) + TF1(n−2) if n > 1

It follows that
2n−2 < TF1(n) ≤ 2n−1
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Comparative Complexity
Algorithm Space Time
isqrt(n) O(1) O(n)
isqrt2(n) O(1) O(log2 n)
factL(n) O(n) O(n)
fib(n) O(n) O(2n)
fibTR(n) O(1) O(n)

http://www.cse.iitd.ac.in/~sak


HOME PAGE CONTENTS JJ J I II GO BACK FULL SCREEN CLOSE 502 OF 887 QUIT

Comparisons
For smaller values
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Comparisons
For large values

http://www.cse.iitd.ac.in/~sak


HOME PAGE CONTENTS JJ J I II GO BACK FULL SCREEN CLOSE 504 OF 887 QUIT

Efficiency Measures: Time
An algorithm for a problem is asymptotically faster or asymptotically more
time-efficient than another for the same problem if its time complexity is
bounded by a function that has a slower growth rate as a function of the
value of its arguments.
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Efficiency Measures: Space
Similarly an algorithm is asymptotically more space efficient than another
if its space complexity is bounded by a function that has a slower growth
rate.
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Speeding Up: 1
Q: Can fibonacci be speeded up or made more space efficient?
A: Perhaps by studying the nature of the function e.g. isqrt2 vs. isqrt and

attempting more efficient algorithmic variations.
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Speeding Up: 2
Q: Are there general methods of speeding up or saving space?
A: Take inspiration from gcd, newton, shrink2
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Factoring out calculations
gcd(a0, b0)
compute a1, b1

 gcd(a1, b1)
compute a2, b2

 gcd(a2, b2)
 · · ·
 gcd(an, bn)
 an
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Tail Recursion: 1
• Factor out calculations and remember only those values that are re-
quired for the next recursive call.

• Create a vector of state variables and include them as arguments of
the function
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Tail Recursion: 2
• Try to reorder the computation using the state variables so as to get
the next state completely defined.

• Redefine the function entirely in terms of the state variables so that the
recursive call is the outermost operation.
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Factorial: Tail Recursion
factL Waxing factL Waning

• The recursive call precedes the multiplication operation. Change it!
• Define a state variable p which contains the product of all the values
that one must remember

• Reorder the computation so that the computation of p is performed
before the recursive call.

• For that redefine the function in terms of p.
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Factorial: Tail Recursion
Factorial

factL2(n) =

⊥ if n < 0
1 if n = 0
factL tr(n, 1) otherwise

where

factL tr(n, p) =

{
p if n = 0
factL tr(n− 1, np) otherwise

http://www.cse.iitd.ac.in/~sak


HOME PAGE CONTENTS JJ J I II GO BACK FULL SCREEN CLOSE 513 OF 887 QUIT

A Computation
factL2(4)

 factL tr(4, 1)
 factL tr(3, 4)
 factL tr(2, 12)
 factL tr(1, 24)
 factL tr(0, 24)
 24

Reminiscent of gcd and newton!
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Factorial: Issues
• Correctness: Prove (by induction on n) that for all n ≥ 0, factL2(n) =
n!.

• Termination: Prove by induction on n that every computation of factL2
terminates.

• Space complexity: Prove that SfactL2(n) = O(1) (as against SfactL(n) ∝
n).

• Time complexity: Prove that TfactL2(n) = O(n)

Complexity table
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Fibonacci: Tail Recursion
• Remove duplicate computations by defining appropriate state variables
• Let a and b be the consecutive fibonacci numbers fib(m − 2) and
fib(m− 1) required for the computation of fib(m).

• The state consists of the variables n, a, b, m.
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Fibonacci: Tail Recursion

fibTR(n) =

⊥ if n < 0
1 if 0 ≤ n ≤ 1
fib iter(n, 1, 1, 1) otherwise

where

fib iter(n, a, b,m) =

{
b if m ≥ n
fib iter(n, b, a + b,m + 1) otherwise
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fibTR: SML
local

fun fib_iter (n, a, b, m) =
(* fib (m) = b ,fib (m-1) = a *)
if m >= n then b
else fib_iter (n, b, a+b, m+1);

in
fun fibTR (n) =

if n < 0 then raise negativeArgument
else if (n <= 1) then 1
else fib_iter (n, 1, 1, 1)

end;
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State in Tail Recursion
• The variables that make up the state bear a definite relation to each
other.

• INVARIANCE. That relationship between the state variables does not
change throughout the computation of the function.
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Invariance
• The invariant property of a tail-recursive function must hold

Initially when it is first invoked, and
Continues to hold before every successive invocation

• The invariant property characterizes the entire computation and the
algorithm and is crucial to the proof of correctness
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7.3. Invariance & Correctness

1. Recap

2. Recursion Transformation

3. Tail Recursion: Examples

4. Comparisons

5. Transformation Issues

6. Correctness Issues 1

7. Correctness Issues 2

8. Correctness Theorem

9. Invariants & Correctness 1

10. Invariants & Correctness 2

11. Invariance Lemma: factL tr

12. Invariance: Example

13. Invariance: Example

14. Proof

15. Invariance Lemma: fib iter

16. Proof

17. Correctness: Fibonacci

18. Variants & Invariants

19. Variants & Invariants

20. More Invariants

21. Fast Powering 1

22. Fast Powering 2
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23. Root Finding: Bisection

24. Advantage Bisection
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Recap
• Asymptotic Complexity:

– Space
– Time

• Comparative Complexity
• Comparisons:

– Small inputs
– Large inputs
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Recursion Transformation
• To achieve constant space and linear time, if possible
• Speeding up using tail recursion

– Factor out calculations
– Reorder the computations with state variables
– Recursion as the outermost operation
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Tail Recursion: Examples
• Factorial vs. Factorial:
factL vs. factL2 vs.

• Fibonacci vs. Fibonacci:
fib vs. fibTR
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Comparisons
Algorithm Space Time
isqrt(n) O(1) O(n)
isqrt2(n) O(1) O(log2 n)
factL(n) O(n) O(n)
factL2(n) O(1) O(n)
fib(n) O(2n) O(2n)
fibTR(n) O(1) O(n)

http://www.cse.iitd.ac.in/~sak


HOME PAGE CONTENTS JJ J I II GO BACK FULL SCREEN CLOSE 526 OF 887 QUIT

Transformation Issues
• Correctness: Prove that the new algorithm computes the same function
as the original simple algorithm

• Termination: Prove by induction on n that every computation is finite.
• Space complexity: Compute it.
• Time complexity: Compute it.
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Correctness Issues 1
• Absolute correctness: For any function f , that an algorithm A that
claims to implement it, prove that

f (~x) = A(~x)

for all argument values ~x for which f is defined.
• Transformation correctness:
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Correctness Issues 2
• Absolute correctness:
• Transformation correctness: For any algorithm A and a transformed
algorithm B prove that

A(~x) = B(~x)

for all argument values ~x for which A is defined. Then B is absolutely
correct provided A is absolutely correct.
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Correctness Theorem
Invariant properties factL2

Theorem 7.1 For all n ≥ 0,
factL2(n) = n!

Proof: For n = 0, it is clear that factL2(0) = 1 = 0!. For n > 0,
factL2(n) = factL tr(n, 1). The proof is done provided we can show
that factL tr(n, 1) = n!.
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Invariants & Correctness 1
Invariant properties factL2

• To prove the absolute or transformation correctness of a tail-recursion
transformation usually requires an invariant property to be proven
about the tail-recursive function.
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Invariants & Correctness 2
Invariant properties factL2

• This allows the independent proof of the properties of the tail-recursive
function without reference to the function that uses it.

• It reflects the design of the algorithm and its division into sub-problems.
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Invariance Lemma: factL tr
Invariant properties factL2

Lemma 7.2 For all n ≥ 0 and p
factL tr(n, p) = (n!)p

Proof: By induction on n.
Back to theorem
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Invariance: Example
factL2

factL tr(4, 7)
 factL tr(3, 28)
 factL tr(2, 84)
 factL tr(1, 168)
 factL tr(0, 168)
 168

Contrast with a factL2(4) computation
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Invariance: Example
factL2

So what exactly is invariant?

factL tr(4, 7) 168 = 4!× 7
 factL tr(3, 28) 168 = 3!× 28
 factL tr(2, 84) 168 = 2!× 84
 factL tr(1, 168) 168 = 1!× 168
 factL tr(0, 168) 168 = 0!× 168
 168
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Proof
Basis For n = 0, factL tr(0, p) = p = (0!)p.
Induction hypothesis (IH) For all k, 0 < k ≤ n,

factL tr(k, p) = p = (k!)p

Induction Step

factL tr(n + 1, p)
= factL tr(n, (n + 1)p)
= (n!)(n + 1)p (IH)
= (n + 1)!p

Back to lemma

http://www.cse.iitd.ac.in/~sak


HOME PAGE CONTENTS JJ J I II GO BACK FULL SCREEN CLOSE 536 OF 887 QUIT

Invariance Lemma: fib iter
fib iter F

Lemma 7.3 For all n > 1, a, b,m : 1 ≤ m ≤ n, if a = F(m − 1) and
b = F(m), then

INV :fib iter(n, a, b,m) = F(n)

.
Proof: By induction on k = n−m
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Proof
Basis For k = 0, n = m, it follows that fib iter(n, a, b,m) = F(n)

Induction hypothesis (IH) For all n > 1 and 1 ≤ m ≤ n, with n −m ≤ k,
INV holds

Induction Step Let 1 ≤ m < n such that n − m = k + 1, F(m) = b and
F(m− 1) = a. Then F(m + 1) = a + b and

fib iter(n, a, b,m)
= fib iter(n, b, a + b,m + 1)
= F(n) (IH)
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Correctness: Fibonacci
fibTR Fibonacci

Theorem 7.4 For all n ≥ 0, fibTR(n) = F(n).
Proof: For 0 ≤ n ≤ 1, it holds trivially. For n > 1, fibTR(n) =
fib iter(n, 1, 1, 1) = F(n), by the invariance lemma, with m = 1, a = 1 =
F(m− 1) and b = 1 = F(m).
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Variants & Invariants
factL2

factL3(n) = ⊥ if n < 0
1 if n = 0
factL tr2(n, 1, 1) else

where
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Variants & Invariants
factL2

factL tr2(n, p,m) ={
p if n = m
factL tr2(n, (m + 1)p,m + 1) else

factL tr2(n, p,m) = (m!)p

for all 1 ≤ m ≤ n.
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More Invariants
• shrink For all n > 0, l, u, if [l, u] ⊆ [0, n],

l ≤ b
√
nc ≤ u

• shrink2
For all n > 0, l, u, if [l, u] ⊆ [0, n],

m = b(l + u)/2c and l ≤ b
√
nc ≤ u
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Fast Powering 1
power2

power3(x, n) =  1.0/power3(x,−n) if n < 0
1.0 if n = 0
powerTR(x, n, 1) else

where
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Fast Powering 2
power2

powerTR(x, n, p) =
p if n = 0

powerTR(x2, n div 2, p) if even(n)

powerTR(x2, n div 2, xp) otherwise

where even(n) ⇐⇒ n mod 2 = 0.
powerTR(x, n, p) = xnp
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Root Finding: Bisection
Newton’s Method Algorithm

Select a small enough ε > 0 and x0. Then if sgn(f (a)) 6= sgn(f (b)),
bisect(f, a, b, ε) = c if |f (c)| < ε

bisect(f, c, b, ε) if sgn(f (c)) 6= sgn(f (b))
bisect(f, a, c, ε) otherwise

where c = (a + b)/2
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Advantage Bisection
More robust than Newton’s method
• Requires continuity and change of sign
• Does not require differentiability
• Could change the condition suitably to take care of very shallow curves
• Oscillations could occur only if the function is too steep.
• An intermediate point can never go outside the interval.
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8. Compound Data

8.1. Tuples & Lists

1. Recap: Tail Recursion

2. Examples: Invariants

3. Tuples
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5. New Lists

6. List Operations

7. List Operations: cons

8. Generating Primes upto n
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11. Odd Primes

12. primesUpto(n)

13. generateFrom(P,m, n, k)
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Recap: Tail Recursion
• Asymptotic Complexity:

Time Linear
Space Constant

• Correctness: Capture the algorithm through
Invariant Invariance Lemma
Bound function Proof by induction

http://www.cse.iitd.ac.in/~sak


HOME PAGE CONTENTS JJ J I II GO BACK FULL SCREEN CLOSE 548 OF 887 QUIT

Examples: Invariants
factL tr2

shrink & shrink2

l ≤ b
√
nc ≤ u

m = b(l + u)/2c and l ≤ b
√
nc ≤ u

Fast Powering

powerTR(x, n, p) = xnp
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Tuples: Formation
Simplest form of compound data: Cartesian products.
• Each element of a cartesian product is a tuple
• Tuples may be constructed as we do in mathematics, simply by enclos-
ing the elements (separated by commas) in a pair of parentheses.
- val a = (2, 3.0, false);
val a = (2,3.0,false) :

int * real * bool
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Tuples: Decomposition
• Individual components of a tuple may be taken out too.
- #1 a;
val it = 2 : int
- #2 (a);
val it = 3.0 : real
- #3 a;
val it = false : bool
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Tuples: divmod
Standard ML of New Jersey, ...
- fun divmod (a, b) =

(a div b, a mod b);
val divmod =
fn : int * int -> int * int
- val dm = divmod (24,9);
val dm = (2,6) : int * int
- #1 dm;
val it = 2 : int
- #2 dm;
val it = 6 : int
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Constructors & Destructors
Every way of constructing compound data from simpler data elements
has
Constructors : Operators which construct compound data from simpler

ones (for tuples it is simply (, , and )).
Destructors : Operators which allow us to extract the individual compo-

nents of a compound data item (for tuples they are #1, #2 ... depending
upon how many components it consists of).

http://www.cse.iitd.ac.in/~sak


HOME PAGE CONTENTS JJ J I II GO BACK FULL SCREEN CLOSE 553 OF 887 QUIT

Tuples: Identity
Every tuple that has been broken up into its components using its de-
structors can be put together back again using its constructors.
Given a tuple a ∈ A1 × A2 × . . .× An, we have

a = (#1 a,#2 a, . . . ,#n a)
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Lists
An α list represents a sequence of elements of a given type α.
Given a (nonempty) list
• A list is ordered
• There may be more than one occurrence of an element in the list
• only the first element (called the head) of the list is immediately acces-
sible.
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New Lists
• An empty list [] can always be created. It is of type α list for any type
α.

• A nonempty list of type α list may be created using the cons (infix ::)
operation on any element of type α and a (nonempty or empty) list of
type α list.

Given a (nonempty) list L,
• A new list M may be created from an existing list L by the tl operation.
• the last element that was added becomes the head of the new list.
• Two lists are equal only if they have the same elements in the same
order
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List Operations
• The empty list: nil or []

• Nonempty lists: Given a nonempty list L
L = [1, 2, 3, 4]

head : hd : αList→ α

hd(L) = 1

tail : tl : αList→ αList

tl(L) = [2, 3, 4]
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List Operations: cons

• L = [1, 2, 3, 4]

cons : cons : α× αList→ αList

cons(0, nil) = [0]

cons(0, L) = 0 :: L = [0, 1, 2, 3, 4]

1 :: (0 :: L) = [1, 0, 1, 2, 3, 4]

back to lists Recap

http://www.cse.iitd.ac.in/~sak


HOME PAGE CONTENTS JJ J I II GO BACK FULL SCREEN CLOSE 558 OF 887 QUIT

http://www.cse.iitd.ac.in/~sak


HOME PAGE CONTENTS JJ J I II GO BACK FULL SCREEN CLOSE 559 OF 887 QUIT

8.2. Polynomial Evaluation

Polynomial Evaluation
Evaluating a polynomial

p(x) =

n∑
i=0

aix
i

given
• its coefficients as a list [an, . . . , a0] of values from the highest degree
term to the constant a0.

• a value for the variable x.
Assume an empty list of coefficients yields a value 0.
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Naive Solution

poly0(L, x) =

{
0 if L = nil
hxn + poly0(T, x) if L = h :: T

(36)

where
n = |L| − 1

fun poly0 ([], x) = 0.0
| poly0 ((h::T), x) =

let val n = length L
in h*power(x, n)+poly0(T, x)
end
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Complexity of poly0

Space.O(n) to store both the list and the intermediate computations (un-
less a fresh list is created for each invocation of poly0 – in such a case
it could be O(n2)).

Additions.O(n) additions. Also the computation of the length of the list in
each invocation of poly0.

Multiplications. n(n− 1)/2 by the simplest powering algorithm.
Multiplications.O(log2(n) +O(log2(n−1) + · · ·+O(log2(1)) = O(log2(n!)) by

the fast powering algorithm. However by Stirling’s approximationa we
have

ln(n!) = n ln(n)− n + O(ln(n)) = O(n log2(n))

We could save on some of these computations using Horner’s rule.
asee Wikipedia http://en.wikipedia.org/wiki/Stirling approximation
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Horner’s Rule
Factor out the multiplications to get

p(x) = (...((anx + an−1)x + an−2)x + ...)x + a0

and define a tail-recursive function which requires only n multiplications.

poly1(L, x) = poly tr(0, L, x) (37)

where

poly tr(p, L, x) =

{
p if L = nil
poly tr(px + h, T, x) if L = h :: T

(38)
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poly1 in SML
local
fun poly_tr (p, [], x) = p

| poly_tr (p, (h::T), x) =
poly_tr (p*x + h, T, x)

in
fun poly L x =

poly_tr (0.0, L, x)
end;

Question 1. What is the right theorem to prove that poly tr is the right
generalization for the problem?

Ans.
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poly1 in SML
local
fun poly_tr (p, [], x) = p

| poly_tr (p, (h::T), x) =
poly_tr (p*x + h, T, x)

in
fun poly L x =

poly_tr (0.0, L, x)
end;

Ans. poly tr(p, L, x) = pxn+1 +
n∑
i=0

aix
i
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Complexity of poly1: Savings from poly0

Space.O(n) to store both the list and the intermediate computations (un-
less a fresh list is created for each invocation of poly0 – in such a case
it could be O(n2)).

Additions.O(n) additions. Also the length of the list need not be com-
puted.

Multiplications.O(n) multiplications. This is the biggest saving in this al-
gorithm.
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Reverse Input
Supposing the coefficients were given in reverse order [a0, . . . , an]. Re-
versing this list will be an extra O(n) time and space. Though the asymp-
totic complexity does not change much, it is more interesting to work
directly with the given list.
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revpoly0

revpoly0(L, x) =

{
0 if L = nil
h + x× revpoly0(T, x) if L = h :: T

fun revpoly0 ([], x) = 0.0
| revpoly0 ((h::T), x) =

h + x * revpoly0 (T, x)
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Tail Recursive
We transform revpoly0 in a completely standard fashion to obtain a tail-
recursive version.

revpoly1(L, x) = revpoly1 tr(L, x, 1, 0) (39)

where

revpoly1 tr(L, x, p, s) =

{
s if L = nil
revpoly1(T, x, px, s + ph) if L = h :: T

(40)

Here p represents the value of xi for each i, 0 ≤ i ≤ n.
Question 2. What is the invariant for this tail-recursive version?
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Tail Recursion: SML
local
fun revpoly1_tr([],x,p,s)=s

| revpoly1_tr((h::T),x,p,s)=
revpoly1_tr(T,x,p*x,s+p*h)

in
fun revpoly1 (L, x) =

revpoly1_tr (L, x, 1.0, 0.0)
end
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Complexity of revpoly1

Space.O(n) space to store the list
Multiplications. 2n multiplications
Additions. n additions.
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8.3. Generating Primes

Generating Primes upto n
Definition 8.1 A positive integer n > 1 is composite iff it has a proper
divisor d|n with 1 < d < n. Otherwise it is prime.

• 2 is the smallest (first) prime.
• 2 is the only even prime.
• No other even number can be a prime.
• All other primes are odd
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More Properties
• Every number may be expressed uniquely (upto order) as a product of
prime factors.

• No divisor of a positive integer can be greater than itself.
• For each divisor d|n such that d ≤ b

√
nc, n/d ≥ b

√
nc is also a divisor.
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Composites
• If a number n is composite, then it has a proper divisor d, 2 ≤ d ≤ b

√
nc.

• If a number n is composite, then it has a prime divisor p, 2 ≤ p ≤ b
√
nc.

• An odd number cannot have any even divisors.
• An odd composite number n has an odd prime divisor p, 3 ≤ p ≤ b

√
nc.
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Odd Primes
• An odd number > 1 is a prime iff it has no proper odd divisors
• An odd number > 1 is a prime iff it is not divisible by any odd prime
smaller than itself.

• An odd number n > 1 is a prime iff it is not divisible by any odd prime
≤ b
√
nc.
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primesUpto(n)

primesUpto(n) =


[] if n < 2
[(1, 2)] if n = 2
primesUpto(n− 1) elseif even(n)
generateFrom([(1, 2)], 3, n, 2) otherwise

where in generateFrom(P,m, n, k),
• P is a list of ordered pairs (i, pi) containing the first k − 1 primes,
• k denotes the index of the next prime to be found,
•m > pk−1 is the next number to be tried as a possible candidate for the
k-th prime,

•m ≤ n is odd and
• there are no primes in the interval [pk−1 + 2, . . . ,m− 2]
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generateFrom(P,m, n, k)

bound function
n−m

Invariant
2 < m ≤ n ∧ odd(m)

implies
P = [(k − 1, pk−1), · · · , (1, p1)]

and
∀q : pk−1 < q < m : composite(q)

http://www.cse.iitd.ac.in/~sak


HOME PAGE CONTENTS JJ J I II GO BACK FULL SCREEN CLOSE 578 OF 887 QUIT

generateFrom

generateFrom(P,m, n, k) =



P if m > n

generateFrom elseif
(((k,m) :: P ),m + 2, n, k + 1) pwrt

generateFrom else
(P,m + 2, n, k)

where pwrt = primeWRT (m,P )
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primeWRT (m,P )

Definition 8.2 A number m is prime with respect to a list L of numbers iff
it is not divisible by any of them.

• A number is prime iff it is prime with respect to the list of all primes
smaller than itself.

• From properties of odd primes it follows that a number n is prime iff it
is prime with respect to the list of all primes ≤

√
n
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primeWRT (m,P )

bound function length(P )

Invariant If P = [(i− 1, pi−1), . . . (1, p1)], for some i ≥ 1 then
• pk ≥ m > pk−1, and
•m is prime with respect to [(k − 1, pk−1), . . . , (i, pi)]

•m is a prime iff it is a prime with respect to P
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primeWRT

primeWRT (m,P ) =

 true if P = nil
false elseif h|m
primeWRT (m, tl(P )) else

where
(i, h) = hd(P )

for some i > 0.
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( * Program f o r generat ing primes upto some number * )
l o c a l

fun primeWRT (m, [ ] ) = t r ue
| primeWRT (m, ( , h ) : : t ) =

i f m mod h = 0 then f a l s e
e lse primeWRT (m, t )

fun generateFrom (P, m, n , k ) =
i f m > n then P
else i f primeWRT (m, P)
then ( p r i n t ( I n t . t o S t r i n g (m) ˆ" is a prime\n" ) ;

generateFrom ( ( ( k , m) : : P) , m+2 , n , k+1)
)

e lse generateFrom (P, m+2 , n , k )
i n
fun primesUpto n =

i f n < 2 then [ ]
e lse i f n=2 then [ ( 1 , 2 ) ]
e lse i f ( n mod 2 = 0) then primesUpto ( n−1)
e lse generateFrom ( [ ( 1 , 2 ) ] , 3 , n , 2 ) ;

end
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Density of Primes
Let π(n) denote the number of primes upto n. Then

n π(n) %
100 25 25.00%

1000 168 16.80%
10000 1229 12.29%

100000 9592 9.59%
1000000 78, 498 7.85%

10000000 664579 6.65%
100000000 5761455 5.76%
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The Prime Number Theorem

limn→∞
π(n)
n/ lnn

= 1

Proved by Gauss.
• Shows that the primes get sparser at higher n
• A larger percentage of numbers as we go higher are composite.

from David Burton: Elementary Number Theory.
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The Prime Number Theorem
n π(n) % lim

n→∞
π(n)

n/ lnn
100 25 25.00%

1000 168 16.80% 1.159
10000 1229 12.29% 1.132

100000 9592 9.59% 1.104
1000000 78, 498 7.85% 1.084

10000000 664579 6.65% 1.071
100000000 5761455 5.76% 1.061

from David Burton: Elementary Number Theory.
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Complexity
function calls
primesUpto 1
generateFrom n/2
primeWRT

∑n
m=3,odd(m) π(m)
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Diagnosis
For each m ≤ n,
• P is in descending order of the primes
•m is checked for divisibility π(m) times
• From properties of odd primes it should not be necessary to check
each m more than π(b

√
mc) times for divisibility.

• Organize P in ascending order instead of descending.
ascending-order
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8.4. Compound Data & Lists

1. Compound Data

2. Recap: Tuples

3. Tuple: Formation

4. Tuples: Selection

5. Tuples: Equality

6. Tuples: Equality errors

7. Lists: Recap

8. Lists: Append

9. cons vs. @

10. Lists of Functions

11. Lists of Functions

12. Arithmetic Sequences

13. Tail Recursion

14. Tail Recursion Invariant

15. Tail Recursion

16. Another Tail Recursion: AS3

17. Another Tail Recursion: AS3 iter

18. AS3: Complexity

19. Generating Primes: 2

20. primes2Upto(n)

21. generate2From(P,m, n, k)

22. generate2From
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23. prime2WRT (m,P )

24. prime2WRT

25. primes2: Complexity

26. primes2: Diagnosis
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Compound Data
• Forming (compound) data structures from simpler ones
• Breaking up compound data into its components.
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Recap: Tuples
formation : Cartesian products of types
selection : Selection of individual components
equality : Equality checking
equality errors : Equality errors

forward to Lists
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Tuple: Formation
Standard ML of New Jersey,
- val a = ("arun", 1<2, 2);
val a = ("arun",true,2)

: string * bool * int
- val b = ("arun", true, 2);
val b = ("arun",true,2)

: string * bool * int

back

http://www.cse.iitd.ac.in/~sak


HOME PAGE CONTENTS JJ J I II GO BACK FULL SCREEN CLOSE 593 OF 887 QUIT

Tuples: Selection
- #2 a;
val it = true : bool
- #1 a;
val it = "arun" : string
- #3 a;
val it = 2 : int
- #4 a;
stdIn:1.1-1.5 Error: operator and operand don’t agree [record labels]
operator domain: {4:’Y; ’Z}
operand: string * bool * int
in expression:

(fn {4=4,...} => 4) a

back
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Tuples: Equality
- a = b;
val it = true : bool
- (1<2, true) = (1.0 < 2.0, true);
val it = true : bool
- (true, 1.0 < 2.4)
= (1.0 < 2.4, true);

val it = true : bool

back
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Tuples: Equality errors
- ("arun", (1, true))
= ("arun", 1, true);
stdIn:1.1-29.39 Error: operator and operand don’t agree [tycon mismatch]
operator domain: (string * (int * bool)) * (string * (int * bool))
operand: (string * (int * bool)) * (string * int * bool)
in expression:

("arun",(1,true))
= ("arun",1,true)

- ("arun", (1, true))
= (("arun", 1), true);
stdIn:1.1-29.39 Error: operator and operand don’t agree [tycon mismatch]
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Lists: Recap
formation : Sequence α List
selection : Selection of individual components
new lists : Making new lists from old
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The Append Operation:
Unlike cons which prepends an element to a list, the infix append binary
operation, @, on lists appends a list to another list. i.e. if L = [a0, · · · , al−1]
and M = [b0, · · · , bm−1] then L@M = [a0, · · · , al−1, b0 · · · , bm−1].
The append operation satisfies the following properties:

[]@M = M
L@[] = L
(L@M)@N = L@(M@N)

where L, M and N are three lists of the same type of elements. Further
if |L| denotes the length of a list then

|L@M | = |L| + |M |
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Lists: Append
- op @;
val it = fn : ’a list * ’a list

-> ’a list
- [1,2,3] @ [˜1, ˜3];
val it = [1,2,3,˜1,˜3]

: int list
- [[1,2,3], [˜1, ˜2]]
@ [[1,2,3], [˜1, ˜2]];
val it =
[[1,2,3], [˜1,˜2],
[1,2,3], [˜1,˜2]]
: int list list
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:: vs. @

cons is a constant time = O(1) operation. But @ is linear = O(n) in the
length n of the first list. @ is defined inductively on the length of the first
list as

L@M =

{
M if L = nil
h :: (T@M) if L = h :: T

TL@M =

{
0 if L = nil
1 + TT@M if L = h :: T
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Lists of Functions
- fun add1 x = x+1;
val add1 = fn : int -> int
- fun add2 x = x + 2;
val add2 = fn : int -> int
- fun add3 x = x + 3;
val add3 = fn : int -> int
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Lists of Functions
- val addthree
= [add1, add2, add3];
val addthree
= [fn,fn,fn] : (int -> int) list
- fun addall x = [(add1 x), (add2 x), (add3 x)];
val addall = fn : int -> int list
- addall 3;
val it = [4,5,6] : int list
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Arithmetic Sequences

AS1(a, d, n) =

{
[] if n ≤ 0
AS1(a, d, n− 1)@[a + (n− 1) ∗ d] else

TAS1(a,d,n) =

{
1 if n ≤ 0
TAS1(a,d,n−1) + TLn−1@[a+(n−1)∗d] else

where Ln−1 = AS1(a, d, n− 1)

function calls Order
AS1 n O(n)
@ n O(n)

::
∑n
i=0 i O(n2)
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Tail Recursion

AS2(a, d, n) =

 [] if n ≤ 0

AS2 tr(a, d, n, 0, []) else

where
for any initial L0 and n ≥ k ≥ 0

INV 2 : L = L0@[a]@ . . .@[a + (k − 1) ∗ d]

http://www.cse.iitd.ac.in/~sak


HOME PAGE CONTENTS JJ J I II GO BACK FULL SCREEN CLOSE 604 OF 887 QUIT

Tail Recursion: Invariant
INV 2 : L = L0@[a]@ . . .@[a + (k − 1) ∗ d]

and bound function
n− k

AS2 tr(a, d, n, k, L) =

 L if k ≥ n

AS2 tr(a, d, n, k + 1, L@[a + k ∗ d]) else
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Tail Recursion: Complexity
function calls Order
AS2 1
AS2 tr n O(n)
@ n O(n)

::
∑n
i=0 i O(n2)

So this tail recursion simply doesn’t help!

http://www.cse.iitd.ac.in/~sak


HOME PAGE CONTENTS JJ J I II GO BACK FULL SCREEN CLOSE 606 OF 887 QUIT

Another Tail Recursion : AS3

AS3(a, d, n) =

 [] if n ≤ 0

AS3 tr(a, d, n, []) else

where for any initial L0, n0 ≥ n > 0, and

INV 3 : L = (a + (n− 1) ∗ d) :: · · · :: (a + (n0 − 1) ∗ d) :: L0
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Another Tail Recursion: AS3 tr

INV 3 : L = (a + (n− 1) ∗ d) :: · · · :: (a + (n0 − 1) ∗ d) :: L0

and bound function n,

AS3 tr(a, d, n, L) =

 L if n ≤ 0

AS3 tr(a, d, n− 1, (a + (n− 1) ∗ d)::L) else
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AS3: Complexity
function calls Order
AS3 1
AS3 tr n O(n)
@ 0
::

∑n
i=0 1 O(n)

http://www.cse.iitd.ac.in/~sak


HOME PAGE CONTENTS JJ J I II GO BACK FULL SCREEN CLOSE 609 OF 887 QUIT

Generating Primes: Recap
• primesUpto
• generateFrom and its invariant
• primeWRT (m,P )

Note that
1. primeWRT (m,P ) is evaluated for every candidate against the currently

generated primes
2. primeWRT (m,P ) checks divisibility against every prime generated.
3. It suffices to check only against the primes that are smaller than

√
m

for any odd number m, by properties of composites.
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Generating Primes: Version 2

primes2Upto(n) =


[] if n < 2
[(1, 2)] if n = 2
primes2Upto(n− 1) elseif even(n)
generate2From([(1, 2)], 3, n, 2) otherwise

where the only difference between primes2Upto(n) and primesUpto(n) is
the evalution of generate2From instead of generateFrom.
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Invariant & Bound Function: Version 2
invariant

bound function n−m
Invariant2

2 < m ≤ n ∧ odd(m)

implies
P = [(1, p1), · · · , (k − 1, pk−1)]

and
∀q : pk−1 < q < m : composite(q)

i.e. the list P of primes is in ascending order.
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generate2From
generateFrom

generate2From(P,m, n, k) = P if m > n
generate2From(P@[(k,m)],m + 2, n, k + 1) elseif pwrt
generate2From(P,m + 2, n, k) else

where pwrt = prime2WRT (m,P )
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prime2WRT (m,P )

bound function length(P )

Invariant If P = [(i, pi), . . . (k − 1, pk−1)], for some i ≥ 1 then
• pk ≥ m > pk−1, and
•m is prime with respect to [(1, p1), . . . , (i− 1, pi−1)]

•m is a prime iff it is a prime with respect to [(1, p1), . . . , (j, pj)], where
pj ≤ b

√
mc < pj+1
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prime2WRT

prime2WRT (m,P ) =


true if P = nil
true if h > m div h
false elseif h|m
prime2WRT (m, tl(P )) else

where
(i, h) = hd(P )

for some i > 0
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primes2: Complexity
function calls
primes2Upto 1
generate2From n/2
prime2WRT

∑n
m=3,odd(m) π(b

√
mc)
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primes2: Diagnosis
generate2From

• Uses @ to create an ascending sequence of primes
• For each new prime pk this operation takes time O(k).
• Can tail recursion be used to reduce the complexity due to @?
• Can a more efficient algorithm using :: instead of @ be devised (as in
the case of AS3)?
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( * This i s r e a l l y the same as primes . sml but uses the f a c t t h a t i t s u f f i c e s
to check d i v i s i b i l i t y on ly w i th respect to a l l the primes less than the
square−r oo t o f the candidate number . As a r e s u l t ,

1 . the primes have to be placed i n ascending order i n the l i s t P
2 . But t h i s imp l i es t h a t the new prime generated i s appended to the l i s t

o f primes r a t h e r than p re f i xed to i t .

See the s l i d e ” Generat ing Primes : Recap ”

* )

l o c a l
fun prime2WRT (m, [ ] ) = t r ue
| prime2WRT (m, ( , h ) : : t ) =

i f h > m div h ( * h*h > m * ) then t rue
else i f (m mod h = 0) then f a l s e
e lse prime2WRT (m, t )

fun generate2From (P, m, n , k ) =
i f m > n then P
else i f prime2WRT (m, P)
then ( p r i n t ( I n t . t o S t r i n g (m) ˆ" is a prime\n" ) ;

generate2From ( (P@[ ( k , m) ] ) , m+2 , n , k+1)
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)
e lse generate2From (P, m+2 , n , k )

i n
fun primes2Upto n =

i f n < 2 then [ ]
e lse i f n=2 then [ ( 1 , 2 ) ]
e lse i f ( n mod 2 = 0) then primes2Upto ( n−1)
e lse generate2From ( [ ( 1 , 2 ) ] , 3 , n , 2 ) ;

end
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8.5. Compound Data & List Algorithms

1. Compound Data: Summary

2. Records: Constructors

3. Records: Example 1

4. Records: Example 2

5. Records: Destructors

6. Records: Equality

7. Tuples & Records

8. Back to Lists

9. Lists: Correctness

10. Lists: Case Analysis

11. Lists: Correctness by Cases

12. List-functions: length

13. List Functions: search

14. List Functions: search2

15. List Functions: ordered

16. List Functions:insert

17. List Functions: reverse

18. List Functions: reverse2

19. List Functions:merge

20. List Functions:merge

21. List Functions:merge contd.

22. ML: merge

23. Sorting by Insertion

24. Sorting by Merging
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25. Sorting by Merging

26. Functions as Data

27. Higher Order Functions
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Compound Data: Summary
• Compound Data:

Tuples: Cartesian products of different types (ordered)
Lists: Sequences of the same type of element
Records: Unordered named aggregations of elements of different

types.
• Constructors & Destructors
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Records: Constructors
• A record is a set of values drawn from various types such that each
component (called a field) has a unique name.

• Each record has a type defined by
field names
types of fieldnames
The order of presentation of the record fields does not affect its type in

any way.
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Records: Example 1
Standard ML of New Jersey,
- val pinky =
{ name = "Pinky", age = 3,
fav_colour = "pink"};

- val pinky = {age=3,
fav_colour="pink",
name="Pinky"}

: {age:int,
fav_colour:string,
name:string
}

http://www.cse.iitd.ac.in/~sak


HOME PAGE CONTENTS JJ J I II GO BACK FULL SCREEN CLOSE 624 OF 887 QUIT

Records: Example 2
- val billu =
{ age = 1,
name = "Billu",
fav_colour = "blue"

};
- val billu =
{age=1,fav_colour="blue",name="Billu"}:
{age:int, fav_colour:string, name:string}
- pinky = billu;
val it = false : bool
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Records: Destructors
#age billu;
val it = 1 : int
- #fav_colour billu;
val it = "blue" : string
- #name billu;
val it = "Billu" : string
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Records: Equality
- val pinky2 =
{ name = "Pinky",
fav_colour = "pink",
age = 3

};
- val pinky2 =
{age=3,fav_colour="pink",name="Pinky"}:
{age:int, fav_colour:string, name:string}
- pinky = pinky2;
val it = true : bool
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Tuples & Records
• A k-tuple may be thought of as a record whose fields are numbered #1
to #k instead of having names.

• A record may be thought of as a generalization of tuples whose com-
ponents are named rather than being numbered.

back
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Back to Lists
• Every L : α List satisfies

L = []

XOR
L = hd(L) :: tl(L)

• Many functions on lists (L) are defined by induction on its length (|L|).

f (L) =

{
c if L = []
g(h, T ) if L = h :: T
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Lists: Correctness
Hence their properties (P) are proved by induction on the length of the
list.
Basis |L| = 0. Prove P([])

Induction hypothesis (IH) Assume for some |T | = n ≥ 0, P(T ) holds.
Induction Step Prove P(h :: T ) for L = h :: T with |L| = n + 1
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Lists: Case Analysis
inductive defns on lists

• Every list has exactly one of the following forms (patterns)
– []

– h::T

• ML provides convenient case analysis based on patterns.

fun f [] = c
| f (h::T) = g (h, T)

;
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Lists: Correctness by Cases
Lists-correctness

Property P is proved by case analysis.
Basis Prove

P([])

Induction hypothesis (IH) Assume
P(T )

Induction Step Prove
P(h :: T )
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List-functions: length{
length [] = 0
length (h :: T ) = 1 + (length T )
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List Functions: reverse

Reverse the elements of a list L = [a0, . . . , an−1] to obtain M =
[an−1, . . . , a0]. {

reverse [] = []
reverse (h :: T ) = (reverse T )@[h]

Theorem 8.3 For any list L = [a0, · · · , al−1], l ≥ 0,

reverse(L) = [al−1, . . . , a0]

Proof: By induction on l.
Time Complexity?? O(n2)
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List Functions: reverse2{
reverse2 [] = []
reverse2 (h :: T ) = rev ((h :: T ), [])

where {
rev ([], N) = N
rev (h :: T,N) = rev (T, h :: N)

Lemma 8.4 For any list N and list L = [a0, · · · , al−1], l ≥ 0,

rev(L,N) = al−1 :: · · · :: a0 :: N

Proof: By induction on l.

Corollary 8.5 For any list L = [a0, · · · , al−1],

reverse2(L) = [al−1, . . . , a0]

Proof: Follows from lemma ?? with N = [].
Time Complexity: O(n)
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List Functions: search

To determine whether x occurs in a list L search (x, []) = false
search (x, h :: T ) = true if x = h
search (x, h :: T ) = search(x, T ) else
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List Functions: search2

Or even more conveniently{
search2 (x, []) = false
search2 (x, h :: T ) = (x = h) or search2 (x, T )

Time Complexity??
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Total Orderings
Definition 8.6 Given a set S and a binary relationR on S, i.e. R ⊆ S×S,
Irreflexivity.R is irreflexive if (x, x) 6∈ R for any x ∈ S.
Transitivity.R is transitive if for all x, y, z ∈ S, (x, y) ∈ R and (y, z) ∈ R

implies (x, z) ∈ R.
Total Ordering.R is a total ordering on S if it is an irreflexive and transitive

relation such that for any two elements x, y ∈ S, x 6= y implies either
(x, y) ∈ R or (y, x) ∈ R.

• Often binary relations are used in infix form i.e. (x, y) ∈ R is usually
written as xRy.
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T he simplest examples of irreflexive total orderings are the usual “less-than (<)” and the “greater-than”
(>) relations on numbers. The ordering of words in a dictionary is another example of an irreflexive total
ordering. Certain other irreflexive relations such as the “proper subset (⊂)” ordering on sets are not total
since they do not obey the trichotomy law.

A basic fact underlying these irreflexive total orders is the following “trichotomy law”.

Fact 8.7 If < is an irreflexive total ordering on S then for any x, y ∈ S exactly one of the following holds.

x < y x = y y < x

Definition 8.8 Let R ⊆ S × S be any binary relation on S. The converse of R denoted R−1 is defined as

R−1 = {(y, x) | (x, y) ∈ R}

From the fact below it easily follows that the converse of any irreflexive total order is also an irreflexive
total order. The “>” relation on numbers is the converse of the “<” relation and vice-versa.

Fact 8.9

1. For any relation R ⊆ S × S, R = R−1−1.
2. The converse of an irreflexive relation is also irreflexive.

3. If an irreflexive relation is a total order then so is its converse.

In the above examples we have emphasised the irreflexive nature of these orderings. This is to distinguish
them from the reflexive orderings such as the “less-than-or-equal-to (≤)” and the “greater-than-or-equal-
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to (≥)” orderings which are reflexive. In fact they are obtained from the corresponding irreflexive relations
by a set union with the smallest reflexive relation on sets. See the definition below.

Definition 8.10 Let IS = {(x, x) | x ∈ S} be the identity relation on S. Then for any irreflexive total
ordering < on S we define its reflexive closure as the relation ≤ = < ∪ IS.
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List Functions: ordered≤
Definition 8.11 A list L = [a0, . . . , an−1] is ordered by a relation ≤ if con-
secutive elements are related by ≤, i.e ai ≤ ai+1, for 0 ≤ i < n− 1, where
< is a total ordering on the type of elements that make up the list.

We may define this property of lists inductively on the structure of lists as
follows: ordered≤ []

ordered≤ [h]
ordered≤ (h0 :: h1 :: T ) if h0 ≤ h1 and ordered≤(h1 :: T )

Time Complexity??
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List Functions:insert
Given an ordered list L : α List, insert an element x : α at an appropriate
position  insert (x, []) = [x]

insert (x, h :: T ) = x :: (h :: T ) if x ≤ h
insert (x, h :: T ) = h :: (insert (x, T )) else

Theorem 8.12 For any list L of elements drawn from a set with a total
ordering < and an element x from the same set, ordered≤(L) implies
ordered≤(insert(x, L)).
Proof: By induction on the structure of the ordered list L.
Time Complexity: O(n)
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List Functions:merge
Merge two ordered lists |L| = l, |M | = m to produce an ordered list
|N | = l + m containing exactly the elements of L and M . That is, if

L = [1, 3, 5, 9, 11]

and
M = [0, 3, 4, 4, 10]

then
merge(L,M) = N

where
N = [0, 1, 3, 3, 4, 4, 5, 9, 10, 11]
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List Functions:merge
merge may be defined inductively as

merge([],M) = M
merge(L, []) = L
merge(L,M) = a :: (merge(S,M)) if a ≤ b
merge(L,M) = b :: (merge(L, T )) else

where L = a :: S and M = b :: T .

Theorem 8.13 Let L, M , N be lists consisting of elements from a set S
totally ordered by a relation < such that ordered≤(L), ordered≤(M) and
N = merge(L,M). Then
1. ordered≤(N) and
2. for each a ∈ S, #a(N) = #a(L) + #a(M), where #a(L) denotes the

number of occurrences of a in L.
Proof: ??

http://www.cse.iitd.ac.in/~sak


HOME PAGE CONTENTS JJ J I II GO BACK FULL SCREEN CLOSE 644 OF 887 QUIT

ML: merge
fun merge ([], M) = M
| merge (L, []) = L
| merge (L as a::S,

M as b::T) =
if a <= b
then a::merge(S, M)
else b::merge(L, T)

Time Complexity??
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Sorting by Insertion
Given a list of elements to reorder them (i.e. with the same number of
occurrences of each element as in the original list) to produce a new
ordered list.
Hence sort[10, 8, 3, 6, 9, 7, 4, 8, 1] = [1, 3, 4, 6, 7, 8, 8, 9, 10]{

isort [] = []
isort (h :: T ) = insert(h, (isort T ))

Time Complexity??
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Sorting by Merging
msort [] = []
msort [a] = [a]
msort L = merge ((msort M),

(msort N))

where
(M,N) = split L
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Sorting by Merging
where  split [] = ([], [])

split [a] = ([a], [])
split (a :: b :: P ) = (a :: Left, b :: Right)

where
(Left, Right) = split P

Time Complexity??
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Functions as Data
list of functions

• Every function is unary. A function of many arguments may be thought
of as a function of a single argument i.e. a tuple of appropriate type.

• Every function is a value of an appropriate type.
• Hence functions are also data.
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9. Higher Order Functions & Structured Data

9.1. Higher Order Functions

1. Summary: Compound Data

2. List: Examples

3. Lists: Sorting

4. Higher Order Functions

5. An Example

6. Currying

7. Currying: Contd

8. Generalization

9. Generalization: 2

10. Applying a list

11. Trying it out

12. Associativity

13. Apply to a list

14. Sequences

15. Further Generalization

16. Further Generalization

17. Sequences

18. Efficient Generalization

19. Sequences: 2

20. More Generalizations
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21. More Summations

22. Or Maybe . . . Products

23. Or Some Other
⊗

24. Other
⊗

25. Examples of ⊗, e
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Summary: Compound Data
• Records and tuples
• Lists

– Correctness
– Examples
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List: Examples
• Length of a list
• Searching a list
• Checking whether a list is ordered
• Reversing a list
• Sorting of lists
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Lists: Sorting
• Sorting by insertion
• Sorting by Divide-and-Conquer
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Higher Order Functions
• Functions as data
• Higher order functions
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An Example
List of functions

• add1 x = x + 1

• add2 x = x + 2

• add3 x = x + 3
Suppose we needed to define a long list of length n, where the i-th ele-
ment is the function that adds i + 1 to the argument.
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Currying
addc y x = x + y

ML’s response :
val addc = fn :

int -> (int -> int)

Contrast with ML’s response

- op +;
val it = fn : int * int -> int

addc is the curried version of the binary operation +.
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Currying: Contd
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Generalization
Then
• addc1 = (addc 1): int -> int

• addc2 = (addc 2): int -> int

• addc3 = (addc 3): int -> int

and for any i,
(addc i): int -> int

is the required function.
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Generalization: 2
list adds n = {

[] if n ≤ 0
(list adds(n− 1))@[(addc n)] else

ML’s response :
val list_adds = fn :
int -> (int -> int) list
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Applying a list
addall{

applyl [] x = []
applyl (h :: T ) x = (h x) :: (applyl T x)

ML’s response:
val applyl = fn :
(’a -> ’b) list ->
’a -> ’b list
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Trying it out
interval x n = applyl x (list adds n)
ML’s response:
val interval = fn :

int -> int -> int list
- interval 53 5;
val it = [54,55,56,57,58]
: int list
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Associativity
• Application associates to the left.

f x y = ((f x) y)

•→ associates to the right.
α→ β → γ = α→ (β → γ)

If f : α→ β → γ → δ
then f a : β → γ → δ
and f a b : γ → δ
and f a b c : δ
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Apply to a list
Apply a list Transpose of a matrix{

map f [] = []
map f (h :: T ) = (f h) :: (map f T )

val it = fn : (’a -> ’b) ->
’a list -> ’b list

- map addc3 [4, 6, ˜1, 0];
val it = [7,9,2,3] : int list
- map real [7,9,2,3];
val it = [7.0,9.0,2.0,3.0]
: real list
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Sequences
Arithmetic sequences-1
Arithmetic sequences-2
Arithmetic sequences-3

AS4(a, d, n) = 
[] if n ≤ 0

a :: (map (addc d) else
(AS4 (a, d, (n− 1))))
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Further Generalization
Given

f : α ∗ α→ α

Then
curry2 f x y = f (x, y)

and
(curry2 f ) : α→ (α→ α)

and for any d : α,
((curry2 f ) d) : α→ α
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Further Generalization
seq(f, a, d, n) = 

[] if n ≤ 0

a :: (map ((curry2 f ) d)
(seq (f, a, d, n− 1))) else

is the sequence of length n generated with ((curry2 f ) d), starting from
a.
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Sequences
Arithmetic:AS5(a, d, n) = seq(op+, a, d, n)

Geometric:GS1(a, r, n) = seq(op∗, a, r, n)

Harmonic:HS1(a, d, n) = map reci (AS5(a, d, n))

where
reci x = 1.0/(real x) gives the reciprocal of a (non-zero) integer.
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Efficient Generalization
Let’s not use map repeatedly.
seq2(f, g, a, d, n) = [] if n ≤ 0

(f a) :: (seq2 (f, g(a, d), d, n− 1)) else

is the sequence of length n generated with a unary f , a binary g starting
from f (a).
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Sequences: 2
•AS6(a, d, n) = seq2(id, op+, a, d, n)

•GS2(a, r, n) = seq2(id, op∗, a, r, n)

•HS2(a, d, n) = seq2(reci, op+, a, d, n)

where id x = x is the identity function.
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More Generalizations
Often interested in some particular measure related to a sequence, rather
than in the sequence itself, e.g. summations of
• arithmetic, geometric, harmonic sequences
• ex, trigonometric functions upto some n-th term
• (Truncated) Taylor and Maclaurin series
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More Summations
Wasteful to first generate the sequence and then compute the measure

u∑
i=l

f (i)

where the range [l, u] is defined by a unary succ function
sum(f, succ, l, u) ={

0 if [l, u] = ∅
f (l)+sum(f, succ, succ(l), u) else
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Or Maybe . . . Products
Or may be interested in forming products of sequences.

u∏
i=l

f (i)

prod(f, succ, l, u) ={
1 if [l, u] = ∅
f (l)∗prod(f, succ, succ(l), u) else
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Or Some Other
⊗

Or some other binary operation ⊗ which has the following properties:
•⊗ : (α ∗ α)→ α is closed
•⊗ is associative i.e.

a⊗ (b⊗ c) = (a⊗ b)⊗ c

•⊗ has an identity element e i.e
a⊗ e = a = e⊗ a

u⊗
i=l

f (l)
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Other
⊗

Then if f, succ : α→ α ser(⊗, f, succ, l, u) ={
e if [l, u] = ∅
f (l)⊗ ser(⊗, f, succ, succ(l), u) else
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Examples of ⊗, e
• +, 0 on integers and reals
• concatenation and the empty string on strings
• andalso, true on booleans
• orelse, false on booleans
• +, 0 on vectors and matrices
• ∗, 1 on vectors and matrices
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9.2. Structured Data

1. Transpose of a Matrix

2. Transpose: 0

3. Transpose: 10

4. Transpose: 01

5. Transpose: 20

6. Transpose: 02

7. Transpose: 30

8. Transpose: 03

9. trans

10. is2DMatrix

11. User Defined Types

12. Enumeration Types

13. User Defined Structural Types

14. Functions vs. data

15. Data as 0-ary Functions

16. Data vs. Functions

17. Data vs. Functions: Recursion

18. Lists

19. Constructors

20. Shapes

21. Shapes: Triangle Inequality

22. Shapes: Area

23. Shapes: Area

24. ML: Try out
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25. ML: Try out (contd.)

26. Enumeration Types

27. Recursive Data Types

28. Resistors: Datatype

29. Resistors: Equivalent

30. Resistors

31. Resistors: Example

32. Resistors: ML session
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Transpose of a Matrix
Map

Assume a 2-D r × c matrix is represented by a list of lists of elements.
Then
transpose L = {

trans L if is2DMatrix(L)
⊥ else

where
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Transpose: 0

11

21

31

41

12

22

32

42

13

23

33

43

[

[

[

[

]

]

]

]

[

]

[

]
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Transpose: 10

11

21

31

41

12

22

32

42

13

23

33

43

[

[

[

[

]

]

]

]

[

]

[

]

http://www.cse.iitd.ac.in/~sak


HOME PAGE CONTENTS JJ J I II GO BACK FULL SCREEN CLOSE 681 OF 887 QUIT

Transpose: 01

12

22

32

42

13

23

33

43

[

[

[

[

]

]

]

]

[

]

[

]

[ 11 21 31 41 ]
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Transpose: 20

12

22

32

42

13

23

33

43

[

[

[

[

]

]

]

]

[

]

[

]

[ 11 21 31 41 ]
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Transpose: 02

13

23

33

43

[

[

[

[

]

]

]

]

[

]

[

]

[ 11 21 31 41 ]

12[ 22 32 42 ]
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Transpose: 30

13

23

33

43

[

[

[

[

]

]

]

]

[

]

[

]

[ 11 21 31 41 ]

12[ 22 32 42 ]

http://www.cse.iitd.ac.in/~sak


HOME PAGE CONTENTS JJ J I II GO BACK FULL SCREEN CLOSE 685 OF 887 QUIT

Transpose: 03

[

[

[

[

]

]

]

]

[

]

[

]

[ 11 21 31 41 ]

12[ 22 32 42 ]

13[ ]23 33 43
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trans trans [] = []
trans [] :: TL = []
trans LL = (map hd LL) :: (trans (map tl LL))

and
is2DMatrix = #1(dimensions L)
where
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is2DMatrix
dimensions [] = (true, 0, 0)

dimensions [H ] = (true, 1, h)

dimensions (H :: TL) = (b and (h = c), r + 1, c)

where dimensions TL = (b, r, c) and h = length H.
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9.3. Generalized Sorting Algorithms

Sorting
We have already seen two sorting algorithms on integers
• insertion sort
• merge sort
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Generalized Sorting
It is possible to generalize these algorithms so that they are both
higher order . The ordering relation is an argument to the sort function.
polymorphic . They work on any data type on which a reflexive total order

may be defined and
In particular ascending order and descending order may be obtained as the
total order and its converse (e.g. the “≥” relation is the converse of the
“≤” relation).
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( * I t i s assumed t h a t R i s a b inary t o t a l o rder ing . Otherwise there i s no
guarantee t h a t these programs w i l l work c o r r e c t l y .

* )

( *−−−−−−−−−−−−−−−−−−−−−−−−−−−− INSERTION SORT −−−−−−−−−−−−−−−−−−−−−− * )
fun i n s e r t S o r t R [ ] = [ ]
| i n s e r t S o r t R ( h : : t ) =

l e t fun i n s e r t R [ ] x = [ x ]
| i n s e r t R ( h : : t ) x = i f R ( x , h ) then x : : ( h : : t )

e lse h : : ( i n s e r t R t x )
va l r e s t = i n s e r t S o r t R t

i n i n s e r t R r e s t h
end ;

( * Test
va l i = i n s e r t S o r t ;
i ( op <) [ ˜ 1 2 , ˜24 , ˜12 , 0 , 123 , 45 , 1 , 20 , 0 , ˜ 2 4 ] ;
i ( op <=) [ ˜ 1 2 , ˜24 , ˜12 , 0 , 123 , 45 , 1 , 20 , 0 , ˜ 2 4 ] ;
i ( op >) [ ˜ 1 2 , ˜24 , ˜12 , 0 , 123 , 45 , 1 , 20 , 0 , ˜ 2 4 ] ;
i ( op >=) [ ˜ 1 2 , ˜24 , ˜12 , 0 , 123 , 45 , 1 , 20 , 0 , ˜ 2 4 ] ;

* )
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( * −−−−−−−−−−−−−−−−−−−−−−−− MERGE SORT −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− * )
fun mergeSort R [ ] = [ ]
| mergeSort R [ h ] = [ h ]
| mergeSort R L = ( * can ’ t s p l i t a l i s t unless i t has > 1 element * )

l e t fun s p l i t [ ] = ( [ ] , [ ] )
| s p l i t [ h ] = ( [ h ] , [ ] )
| s p l i t ( h1 : : h2 : : t ) =

l e t va l ( l e f t , r i g h t ) = s p l i t t ;
i n ( h1 : : l e f t , h2 : : r i g h t )

end ;
va l ( l e f t , r i g h t ) = s p l i t L ;
fun merge (R, [ ] , [ ] ) = [ ]
| merge (R, [ ] , ( L2 as h2 : : t2 ) ) = L2
| merge (R, ( L1 as h1 : : t1 ) , [ ] ) = L1
| merge (R, ( L1 as h1 : : t1 ) , ( L2 as h2 : : t2 ) ) =

i f R( h1 , h2 ) then h1 : : ( merge (R, t1 , L2 ) )
e lse h2 : : ( merge (R, L1 , t2 ) ) ;

va l s o r t e d L e f t = mergeSort R l e f t ;
va l so r tedRigh t = mergeSort R r i g h t ;

i n merge (R, so r tedLe f t , so r tedRigh t )
end ;
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( * Test
va l m = mergeSort ;
m ( op <) [ ˜ 1 2 , ˜24 , ˜12 , 0 , 123 , 45 , 1 , 20 , 0 , ˜ 2 4 ] ;
m ( op <=) [ ˜ 1 2 , ˜24 , ˜12 , 0 , 123 , 45 , 1 , 20 , 0 , ˜ 2 4 ] ;
m ( op >) [ ˜ 1 2 , ˜24 , ˜12 , 0 , 123 , 45 , 1 , 20 , 0 , ˜ 2 4 ] ;
m ( op >=) [ ˜ 1 2 , ˜24 , ˜12 , 0 , 123 , 45 , 1 , 20 , 0 , ˜ 2 4 ] ;

* )
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Sorting: Polymorphism
The same sort functions may be used to sort strings in “ASCIIbetical”
order under a lexicographic ordering. The function which defines the
lexicographic ordering on strings is shown.
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( * Lex icograph ic o rder ing on s t r i n g s * )
fun l e x l t ( s , t ) =

l e t va l Ls = explode ( s ) ;
va l L t = explode ( t ) ;
fun l s t l e x l t ( , [ ] ) = f a l s e
| l s t l e x l t ( [ ] , ( b : char ) : :M) = t rue
| l s t l e x l t ( a : : L , b : :M) =

i f ( a < b ) then t rue
else i f ( a = b ) then l s t l e x l t ( L , M)

e lse f a l s e
i n l s t l e x l t ( Ls , L t )
end

fun l e x l e q ( s , t ) = ( s = t ) o re lse l e x l t ( s , t )
fun l e x g t ( s , t ) = l e x l t ( t , s )
fun lexgeq ( s , t ) = ( s = t ) o re lse l e x g t ( s , t )
( *
− va l m = mergeSort ;
va l m = fn : ( ’ a * ’ a −> bool ) −> ’ a l i s t −> ’ a l i s t
− m l e x l t [ ” k a t r i n a ” , ”SONAKSHI” , ” Ka t r i na ” , ” sonakshi ” , ” Sonakshi ” , ”KATRINA ” ] ;
va l i t = [ ” KATRINA ” , ” Ka t r i na ” , ”SONAKSHI ” , ” Sonakshi ” , ” k a t r i n a ” , ” sonakshi ” ]

: s t r i n g l i s t
− * )
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User Defined Types
Many languages allow user-defined data types.
• record types: Pinky and Billu
• Enumerations: aggregates of heterogeneous data.
• other structural constructions (if desperate!)
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Enumeration Types
Many languages allow user-defined data types.
• record types: Pinky and Billu
• Enumerations: aggregates of heterogeneous data.

– days of the week
– colours
– geometrical shapes

• other structural constructions (if desperate!)
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User Defined Structural Types
Many languages allow user-defined data types.
• record types: Pinky and Billu
• Enumerations: aggregates of heterogeneous data.
• other structural constructions (if desperate!)

– trees
– graphs
– symbolic expressions
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Functions vs. data
• Inspired by the list constructors, nil and cons
• Grand Unification of functions and data

– Functions as data
– Data as functions
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Data as 0-ary Functions
• Every data element may be regarded as a function with 0 arguments

– Caution: A constant function
f (x) = 5, for all x : α

where
f : α→ int

is not the same as a value
5 : int

. Their types are different.

http://www.cse.iitd.ac.in/~sak


HOME PAGE CONTENTS JJ J I II GO BACK FULL SCREEN CLOSE 701 OF 887 QUIT

Data vs. Functions
Facilities Functions Data
primitive operations values
user-defined functions constructors
composition application alternative
recursion recursion recursion
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Data vs. Functions: Recursion
Recursion
Basis
naming
composition
induction
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Lists as Structured Data
datatype ’a list =

nil |
cons of ’a * ’a list

Every α list is either
nil : (Basis, name)
| : or (alternative)
cons : constructed inductively from an element of type ’a and another

list of type ’a list using the constructor cons
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Constructors
• Inspired by the list constructors
nil : α list
cons : α× α list→ α list

• combine heterogeneous types: α and α list
• allows recursive definition by a form of induction

Basis : nil
Induction : cons
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Shapes
A non-recursive data type
datatype shape =

CIRCLE of real
| RECTANGLE of real * real
| TRIANGLE of

real * real * real
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Shapes: Triangle Inequality
fun isTriangle

(TRIANGLE (a, b, c)) =
(a+b>c) andalso
(b+c>a) andalso
(c+a>b)

| isTriangle _ = false
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Shapes: Area
exception notShape;

fun area (CIRCLE (r)) =
3.14159 * r * r

| area (RECTANGLE (l,b)) =
l*b

| area (s as
TRIANGLE (a, b, c)) =

http://www.cse.iitd.ac.in/~sak


HOME PAGE CONTENTS JJ J I II GO BACK FULL SCREEN CLOSE 708 OF 887 QUIT

Shapes: Area
if isTriangle (s) then
let val s = (a+b+c)/2.0
in Math.sqrt

(s*(s-a)*(s-b)*(s-c))
end
else raise notShape;
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ML: Try out
- use "shapes.sml";
[opening shapes.sml]
datatype shape
= CIRCLE of real
| RECTANGLE of real * real
| TRIANGLE of

real * real * real
val isTriangle =

fn : shape -> bool
exception notShape
val area = fn : shape -> real
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ML: Try out (contd.)
val it = () : unit
- area (TRIANGLE (2.0,1.0,3.0));

uncaught exception notShape
raised at: shapes.sml:22.17-22.25

- area
(TRIANGLE (3.0, 4.0, 5.0));

val it = 6.0 : real
-

Back to User defined types
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Enumeration Types
• Enumeration types are non-recursive datatypes with
• 0-ary constructors

datatype working = MON | TUE
| WED | THU | FRI;

datatype weekends = SAT | SUN
datatype weekdays = working

| weekends;

Back to User defined types
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Recursive Data Types
• But the really interesting types are the recursive data types

Back to Lists

• As with lists proofs of correctness on recursive data types depend on
a case-analysis of the structure (basis and inductive constructors)

Correctness on lists
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Resistors: Datatype
datatype resist =

RES of real |
SER of resist * resist |
PAR of resist * resist

http://www.cse.iitd.ac.in/~sak


HOME PAGE CONTENTS JJ J I II GO BACK FULL SCREEN CLOSE 714 OF 887 QUIT

Resistors: Equivalent
fun value (RES (r)) = r
| value (SER (R1, R2)) =

value (R1) + value (R2)
| value (PAR (R1, R2)) =

let val r1 = value (R1);
val r2 = value (R2)

in (r1*r2)/(r1+r2)
end;
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Resistors
5.0

4.0

5.0 2.0

3.0

+ −
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Resistors: Example
val R = PAR(

SER(
PAR(

RES (5.0),
RES (4.0)
),

SER(
RES (5.0),
RES (2.0)
)

),
RES(3.0)
);
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Resistors: ML session
- use "resistors.sml";
[opening resistors.sml]
datatype resist = PAR of resist * resist

| RES of real
| SER of resist * resist

val value = fn : resist -> real
val R = PAR (SER (PAR #,SER #),RES 3.0) : resist
val it = () : unit
- value R;
val it = 2.26363636364 : real
-

Resistance Expressions
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9.4. User Defined Structured Data Types

1. User Defined Types

2. Resistors: Grouping

3. Resistors: In Pairs

4. Resistor: Values

5. Resistance Expressions

6. Resistance Expressions

7. Arithmetic Expressions

8. Arithmetic Expressions: 0

9. Arithmetic Expressions: 1

10. Arithmetic Expressions: 2

11. Arithmetic Expressions: 3

12. Arithmetic Expressions: 4

13. Arithmetic Expressions: 5

14. Arithmetic Expressions: 6

15. Arithmetic Expressions: 7

16. Arithmetic Expressions: 8

17. Binary Trees

18. Arithmetic Expressions: 0

19. Trees: Traversals

20. Recursive Data Types: Correctness

21. Data Types: Correctness

http://www.cse.iitd.ac.in/~sak


HOME PAGE CONTENTS JJ J I II GO BACK FULL SCREEN CLOSE 719 OF 887 QUIT

User Defined Types
• Records
• Structural Types

– Constructors

* Non-recursive

* Enumeration Types
– Recursive datatypes

* Resistance circuits
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Resistors: Grouping

5.0

4.0

5.0 2.0

3.0

+ −

R1
R2

R3

R4
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Resistors: In Pairs
val R1 = PAR (RES 5.0,RES 4.0) : resist
val R2 = SER (RES 5.0,RES 2.0) : resist
val R3 = SER (R1, R2);
val R4 = PAR (R3, RES(3.0));
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Resistor: Values
- value R1;
val it = 2.22222222222 : real
- value R2;
val it = 7.0 : real
- value R3;
val it = 9.22222222222 : real
- value R4;
val it = 2.26363636364 : real
-
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Resistance Expressions
A resistance expression

RES

5

RES RES RES

5

PAR SER

SER

PAR

2

RES

34

Circuit Diagram
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Resistance Expressions
A resistance expression

RES

5

RES RES RES

5

PAR SER

SER

PAR

2

RES

34

R1 R2

R3

R4

Circuit Diagram
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Arithmetic Expressions
ML arithmetic expressions:
((5 * ˜4) + ˜(5 - 2)) div 3

are represented as trees
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Arithmetic Expressions: 0

5

~

5

−

24

~

*

+

div

3
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Arithmetic Expressions: 1

5

~

5

−

24

~

*

+

div

3
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Arithmetic Expressions: 2

5

~

−4

*

+

div

3
3
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Arithmetic Expressions: 3

5

~

−4

*

+

div

3
3
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Arithmetic Expressions: 4

+

div

3

−20 −3
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Arithmetic Expressions: 5

+

div

3

−20 −3
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Arithmetic Expressions: 6
div

3

−23
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Arithmetic Expressions: 7
div

3

−23
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Arithmetic Expressions: 8
−8
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Binary Trees
datatype ’a bintree =

Empty |
Node of ’a *
’a bintree *
’a bintree
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Arithmetic Expressions: 0
Arithmetic Expressions

5

~

4 5

−

2

~

*

+

div

3
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Trees: Traversals
• preorder
• inorder
• postorder
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Recursive Data Types: Correctness
Correctness on lists by cases

P is proved by case analysis.
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Data Types: Correctness
Basis Prove P (c) for each non-recursive constructor c
Induction hypothesis (IH) Assume P (T ) for all elements of the data type

less than a certain depth
Induction Step Prove P (r(T1, . . . , Tn)) for each recursive constructor r
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10. Imperative Programming: An Introduction

10.1. Introducing a Memory Model

1. Summary: Functional Model

2. CPU & Memory: Simplified

3. Resource Management

4. Shell: User Interface

5. GUI: User Interface

6. Memory Model: Simplified

7. Memory

8. The Imperative Model

9. State Changes: σ

10. State

11. State Changes

12. State Changes: σ

13. State Changes: σ1

14. State Changes: σ2

15. Languages

16. User Programs

17. Imperative Languages

18. Imperative vs Functional Variables

19. Assignment Commands

20. Assignment Commands

21. Assignment Commands

22. Assignment Commands
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23. Assignment Commands

24. Assignment Commands: Swap

25. Swap

26. Swap

27. Swap
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Summary: Functional Model
• Stateless (as is most mathematics)
• Notion of value is paramount

– Integers, reals, booleans, strings and characters are all values
– Every function is also a value
– Every complex piece of data is also a value

• No concept of storage (except for space complexity calculations)
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CPU & Memory: Simplified

CPU

Memory

Peripherals

Disk
Printer

Keyboard

Screen
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Resource Management

CPU

Memory

Peripherals

Disk
Printer

Keyboard

Screen

Operating System

http://www.cse.iitd.ac.in/~sak


HOME PAGE CONTENTS JJ J I II GO BACK FULL SCREEN CLOSE 745 OF 887 QUIT

Shell: User Interface

CPU

Memory

Peripherals

Disk
Printer

Keyboard

Screen

Operating System

Shell
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GUI: User Interface

CPU

Memory

Peripherals

Disk
Printer

Keyboard

Screen

Operating System

Shell

Graphical   User Interface (GUI)
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Memory Model: Simplified
1. A sequence of storage cells
2. Each cell is a container of a single unit of information.

• integer, real, boolean, character or string
3. Each cell has a unique name, called its address
4. The memory cell addresses range from 0 to (usually) 2k − 1 (for some
k)
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Memory
0 1 2 3

32K−1
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The Imperative Model
• Memory or Storage made explicit
• Notion of state (of memory)

– State is simply the value contained in each cell.
– state : Addresses→ V alues

• State changes
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State Changes: σ
0 1 2 3

4

3.1

true

"#a"

Assume all other cells are filled with null
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State
The state σ
• σ(12) = 4 : int

• σ(20) = null

• σ(36) = 3.1 : real

• σ(43) = true : bool

• σ(66) = ”#a” : char
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State Changes
• A state change takes place when the value in some cell changes
• The contents of only one cell may be changed at a time.
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State Changes: σ
0 1 2 3

4

3.1

true

"#a"

Assume all other cells are filled with null

http://www.cse.iitd.ac.in/~sak


HOME PAGE CONTENTS JJ J I II GO BACK FULL SCREEN CLOSE 754 OF 887 QUIT

State Changes: σ1
0 1 2 3

3.1

true

"#a"

Assume all other cells are filled with null

5
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State Changes: σ2
0 1 2 3

3.1

true

"#a"

Assume all other cells are filled with null

5

12
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Languages

CPU

Memory

Peripherals

Disk
Printer

Keyboard

Screen

Operating System

Programming Language Interface
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User Programs

CPU

Memory

Peripherals

Disk
Printer

Keyboard

Screen

Operating System

Programming Language Interface

User Programs
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Imperative Languages
• How is the memory accessed?

– Through system calls to the OS.
• How are memory cells identified?

– Use Imperative variables.
– Each such variable is a name mapped to an address .

• How are state changes accomplished?
– By the assignment command.
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Imperative vs Functional Variables
Functional Imperative
name of a value name of an address
constant could change with time

The value contained in an imperative variable x is denoted !x.
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Assignment Commands
Let x and y be imperative variables. Consider the following commands.
Assuming !x = 1 and !y = 2.

x 1 y 2
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Assignment Commands
Store the value 5 in x.

x := 5

x y 25
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Assignment Commands
Copy the value contained in y into x.

x :=!y

x y 22
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Assignment Commands
Increment the value contained in x by 1.

x :=!x + 1

.

x y 23
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Assignment Commands
Store the product of the values in x and y in y.

y :=!x∗!y

x y3 6
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Assignment Commands: Swap
Swap the values in x and y.

Swapping values implies trying to make two state changes simultane-
ously!

Requires a new memory cell t to temporarily store one of the values.
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Swap
How does one get a new memory cell?

val t = ref 0

Then the rest is easy

val t = ref 0;
t := !x;
x := !y;
y := !t;
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Swap
Could be made simpler!

val t = ref (!x);
x := !y;
y := !t;
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Swap
Could use a temporary functional variable t instead of an imperative vari-
able

val t = !x;
x := !y;
y := t;
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10.2. Imperative Programming:

1. Imperative vs Functional

2. Features of the Store

3. References: Experiments

4. References: Experiments

5. References: Experiments

6. Aliases

7. References: Experiments

8. References: Aliases

9. References: Experiments

10. After Garbage Collection

11. Side Effects

12. Imperative ML

13. Imperative ML

14. Imperative ML

15. Imperative ML

16. Nasty Surprises

17. Imperative ML

18. Imperative ML

19. Common Errors

20. Aliasing & References

21. Dangling References

22. New Reference
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23. Imperative Commands: Basic

24. Imperative Commands: Compound

25. Predefined Compound Commands
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Imperative vs Functional
• Functional Model
• Memory/Store Model
• Imperative Model
• State Changes
• Accessing the store
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Features of the Store
Memory is treated as a datatype with constructors

Allocation ref : α→ α ref

Dereferencing ! : α ref → α

Updation :=: α ref ∗ α→ unit

Deallocation of memory is automatic!
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References: Experiments
- val a = ref 0;
val a = ref 0 : int ref

0 1 2 3

0

a
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References: Experiments
- val b = ref 0;
val b = ref 0 : int ref

0 1 2 3

0

b

0

a
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References: Experiments
- a = b;
val it = false : bool
- !a = !b;
val it = true : bool
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Aliases
- val x = ref 0;
val x = ref 0 : int ref

0 1 2 3

0

b

0

a

0

x
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References: Experiments
- val y = x;
val y = ref 0 : int ref

0 1 2 3

0

b

0

a

0

x y
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References: Aliases
- x := !x + 1;
val it = () : unit

0 1 2 3

0

b

0

a x y

1
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References: Experiments
- !y;
val it = 1 : int
- x = y;
val it = true : bool
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After Garbage Collection
GC #0.0.0.0.2.45: (0 ms)

0 1 2 3

0

ba x y

0 1
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Side Effects
• Assignment does not produce a value
• It produces only a state change (side effect)
• But side-effects are compatible with functional programming since it is
provided as a new data type with constructors and destructors.
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Imperative ML
• Does not provide direct access to memory addresses
• Does not allow for uninitialized imperative variables
• Provides a type with every memory location
• Manages the memory completely automatically
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Imperative ML
• Does not provide direct access to memory addresses

– Prevents the use of memory addresses as integers that can be ma-
nipulated by the user program

• Does not allow for uninitialized imperative variables
• Provides a type with every memory location
• Manages the memory completely automatically
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Imperative ML
• Does not provide direct access to memory addresses
• Does not allow for uninitialized imperative variables

– Most imperative languages keep declarations separate from initial-
izations

• Provides a type with every memory cell
• Manages the memory completely automatically
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Imperative ML
• Does not provide direct access to memory addresses
• Does not allow for uninitialized imperative variables

– A frequent source of surprising results in most imperative language
programs

• Provides a type with every memory cell
• Manages the memory completely automatically
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Nasty Surprises
Separation of declaration from initialization

• Uninitialized variables
• Execution time errors if not detected by compiler, since every memory
location contains some data

• Might use a value stored previously in that location by some imperative
variable that no longer exists.

• Errors due to type violations.
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Imperative ML
• Does not provide direct access to memory addresses
• Does not allow for uninitialized imperative variables
• Provides a type with every memory cell
• Manages the memory completely automatically and securely.
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Imperative ML
• Does not provide direct access to memory addresses
• Does not allow for uninitialized imperative variables
• Provides a type with every memory cell
• Manages the memory completely automatically and securely

– Memory has to be managed by the user program in most languages
– Prone to various errors

http://www.cse.iitd.ac.in/~sak


HOME PAGE CONTENTS JJ J I II GO BACK FULL SCREEN CLOSE 789 OF 887 QUIT

Common Errors
• Memory access errors due to integer arithmetic, especially in large
structures (arrays)

• Dangling references on deallocation of aliased memory
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Aliasing & References
Before deallocation:

0 1 2 3

0

ba x y

0 1
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Dangling References
Deallocate x through a system call

0 1 2 3

0

ba y

0

y is left dangling!
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New Reference
val z = ref 12;

0 1 2 3

0

ba y

0

z

12

By sheer coincidence !y = 12
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Imperative Commands: Basic
A Command is an ML expression that creates a side effect and returns
an empty tuple (() : unit).

Assignment
print
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Imperative Commands: Compound
Any complex ML expression or function definition whose type is of the
form α→ unit is a compound command.

• Predefined ML compound commands
• Could be user-defined. After all, everything is a value!
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Predefined Compound Commands
branching if e then c1 else c0.
cases case e ofp1⇒ c1| · · · |pn⇒ cn

Sequencing (c1; c2; . . . ; cn). Sequencing is associative
loopingwhile e do c1 is defined recursively as

if e then (c1;while e do c1) else ()
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10.3. Arrays

1. Why Imperative

2. Arrays

3. Indexing Arrays

4. Indexing Arrays

5. Indexing Arrays

6. Physical Addressing

7. Arrays

8. 2D Arrays

9. 2D Arrays: Indexing

10. Ordering of indices

11. Arrays vs. Lists

12. Arrays: Physical

13. Lists: Physical
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Why Imperative
• Historical reasons: Early machine instruction set.
• Programming evolved from the machine architecture.
• Legacy software:

– numerical packages
– operating systems

• Are there any real benefits of imperative programming?
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Arrays
An array of length n is a contiguous sequence of n memory cells

C0, C1, . . . , Cn−1

C0

Cn−1

Ci
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Indexing Arrays
For any array
• i, 0 ≤ i < n is the index of cell Ci.
•Ci is at a distance of i cells away from C0
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Indexing Arrays

C0

Cn−1

Ci

a a0 n−1 ai
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Indexing Arrays
• The start address of the array and the address of C0 are the same (say
a0)

• The address ai of cell Ci is
ai = a0 + i
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Physical Addressing
If each element occupies s physical memory locations, then

ai = a0 + i× s

a a0 n−1 ai
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Arrays

A 2-dimensional array of
• r rows numbered 0 to r − 1

• each row containing c elements numbered 0 to c− 1

is also a contiguous sequence of rc memory cells
C0,0, C0,1, . . . , C0,c−1, C1,0, . . . , Cr−1,c−1
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2D Arrays
A 2 dimensional-array is represented as an array of length r × c, where
• a00 is the start address of the array, and
• the address of the (i, j)-th cell is given by

aij = a00 + (c× i + j)

• the physical address of the (i, j)-th cell is given by
aij = a00 + (c× i + j)× s
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2D Arrays: Indexing
• The index (i, j) of a 2D array may be thought of as being similar to a
2-digit number in base c

• The successor of index (i, j) is the successor of a number in base c i.e.

succ(i, j) =

{
(i + 1, 0) if j = n− 1
(i, j + 1) else
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Ordering of indices
There is a natural “<” ordering on indices given by

(i, j) < (k, l) ⇐⇒
(i < k) or
(i = k and j < l)
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Arrays vs. Lists
Lists Arrays
Unbounded lengths Fixed length
Insertions possible Very complex
Indirect access Direct access
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Arrays: Physical

a a0 n−1 ai
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Lists: Physical
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11. A large Example: Tautology Checking

11.1. Large Example: Tautology Checking

1. Logical Arguments

2. Saintly and Rich

3. About Cats

4. About God

5. Russell’s Argument

6. Russell’s Argument

7. Russell’s Argument

8. Russell’s Argument

9. Propositions

10. Compound Propositions

11. Valuations

12. Valuations

13. Tautology

14. Properties

15. Negation Normal Form

16. Literals & Clauses

17. Conjunctive Normal Form

18. Validity

19. Logical Validity

20. Validity & Tautologies
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21. Problem

22. Tautology Checking

23. Falsifying
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Logical Arguments
Examples.

• Saintly and Rich
• About cats
• About God
• Russell’s argument
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Saintly and Rich
hy1 The landed are rich.

hy2 One cannot be both saintly and rich.

conc The landed are not saintly
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About Cats
hy1 Tame cats are non-violent and vegetarian.

hy2 Non-violent cats would not kill mice.

hy3 Vegetarian cats are bottle-fed.

hy4 Cats eat meat.

conc Cats are not tame.
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About God
hy1 God is omniscient and omnipotent.

hy2 An omniscient being would know there is evil.

hy3 An omnipotent being would prevent evil.

hy4 There is evil.

conc There is no God
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Russell’s Argument
hy1 If we can directly know that God exists, then we can know God exists by

experience.

hy2 If we can indirectly know that God exists, then we can know God exists by
logical inference from experience.

hy3 If we can know that God exists, then we can directly know that God exists,
or we can indirectly know that God exists.
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Russell’s Argument
hy4 If we cannot know God empirically, then we cannot know God by experience

and we cannot know God by logical inference from experience.

hy5 If we can know God empirically, then “God exists” is a scientific hypothesis
and is empirically justifiable.

hy6 “God exists” is not empirically justifiable.

conc We cannot know that God exists.
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Russell’s Argument
hy1 If we can directly know that God exists, then we can know God exists by

experience.

hy2 If we can indirectly know that God exists, then we can know God exists by
logical inference from experience.

hy3 If we can know that God exists, then (we can directly know that God exists,
or we can indirectly know that God exists).
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Russell’s Argument
hy4 If we cannot know God empirically, then (we cannot know God by experi-

ence and we cannot know God by logical inference from experience.)
hy5 If we can know God empirically, then (“God exists” is a scientific hypothe-

sis and is empirically justifiable.)
hy6 “God exists” is not empirically justifiable.

conc We cannot know that God exists.
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Propositions
A proposition is a sentence to which a truth value may be assigned.

In any real or imaginary world of facts a proposition has a truth value, true
or false.
An atom is a simple proposition that has no propositions as components.
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Compound Propositions
Compound propositions may be formed from atoms by using the following
operators/constructors.

operator symbol
not ¬
and ∧
or ∨

if. . . then. . . ⇒
equivalent ⇐⇒
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Valuations
Given truth values to individual atoms the truth values of compound
propositions are evaluated as follows:

p ¬p
true false
false true
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Valuations
p q p∧q p∨q p⇒q p⇐⇒ q

true true true true true true
true false false true false false
false true false true true false
false false false false true true
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Tautology
A (compound) proposition is a tautology if it is true regardless of what
truth values are assigned to its atoms.
Examples.
• p∨¬p
• (p∧q)⇒p
• (p∧¬p)⇒q
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Properties
• Every proposition may be expressed in a logically equivalent form using
only the operators ¬, ∧ and ∨

(p⇐⇒ q) = (p⇒q)∧(q⇒p)

(p⇒q) = (¬p∨q)

• De Morgan’s laws may be applied to push ¬ inward
¬(p∧q) = ¬p∨¬q

¬(p∨q) = ¬p∧¬q
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Negation Normal Form
• Double negations may be removed since

¬¬p = p

• Every proposition may be expressed in a form containing only ∧ and ∨
with ¬ appearing only in front of atoms.
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Literals & Clauses
• A literal is either an atom or ¬ applied to an atom
• ∨ is commutative and associative
• A clause is of the form

∨m
j=1lj, where each lj is a literal.
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Conjunctive Normal Form
• ∨ may be distributed over ∧

p∨(q∧r) = (p∨q)∧(p∨r)

• ∧ is commutative and associative.
• Every proposition may be expressed in the form

∧n
i=1qi, where each qi

is a clause.
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Validity
• A logical argument consists of a number of hypotheses and a single
conclusion ([h1, . . . , hn]|c)

• A logical argument is valid if the conclusion logically follows from the
hypotheses.
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Logical Validity
The conclusion logically follows from the given hypotheses if for
any truth assignment to the atoms,

either some hypothesis hi is false

or whenever every one of the hypotheses is true the conclusion is also true
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Validity & Tautologies
• A tautology is a valid argument in which there is a conclusion

without any hypothesis.
• A logical argument [h1, . . . , hn]|c, is valid if and only if

(h1∧ . . .∧hn)⇒c
is a tautology
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Problem
Given an argument [h1, . . . , hn]|c,
• determine whether (h1∧ . . .∧hn)⇒c is a tautology, and
• If it is not a tautology, to determine what truth assignments to the atoms
make it false.
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Tautology Checking
A proposition in CNF (

∧n
i=1pi)

• is a tautology if and only if every proposition pi , 1 ≤ i ≤ m, is a tautol-
ogy.

• otherwise at least one clause pi must be false
• Clause pi =

∨m
j=1lij is false if and only if every literal lij, 1 ≤ j ≤ m is

false
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Falsifying
For a proposition in CNF (

∧n
i=1pi) that is not a tautology

• A clause pi =
∨m
j=1lij for some i, 1 ≤ i ≤ n is false

• A clause pi =
∨m
j=1lij is false if and only if every literal lij, for each

j = 1, . . . ,m in pi is false.
• A truth assignment that falsifies the argument

– sets the atoms that occur negatively in pi to true,
– sets every other atom to false
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11.2. Tautology Checking Contd.

1. Tautology Checking

2. Normal Forms

3. Top-down Development

4. The Signature

5. The Core subproblem

6. The datatype

7. Convert to CNF

8. Rewrite into NNF

9. ⇐⇒ and⇒ Elimination

10. Push ¬ inward

11. Push ¬ inward

12. conj of disj

13. Push ∨ inward

14. Tautology & Falsification
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Tautology Checking
• Logical arguments
• Propositional forms
• Propositions
• Compound Propositions
• Truth table
• Tautologies
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Normal Forms
• Properties
• Negation Normal Form
• Conjunctive Normal Forms
• Valid Propositional Arguments as tautologies
• The problem
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Top-down Development
• Transform the argument into a single proposition.
• Transfom the single proposition into one in CNF

• Check whether every clause is a tautology
• If any clause is not a tautology, find the truth assignment(s) that make
it false
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The Signature
signature PropLogic =
sig datatype Prop = ??

type Argument =
Prop list * Prop

val falsifyArg :
Argument -> Prop list list
val Valid:
Argument -> bool *

Prop list list
...

end;
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The Core subproblem
• Representing propositions
• Transformation of propositions into CNF

– Transform into Negation Normal Form (NNF)
– Transform NNF into Conjunctive Normal Form (CNF)
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The datatype
datatype Prop =
ATOM of string |
NOT of Prop |
AND of Prop * Prop |
OR of Prop * Prop |
IMP of Prop * Prop |
EQL of Prop * Prop
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Convert to CNF
Convert a given proposition into CNF
fun cnf (P) =

conj_of_disj (
nnf (rewrite (P)));

where
• rewrite eliminates ⇐⇒ and⇒
• nnf converts into NNF
• conj of disj converts into CNF
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Rewrite into NNF
• Eliminate ⇐⇒ and then⇒
• Push ¬ inward using De Morgan’s laws and eliminate
double negations.
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⇐⇒ and ⇒ Elimination
fun rewrite (ATOM a) = ATOM a
| rewrite (IMP (P, Q)) =

OR (NOT (rewrite(P)),
rewrite(Q))

| rewrite (EQL (P, Q)) =
rewrite (AND (IMP(P, Q),

IMP (Q, P)))
| ...

Proposition made up of only ¬, ∧ and ∨.
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Push ¬ inward
fun nnf (ATOM a) =

ATOM a
| nnf (NOT (ATOM a)) =

NOT (ATOM a)
| nnf (NOT (NOT (P))) =

nnf (P)
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Push ¬ inward
| nnf (NOT (AND (P, Q))) =

nnf (OR (NOT (P),
NOT (Q)))

| nnf (NOT (OR (P, Q))) =
nnf (AND (NOT (P),

NOT (Q)))
| ...

Proposition made up of only ∧ and ∨ applied to positive or negative liter-
als.
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conj of disj
fun conj_of_disj (AND (P, Q)) =

AND (conj_of_disj (P),
conj_of_disj (Q))

| conj_of_disj (OR (P, Q)) =
distOR (conj_of_disj (P),

conj_of_disj (Q))
| conj_of_disj (P) = P

where distOR is
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Push ∨ inward
Use distributivity of ∨ over ∧
fun distOR (P, AND (Q, R)) =

AND (distOR (P, Q),
distOR (P, R))

| distOR (AND (Q, R), P) =
AND (distOR (Q, P),

distOR (R, P))
| distOR (P, Q)= OR (P, Q)
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Tautology & Falsification
Falsifying a proposition

• A proposition Q in CNF is not a tautology if and only if at least one of
the clauses can be made false, by a suitable truth assignment

• The list of atoms which are set true to falsify a clause is called a falsifier.
• A proposition is a tautology if and only if there is no falsifier!
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( * ======================== THE SIGNATURE PropLogic ====================== * )
s igna tu re PropLogic =

s ig
except ion Atom exception
datatype Prop =

ATOM of s t r i n g |
NOT of Prop |
AND of Prop * Prop |
OR of Prop * Prop |
IMP of Prop * Prop |
EQL of Prop * Prop

type Argument = Prop l i s t * Prop
va l show : Prop −> u n i t
va l showArg : Argument −> u n i t
va l f a l s i f y A r g : Argument −> Prop l i s t l i s t
va l Va l i d : Argument −> bool * Prop l i s t l i s t

end ;

( * P r o p o s i t i o n a l formulas * )

( * ======================== THE STRUCTURE PL ====================== * )
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s t r u c t u r e PL : PropLogic =
( * s t r u c t u r e PL = * ) ( * This i s f o r debugging purposes only * )
s t r u c t

datatype Prop =
ATOM of s t r i n g |
NOT of Prop |
AND of Prop * Prop |
OR of Prop * Prop |
IMP of Prop * Prop |
EQL of Prop * Prop

;

( * −−−−−−−−−−−−−−− Propos i t i ons to CNFs −−−−−−−−−−−−−−−−−−−−− * )

except ion Atom exception ;
fun newatom ( s ) = i f s = "" then ra i se Atom exception

e lse (ATOM s ) ;
fun drawChar ( c , n ) =

i f n>0 then ( p r i n t ( s t r ( c ) ) ; drawChar ( c , ( n−1)) )
e lse ( ) ;

fun show (P) =
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l e t fun drawTabs ( n ) = drawChar (#"\t" , n ) ;
fun showTreeTabs (ATOM a , n ) = ( drawTabs ( n ) ;

p r i n t ( a ) ;
p r i n t ("\n" )
)

| showTreeTabs (NOT (P) , n ) = ( drawTabs ( n ) ; p r i n t ("NOT" ) ;
showTreeTabs (P, n+1)
)

| showTreeTabs (AND (P, Q) , n ) =
( showTreeTabs (P, n +1) ;
drawTabs ( n ) ; p r i n t ("AND\n" ) ;
showTreeTabs (Q, n+1)
)

| showTreeTabs (OR (P, Q) , n ) =
( showTreeTabs (P, n +1) ;
drawTabs ( n ) ; p r i n t ("OR\n" ) ;
showTreeTabs (Q, n+1)
)

| showTreeTabs ( IMP (P, Q) , n ) =
( showTreeTabs (P, n +1) ;
drawTabs ( n ) ; p r i n t ("IMPLIES\n" ) ;
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showTreeTabs (Q, n+1)
)

| showTreeTabs (EQL (P, Q) , n ) =
( showTreeTabs (P, n +1) ;
drawTabs ( n ) ; p r i n t ("IFF\n" ) ;
showTreeTabs (Q, n+1)
)

;
i n ( p r i n t ("\n" ) ; showTreeTabs (P, 0 ) ; p r i n t ("\n" ) )

end
;

( * The f u n c t i o n below evaluates a formula given a t r u t h assignment .
The t r u t h assignment i s given as a l i s t o f atoms t h a t are t rue
( a l l o ther atoms are f a l s e ) .

* )

fun lookup ( x : Prop , [ ] ) = f a l s e
| lookup ( x , h : : L ) = ( x = h ) o re lse lookup ( x , L )
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;

fun eval (ATOM a , L ) = lookup (ATOM a , L )
| eval (NOT (P) , L ) = i f eva l (P, L ) then f a l s e e lse t rue
| eval (AND (P, Q) , L ) = eval (P, L ) andalso eval (Q, L )
| eval (OR (P, Q) , L ) = eval (P, L ) o re lse eval (Q, L )
| eval ( IMP (P, Q) , L ) = eval (OR (NOT (P) , Q) , L )
| eval (EQL (P, Q) , L ) = ( eva l (P, L ) = eval (Q, L ) )
;

( * We could a lso w r i t e a tau to logy checker w i th out using t r u t h
assignments by f i r s t conver t ing every th ing i n t o a normal form .

* )

( * F i r s t r e w r i t e i m p l i c a t i o n s and equivalences * )

fun r e w r i t e (ATOM a ) = ATOM a
| r e w r i t e (NOT (P ) ) = NOT ( r e w r i t e (P ) )
| r e w r i t e (AND (P, Q) ) = AND ( r e w r i t e (P) , r e w r i t e (Q) )
| r e w r i t e (OR (P, Q) ) = OR ( r e w r i t e (P) , r e w r i t e (Q) )
| r e w r i t e ( IMP (P, Q) ) = OR (NOT ( r e w r i t e (P ) ) , r e w r i t e (Q) )
| r e w r i t e (EQL (P, Q) ) = r e w r i t e (AND ( IMP(P, Q) , IMP (Q, P ) ) )
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;

( * Convert a l l formulas not con ta in ing IMP or EQL i n t o Negation Normal
Form .

* )

fun nnf (ATOM a ) = ATOM a
| nnf (NOT (ATOM a ) ) = NOT (ATOM a )
| nnf (NOT (NOT (P ) ) ) = nnf (P)
| nnf (AND (P, Q) ) = AND ( nnf (P) , nnf (Q) )
| nnf (NOT (AND (P, Q) ) ) = nnf (OR (NOT (P) , NOT (Q) ) )
| nnf (OR (P, Q) ) = OR ( nnf (P) , nnf (Q) )
| nnf (NOT (OR (P, Q) ) ) = nnf (AND (NOT (P) , NOT (Q) ) )
;

( * D i s t r i b u t e OR over AND to get a NNF i n t o CNF * )

fun distOR (P, AND (Q, R) ) = AND ( distOR (P, Q) , distOR (P, R) )
| distOR (AND (Q, R) , P) = AND ( distOR (Q, P) , distOR (R, P ) )
| distOR (P, Q) = OR (P, Q)

( * Now the CNF can be e a s i l y computed * )
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fun c o n j o f d i s j (AND (P, Q) ) = AND ( c o n j o f d i s j (P) , c o n j o f d i s j (Q) )
| c o n j o f d i s j (OR (P, Q) ) = distOR ( c o n j o f d i s j (P) , c o n j o f d i s j (Q) )
| c o n j o f d i s j (P) = P
;

fun cnf (P) = c o n j o f d i s j ( nnf ( r e w r i t e (P ) ) ) ;

( * −−−−−−−−−−−−−−− Propos i t i ons to CNFs −−−−−−−−−−−−−−−−−−−−− * )

( * −−−−−−−−−−−−−−− CNFs : Pure Tautology Checking −−−−−−−−−−−− * )

( * A p r o p o s i t i o n i n CNF i s a tau to logy
i f f

Every con junc t i s a tau to logy
i f f

Every d i s j u n c t i n every con junc t conta ins both p o s i t i v e and negat ive
l i t e r a l s o f a t l e a s t one atom

So we cons t ruc t l i s t o f a l l the p o s i t i v e and negat ive atoms i n every
d i s j u n c t to check whether the l i s t s are a l l equal . We need a b inary
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f u n c t i o n on l i s t s to determine whether two l i s t are d i s j o i n t

* )

fun isPresen t ( a , [ ] ) = f a l s e
| i sPresen t ( a , b : : L ) = ( a = b ) o re lse isPresen t ( a , L )
;

fun d i s j o i n t ( [ ] , M) = t rue
| d i s j o i n t ( L , [ ] ) = t rue
| d i s j o i n t ( L as a : : LL , M as b : :MM) =

not ( i sPresen t ( a , M) ) andalso
not ( i sPresen t ( b , L ) ) andalso
d i s j o i n t ( LL , MM)

;

( * ABHISHEK : Def in ing a t o t a l o rder ing on atoms ( l e x i c o g r a p h i c
o rder ing on under l y ing s t r i n g s ) , and extending i t to a l i s t o f atoms .

* )

except ion notAtom ;

fun atomLess ( a , b ) =
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case ( a , b ) o f
(ATOM( x ) , ATOM( y ) ) => x<y

| ( , ) => r a i se notAtom ;

fun l i s t L e s s ( a , b ) =
case ( a , b ) o f

( , [ ] ) => f a l s e
| ( [ ] , ) => t r ue
| ( x : : l x , y : : l y ) => i f atomLess ( x , y ) then t rue

else i f atomLess ( y , x ) then f a l s e
e lse l i s t L e s s ( lx , l y ) ;

( * ABHISHEK : Once we have a l i s t o f f a l s i f i e r s , we would want to remove
any d u p l i c a t i o n , f i r s t l y o f atoms w i t h i n a f a l s i f i e r , and secondly o f
f a l s i f i e r s themselves .

In order to do t h i s , we mainta in a l l l i s t s i n some sor ted order .
Ins tead of s o r t i n g a l i s t w i th a poss ib l y la rge number o f dup l i ca tes ,
we check f o r dup l i ca tes whi le i n s e r t i n g , and omit i n s e r t i o n i f a
prev ious ins tance i s detected .

* )
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fun merge less ( [ ] , l 2 ) = l 2
| merge less ( l1 , [ ] ) = l 1
| merge less ( x : : l1 , y : : l 2 ) =

i f l ess ( x , y ) then x : : merge less ( l1 , y : : l 2 )
e lse i f l ess ( y , x ) then y : : merge less ( x : : l1 , l 2 )
e lse merge less ( x : : l1 , l 2 ) ;

( * ABHISHEK : Claim i s t h a t i f a l l l i s t s are b u i l t through the above
func t i on , then there i s no need to s o r t or remove dup l i ca tes .

Hence a l l ’@’ opera t ions have been replaced by merge .

* )

( * To separate the p o s i t i v e from the negat ive l i t e r a l s i n a clause * )

except ion not CNF ;

fun separate (ATOM a ) = ( [ATOM a ] , [ ] )
| separate (NOT (ATOM a ) ) = ( [ ] , [ATOM a ] )
| separate (OR (P, Q) ) =

l e t va l ( posP , negP ) = separate (P ) ;
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va l (posQ , negQ) = separate (Q)
i n ( merge atomLess ( posP , posQ ) , merge atomLess ( negP , negQ ) )
end

| separate (P) = ra i se not CNF

( * Check whether a formula i n CNF i s a tau to logy * )

fun t a u t (AND (P, Q) ) = t a u t (P) andalso t a u t (Q)
| t a u t (P) = ( * i f i t i s not a con junc t ion then i t must be a d i s j u n c t * )

not ( d i s j o i n t ( separate (P ) ) ) ;

fun tau to logy1 (P) =
l e t va l Q = cnf (P)
i n t a u t (Q)
end

;

( * −−−−−−−−−−−−−−− CNFs : Pure Tautology Checking −−−−−−−−−−−− * )

( * −−−−−−−−−−−−−−− CNFs : F a l s i f i c a t i o n s −−−−−−−−−−−− * )
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( * The main problem wi th the above i s t h a t i t checks whether a given
p r o p o s i t i o n i s a tau to logy , but whenever i t i s not , i t does not y i e l d
a f a l s i f y i n g t r u t h assignment . We r e c t i f y t h i s problem below .

* )

( * Assume Q i s a p r o p o s i t i o n i n CNF. Then i t i s on ly necessary to l i s t out
a l l the l i s t s o f t r u t h assignments t h a t can f a l s i f y P .

Suppose Q i s i n CNF, but not a tau to logy . Fur ther l e t

Q = AND (D1, . . . , Dn)

where each Di i s a d i s j u n c t i o n o f l i t e r a l s . Each Di = Pi + Ni where
Pi and Ni are the l i s t s o f atoms denot ing the p o s i t i v e and negat ive
l i t e r a l s r e s p e c t i v e l y .

I f Pi and Ni are d i s j o i n t , then Ni i s a t r u t h assignment which f a l s i f i e s
the p r o p o s i t i o n Q. That is ,

( i ) i f every atom i n Ni i s assigned TRUE, and
( i i ) ( i m p l i c i t l y ) every o ther atom i s assigned the value FALSE,
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then the clause Di i s FALSE and hence Q i s FALSE.

We r e f e r to Ni as a FALSIFIER of Q. Hence i t i s on ly
necessary to l i s t out a l l the FALSIFIERS of Q ( i f any )

* )

( * The f o l l o w i n g f u n c t i o n assumes Q i s i n CNF and outputs a l i s t o f l i s t
o f atoms t h a t can f a l s i f y Q. I f t h i s l i s t o f l i s t o f atoms i s empty then
c l e a r l y Q cannot be f a l s i f i e d and i s hence a tau to logy .

* )

fun f a l s i f y (Q) =
l e t fun l i s t F a l s i f i e r s (AND (A, B ) ) =

merge l i s t L e s s ( l i s t F a l s i f i e r s (A) , l i s t F a l s i f i e r s (B ) )
| l i s t F a l s i f i e r s (A) = ( * Assume A i s a d i s j u n c t o f l i t e r a l s * )

l e t va l (PLA, NLA) = separate (A)
i n i f d i s j o i n t (PLA, NLA) then [NLA]

e lse [ ]
end
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i n l i s t F a l s i f i e r s (Q)
end

;

fun tau to logy2 (P) =
l e t va l Q = cnf (P ) ;

va l LL = f a l s i f y (Q)
i n i f n u l l ( LL ) then ( t rue , [ ] )

e lse ( fa l se , LL )
end

;

va l t au to logy = tau to logy2 ;

( * −−−−−−−−−−−−−−− CNFs : F a l s i f i c a t i o n s −−−−−−−−−−−− * )

( * −−−−−−−−−−−−−−− Log ica l Arguments : V a l i d i t y −−−−−−−−−−−− * )

type Argument = Prop l i s t * Prop ;

fun showArg (A : Argument ) =
l e t fun p r i n t A r g (A : Argument as ( [ ] , c ) ) =
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( drawChar (#"-" , 80 ) ; p r i n t ("\n" ) ;
show ( c ) ; p r i n t ("\n\n" )

)
| p r i n t A r g (A : Argument as ( p : : p l i s t , c ) ) =

( show ( p ) ; p r i n t ("\n" ) ;
p r i n t A r g ( p l i s t , c )

)
i n ( p r i n t ("\n\n" ) ; p r i n t A r g (A ) )
end

;

fun le f tReduce (F) =
l e t except ion e m p t y l i s t ;

fun l r ( [ ] ) = ra i se e m p t y l i s t
| l r ( [ a ] ) = a
| l r ( a : : L ) = F ( a , l r ( L ) )

i n l r
end

;

va l bigAND = lef tReduce (AND) ;
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fun Va l id ( ( L , P ) : Argument ) =
i f n u l l ( L ) then tau to logy (P)
e lse tau to logy ( IMP ( bigAND ( L ) , P ) )

;

fun f a l s i f y A r g ( ( L , P ) : Argument ) =
i f n u l l ( L ) then f a l s i f y ( cn f (P ) )
e lse f a l s i f y ( cn f ( IMP ( bigAND ( L ) , P ) ) )

;

end ( * s t r u c t * ) ;

( * open PL ; * )
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28. SML: Reorganizing Code
29. Intsqrt: Reorganized
30. shrink: Another algorithm
31. Shrink2: SML
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21. SML: Assembly 3
22. Perfect Numbers: Run
23. Perfect Numbers: Run
24. SML: Code variations
25. SML: Code variations
26. SML: Code variations
27. Summation: Generalizations
28. Algorithmic Improvements:
29. Algorithmic Variations
30. Algorithmic Variations

Variations: Algorithms & Code (123-149)

1. Recap
2. Recap: Combinations
3. Combinations 1
4. Combinations 2
5. Combinations 3
6. Perfect 2
7. Power 2
8. A Faster Power
9. Power2: Complete

10. Power2: SML
11. Power2: SML
12. Computation: Issues
13. General Correctness
14. Code: Justification
15. Recall
16. Features: Definition before Use
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17. Run ifdivisor
18. Diagnosis: Features of programs
19. Back to Math
20. Incorrectness
21. ifdivisor3
22. Run it!
23. Try it!
24. Hey! Wait a minute!
25. The n’s
26. Scope
27. Scope Rules

Names, Scopes & Recursion (150-181)

1. Disjoint Scopes
2. Nested Scopes
3. Overlapping Scopes
4. Spannning
5. Scope & Names
6. Names & References
7. Names & References
8. Names & References
9. Names & References

10. Names & References
11. Names & References
12. Names & References
13. Names & References
14. Names & References
15. Names & References
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16. Definition of Names
17. Use of Names
18. local...in...end
19. local...in...end
20. local...in...end
21. local...in...end
22. Scope & local

23. Computations: Simple
24. Simple computations
25. Computations: Composition
26. Composition: Alternative
27. Compositions: Compare
28. Compositions: Compare
29. Computations: Composition
30. Recursion
31. Recursion: Left
32. Recursion: Right

Floating Point (182-201)

1. So Far-1: Computing
2. So Far-2: Algorithms & Programs
3. So far-3: Top-down Design
4. So Far-4: Algorithms to Programs
5. So far-5: Caveats
6. So Far-6: Algorithmic Variations
7. So Far-7: Computations
8. Floating Point
9. Real Operations
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10. Real Arithmetic
11. Numerical Methods
12. Errors
13. Errors
14. Infinite Series
15. Truncation Errors
16. Equation Solving
17. Root Finding-1
18. Root Finding-2
19. Root Finding-3
20. Root Finding-4

Root Finding, Composition and Recursion (202-229)

1. Root Finding: Newton’s Method
2. Root Finding: Newton’s Method
3. Root Finding: Newton’s Method
4. Root Finding: Newton’s Method
5. Root Finding: Newton’s Method
6. Root Finding: Newton’s Method
7. Newton’s Method: Basis
8. Newton’s Method: Basis
9. Newton’ Method: Algorithm

10. What can go wrong!-1
11. What can go wrong!-2
12. What can go wrong!-2
13. What can go wrong!-3
14. What can go wrong!-4
15. Real Computations & Induction: 1
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16. Real Computations & Induction: 2
17. What’s it good for? 1
18. What’s it good for? 2
19. newton: Computation
20. Generalized Composition
21. Two Computations of h(1)
22. Two Computations of h(−1)
23. Recursive Computations
24. Recursion: Left
25. Recursion: Right
26. Recursion: Nonlinear
27. Some Practical Questions
28. Some Practical Questions

Termination and Space Complexity (230-266)

1. Recursion Revisited
2. Linear Recursion: Waxing
3. Recursion: Waning
4. Nonlinear Recursions
5. Fibonacci: contd

6. Recursion: Waxing & Waning
7. Unfolding Recursion
8. Non-termination
9. Termination

10. Proofs of termination
11. Proofs of termination: Induction
12. Proof of termination: Factorial
13. Proof of termination: Factorial
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14. Fibonacci: Termination
15. GCD: Definition
16. GCD computations
17. Well-foundedness: GCD
18. Well-foundedness
19. Induction is Well-founded
20. Induction is Well-founded
21. Where it doesn’t work
22. Well-foundedness is inductive
23. Well-foundedness is inductive
24. GCD: Well-foundedness
25. Newton: Well-foundedness
26. Newton: Well-foundedness
27. Example: Zero
28. Questions
29. The Collatz Problem
30. Questions
31. Space Complexity
32. Newton & Euclid: Absolute
33. Newton & Euclid: Relative
34. Deriving space requirements
35. GCD: Space
36. Factorial: Space
37. Fibonacci: Space
38. Fibonacci: Space

Efficiency Measures and Speed-ups (267-295)

1. Recapitulation
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2. Recapitulation
3. Time & Space Complexity
4. isqrt: Space
5. Time Complexity
6. isqrt: Time Complexity
7. isqrt2: Time
8. shrink vs. shrink2: Times
9. Factorial: Time Complexity

10. Fibonacci: Time Complexity
11. Comparative Complexity
12. Comparisons
13. Comparisons
14. Efficiency Measures: Time
15. Efficiency Measures: Space
16. Speeding Up: 1
17. Speeding Up: 2
18. Factoring out calculations
19. Tail Recursion: 1
20. Tail Recursion: 2
21. Factorial: Tail Recursion
22. Factorial: Tail Recursion
23. A Computation
24. Factorial: Issues
25. Fibonacci: Tail Recursion
26. Fibonacci: Tail Recursion
27. fibTR: SML
28. State in Tail Recursion
29. Invariance
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Invariance & Correctness (296-319)

1. Recap
2. Recursion Transformation
3. Tail Recursion: Examples
4. Comparisons
5. Transformation Issues
6. Correctness Issues 1
7. Correctness Issues 2
8. Correctness Theorem
9. Invariants & Correctness 1

10. Invariants & Correctness 2
11. Invariance Lemma: factL tr

12. Invariance: Example
13. Invariance: Example
14. Proof
15. Invariance Lemma: fib iter
16. Proof
17. Correctness: Fibonacci
18. Variants & Invariants
19. Variants & Invariants
20. More Invariants
21. Fast Powering 1
22. Fast Powering 2
23. Root Finding: Bisection
24. Advantage Bisection

Tuples, Lists & the Generation of Primes (320-341)

1. Recap: Tail Recursion
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2. Examples: Invariants
3. Tuples
4. Lists
5. New Lists
6. List Operations
7. List Operations: cons
8. Generating Primes upto n
9. More Properties

10. Composites
11. Odd Primes
12. primesUpto(n)
13. generateFrom(P,m, n, k)

14. generateFrom
15. primeWRT (m,P )

16. primeWRT (m,P )

17. primeWRT

18. Density of Primes
19. The Prime Number Theorem
20. The Prime Number Theorem
21. Complexity
22. Diagnosis

Compound Data & Lists (342-367)

1. Compound Data
2. Recap: Tuples
3. Tuple: Formation
4. Tuples: Selection
5. Tuples: Equality
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6. Tuples: Equality errors
7. Lists: Recap
8. Lists: Append
9. cons vs. @

10. Lists of Functions
11. Lists of Functions
12. Arithmetic Sequences
13. Tail Recursion
14. Tail Recursion Invariant
15. Tail Recursion
16. Another Tail Recursion: AS3
17. Another Tail Recursion: AS3 iter
18. AS3: Complexity
19. Generating Primes: 2
20. primes2Upto(n)
21. generate2From(P,m, n, k)

22. generate2From
23. prime2WRT (m,P )

24. prime2WRT

25. primes2: Complexity
26. primes2: Diagnosis

Compound Data & List Algorithms (368-394)

1. Compound Data: Summary
2. Records: Constructors
3. Records: Example 1
4. Records: Example 2
5. Records: Destructors
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6. Records: Equality
7. Tuples & Records
8. Back to Lists
9. Lists: Correctness

10. Lists: Case Analysis
11. Lists: Correctness by Cases
12. List-functions: length
13. List Functions: search
14. List Functions: search2
15. List Functions: ordered
16. List Functions:insert
17. List Functions: reverse
18. List Functions: reverse2
19. List Functions:merge
20. List Functions:merge
21. List Functions:merge contd.

22. ML: merge
23. Sorting by Insertion
24. Sorting by Merging
25. Sorting by Merging
26. Functions as Data
27. Higher Order Functions

Higher Order Functions (395-419)

1. Summary: Compound Data
2. List: Examples
3. Lists: Sorting
4. Higher Order Functions
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5. An Example
6. Currying
7. Currying: Contd
8. Generalization
9. Generalization: 2

10. Applying a list
11. Trying it out
12. Associativity
13. Apply to a list
14. Sequences
15. Further Generalization
16. Further Generalization
17. Sequences
18. Efficient Generalization
19. Sequences: 2
20. More Generalizations
21. More Summations
22. Or Maybe . . . Products
23. Or Some Other

⊗
24. Other

⊗
25. Examples of ⊗, e

Structured Data (420-451)

1. Transpose of a Matrix
2. Transpose: 0
3. Transpose: 10
4. Transpose: 01
5. Transpose: 20
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6. Transpose: 02
7. Transpose: 30
8. Transpose: 03
9. trans

10. is2DMatrix

11. User Defined Types
12. Enumeration Types
13. User Defined Structural Types
14. Functions vs. data
15. Data as 0-ary Functions
16. Data vs. Functions
17. Data vs. Functions: Recursion
18. Lists
19. Constructors
20. Shapes
21. Shapes: Triangle Inequality
22. Shapes: Area
23. Shapes: Area
24. ML: Try out
25. ML: Try out (contd.)
26. Enumeration Types
27. Recursive Data Types
28. Resistors: Datatype
29. Resistors: Equivalent
30. Resistors
31. Resistors: Example
32. Resistors: ML session

User Defined Structured Data Types (452-472)
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1. User Defined Types
2. Resistors: Grouping
3. Resistors: In Pairs
4. Resistor: Values
5. Resistance Expressions
6. Resistance Expressions
7. Arithmetic Expressions
8. Arithmetic Expressions: 0
9. Arithmetic Expressions: 1

10. Arithmetic Expressions: 2
11. Arithmetic Expressions: 3
12. Arithmetic Expressions: 4
13. Arithmetic Expressions: 5
14. Arithmetic Expressions: 6
15. Arithmetic Expressions: 7
16. Arithmetic Expressions: 8
17. Binary Trees
18. Arithmetic Expressions: 0
19. Trees: Traversals
20. Recursive Data Types: Correctness
21. Data Types: Correctness

Introducing a Memory Model (473-499)

1. Summary: Functional Model
2. CPU & Memory: Simplified
3. Resource Management
4. Shell: User Interface
5. GUI: User Interface
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6. Memory Model: Simplified
7. Memory
8. The Imperative Model
9. State Changes: σ

10. State
11. State Changes
12. State Changes: σ
13. State Changes: σ1
14. State Changes: σ2
15. Languages
16. User Programs
17. Imperative Languages
18. Imperative vs Functional Variables
19. Assignment Commands
20. Assignment Commands
21. Assignment Commands
22. Assignment Commands
23. Assignment Commands
24. Assignment Commands: Swap
25. Swap
26. Swap
27. Swap

Imperative Programming: (500-524)

1. Imperative vs Functional
2. Features of the Store
3. References: Experiments
4. References: Experiments
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5. References: Experiments
6. Aliases
7. References: Experiments
8. References: Aliases
9. References: Experiments

10. After Garbage Collection
11. Side Effects
12. Imperative ML
13. Imperative ML
14. Imperative ML
15. Imperative ML
16. Nasty Surprises
17. Imperative ML
18. Imperative ML
19. Common Errors
20. Aliasing & References
21. Dangling References
22. New Reference
23. Imperative Commands: Basic
24. Imperative Commands: Compound
25. Predefined Compound Commands

Arrays (525-537)

1. Why Imperative
2. Arrays
3. Indexing Arrays
4. Indexing Arrays
5. Indexing Arrays
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6. Physical Addressing
7. Arrays
8. 2D Arrays
9. 2D Arrays: Indexing

10. Ordering of indices
11. Arrays vs. Lists
12. Arrays: Physical
13. Lists: Physical

Large Example: Tautology Checking (538-560)

1. Logical Arguments
2. Saintly and Rich
3. About Cats
4. About God
5. Russell’s Argument
6. Russell’s Argument
7. Russell’s Argument
8. Russell’s Argument
9. Propositions

10. Compound Propositions
11. Valuations
12. Valuations
13. Tautology
14. Properties
15. Negation Normal Form
16. Literals & Clauses
17. Conjunctive Normal Form
18. Validity
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19. Logical Validity
20. Validity & Tautologies
21. Problem
22. Tautology Checking
23. Falsifying

Tautology Checking Contd. (561-574)

1. Tautology Checking
2. Normal Forms
3. Top-down Development
4. The Signature
5. The Core subproblem
6. The datatype
7. Convert to CNF
8. Rewrite into NNF
9. ⇐⇒ and⇒ Elimination

10. Push ¬ inward
11. Push ¬ inward
12. conj of disj
13. Push ∨ inward
14. Tautology & Falsification
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Figure 1: Plot of y = log10 n, y = n and y = n log10 n
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Figure 2: Plots of y = n2, y = n3, y = n10 and y = 2n
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